RU2729246C1 - Способ литья для активного металла - Google Patents
Способ литья для активного металла Download PDFInfo
- Publication number
- RU2729246C1 RU2729246C1 RU2019118079A RU2019118079A RU2729246C1 RU 2729246 C1 RU2729246 C1 RU 2729246C1 RU 2019118079 A RU2019118079 A RU 2019118079A RU 2019118079 A RU2019118079 A RU 2019118079A RU 2729246 C1 RU2729246 C1 RU 2729246C1
- Authority
- RU
- Russia
- Prior art keywords
- casting
- ingot
- metal
- active metal
- diameter
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D13/00—Centrifugal casting; Casting by using centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/06—Vacuum casting, i.e. making use of vacuum to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/06—Casting non-ferrous metals with a high melting point, e.g. metallic carbides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/06—Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/06—Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
- F27B14/061—Induction furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details peculiar to crucible or pot furnaces
- F27B2014/0837—Cooling arrangements
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
Abstract
Изобретение относится к металлургии и может быть использовано для литья активного металла. В индукционной плавильной печи с медным тиглем с водяным охлаждением отливают тонкий слиток активного металла путем выпуска расплава из выпускного отверстия, предусмотренного в секции основания тигля, в литейную форму. Литье выполняют при условиях, в которых слиток имеет диаметр (D) по меньшей мере 10 мм, отношение (H/D) высоты H слитка к диаметру D слитка составляет по меньшей мере 1,5, и вес выпускаемого расплава составляет не больше чем 200 кг, при этом температуру расплава во время литья устанавливают более высокой, чем температура плавления активного металла, и литье выполняют при управлении скоростью литья V (мм/с) в литейную форму путем регулирования диаметра выпускного отверстия так, чтобы соотношение с высотой H слитка удовлетворяло условию V≤0,1H. Изобретение позволяет осуществить направленное затвердевание слитка от дна в литейной форме, уменьшить усадочную раковину в металлическом слитке и улучшить выход бездефектного продукта. 5 ил., 2 табл.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001]
Настоящее изобретение относится к способу литья активного металла, позволяющему получать слиток малого диаметра с хорошим качеством и высоким выходом.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
[0002]
В индукционной плавильной печи, использующей медный тигель с водяным охлаждением (CCIM), примеси практически не примешиваются к расплавленному металлу из плавильной атмосферы и тигля, и поэтому она является подходящей для плавления активного металла, в частности плавления металла, имеющего высокую температуру плавления.
Кроме того, индукционная плавильная печь может плавить сырье в печи без ограничения формы, если сырье имеет размер меньше, чем размер тигля. Следовательно, такие материалы, как лом, могут эффективно использоваться в качестве сырья.
[0003]
Кроме того, электромагнитная индукция, которая вызывает нагрев в индукционной плавильной печи, также, вызывает электромагнитное отталкивание для перемешивания расплавленного металла. Следовательно, гомогенность в расплавленном металле может поддерживаться за счет перемешивания благодаря электромагнитному отталкиванию.
По этой причине литье активного металла с использованием индукционной плавильной печи считается эффективным способом для получения высококачественного слитка металла с высоким выходом, поскольку высокий выход требуется при литье активного металла из-за высокой стоимости сырья.
[0004]
Плотность металла в твердом состоянии обычно больше, чем плотность металла в жидком состоянии, и поэтому объем отлитого тела уменьшается, когда оно затвердевает. Другими словами, полость, называемая усадочной раковиной, образуется как дефект при литье в той части, в которой скорость охлаждения является относительно низкой, и затвердевание задерживается из-за усадки при кристаллизации. Усадочная раковина легко образуется в осевой центральной части слитка, особенно когда производится слиток с малым диаметром.
Следовательно, когда металл, расплавленный в индукционной плавильной печи, отливается как слиток малого диаметра, обычно используется такой способ, как способ центробежного литья или способ вакуумной разливки, чтобы уменьшить усадочную раковину.
[0005]
Например, Патентный документ 1 раскрывает способ вакуумной разливки с использованием устройства для литья, оборудованного закрытой печью-миксером и литейной формой, связанной с печью-миксером подающим рукавом. Способ вакуумной разливки согласно Патентному документу 1 позволяет в достаточной степени уменьшить давление в полости (в печи-миксере), а также позволяет выполнять заполнение расплавленным металлом в ламинарном потоке. Следовательно, нет никакой возможности попадания воздуха, и качество литья улучшается. Кроме того, в способе вакуумной разливки согласно Патентному документу 1 считается, что разность между давлением в печи-миксере и давлением в полости может быть увеличена, и в результате масса отливки не ограничивается, и возможно литье большого объема.
[0006]
Кроме того, способ направленного затвердевания, описанный в Патентном документе 2, известен как способ предотвращения образования описанной выше усадочной раковины.
Более подробно, Патентный документ 2 раскрывает способ прецизионной кристаллизации, включающий нагревание верхней части керамической литейной формы до температуры более высокой, чем у ее нижней части, с использованием нагревательной печи, разделенной на множество частей в направлении высоты и способной индивидуально регулировать температуру в каждой части, литье расплавленного металла в нагретую керамическую литейную форму и выполнение кристаллизации. В способе прецизионной кристаллизации согласно Патентному документу 2 нижняя часть литейной формы нагревается до относительно низкой температуры, а верхняя часть литейной формы нагревается до высокой температуры в нагревательной печи, имеющей температурное распределение в направлении высоты. Когда расплавленный металл затем заливается в литейную форму, в литейной форме происходит направленное затвердевание, при котором расплавленный металл постепенно затвердевает в направлении от нижней части (в которой температура расплавленного металла является низкой) к верхней части. Считается, что когда происходит направленное затвердевание, образование дефектов, таких как усадочная раковина, может быть предотвращено.
[0007]
Обычный способ литья в индукционной плавильной печи с использованием медного тигля с водяным охлаждением обычно использует способ выпуска плавки путем наклона тигля. Однако в Патентном документе 3 был предложен способ выпуска плавки из дна тигля.
Более подробно, способ литья по Патентному документу 3 имеет конфигурацию, в которой материал, который плавится в тигле, всплывает за счет электромагнитного отталкивания и плавится с помощью индукционного нагрева, и расплавленный металл выливается в литейную форму из донного разливочного отверстия.
Цилиндрический сменный проводящий адаптер вставляется в разливочное отверстие, и в способе литья по Патентному документу 3 скорость потока может ступенчато регулироваться путем замены адаптера.
СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ
ПАТЕНТНАЯ ЛИТЕРАТУРА
[0008]
Патентный документ 1: JP-A-H9-57422
Патентный документ 2: JP-A-H11-57984
Патентный документ 3: JP-A-H11-87044
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ПРОБЛЕМА
[0009]
Способ вакуумной разливки по Патентному документу 1 требует дополнительной стадии для уменьшения давления в печи-миксере. Это приводит к ухудшению производительности из-за увеличения количества стадий при литье.
Ухудшение производительности из-за увеличения количества стадий также происходит и в способе центробежного литья, в котором усадочная раковина уменьшается путем приложения центробежной силы к литейной форме.
[0010]
Кроме того, способ прецизионной кристаллизации по Патентному документу 2 требует подготовки новой нагревательной печи, способной изменять температуру в направлении высоты. В дополнение к этому, температура нагрева должна точно изменяться в направлении высоты при литье. В результате процесс производства имеет тенденцию к усложнению, и это может привести к увеличению производственных затрат.
Кроме того, плавильная печь с донным выпуском по Патентному документу 3 значительно изменяет скорость выпускаемого потока путем изменения диаметра выпускного отверстия в дне. Однако этот патентный документ не содержит ни описания влияния изменения скорости выпускаемого потока на выход слитка или его качество, ни описания литья материала малого диаметра.
[0011]
Настоящее изобретение было создано с учетом вышеописанных проблем и имеет своей задачей предложить способ литья активного металла, который реализует направленное затвердевание от дна слитка в литейной форме, в которую льется расплавленный металл, уменьшает усадочную раковину в слитке металла и улучшает выход бездефектного продукта, путем использования охлаждаемого водой тигля из меди и подобного, и который является способом с индукционным нагревом, выпуском металла через донное отверстие, и с управлением скоростью литья расплавленного металла.
РЕШЕНИЕ ПРОБЛЕМЫ
[0012]
Для решения вышеописанных проблем способ литья активного металла по настоящему изобретению предусматривает следующие технические меры и средства.
Способ литья активного металла по настоящему изобретению представляет собой способ литья активного металла, содержащий использование в индукционной плавильной печи охлаждаемого водой тигля и выпуск расплавленного металла в литейную форму из донного выпускного отверстия медного тигля с водяным охлаждением для литья слитка активного металла, в котором при выполнении литья при условиях литья, в которых слиток имеет диаметр (D) 10 мм или более и отношение (H/D) высоты слитка H к диаметру слитка D 1,5 или более, и вес разливаемого расплавленного металла 200 кг или менее, температура расплавленного металла при литье устанавливается более высокой, чем температура плавления активного металла, и литье выполняется при управлении скоростью литья V (мм/с), которая представляет собой скорость литья в литейную форму, так, чтобы удовлетворялось условие V ≤ 0,1H относительно высоты слитка H, путем регулирования диаметра донного выпускного отверстия.
ПОЛЕЗНЫЕ ЭФФЕКТЫ ИЗОБРЕТЕНИЯ
[0013]
В соответствии со способом литья активного металла по настоящему изобретению направленное затвердевание от дна слитка металла может быть реализовано в литейной форме, в которую отливают расплавленный металл, усадочная раковина во внутренней части слитка металла может быть уменьшена, и выход бездефектного продукта может быть улучшен путем использовании охлаждаемого водой тигля из меди и подобного, и который является способом с индукционным нагревом, выпуском металла через донное выпускное отверстие, и управлением скоростью литья расплавленного металла.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0014]
[Фиг. 1A] Фиг. 1A иллюстрирует литейное оборудование, используемое в способе плавки активного металла этого варианта осуществления.
[Фиг. 1B] Фиг. 1B представляет собой схематическое поперечное сечение внутренней части слитка металла, отлитого литейным устройством, показанным на Фиг. 1A.
[Фиг. 2] На Фиг. 2 слева показано поперечное сечение состояния образования дефекта внутри слитка металла, отлитого с помощью обычного способа (выпуска путем наклона тигля), а справа показано поперечное сечение образования дефекта внутри слитка металла, отлитого с помощью способа данного варианта осуществления.
[Фиг. 3] На Фиг. 3 слева показано температурное распределение в слитке металла, имеющем вес 5 кг и высоту литья 220 мм при скорости разливки 158,4 мм/с, а справа показано температурное распределение в слитке металла, имеющем вес 5 кг и высоту литья 220 мм при скорости разливки 2,2 мм/с.
[Фиг. 4] Фиг. 4 иллюстрирует влияние скорости разливки на выход слитка.
[Фиг. 5A] Фиг. 5A показывает литейное оборудование, используемое в обычном способе разливки активного металла (выпуска путем наклона тигля).
[Фиг. 5B] Фиг. 5B представляет собой схематическое поперечное сечение внутренней части слитка металла, отлитого литейным устройством, показанным на Фиг. 5A.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
[0015]
Далее конкретный вариант осуществления способа литья активного металла в соответствии с настоящим изобретением описывается подробно со ссылками на чертежи.
Способ литья активного металла этого варианта осуществления производит слиток S малого диаметра (слиток) путем заливки расплавленного металла M, получаемого путем плавления активного металла, имеющего высокую температуру плавления (именуемого в дальнейшем активным металлом), такого как сплавы на основе титана (Ti), на основе циркония (Zr), на основе ванадия (V) или на основе хрома (Cr), в литейную форму 4 и выполнения литья.
[0016]
Литейное оборудование 1, используемое в способе литья активного металла этого варианта осуществления, описывается ниже.
Как проиллюстрировано на Фиг. 1, литейное оборудование 1 этого варианта осуществления содержит индукционную плавильную печь 3, использующую медный тигель 2 с водяным охлаждением, и литейную форму 4, в которую заливается расплавленный металл M, выпускаемый через дно тигля 2. Расплавленный металл M выпускается в литейную форму 4 через дно тигля 2 и отливается слиток S малого диаметра из активного металла.
[0017]
Индукционная плавильная печь 3, используемая в литейном оборудовании 1 этого варианта осуществления, создает индукционный ток в расплавляемом материале, и использует его сопротивление для нагревания, и обычно называется индукционной плавкой в холодном тигле. Индукционная плавильная печь 3 плавит активный металл, используя медный тигель 2 с водяным охлаждением. Тигель 2 сформирован из меди без использования огнеупора, который часто используется в качестве материала, составляющего тигель 2 типичной плавильной печи. По этой причине индукционная плавильная печь позволяет устранить влияние загрязняющих примесей из огнеупора.
[0018]
Тигель 2, используемый в вышеописанной индукционной плавильной печи 3, имеет открытую сверху цилиндрическую форму, как проиллюстрировано на Фиг. 1, и может содержать внутри расплавленный активный металл.
Стенка тигля 2 формируется из меди, как было описано выше, и охлаждается водой. Когда стенка тигля 2 сформирована так, из меди с водяным охлаждением, температура стенки тигля 2 не увеличивается выше заранее заданной температуры (например, 250°C), даже когда тигель содержит расплавленный активный металл. В частности, даже когда расплавленный активный металл находится в медном тигле 2 с водяным охлаждением, затвердевшая оболочка, называемая корочкой, образуется между стенкой тигля 2 и расплавленным металлом, и играет ту же роль, что и тигель. В результате расплавленный металл не загрязняется тиглем 2.
[0019]
Тигель 2 этого варианта осуществления представляет собой тигель с донным выпуском, и выпускное отверстие 5, способное направлять удерживаемый активный металл вниз, формируется на дне тигля 2. Выпускное отверстие 5 может быть сконфигурировано так, чтобы его диаметр мог регулироваться и соответственно регулировать количество расплавленного металла M, направляемого вниз. Выпускное отверстие 5 может конфигурироваться так, чтобы его диаметр регулировался электромагнитным способом или механическим способом, или может конфигурироваться так, чтобы было заранее подготовлено множество клапанных элементов, имеющих различные диаметры отверстия, и диаметр отверстия регулируется путем замены клапанного элемента.
[0020]
Литейная форма 4 имеет цилиндрическую форму с дном, открытую сверху.
Внутренние размеры литейной формы 4 предпочтительно находятся внутри следующих применимых диапазонов, когда диаметр слитка S металла равен D, высота слитка S металла равна H и вес расплавленного металла M равен W:
Диаметр слитка D (мм): 10≤D≤150
Высота слитка H (мм): 15≤H≤1500
Вес расплавленного металла (кг): 0,2≤W≤200
Процедуры литья активного металла с использованием вышеописанной индукционной плавильной печи 3, другими словами, способ литья активного металла, описываются ниже.
[0021]
Способ литья активного металла этого варианта осуществления включает в себя использование в индукционной плавильной печи 3, водоохлаждаемого тигля 2 и выпуск расплавленного металла M в литейную форму 4 из донного отверстия медного тигля 2 с водяным охлаждением 2 для отливки слитка S активного металла с малым диаметром. В этом случае литье слитка S малого диаметра проводится при условиях литья, в которых диаметр (D) составляет 10 мм или более, отношение (H/D) высоты (H) слитка S к диаметру (D) слитка S равно 1,5 или более, и вес разливаемого расплавленного металла M составляет 200 кг или менее. При проведении литья выпускное отверстие 5, конфигурируемое так, чтобы его диаметр мог регулироваться, предусматривается в дне тигля 2. Температура расплавленного металла М при литье устанавливается более высокой, чем температура плавления активного металла, и литье выполняется при управлении скоростью V (мм/с) литья в литейную форму 4 так, чтобы удовлетворялось условие V≤0,1H относительно высоты слитка H, путем регулирования диаметра выпускного отверстия 5. В результате усадочная раковина внутри слитка S уменьшается, и выход литья улучшается. Для того, чтобы предотвратить «закупорку расплавленным металлом», при которой разливаемый расплавленный металл забивает отверстие и не течет, температура расплавленного металла M при литье предпочтительно поддерживается более высокой, чем температура плавления активного вещества, на 20°C или больше, и более предпочтительно на 40°C или больше.
[0022]
Причины установки вышеописанных условий литья в способе литья этого варианта осуществления являются следующими.
Например, сырьевой материал многокомпонентного сплава Ti-Al (Ti-33,3Al-4,6Nb-2,55Cr) плавится в индукционной плавильной печи 3 в медном тигле 2 с водяным охлаждением (с диаметром 250 мм) и выдерживается до достижения полностью расплавленного состояния. После этого ток пропускается через катушку, расположенную на дне, титановая пробка (диаметром 3,2 мм), расположенная в донном выпускном отверстии, плавился индукцией и удаляется для того, чтобы сформировать отверстие. Расплавленный сплав выпускается через дно тигля 2 для отливки слитка S. Для сравнения слиток металла был подготовлен путем наклонной разливки, как проиллюстрировано на Фиг. 5A и Фиг. 5B. Фотографии поперечных сечений полученных слитков S из сплава Ti-Al проиллюстрированы на Фиг. 2: слева - для способа наклонного выпуска (обычная технология), и справа - для способа донного выпуска (настоящее изобретение).
[0023]
Как проиллюстрировано на левой части Фиг. 2, дефекты усадочной раковины C явно присутствуют в широком диапазоне в вертикальном направлении в слитке S, отлитом обычным способом наклонного выпуска. С другой стороны, было подтверждено, что дефекты усадочной раковины C образовывались только в верхней концевой части слитка S, отлитого способом донного выпуска, как проиллюстрировано на правой части Фиг. 2. Причина этого предположительно заключается в том, что когда расплавленный сплав выпускается снизу, скорость литья становится медленной по сравнению со способом наклонного выпуска, и в результате последняя затвердевающая часть образует самую верхнюю часть, хотя процесс затвердевания близок к направленной кристаллизации от дна. Хотя это и не показано на Фиг. 1B и Фиг. 5B, дефекты, называемые «срединными утяжинами», заключенные в слитке металла, включаются в усадочную раковину C.
[0024]
Результаты оценки состояния образования усадочной раковины внутри слитков S в способе донного выпуска и в способе наклонного выпуска, а также соответствующие выходы показаны в Таблице 1.
[0025]
Таблица 1
Технология | Скорость литья | Усадочная раковина | Выход бездефектного продукта | Оценка |
Обычный пример (способ наклонного выпуска) | 3,6 кг/с | 30% | ||
Настоящий пример (способ донного выпуска) | 0,05 кг/с | 80% |
[0026]
Как видно из Таблицы 1, за счет замедления скорости литья место образования усадочной раковины C сдвигается к верхнему концу слитка S (верхней части слитка S), и «выход бездефектного продукта» улучшается вплоть до 80% в настоящем примере (способ донного выпуска) по сравнению с 30% в обычном примере (способ наклонного выпуска). «Выход бездефектного продукта» представляет собой отношение высоты той части слитка S, в которой нет усадочной раковины C на Фиг. 2, к полной высоте слитка S (в частности, h/H на Фиг. 1B и h'/H на Фиг. 5B).
[0027]
На образование описанной выше разности в состоянии образования усадочной раковины C значительное влияние оказывает положение последней затвердевающей части, присутствующей в слитке S. Другими словами, в основном усадочная раковина C образуется в том месте, в котором затвердевание завершается (в последней затвердевающей части). Следовательно, когда скорость литья изменяется с использованием программного обеспечения для численного анализа, если получается температурное распределение в слитке S, положение, в котором присутствует последняя затвердевающая часть в слитке S, также получается, и состояние образования усадочной раковины C может быть оценено.
[0028]
Например, левая часть Фиг. 3 иллюстрирует температурное распределение внутри слитка S при выполнении литья способом наклонного выпуска (обычная технология). Численные значения на этом чертеже указывают температуру внутри слитка S, полученную в результате численного анализа. Показано, что температура части слитка металла является высокой, поскольку численное значение является большим, и последняя затвердевающая часть, которая не затвердевать до самого конца и остается, имеет высокую температуру. Другими словами, предполагается, что последняя затвердевающая часть соответствует месту образования усадочной раковины C.
[0029]
Как проиллюстрировано в левой части Фиг. 3, когда используется способ наклонного выпуска, то есть когда скорость литья является высокой (158,4 мм/с), место образования усадочной раковины C находится в центральной части (в вертикальном направлении) слитка S.
С другой стороны, как проиллюстрировано в правой части Фиг. 3, когда используется способ донного выпуска (технология настоящего изобретения), то есть когда скорость литья является медленной (2,2 мм/с), подтверждается, что место образования усадочной раковины C сдвигается к верхней стороне слитка S. Предположительно это происходит благодаря тому, что при уменьшении скорости литья реализуется направленное затвердевание, которое протекает вверх от дна.
[0030]
Соотношение между скоростью литья и положением последней затвердевающей части (местом образования усадочной раковины C) показано в Таблице 2 и на Фиг. 4. Использовалась такая литейная форма, чтобы получался слиток металла, имеющий диаметр (D) 100 мм и вес 25 кг.
[0031]
Таблица 2
Технология | Скорость литья V (кг/с) | Скорость литья V/Высота слитка H×100 (%/с) | Выход бездефектного продукта (%) | |
Пример | Аналитическое значение CASTEM | 4,80 | 72 | 50 |
2,40 | 36 | 55 | ||
0,67 | 10 | 60 | ||
0,27 | 4 | 65 | ||
0,13 | 2 | 71,5 | ||
0,07 | 1 | 78 | ||
Измеренное значение выпуска через донное отверстие | 0,15 | 2,26 | 68 | |
0,05 | 0,75 | 76 | ||
0,066 | 0,0047 | 86 | ||
0,067 | 0,0059 | 85 | ||
Сравнительный пример | Измеренное значение выпуска путем наклона тигля | 3,60 | 52,9 | 54 |
[0032]
Фиг. 4 показывает положение последней затвердевающей части (другими словами, выход слитка S), при изменении скорости литья по массе слитка S (скорость литья [%/с], представленная долей длины отливки). Скорость литья в виде аналитического значения CASTEM, показанного на Фиг. 4, вычислялась с использованием того же самого численного анализа, что и на Фиг. 3. Экспериментальные значения скорости литья для способа донного выпуска и для способа наклонного выпуска были получены с помощью эксперимента. Когда высота слитка S на Фиг. 1B составляет H (мм), в том случае, когда скорость литья V (мм/с) составляет «0,1×H» или меньше («скорость литья (мм/с)/высота слитка (мм) ×100» составляет 10%/с или меньше), последняя затвердевающая часть сдвигается к верхней стороне (верхней части) слитка S, и усадочная раковина C также сдвигается к верхней стороне слитка S. В результате в том случае, когда скорость литья V составляет «0,1×H» или меньше, весь слиток, за исключением его верхнего конца, в котором образуется усадочная раковина C, может использоваться в качестве бездефектного слитка S, и предполагается, что выход бездефектного продукта улучшается до 60% или больше. В соответствии с Примером, показанным на Фиг. 4, когда скорость литья V (мм/с)/высота слитка (мм) ×100 составляет 4%/с или меньше, выход улучшается до 65% или больше; когда скорость литья V (мм/с)/высота слитка (мм) ×100 составляет 2%/с или меньше, выход улучшается до 70% или больше; когда скорость литья V (мм/с)/высота слитка (мм) ×100 составляет 1%/с или меньше, выход улучшается до 75% или больше; и когда скорость литья V (мм/с)/высота слитка (мм) ×100 составляет 0,006%/с или меньше, выход улучшается до 85% или больше.
[0033]
В случае обычного способа (способа наклонного выпуска) выход бездефектного продукта составляет всего лишь 30% в случае Таблицы 1 и всего 54% в случае Таблицы 2.
Следовательно, для того, чтобы выход бездефектного продукта составлял 60% или больше, скорость литья V (мм/с) предпочтительно должна составлять «0,1×H» или меньше, где H - высота слитка S (мм).
Причины установки вышеописанных условий литья в способе литья этого варианта осуществления были описаны выше.
[0034]
Таким образом, в настоящем изобретении при выполнении литья при условиях литья, в которых диаметр (D) составляет 10 мм или больше, отношение (H/D) высоты H слитка S к диаметру D слитка S составляет 1,5 или больше, и вес выпускаемого расплавленного металла составляет 200 кг или меньше, литье проводится таким образом, чтобы температура расплавленного металла M при литье была выше, чем температура плавления активного металла, на 40°C или больше, и скоростью литья V (мм/с) управляют так, чтобы удовлетворялось условие V≤0,1H. Таким образом, усадочная раковина C внутри слитка S уменьшается, и выход литья улучшается.
[0035]
Следует понимать, что варианты осуществления, раскрытые в настоящем документе, являются примерами во всех отношениях и не являются ограничительными. В частности, не раскрытые явно моменты, например, эксплуатационный режим, различные параметры, а также размер, вес и объем конструкций, не отклоняются от диапазонов, обычных для специалиста в данной области техники, и могут использоваться значения, известные специалисту в данной области техники.
[0036]
Хотя настоящее изобретение было подробно описано со ссылками на конкретные варианты осуществления, для специалиста в данной области техники будет очевидно, что различные изменения и модификации могут быть сделаны без отступления от духа и области охвата настоящего изобретения.
Настоящая заявка основана на японской патентной заявке № 2016-241248, поданной 13 декабря 2016 г., и на японской патентной заявке № 2017-206165, поданной 25 октября 2017 г., содержание которых тем самым включено в настоящий документ посредством ссылки.
ПРОМЫШЛЕННАЯ ПРИМЕНИМОСТЬ
[0037]
Настоящее изобретение может производить высококачественный слиток металла с меньшей усадочной раковиной и с высоким выходом в производстве слитка активного металла с помощью индукционной плавильной печи.
СПИСОК ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ
[0038]
1 - Литейное оборудование;
2 - Тигель;
3 - Индукционная плавильная печь;
4 - Литейная форма;
5 - Отверстие для выпуска;
C - Усадочная раковина;
M - Расплавленный металл;
S - Слиток.
Claims (1)
- Способ литья активного металла, включающий использование в индукционной плавильной печи охлаждаемого водой медного тигля и выпуск расплавленного металла в литейную форму из донного выпускного отверстия медного тигля с водяным охлаждением для отливки слитка активного металла, отличающийся тем, что литье осуществляют при условии, что слиток имеет диаметр (D) 10 мм или более, отношение (H/D) высоты слитка H к диаметру слитка D 1,5 или более и вес разливаемого расплавленного металла 200 кг или менее, при этом температуру расплавленного металла при литье устанавливают более высокой, чем температура плавления активного металла, а литье осуществляют при управлении скоростью литья V (мм/с), которое представляет собой литье в литейную форму, так, чтобы удовлетворялось условие V ≤ 0,1H относительно высоты слитка H путем регулирования диаметра донного выпускного отверстия.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-241248 | 2016-12-13 | ||
JP2016241248 | 2016-12-13 | ||
JP2017206165A JP7043217B2 (ja) | 2016-12-13 | 2017-10-25 | 活性金属の鋳造方法 |
JP2017-206165 | 2017-10-25 | ||
PCT/JP2017/043660 WO2018110370A1 (ja) | 2016-12-13 | 2017-12-05 | 活性金属の鋳造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2729246C1 true RU2729246C1 (ru) | 2020-08-05 |
Family
ID=62634128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019118079A RU2729246C1 (ru) | 2016-12-13 | 2017-12-05 | Способ литья для активного металла |
Country Status (5)
Country | Link |
---|---|
US (1) | US10981222B2 (ru) |
EP (1) | EP3556487B1 (ru) |
JP (1) | JP7043217B2 (ru) |
CN (1) | CN110062671B (ru) |
RU (1) | RU2729246C1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021023967A (ja) | 2019-08-05 | 2021-02-22 | 株式会社神戸製鋼所 | Ti−Al基合金の鋳造方法 |
CN112705677B (zh) * | 2020-12-16 | 2022-05-13 | 辽宁科技大学 | 一种旋转浇铸金属铸锭的装置及方法 |
DE102021125159A1 (de) * | 2021-09-28 | 2023-03-30 | Ald Vacuum Technologies Gmbh | Vorrichtung und ein Verfahren zum Herstellen eines Feingussbauteils |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA6858C2 (ru) * | 1993-03-26 | 1995-03-31 | Акціонерне Товариство "Єнакієвський Металургійний Завод" | Способ получения слитков |
JPH11310833A (ja) * | 1998-04-28 | 1999-11-09 | Kobe Steel Ltd | 金属・合金の溶解方法及び溶解鋳造方法 |
JP2006122920A (ja) * | 2004-10-26 | 2006-05-18 | Kobe Steel Ltd | 活性高融点金属含有合金の長尺鋳塊製造法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3026721C2 (de) * | 1980-07-15 | 1982-11-11 | Leybold-Heraeus GmbH, 5000 Köln | Geschlossener Induktionsschmelz- und Gießofen mit auswechselbarem Schmelztiegel |
DE4232006A1 (de) * | 1992-09-24 | 1994-03-31 | Leybold Ag | Vorrichtung zum Öffnen und Schließen einer Bodenabgußöffnung in einem Vakuum-Induktionsschmelz- und -gießofen |
JP3028736B2 (ja) * | 1994-11-10 | 2000-04-04 | 住友金属工業株式会社 | 金属の溶解および連続鋳造方法 |
JPH0957422A (ja) * | 1995-08-24 | 1997-03-04 | Toyota Motor Corp | 減圧鋳造法 |
JP3728872B2 (ja) * | 1997-06-11 | 2005-12-21 | 住友金属工業株式会社 | 金属の連続溶解鋳造装置および方法 |
JPH1157984A (ja) * | 1997-08-18 | 1999-03-02 | Mitsubishi Heavy Ind Ltd | 精密鋳造の指向性凝固方法 |
JPH1187044A (ja) * | 1997-09-04 | 1999-03-30 | Fuji Electric Co Ltd | 底部出湯式浮揚溶解装置及びその出湯方法 |
US7011136B2 (en) * | 2001-11-12 | 2006-03-14 | Bwxt Y-12, Llc | Method and apparatus for melting metals |
JP4113967B2 (ja) * | 2002-04-26 | 2008-07-09 | Dowaメタルマイン株式会社 | 金属インゴット鋳造装置及び鋳造方法 |
JP2006153362A (ja) * | 2004-11-30 | 2006-06-15 | Daido Steel Co Ltd | 金属の溶解出湯装置及び鋳造装置 |
JP5048222B2 (ja) * | 2005-04-01 | 2012-10-17 | 株式会社神戸製鋼所 | 活性高融点金属合金の長尺鋳塊製造法 |
JP4704797B2 (ja) * | 2005-04-15 | 2011-06-22 | 株式会社神戸製鋼所 | プラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法 |
JP4939371B2 (ja) * | 2007-11-02 | 2012-05-23 | 株式会社神戸製鋼所 | 鋳塊の製造方法 |
US8496046B2 (en) * | 2009-07-15 | 2013-07-30 | Kobe Steel. Ltd. | Method for producing alloy ingot |
US9278389B2 (en) * | 2011-12-20 | 2016-03-08 | General Electric Company | Induction stirred, ultrasonically modified investment castings and apparatus for producing |
DE102014110251A1 (de) * | 2014-07-21 | 2016-01-21 | Stephan Schwenkel | Schmelzaggregat zum Einschmelzen von Gusswerkstoffen sowie ein Verfahren zur Herstellung einer Schmelze für das Gießen |
CN104190900A (zh) * | 2014-09-02 | 2014-12-10 | 哈尔滨工业大学 | 一种TiAl基合金排气阀的铸造成形方法 |
-
2017
- 2017-10-25 JP JP2017206165A patent/JP7043217B2/ja active Active
- 2017-12-05 CN CN201780076593.1A patent/CN110062671B/zh active Active
- 2017-12-05 US US16/468,499 patent/US10981222B2/en active Active
- 2017-12-05 EP EP17880176.7A patent/EP3556487B1/en active Active
- 2017-12-05 RU RU2019118079A patent/RU2729246C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA6858C2 (ru) * | 1993-03-26 | 1995-03-31 | Акціонерне Товариство "Єнакієвський Металургійний Завод" | Способ получения слитков |
JPH11310833A (ja) * | 1998-04-28 | 1999-11-09 | Kobe Steel Ltd | 金属・合金の溶解方法及び溶解鋳造方法 |
JP2006122920A (ja) * | 2004-10-26 | 2006-05-18 | Kobe Steel Ltd | 活性高融点金属含有合金の長尺鋳塊製造法 |
Also Published As
Publication number | Publication date |
---|---|
JP7043217B2 (ja) | 2022-03-29 |
US20190299281A1 (en) | 2019-10-03 |
CN110062671B (zh) | 2021-02-26 |
EP3556487B1 (en) | 2021-11-17 |
CN110062671A (zh) | 2019-07-26 |
EP3556487A4 (en) | 2020-05-20 |
EP3556487A1 (en) | 2019-10-23 |
US10981222B2 (en) | 2021-04-20 |
JP2018094628A (ja) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101602102B (zh) | 外加小温度梯度消除铸件缩孔缩松的凝固过程控制方法 | |
US8668760B2 (en) | Method for the production of a β-γ-TiAl base alloy | |
RU2729246C1 (ru) | Способ литья для активного металла | |
CN111112551B (zh) | 一种镁合金大尺寸铸件的成形方法 | |
JP5157684B2 (ja) | 過共晶Al−Si系合金の鋳造方法及び鋳塊 | |
WO2018110370A1 (ja) | 活性金属の鋳造方法 | |
JP6994392B2 (ja) | チタンを主成分とする合金からなる鋳塊、および、その製造方法 | |
US9156081B2 (en) | Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same | |
CN108085537A (zh) | 控制合模面变形的铜合金玻璃模具生产方法 | |
WO2021192875A1 (ja) | ボトム出湯用黒鉛ノズル及びTi-Al基合金の鋳造方法 | |
JP7406074B2 (ja) | チタン鋳塊の製造方法およびチタン鋳塊製造鋳型 | |
WO2021024704A1 (ja) | Ti-Al基合金の鋳造方法 | |
CN110257715A (zh) | 一种颚式破碎机定颚的铸造方法 | |
KR102440095B1 (ko) | 몰드 및 이를 이용한 잉곳의 제조방법 | |
RU2375147C2 (ru) | Способ получения литых деталей с гранулярной структурой | |
JP7406075B2 (ja) | チタン鋳塊の製造方法およびチタン鋳塊製造鋳型 | |
EP1900455A1 (en) | Semi-solid casting method and charge | |
KR102426037B1 (ko) | 소경봉 알루미늄 합금 주조재 및 그 제조 방법 | |
US20230278095A1 (en) | Method of producing large thin-walled sand castings of high internal integrity | |
JPS63157739A (ja) | 高融点金属の中空鋳塊の製造装置 | |
JPS6333167A (ja) | 滴下式鋳造方法 | |
JP2023149111A (ja) | 合金鋳塊の製造方法、及び合金鋳塊製造用ボトム出湯ノズル | |
JP4179206B2 (ja) | 半凝固金属の製造方法およびその成形方法 | |
JP2006326639A (ja) | マルエージング鋼の製造方法 | |
JP2011012301A (ja) | 銅合金及び銅合金の製造方法 |