RU2820763C1 - Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати - Google Patents
Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати Download PDFInfo
- Publication number
- RU2820763C1 RU2820763C1 RU2023136043A RU2023136043A RU2820763C1 RU 2820763 C1 RU2820763 C1 RU 2820763C1 RU 2023136043 A RU2023136043 A RU 2023136043A RU 2023136043 A RU2023136043 A RU 2023136043A RU 2820763 C1 RU2820763 C1 RU 2820763C1
- Authority
- RU
- Russia
- Prior art keywords
- cement
- portland cement
- printing
- construction
- pozzolanic
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 55
- 238000010276 construction Methods 0.000 title abstract description 20
- 238000007639 printing Methods 0.000 title description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000011398 Portland cement Substances 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000010146 3D printing Methods 0.000 claims abstract description 19
- 239000008030 superplasticizer Substances 0.000 claims abstract description 19
- 229920005646 polycarboxylate Polymers 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000006004 Quartz sand Substances 0.000 claims abstract description 7
- 238000000227 grinding Methods 0.000 claims abstract description 7
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 claims abstract description 3
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 235000019976 tricalcium silicate Nutrition 0.000 claims abstract description 3
- 229910021534 tricalcium silicate Inorganic materials 0.000 claims abstract description 3
- 239000004576 sand Substances 0.000 claims description 17
- 239000010440 gypsum Substances 0.000 claims description 13
- 229910052602 gypsum Inorganic materials 0.000 claims description 13
- 150000002170 ethers Chemical class 0.000 claims description 7
- 239000005909 Kieselgur Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- QIFRZYNXYSOLLD-UHFFFAOYSA-N potassium;trihydroxy(methyl)silane Chemical compound [K].C[Si](O)(O)O QIFRZYNXYSOLLD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002131 composite material Substances 0.000 abstract description 29
- 230000035515 penetration Effects 0.000 abstract description 12
- 239000000654 additive Substances 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 230000000996 additive effect Effects 0.000 abstract description 10
- 238000001125 extrusion Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000005452 bending Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 150000002148 esters Chemical class 0.000 abstract description 2
- PRYHKWNHEWBLDD-UHFFFAOYSA-N [K].C[SiH3] Chemical compound [K].C[SiH3] PRYHKWNHEWBLDD-UHFFFAOYSA-N 0.000 abstract 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 abstract 1
- 239000004035 construction material Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 16
- 239000010410 layer Substances 0.000 description 13
- 239000004568 cement Substances 0.000 description 11
- -1 polypropylene Polymers 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004567 concrete Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000011414 polymer cement Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001843 polymethylhydrosiloxane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Abstract
Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойной экструзии (3D-печати) сырьевой смеси. Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати включает, мас.%: портландцемент, содержащий, мас.%: трехкальциевый силикат 63,0, трехкальциевый алюминат 6,1, 5,59, полуводный гипс 16,7, кварцевый песок с модулем крупности 3 и влажностью 1-3% 54,7-55,8, суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430» 0,05-0,06, регулятор сроков схватывания и твердения – «БЕСТ-ТБ» 0,05, диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг 5,59, метилсилантриолкалиевую соль «ГКЖ-11 К» 0,006-0,007, воду - остальное. Технический результат – снижение расхода портландцемента, повышение формоустойчивости, сопротивления пенетрации, предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере, снижение средней плотности композитов при обеспечении их водостойкости. 2 табл.
Description
Изобретение относится к области промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций в технологии аддитивного производства методом послойной экструзии (3D-печати) сырьевой смеси на основе портландцемента, полуводного гипса, песка, тонкомолотого пуццоланового компонента, суперпластификатора, регулятора сроков схватывания и твердения, метилсилантриолкалиевой соли и воды.
Известна сырьевая смесь на основе цемента для строительной 3D-печати, включающая сульфоалюминатный цемент – 150-400 кг, золу – 0-250 кг, песок с диаметром частиц 0,075-5 мм, полипропиленовую фибру с длиной 3-6 мм, суперпластификатор PCE производства Shandong Hongyi Technology Co., Ltd – 1,5-2,5 % от массы цемента, замедлитель схватывания тетраборат натрия и винная кислота в соотношении 1:(1-1,5) – 0,01-0,2 % от массы цемента, при этом 10-минутная осадка предлагаемого материала на основе цемента составляет 90-110 мм, начало схватывания составляет 15-80 мин, конец схватывания составляет 30-100 мин [1]. Недостатками данного изобретения являются наличие большого числа компонентов смеси, повышенный расход компонентов смеси и увеличение ее стоимости, вызванное применением быстротвердеющего сульфоалюминатного цемента и замедлителя схватывания.
Известна высокотиксотропная сырьевая смесь для строительной 3D-печати, включающая в себя, мас.%: специальный тиксотропный агент 1,0-3,0, цемент 35-40, суперпластификатор на основе эфиров поликарбоксилата 0,1-0,4, полипропиленовое волокно 0,1-0,4, воду 12,5-14,5, песок – остальное [2]. Недостатками данного изобретения являются снижение физико-механических характеристик композита при температуре свыше 140°C, вызванное плавлением полипропиленового волокна; повышенный расход портландцемента, приводящий к увеличению стоимости.
Известен модифицированный полимерцементный композиционный материал для 3D-печати, включающий, мас.%: портландцемент 24,37-34,16, поливинилацетатная дисперсия 2,44-2,56, песок 50,74-61,38, жидкое стекло 1,70-2,44, фиброволокно полипропиленовое 0,02-0,03, флороглюцинфурфурольный модификатор 0,05-0,07, вода – остальное [3]. Недостатками данного изобретения являются невысокие сроки начала схватывания – до 45-70 мин, что вызывает затруднение транспортирования сырьевой смеси с завода на строительную площадку, низкие показатели прочности на сжатие и изгиб в возрасте 28 сут.
Известна гипсоцементно-пуццолановая композиция, включающая, мас.%: портландцемент 53,5-53,8, полуводный гипс 14,0-14,14, пуццолановая добавка – метакаолин 1,3-1,44, модифицирующая добавка 2,6-3,0, содержащая, мас.%: карбоксилатный полиэфир «Ethacryl™ HF» – 76,7-77,1, регулятор сроков схватывания и твердения «Бест-ТБ» – 17,7-18,1, полиметилгидросилоксан – 5-5,4; вода (остальное) [4]. Недостатками данного изобретения являются высокая стоимость, повышенный расход портландцемента, вызванные отсутствием заполнителя в составе композиции, непригодность данной композиции для технологии аддитивного производства методом послойной экструзии (3D-печати) ввиду ее самоуплотняющейся способности, приводящей к отсутствию формоустойчивости, наличия ускоренных сроков начала и конца схватывания – 18-23 мин, вызывающие сокращение жизнеспособности смеси.
Известна двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати, фаза 1 которой содержит компоненты в следующем массовом соотношении твердой фазы, %: портландцемент 44,1-44,5, песок 55,14-55,4, камедь ксантановая 0,08-0,1, тетракалий пирофосфат технический 0,08-0,1, полипропиленовая фибра 0,2-0,3; фаза 2 содержит компоненты в следующем массовом соотношении жидкой фазы, %: суперпластификатор 4,1-4,6, вода 95,4-95,9 [5]. Недостатками данного изобретения являются повышенный расход портландцемента и суперпластификатора (1,2-1,4% от массы портландцемента), низкая формоустойчивость напечатанных слоев из сырьевой смеси, высокие усадочные деформации затвердевшего композита вследствие повышенного расхода портландцемента и применения песка, принадлежащего к группе «очень мелкий» (согласно ГОСТ 8736-2014), низкие показатели предела прочности при изгибе затвердевшего композита, снижение физико-механических характеристик композита при температуре свыше 140°C, вызванное плавлением полипропиленового волокна, использование в качестве модификаторов вязкости тетракалия пирофосфата и камеди ксантановой не предназначенной для использования в качестве добавок для бетонов и растворов (по ГОСТ 24211-2008). Также недостатком изобретения является отсутствие данных о влажности компонентов сырьевой смеси, влияющие на реологические и физико-механические свойства композитов, а также отсутствие данных об осуществлении данного изобретения на 3D-принтере, реализующем метод послойного экструдирования и качестве получаемых изделий. Кроме того, недостатком является используемый в изобретении способ подготовки образцов, заключающийся в их изготовлении в формах 70х70х70 мм, 70х70х280 мм, в то время как технология строительной 3D-печати исключает применение форм, что приводит к изменению поровой структуры композита и искажению получения достоверных результатов физико-механических свойств (прочность на сжатие и растяжение, плотность, водопоглощение и др.).
Наиболее близким решением к предлагаемому изобретению является сырьевая смесь для аддитивного строительного производства, включающая, мас.%: портландцемент – 21,0-24,0, кварцевый песок с модулем крупности 2,2-2,4 и влажностью 1-2 % – 61,44-64,93, тонкомолотый пуццолановый компонент – метакаолин с гидравлической активностью не менее 1200 мг/г, степенью помола не менее 2000 м2/кг – 2,1-2,4, суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430» – 0,21-0,24, эфир полисилоксана «MasterPel 793» – 0,010-0,012, вода – 11,750-11,908 [6]. Недостатками данного изобретения являются высокая стоимость, вызванная повышенным расходом портландцемента, высокая средняя плотность композитов, приводящая к утяжелению формуемых конструкций, невысокая формоустойчивость напечатанных слоев из сырьевой смеси.
Задачей предлагаемого изобретения является снижение расхода портландцемента, повышение формоустойчивости, сопротивлению пенетрации, предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере, снижение средней плотности композитов при обеспечении их водостойкости.
Техническим результатом предлагаемого решения является снижение расхода портландцемента, повышение формоустойчивости, сопротивлению пенетрации, предела прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере, снижение средней плотности композитов при обеспечении их водостойкости.
Поставленная задача достигается тем, что модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати, включающая портландцемент, песок, суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430», воду, тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг, отличается тем, что используют портландцемент, содержащий, мас.%: трехкальциевый силикат 63,0, трехкальциевый алюминат 6,1, в качестве песка используют кварцевый песок с модулем крупности 3 и влажностью 1-3%, и дополнительно она содержит полуводный гипс, регулятор сроков схватывания и твердения – «БЕСТ-ТБ» и метилсилантриолкалиевую соль «ГКЖ-11 К» при следующем содержании компонентов, мас.%:
Указанный портландцемент Полуводный гипс Указанный песок Суперпластификатор «MasterGlenium 430» Регулятор сроков схватывания и твердения – «БЕСТ-ТБ» Указанный тонкомолотый пуццолановый компонент – диатомит Метилсилантриолкалиевая соль «ГКЖ-11 К» Вода |
5,59 16,7 54,7-55,8 0,05-0,06 0,05 5,59 0,006-0,007 остальное |
Для изготовления сырьевой смеси для аддитивного строительного производства использовали следующие материалы:
Портландцемент ЦЕМ I 42,5Н производства ООО «Сухоложскцемент» (ГОСТ 31108-2020) со следующим минералогическим составом: С3S – 63,0 %, С2S – 14,6 %, С3А – 6,1 %, С4AF – 10,4 %;
Полуводный гипс марки Г6БII производства ООО «Аракчинский гипс» (ГОСТ 125-2018);
Кварцевый песок Камско-Устьинского месторождения Республики Татарстан с модулем крупности 3, влажностью 2,5 % (ГОСТ 8736-2014);
Суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430» производства ООО «BASF Строительные системы», представляющий собой жидкость светло-коричневого цвета без содержания хлоридов, плотностью при 20°C 1,06 г/см3, pH – 3,5;
Регулятор сроков схватывания и твердения – «БЕСТ-ТБ» производства ООО «Инновационные Технологии». «БЕСТ-ТБ» относится к суперпластификаторам первой группы и представляет собой сополимер на основе эфиров карбоновых кислот с добавлением фосфатного компонента темно-коричневого цвета с плотностью (при 20°C) 1,24 г/см3, массовая доля сухого вещества 20-30 %;
Тонкомолотый пуццолановый компонент – диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг (СТО 23998461-020-2018). Для приготовления образцов использовали диатомит с гидравлической активностью 1553,7 мг/г, степенью помола 1443 м2/кг;
Метилсилантриолкалиевая соль «ГКЖ-11К» производства ПАО «Химпром», представляющая собой жидкость темно-коричневого цвета плотностью 1,34 г/см3 при 20°C;
Водопроводная питьевая вода, удовлетворяющая требованиям ГОСТ 23732-2011.
Предлагаемое изобретение осуществляется следующим образом: в работающий смеситель загружают заранее отдозированные сухие компоненты сырьевой смеси, образующие гипсоцементно-пуццолановое вяжущее – портландцемент, полуводный гипс, диатомит и производят их перемешивание до получения однородной массы. Затем в работающий смеситель загружают заранее отдозированный кварцевый песок и перемешивают до получения однородной массы. Затем производят дозирование по массе воды, суперпластификатора «MasterGlenium 430», регулятора сроков схватывания и твердения – «БЕСТ-ТБ», метилсилантриолкалиевой соли «ГКЖ-11 К», производят их перемешивание до получения однородного раствора и постепенно добавляют его к тщательно перемешанным сухим компонентам, осуществляя перемешивание смеси до получения однородной массы с подвижностью Пк 2 (по ГОСТ 28013-98) при глубине погружения эталонного конуса 7-8 см. На следующем этапе производят подготовку 3D-принтера: внутреннюю поверхность съемного накопительного бункера смачивают водопроводной питьевой водой или разделительной смазкой. Далее заполняют съемный накопительный бункер строительного 3D-принтера приготовленной сырьевой смесью и осуществляют пробное экструдирование до достижения однородности получаемого экструдата. Затем осуществляют формование сырьевой смеси методом послойной экструзии (3D-печати) на строительном 3D-принтере (например, «АМТ» S-6044 компании ООО «СПЕЦАВИА») в соответствии с заранее подготовленной трехмерной цифровой моделью. Трехмерная цифровая модель образцов представляет собой полосу длиной 40 см, высотой одного слоя 20 мм. Печать сырьевой смеси производят при следующих регулируемых параметрах печати, задаваемых в программном комплексе «Mach3» (Artsoft founder Art Fenerty): скорость вращения шпинделя составляет 3000-5000 ед., скорость подачи – 4000-6000 ед/мин.
Формоустойчивость напечатанных слоев из сырьевой смеси оценивалась по способности смеси сохранять положение в пространстве под воздействием технологических факторов, а именно по максимальной высоте печатаемого образца без технологических перерывов до достижения им критического состояния – потери устойчивости в целом, характеризующаяся его опрокидыванием или потерей устойчивости формы образца со смещением напечатанных слоев.
Сопротивление пенетрации сырьевой смеси определяли в соответствии с требованиями ASTM C403 “Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance” по сопротивлению сырьевой смеси к проникновению плунжера карманного пенетрометра С194 диаметром поперечного сечения 6,35 мм на 150 мин после начала ее экструзии на строительном 3D-принтере.
Водостойкость затвердевших композитов оценивали по коэффициенту размягчения, который равен отношению предела прочности материала при сжатии в водонасыщенном состоянии, к пределу прочности сухого материала. Образцы считаются водостойкими при достижении коэффициента размягчения 0,8 и выше.
Также были проведены испытания образцов по прототипу с использованием портландцемента ЦЕМ I 42,5Н по ГОСТ 31108-2020, песка с модулем крупности 2,3 влажностью 1,5% по ГОСТ 8736-2014, суперпластификатора на основе поликарбоксилатных эфиров «MasterGlenium 430», тонкомолотого пуццоланового компонента – метакаолина, эфира полисилоксана «MasterPel 793», воды.
Через 28 суток нормального твердения производили подготовку образцов для испытаний, сформованных методом послойного экструдирования (3D-печати), путем их распила на призмы размерами 40х40х160 мм. Среднюю плотность затвердевшего композита определяли по ГОСТ 12730.1-2020 «Бетоны. Методы определения плотности». Предел прочности при изгибе затвердевшего композита определяли на образцах-балочках размерами 40х40х160 мм по ГОСТ 5802-86. «Растворы строительные. Методы испытаний» с использованием испытательной машины МИИ-100.
Составы сырьевых смесей для аддитивного строительного производства приведены в таблице 1, физико-механические показатели для составов приведены в таблице 2.
Таблица 1
Компоненты | Составы сырьевых смесей для аддитивного строительного производства, мас.%: | ||||
1 | 2 | 3 | 4 | 5 (прототип) | |
Портландцемент | 5,2 | 5,59 | 5,59 | 6,5 | 22,5 |
Полуводный гипс | 17,0 | 16,7 | 16,7 | 16,2 | |
Песок | 54,1 | 54,7 | 55,8 | 56,1 | 63,18 |
Суперпластификатор «MasterGlenium 430» | 0,02 | 0,06 | 0,05 | 0,08 | 0,23 |
Регулятор сроков схватывания и твердения «БЕСТ-ТБ» | 0,04 | 0,05 | 0,05 | 0,07 | |
Метакаолин | 2,25 | ||||
Диатомит | 5,0 | 5,59 | 5,59 | 7,21 | |
Метилсилантриолкалиевая соль «ГКЖ-11 К» | 0,002 | 0,007 | 0,006 | 0,008 | |
Эфир полисилоксана «MasterPel 793» | 0,011 | ||||
Вода | 18,638 | 17,303 | 16,214 | 13,832 | 11,829 |
Таблица 2
Свойства | Физико-механические показатели для составов | ||||
1 | 2 | 3 | 4 | 5 (прототип) | |
Формоустойчивость напечатанных слоев из сырьевой смеси (высота изделия, полученная при 3D-печати без технологических перерывов), см | 17 | 24 | 22 | 10 | 20 |
Сопротивление пенетрации на 150 минуту твердения, кПа | 4350 | 4050 | 3900 | 3230 | 330 |
Средняя плотность композита, кг/м3 | 1990 | 1930 | 1920 | 1930 | 2080 |
Предел прочности при изгибе на 28 сут, МПа | 7,1 | 9,3 | 9,0 | 7,6 | 6,5 |
Водостойкость | Нет | Да | Да | Да | Да |
Из приведенных данных следует, что максимальные значения показателей формоустойчивости напечатанных слоев из сырьевой смеси, предела прочности при изгибе затвердевших композитов, достигаются при содержании в составе сырьевой смеси портландцемента – 5,59 % от общей массы композиции, полуводного гипса – 16,7 %, песка – 54,7-55,8 %, суперпластификатора «MasterGlenium 430» – 0,05-0,06 %, регулятора сроков схватывания и твердения «БЕСТ-ТБ» – 0,05 %, тонкомолотого пуццоланового компонента – диатомита – 5,59 %, метилсилантриолкалиевой соли «ГКЖ-11 К» – 0,006-0,007 %. При введении портландцемента, песка, суперпластификатора «MasterGlenium 430», регулятора сроков схватывания и твердения «БЕСТ-ТБ», тонкомолотого пуццоланового компонента – диатомита, метилсилантриолкалиевой соли «ГКЖ-11 К», в количестве меньше указанных в таблице 1 (состав 1), наблюдается снижение показателей формоустойчивости напечатанных слоев из сырьевой смеси, предела прочности при изгибе, повышение сопротивления пенетрации на 150 минуту твердения, средней плотности затвердевших композитов и не обеспечивается их водостойкость. При их введении, в количестве больше указанных в таблице 1 (состав 4), показатели формоустойчивости напечатанных слоев из сырьевой смеси, сопротивление пенетрации на 150 минуту твердения, предел прочности при изгибе снижаются, средняя плотность композитов, напечатанных на 3D-принтере, увеличивается.
Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати, полученная согласно предлагаемому изобретению, обладает пониженным расходом портландцемента, повышенными формоустойчивостью, сопротивлением пенетрации на 150 минуту твердения, пределом прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере, низкой средней плотностью композитов при обеспечении их водостойкости.
Применение гипсоцементно-пуццоланового вяжущего позволяет снизить расход портландцемента в сырьевой смеси, среднюю плотность композитов, напечатанных на 3D-принтере, увеличить сопротивление пенетрации на 150 минуту твердения.
Применение крупного песка с модулем крупности 3 в сочетании с гипсоцементно-пуццолановым вяжущим, суперпластификатором на основе поликарбоксилатных эфиров «MasterGlenium 430», регулятором сроков схватывания и твердения – «БЕСТ-ТБ» и метилсилантриолкалиевой соли «ГКЖ-11 К» позволяет повысить предел прочности при изгибе затвердевших композитов, напечатанных на 3D-принтере при обеспечении их водостойкости.
Применение суперпластификатора «MasterGlenium 430» на основе поликарбоксилатных эфиров в количестве 0,05-0,06 мас.%, кварцевого песка с модулем крупности 3 и влажностью 1-3 % в количестве 54,7-55,8 мас.% позволяет сократить количество воды затворения, повысить физико-механические характеристики затвердевшего композита при одновременном обеспечении повышенной формоустойчивости сырьевой смеси.
Введение тонкомолотого пуццоланового компонента – диатомита со степенью помола не менее 1400 м2/кг, гидравлической активностью не менее 1500 мг/г позволяет улучшить формуемость сырьевой смеси за счет обеспечения связности, однородности и пластичности, снизить концентрацию гидроксида кальция в системе, тем самым оказывать благоприятные условия для формирования устойчивых структур при совместных гидратации и твердении гипсового и цементного вяжущих.
Применение полуводного гипса в количестве 16,7 мас.% приводит к ускорению процессов структурообразования смешанного вяжущего, обеспечивая тем самым повышенное сопротивление пенетрации на 150 минуту твердения.
Таким образом, предлагаемое решение позволяет получить модифицированную гипсоцементно-пуццолановую строительную смесь для 3D-печати с пониженным расходом портландцемента, обладающую высокой формоустойчивостью, и изделия на ее основе с повышенными прочностными характеристиками при изгибе и невысокой средней плотностью при обеспечении их водостойкости.
Источники информации:
1. Патент CN 105753404 A, B33Y 70/00, Cement-based material used for building 3D (three-dimensional) printing, заяв. 13.02.2016, опубл. 13.07.2016.
2. Патент CN 108715531 A, C04B 28/02, A kind of high thixotropic 3D printing concrete and preparation method thereof, заяв. 12.06.2018, опубл. 28.08.2020.
3. Патент RU 2661970, С04В 28/04, C04В 14/02, С04В 22/08, С04В 26/00, С04В 2111/20, С04В 2111/343, Модифицированный полимерцементный композиционный материал для 3D-печати, Полуэктова В.А., Шаповалов Н.А., Черников Р.О., Евтушенко Е.И., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет», заяв. 31.07.2017, опубл. 23.07.2018, бюл. № 21.
4. Патент RU 2551179, C04B 11/30, Гипсоцементно-пуццолановая композиция, Изотов В.С., Мухаметрахимов Р.Х., Каримов Р.Ф., Галаутдинов А.Р., Тагирова Ю.В., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский государственный архитектурно-строительный университет», заяв. 14.02.2014, опубл. 20.05.2015, бюл. № 14.
5. Патент RU 2729086, С04В 28/04, Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати, Славчева Г.С., Артамонова О.В., Шведова М.А., Бритвина Е.А., патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет», заяв. 21.10.2019, опубл. 04.08.2020, бюл. № 22.
6. Патент RU 2781203, C04B 28/04, C04B 111/20, B33Y 70/00, Сырьевая смесь для аддитивного строительного производства, Мухаметрахимов Р.Х., Зиганшина Л.В., Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский государственный архитектурно-строительный университет», заяв. 30.12.2021, опубл. 07.10.2022, бюл. № 28.
Claims (2)
- Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати, включающая портландцемент, песок, суперпластификатор на основе поликарбоксилатных эфиров «MasterGlenium 430», воду, тонкомолотый пуццолановый компонент, отличающаяся тем, что используют портландцемент, содержащий, мас.%: трехкальциевый силикат 63,0, трехкальциевый алюминат 6,1, в качестве песка используют кварцевый песок с модулем крупности 3 и влажностью 1-3%, в качестве тонкомолотого пуццоланового компонента используют диатомит с гидравлической активностью не менее 1500 мг/г, степенью помола не менее 1400 м2/кг и дополнительно она содержит полуводный гипс, регулятор сроков схватывания и твердения – «БЕСТ-ТБ» и метилсилантриолкалиевую соль «ГКЖ-11 К» при следующем содержании компонентов, мас.%:
-
Указанный портландцемент 5,59 Полуводный гипс 16,7 Указанный песок 54,7-55,8 Суперпластификатор «MasterGlenium 430» 0,05-0,06 Регулятор сроков схватывания и твердения – «БЕСТ-ТБ» 0,05 Указанный тонкомолотый пуццолановый компонент – диатомит 5,59 Метилсилантриолкалиевая соль «ГКЖ-11 К» 0,006-0,007 Вода остальное
Publications (1)
Publication Number | Publication Date |
---|---|
RU2820763C1 true RU2820763C1 (ru) | 2024-06-07 |
Family
ID=
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2551176C1 (ru) * | 2014-04-14 | 2015-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Способ приготовления гипсоцементно-пуццолановой смеси |
CN104891891B (zh) * | 2015-05-06 | 2017-04-05 | 同济大学 | 一种3d打印水泥基材料及其制备方法 |
WO2021152169A1 (en) * | 2020-02-01 | 2021-08-05 | Celanese Switzerland Ag | Cementitious composition additive for machine application |
RU2775032C1 (ru) * | 2021-12-30 | 2022-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный архитектурно-строительный университет» (КазГАСУ) | Модифицированная бетонная смесь для строительной 3d-печати |
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2551176C1 (ru) * | 2014-04-14 | 2015-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Способ приготовления гипсоцементно-пуццолановой смеси |
CN104891891B (zh) * | 2015-05-06 | 2017-04-05 | 同济大学 | 一种3d打印水泥基材料及其制备方法 |
WO2021152169A1 (en) * | 2020-02-01 | 2021-08-05 | Celanese Switzerland Ag | Cementitious composition additive for machine application |
RU2775032C1 (ru) * | 2021-12-30 | 2022-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный архитектурно-строительный университет» (КазГАСУ) | Модифицированная бетонная смесь для строительной 3d-печати |
RU2781203C1 (ru) * | 2021-12-30 | 2022-10-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) | Сырьевая смесь для аддитивного строительного производства |
RU2787245C1 (ru) * | 2022-02-17 | 2022-12-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) | Композиция для изготовления водостойких облицовочных гипсовых изделий |
RU2793497C1 (ru) * | 2022-11-01 | 2023-04-04 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) | Способ аддитивного производства в строительстве с длительным технологическим перерывом |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2820763C1 (ru) | Модифицированная гипсоцементно-пуццолановая строительная смесь для 3D-печати | |
RU2820797C1 (ru) | Гипсоцементно-пуццолановая строительная смесь для 3D-печати | |
RU2820808C1 (ru) | Строительная смесь на основе гипсоцементно-пуццоланового вяжущего для 3D-печати | |
RU2821079C1 (ru) | Гипсоцементно-пуццолановая сырьевая смесь для экструзии на 3D-принтере | |
RU2820806C1 (ru) | Гипсоцементно-пуццолановая строительная смесь для 3D-принтера | |
RU2820798C1 (ru) | Гипсоцементно-пуццолановая сырьевая смесь для аддитивного строительного производства | |
RU2820765C1 (ru) | Сырьевая смесь на основе гипсоцементно-пуццоланового вяжущего для строительной 3D-печати | |
RU2821491C1 (ru) | Модифицированная гипсоцементно-пуццолановая сырьевая смесь для 3D-печати | |
RU2821879C1 (ru) | Модифицированная гипсоцементно-пуццолановая бетонная смесь для 3D-печати | |
RU2820801C1 (ru) | Модифицированная гипсоцементно-пуццолановая сырьевая смесь для экструзии на 3D-принтере | |
RU2820804C1 (ru) | Гипсоцементно-пуццолановая бетонная смесь для экструзии на 3D-принтере | |
RU2821877C1 (ru) | Гипсоцементно-пуццолановая строительная сырьевая смесь для 3D-печати | |
RU2821072C1 (ru) | Бетонная смесь на основе гипсоцементно-пуццоланового вяжущего для строительной 3D-печати | |
RU2821070C1 (ru) | Гипсоцементно-пуццолановая сырьевая смесь для строительной 3D-печати | |
RU2820800C1 (ru) | Гипсоцементно-пуццолановая модифицированная строительная смесь для 3D-принтера | |
RU2820760C1 (ru) | Гипсоцементно-пуццолановая бетонная смесь для 3D-печати | |
RU2820762C1 (ru) | Модифицированная гипсоцементно-пуццолановая бетонная смесь для строительной 3D-печати | |
RU2817928C1 (ru) | Гипсоцементно-пуццолановая модифицированная бетонная смесь для экструзии на 3D-принтере | |
RU2823956C1 (ru) | Гипсоцементно-пуццолановая строительная смесь для аддитивного производства | |
RU2826408C1 (ru) | Гипсоцементно-пуццолановая бетонная смесь для строительной 3D-печати | |
RU2784503C1 (ru) | Бетонная смесь для послойного экструдирования (3d-печати) | |
RU2775133C1 (ru) | Модифицированная бетонная смесь для 3d-печати | |
RU2780512C1 (ru) | Модифицированная бетонная смесь для экструзии на 3d-принтере | |
RU2781201C1 (ru) | Сырьевая смесь для строительной 3d-печати в технологии аддитивного производства | |
RU2773913C1 (ru) | Строительная смесь для 3d-печати |