RU2612774C2 - Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород - Google Patents
Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород Download PDFInfo
- Publication number
- RU2612774C2 RU2612774C2 RU2014118474A RU2014118474A RU2612774C2 RU 2612774 C2 RU2612774 C2 RU 2612774C2 RU 2014118474 A RU2014118474 A RU 2014118474A RU 2014118474 A RU2014118474 A RU 2014118474A RU 2612774 C2 RU2612774 C2 RU 2612774C2
- Authority
- RU
- Russia
- Prior art keywords
- formation
- channel
- heat
- hydrocarbons
- heater
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 58
- 230000004308 accommodation Effects 0.000 title abstract description 3
- 239000012530 fluid Substances 0.000 title description 115
- 239000011435 rock Substances 0.000 title description 17
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 270
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000012546 transfer Methods 0.000 claims abstract description 21
- 239000002826 coolant Substances 0.000 claims description 42
- 150000003839 salts Chemical class 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 3
- 238000005755 formation reaction Methods 0.000 abstract description 249
- 229930195733 hydrocarbon Natural products 0.000 abstract description 131
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 129
- 239000001257 hydrogen Substances 0.000 abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 10
- 238000009434 installation Methods 0.000 abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 3
- 238000005065 mining Methods 0.000 abstract description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 47
- 238000004519 manufacturing process Methods 0.000 description 40
- 238000000197 pyrolysis Methods 0.000 description 40
- 230000008569 process Effects 0.000 description 26
- 239000007789 gas Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 229910001868 water Inorganic materials 0.000 description 16
- 230000035699 permeability Effects 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 239000004020 conductor Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000010426 asphalt Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 238000005553 drilling Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000013529 heat transfer fluid Substances 0.000 description 5
- 239000012184 mineral wax Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- -1 pyrobitumen Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 1
- 229910001347 Stellite Inorganic materials 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 238000001030 gas--liquid chromatography Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/005—Heater surrounding production tube
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/22—Handling reeled pipe or rod units, e.g. flexible drilling pipes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Secondary Cells (AREA)
Abstract
Группа изобретений относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. Способ аккомодации теплового расширения нагревателя в пласте, согласно которому обеспечивают протекание теплоносителя через канал, чтобы передать теплоту в пласт. Обеспечивают по существу постоянное натяжение концевого участка канала, который проходит за пределы пласта. Причем по меньшей мере часть концевого участка канала намотана на подвижное колесо. При этом подвижное колесо является подвижным по меньшей мере в вертикальной плоскости, в то время как концевой участок канала намотан на подвижное колесо. Причем подвижное колесо перемещают по меньшей мере в вертикальной плоскости для обеспечения по существу постоянного натяжения концевого участка канала. Техническим результатом является повышение эффективности добычи углеводородов, упрощение установки нагревательной системы и исключение повреждения канала. 2 н. и 15 з.п. ф-лы, 16 ил., 1 табл.
Description
Область техники, к которой относится изобретение
Настоящее изобретение, в целом, относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды. Более конкретно, изобретение относится к системам и способам нагревания подземных пластов, содержащих углеводороды.
Уровень техники
Углеводороды, добываемые из подземных пластов, часто используют в качестве энергетических ресурсов, в качестве сырья и в качестве потребительских товаров. Обеспокоенность истощением доступных углеводородных ресурсов и обеспокоенность спадом общего качества производимых углеводородов привело к развитию процессов для более эффективного восстановления, обработки и/или использования доступных углеводородных ресурсов. Процессы в пласте могут быть использованы для извлечения углеводородных материалов из толщи пород. Может потребоваться изменение химических и/или физических свойств углеводородного материала в подземном пласте, чтобы позволить более просто изъять углеводородный материал из подземного пласта. Химические и/или физические свойства могут включать в себя проходящие на месте реакции, которые производят извлекаемые текучие среды, изменения состава, изменения растворимости, изменения плотности, фазовые изменения и/или изменения вязкости углеводородного материала в пласте. Текучая среда может представлять собой, но, не ограничиваясь, газ, жидкость, эмульсию, буровой раствор и/или поток твердых частиц, обладающий характеристиками потока, аналогичными потоку жидкости.
В патенте США №7575052, выданном Сандбергу и др., описан процесс обработки в пласте, который использует систему циркуляции для нагревания одной или нескольких обрабатываемых областей. Система циркуляции может использовать нагретую жидкую текучую среду для теплопередачи, которая проходит через трубопровод в пласте, чтобы передать теплоту в пласт.
В публикации заявки на патент США 2008-0135254 Винегара и др. описана система и способы для осуществления процесса термообработки в пласте, которые используют систему циркуляции для нагревания одной или нескольких обрабатываемых областей. Система циркуляции использует нагретую жидкую текучую среду для теплопередачи, которая проходит через трубопровод в пласте, чтобы передать теплоту в пласт. В некоторых вариантах осуществления трубопровод расположен, по меньшей мере, в двух скважинах.
В публикации заявки на патент США 2009-0095476 Нгуена и др. описана нагревательная система для толщи пород, которая включает в себя канал, расположенный в скважине в подземном пласте. В канале расположен изолированный проводник. В канале между участком изолированного проводника и участком канала расположено вещество. Вещество может представлять собой соль. При рабочей температуре нагревательной системы вещество представляет собой текучую среду. Тепло передают от изолированного проводника в текучую среду, от текучей среды в канал и от канала в толщу пород.
Предпринималось значительное количество попыток разработать способы и системы, чтобы экономично добывать углеводороды, водород и/или другие продукты из пластов, содержащих углеводороды. Тем не менее, в настоящее время все еще имеется много пластов, содержащих углеводороды, из которых нельзя экономично добыть углеводороды, водород и/или другие продукты. Также имеется потребность в усовершенствовании способов и систем, которые сокращают затраты энергии для обработки пласта, снижают выбросы от процессов обработки, упрощают установку нагревательной системы и/или сокращают утечки тепла в перекрывающей породе по сравнению с процессами извлечения углеводородов, в которых используют наземное оборудование.
Раскрытие изобретения
Варианты осуществления, описанные в этом документе, в целом, относятся к системам, способам и нагревателям для обработки подземных пластов. Варианты осуществления, описанные в этом документе, также, в целом, относятся к нагревателям, имеющим в своем составе новые компоненты. Такие нагреватели можно получить путем использования систем и способов, описанных в этом документе.
В отдельных вариантах осуществления в изобретении предложена одна или несколько систем, способов и/или нагревателей. В некоторых вариантах осуществления системы, способы и/или нагреватели используют для обработки толщи пород.
В отдельных вариантах осуществления способ аккомодации теплового расширения нагревателя в пласте включает в себя этапы, на которых: обеспечивают протекание теплоносителя через канал, чтобы передать теплоту в пласт; и обеспечивают по существу постоянное натяжение концевого участка канала, который проходит за пределы пласта, причем, по меньшей мере, часть концевого участка канала намотана на подвижное колесо, используемое для создания натяжения канала.
В отдельных вариантах осуществления система аккомодации теплового расширения нагревателя в пласте включает в себя канал, выполненный с возможностью передачи теплоты в пласт, когда теплоноситель протекает через канал; и подвижное колесо, причем, по меньшей мере, часть концевого участка канала намотана на колесо, а подвижное колесо используют для поддерживания по существу постоянного натяжения канала для аккомодации расширения канала, когда теплоноситель протекает через канал.
В дополнительных вариантах осуществления признаки специфических вариантов осуществления могут быть скомбинированы с признаками других вариантов осуществления. Например, признаки одного варианта осуществления могут быть скомбинированы с признаками любого другого варианта осуществления.
В дополнительных вариантах осуществления обработку толщи пород осуществляют с использованием любого из способов, систем, источников питания или нагревателей, описанных в этом документе.
В дополнительных вариантах осуществления к специфическим вариантам осуществления, описанным в этом документе, могут быть добавлены дополнительные признаки.
Краткое описание чертежей
Преимущества настоящего изобретения могут стать очевидными специалистам в области техники, благодаря нижеследующему подробному описанию и при обращении к сопровождающим чертежам.
На фиг. 1 показан схематический вид варианта осуществления участка системы термической обработки, предназначенной для обработки пласта, содержащего углеводороды.
На фиг. 2 приведено схематическое представление системы для нагревания пласта, использующей систему циркуляции. На фиг. 3 изображен сильфон.
На фиг. 4А показан трубопровод с расширительной петлей над устьем скважины для аккомодации теплового расширения.
На фиг. 4В показан трубопровод со спирально свернутым или намотанным трубопроводом над устьем скважины для аккомодации теплового расширения.
На фиг. 4С показан трубопровод со спирально свернутым или намотанным трубопроводом в изолированном объеме над устьем скважины для аккомодации теплового расширения.
На фиг. 5 показан участок трубопровода в перекрывающей породе после того, как возникло тепловое расширение.
На фиг. 6 показан участок трубопровода с более чем одним каналом в перекрывающей породе после того, как возникло тепловое расширение.
На фиг. 7 изображено устье скважины со скользящим уплотнением.
На фиг. 8 приведена система, в которой теплоноситель в канале передают в зафиксированный канал или из него.
На фиг. 9 приведена система, в которой зафиксированный канал прикреплен к устью скважины.
На фиг. 10 изображен вариант осуществления уплотнений.
На фиг. 11 изображен вариант осуществления уплотнений, канала и другого канала, закрепленного с помощью блокировочных механизмов.
На фиг. 12 показан вариант осуществления, где блокировочные механизмы посажены на место с использованием мягких металлических уплотнений.
На фиг. 13 изображена U-образная скважина, при этом в скважине расположен нагреватель.
На фиг. 14 изображена U-образная скважина, при этом нагреватель соединен с натяжным колесом.
Хотя в изобретение допускает различные модификации и альтернативные формы, отдельные варианты его осуществления показаны на чертежах в качестве примера и будут описаны подробно. Чертежи могут не быть выполненными в масштабе. Тем не менее, следует понимать, что не предполагается, что чертежи и подробное описание ограничивают изобретение конкретной описанной формой, а наоборот, предполагается, что оно покрывает все модификации, эквиваленты и альтернативы, попадающие под сущность и объем настоящего изобретения, как задано прилагаемой формулой определения.
Осуществление изобретения
Нижеследующее описание, в целом, относится к системам и способам обработки углеводородов в пластах. Такие пласты могут быть обработаны для добычи углеводородных продуктов, водорода и других продуктов.
Термин "плотность в градусах АНИ (Американского нефтяного института)" относится к плотности в градусах АНИ при 15,5°C (60°F). Плотность определяют с помощью способа D6822 или D1298 ASTM.
"АОИМ" обозначает Американское общество испытания материалов.
В контексте нагревательных систем со сниженной теплоотдачей, устройств и способов, термин "автоматически" означает определенное функционирование систем, устройств и способов без использования внешних органов управления (например, внешних контроллеров, таких как контроллер с датчиком температуры и обратной связью, ПИД-регулятор или предсказывающий контроллер).
Термин "асфальт/битум" относится к полутвердому, вязкому материалу, растворимому в сероуглероде. Асфальт/битум может быть получен в результате операций очистки или из толщи пород.
"Углеродное число" означает число атомов углерода в молекуле. Углеводородный флюид может включать в себя углеводороды с различными углеродными числами. Углеводородный флюид можно описать распределением углеродного числа. Углеродные числа и/или распределения углеродных чисел можно определить с помощью распределения истинной точки кипения и/или газо-жидкостной хроматографии.
"Конденсируемые углеводороды" - это углеводороды, которые конденсируются при 25°C и значении абсолютного давления, равном одной атмосфере. Конденсируемые углеводороды могут включать в себя смесь углеводородов, углеродное число которых больше 4. "Неконденсируемые углеводороды" - это углеводороды, которые не конденсируются при 25°C и значении абсолютного давления, равном одной атмосфере. Неконденсируемые углеводороды могут включать в себя углеводороды, углеродное число которых меньше 5.
"Текучая среда" может представлять собой, но, не ограничиваясь, газ, жидкость, эмульсию, буровой раствор и/или поток твердых частиц, обладающий характеристиками потока, аналогичными потоку жидкости.
Термин "пласт" включает в себя один или несколько содержащих углеводороды слоев, один или несколько неуглеводородных слоев, перекрывающих и/или подстилающих. Выражение "углеводородные слои" относится к слоям в пласте, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. Термины "перекрывающая порода" и/или "подстилающая порода" включают в себя один или несколько различных типов непроницаемых материалов. Например, перекрывающая и/или подстилающая порода может включать в себя скальную породу, сланец, аргиллит или влажную/плотную карбонатную породу. В некоторых вариантах осуществления в процессах термообработки пласта перекрывающая и/или подстилающая порода может включать в себя слои, содержащие углеводороды, или слои, не содержащие углеводороды, которые являются сравнительно непроницаемыми и не подвергаются воздействию температуры во время процесса термообработки пласта, что приводит к значительным изменениям характеристик слоев, содержащих углеводороды, перекрывающей и/или подстилающей породы. Например, подстилающая порода может содержать сланец или аргиллит, но во время термообработки пласта не допускается нагрев подстилающей породы до температур пиролиза. В некоторых случаях перекрывающая порода и/или подстилающая порода могут быть в какой-то степени проницаемыми.
Выражение "пластовый флюид" означает текучие среды, присутствующие в пласте, и могут включать в себя текучие среды пиролиза, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут включать в себя углеводородные флюиды, а также неуглеводородные флюиды. Термин "подвижные флюиды" означает флюиды в пласте, содержащем углеводороды, которые могут перетекать в результате термообработки пласта. Термин "добываемые флюиды" относится к флюидам, извлекаемым из пласта.
Выражение "источник тепла" представляет собой любую систему для подачи тепла, по меньшей мере, на участок пласта по существу с помощью кондуктивной/лучистой теплопередачи. Например, источник тепла может включать в себя электропроводные материалы и/или электронагреватели, такие как изолированный проводник, вытянутый элемент и/или проводник, расположенные в канале. Источник тепла также может включать в себя системы, которые вырабатывают теплоту путем сжигания топлива, являющегося внешним по отношению к пласту, или находящегося в пласте. Системы могут представлять собой поверхностные горелки, скважинные газовые горелки, беспламенные распределенные камеры сгорания и природные распределенные камеры сгорания. В некоторых вариантах осуществления тепло, подаваемое или вырабатываемое в одном или нескольких источниках тепла, может снабжаться другими источниками энергии. Другие источники энергии могут непосредственно нагревать пласт, либо энергия может передаваться на передающую среду, которая непосредственно или косвенно нагревает пласт. Следует понимать, что один или несколько источников тепла, которые подводят тепло к пласту, используют различные источники энергии. Таким образом, например, для данного пласта некоторые источники тепла могут подавать тепло от электропроводных материалов, резистивных электронагревателей, некоторые источники тепла могут подавать тепло от процесса горения, а некоторые источники тепла могут подавать тепло от одного или нескольких других источников энергии (например, от химических реакций, солнечную энергию, энергию ветра, биомассы или других источников возобновляемой энергии). Химическая реакция может включать в себя экзотермическую реакцию (например, реакцию окисления). Источник тепла также может включать в себя электропроводный материал и/или нагреватель, который подает тепло в зону, расположенную возле и/или окружающую место нагревания, такую как нагревательная скважина.
"Нагреватель" - это любая система или источник тепла, предназначенный для выработки теплоты в скважине или в области возле скважины. Нагреватели могут представлять собой электронагреватели, горелки, камеры сгорания, которые осуществляют реакцию с веществом, расположенным или добываемым из пласта, и/или их сочетания, но, не ограничиваясь этим.
"Тяжелые углеводороды" - это вязкие углеводородные флюиды. Тяжелые углеводороды могут включать в себя высоковязкие углеводородные флюиды, такие как сырая нефть, смола и/или асфальт. Тяжелые углеводороды могут включать в себя углерод и водород, а также меньшие концентрации серы, кислорода и азота. Дополнительные элементы также могут присутствовать в тяжелых углеводородах в незначительных количествах. Тяжелые углеводороды можно классифицировать посредством плотности в градусах АНИ. Тяжелые углеводороды, в общем, обладают плотностью менее 20° АНИ. Сырая нефть, например, в целом, имеет плотность около 10-20° АНИ, в то время как смола имеет плотность менее 10° АНИ. Вязкость тяжелых углеводородов, в целом, больше примерно 100 сантипуазов при 15°C. Тяжелые углеводороды могут включать в себя ароматические соединения или другие сложные циклические углеводороды.
Тяжелые углеводороды можно обнаружить в сравнительно проницаемом пласте. Сравнительно проницаемый пласт может включать в себя тяжелые углеводороды, захваченные, например, песком или карбонатом. Выражение "сравнительно проницаемый" касательно пластов или их участков означает, что средняя проницаемость составляет 10 миллидарси или более (например, 10 или 100 миллидарси). "Сравнительно низкая проницаемость" касательно пластов или их участков означает, что средняя проницаемость составляет менее 10 миллидарси. Один дарси равен примерно 0,99 мкм. Непроницаемый слой, в общем, имеет проницаемость менее чем примерно 0,1 миллидарси.
Отдельные типы пластов, которые включают в себя тяжелые углеводороды, также могут включать в себя природные минеральные воски или природные асфальтиты. "Природные минеральные воски" обычно образуются в по существу трубчатых прожилках, которые могут иметь несколько метров в ширину, несколько километров в длину и сотни метров в глубину. "Природные асфальтиты" включают в себя твердые углеводороды ароматических соединений и обычно образуются в больших жилах.
Извлечение из пластов углеводородов, таких как природные минеральные воски и природные асфальтиты, может включать в себя плавление, чтобы получить жидкие углеводороды, и/или добычу углеводородов из пластов растворением.
"Углеводороды", в общем, определяют как молекулы, образованные преимущественно из атомов углерода и водорода. Углеводороды также могут включать в себя другие элементы, такие как галогены, металлические элементы, азот, кислород и/или сера, но, не ограничиваясь этим. Углеводороды могут представлять собой кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты. Углеводороды могут быть расположены в скелетных породах в земле или примыкать к ним. Скелетные породы включают в себя осадочные породы, пески, силицилиты, карбонаты, диатомиты и другие пористые среды, но, не ограничиваясь этим. "Углеводородные флюиды" представляют собой флюиды, содержащие углеводороды. Углеводородные флюиды могут включать в себя, охватывать или быть охваченными неуглеводородными флюидами, такими как водород, азот, окись углерода, двуокись углерода, сероводород, вода и аммиак.
Выражение "процесс преобразования в пласте" относится к процессу нагревания пласта, содержащего углеводороды, с помощью источников тепла, чтобы поднять температуру, по меньшей мере, части пласта до температуры, превышающей температуру пиролиза, чтобы в пласте образовывался пиролизный флюид.
Выражение "процесс термообработки в пласте" относится к процессу нагревания пласта, содержащего углеводороды, с помощью источников тепла, чтобы поднять температуру, по меньшей мере, части пласта до температуры, превышающей температуру, при которой возникает подвижный флюид, висбрекинг и/или пиролиз материала, содержащего углеводороды, чтобы в пласте образовывались подвижные флюиды, флюиды висбрекинга и/или пиролизные флюиды.
Термин "изолированный проводник" означает любой вытянутый материал, который способен проводить электричество и который полностью или частично покрыт электроизоляционным материалом.
"Кероген" представляет собой твердый, нерастворимый углеводород, преобразованный путем естественной деградации, и который в принципе содержит углерод, водород, азот, кислород и серу. Уголь и нефтеносный сланец являются типичными примерами материалов, содержащих кероген. "Битум" - это некристаллический твердый или вязкий углеводородный материал, который по существу растворим в сероуглероде. "Нефть" - это текучая среда содержащая смесь конденсируемых углеводородов.
Термин "перфорация" включает в себя отверстия, прорези, проемы или дырки в стенке канала, трубы, трубопровода или другой направляющей потока, которые позволяют втекать или вытекать из канала, трубы, трубопровода или другой направляющей потока.
"Пиролиз" представляет собой разрыв химических связей под действием прикладываемого тепла. Например, пиролиз может включать в себя преобразование соединения в одну или несколько других субстанций только под воздействием тепла. Тепло может быть передано к участку пласта для того, чтобы возник пиролиз.
"Пиролизные флюиды" или "продукты пиролиза" относятся к флюидам, полученным по существу во время процесса пиролиза углеводородов. Флюиды, полученные при реакциях пиролиза, могут смешиваться с другими флюидами в пласте. Смесь можно рассматривать в качестве пиролизного флюида или продукта пиролиза. Используемый в этом документе термин "зона пиролиза" относится к объему пласта (например, сравнительно проницаемого пласта, такого как пласт нефтеносных песков), который подвергают реакции, или в котором происходит реакция для образования пиролизного флюида.
"Обогащенные слои" в пласте, содержащем углеводороды, представляют собой сравнительно тонкие слои (обычно около от 0,2 м до 0,5 м толщиной). Обогащенность обогащенных слоев, в целом, составляет около 0,150 л/кг или больше. Обогащенность некоторых обогащенных слоев составляет около 0,170 л/кг или больше, около 0,190 л/кг или больше или 0,210 л/кг или больше. Обогащенность бедных слоев, в целом, составляет около 0,100 л/кг или меньше, и они, в общем, толще, чем обогащенные слои. Обогащенность и местоположения слоев определяют, например, путем взятия керновой пробы и последующего анализа керна методом Фишера, выполнения плотностного или нейтронного каротажа или других способов каротажа. Обогащенные слои обладают более низкой начальной теплопроводностью, чем другие слои пласта. Обычно теплопроводность обогащенных слоев от 1,5 до 3 раз ниже, чем теплопроводность бедных слоев. Кроме того, коэффициент теплового расширения обогащенных слоев больше, чем у бедных слоев пласта.
Выражение "суперпозиция тепла" относится к подаче тепла от двух или нескольких источников тепла в выбранный участок пласта, так что на температуру пласта, по меньшей мере, в одном месте между источниками тепла влияют источники тепла.
"Синтез-газ" - это смесь, включающая в себя водород и окиси углерода. Дополнительные компоненты синтез-газа могут включать в себя воду, углекислый газ, азот, метан и другие газы. Синтез-газ может вырабатываться в результате множества процессов и из разных исходных материалов. Синтез-газ может быть использован для синтеза широкого диапазона соединений.
"Смола" представляет собой вязкий углеводород, вязкость которого, в целом, превосходит примерно 10000 сантипуазов при 15°С. Удельный вес смолы, в общем, превосходит 1. Смола может обладать плотностью менее 10° АНИ.
"Пласт нефтеносных песков" представляет собой пласт, в котором углеводороды преимущественно присутствуют в форме тяжелых углеводородов и/или смолы, захваченной в гранулярном минеральном скелете породы или в другой литологии вмещающих пород (например, в песке или карбонате). Примеры пластов нефтеносных песков включают в себя такие месторождения, как месторождение Атабаска, месторождение Гросмонт и месторождение Пис-Ривер, все три расположены в провинции Альберта, Канада; и месторождение Файа в нефтеносном поясе реки Ориноко в Венесуэле.
"Нагреватель с ограничением рабочих температур", в целом, представляет собой нагреватель, который регулирует теплоотдачу (например, снижает теплоотдачу) при температуре, превышающей заданную, без использования внешних органов управления, таких как контроллеры температуры, регуляторы мощности, ректификаторы или другие устройства. Нагреватели с ограничением рабочих температур могут представлять собой электрические резистивные нагреватели, работающие от переменного тока (АС) или модулированного (например, "ограниченного") постоянного тока (DC).
"Толщина" слоя означает толщину поперечного сечения слоя, причем поперечное сечение проходит по нормали к поверхности слоя.
"U-образная скважина" представляет собой скважину, которая проходит от первого отверстия в пласте через, по меньшей мере, часть пласта и выходит через второе отверстие в пласте. В этом контексте скважина может иметь форму в виде буквы "v" или "и" только в грубом приближении, при этом надо понимать, что, чтобы рассматривать скважину в качестве "u-образной", "ножки" буквы "u" не обязательно должны быть параллельными друг относительно друга или перпендикулярными "дну" буквы "u".
Термин "обогащать" относится к увеличению качества углеводородов. Например, обогащение тяжелых углеводородов может привести к увеличению плотности тяжелых углеводородов.
Термин "висбрекинг" относится к распутыванию молекул в текучей среде во время термообработки и/или к распаду больших молекул на меньшие молекулы во время термообработки, что приводит к снижению вязкости текучей среды.
"Вязкость" означает кинематическую вязкость при 40°C, если не указано иное. Вязкость определяют с помощью способа D445 ASTM.
"Воск" относится к легкоплавкой органической смеси или соединению с высоким молекулярным весом, которое является твердым при низких температурах и жидким при более высоких температурах, и, являясь твердым, может образовывать барьер для воды. Примеры восков включают в себя животный воск, растительный воск, минеральный воск, нефтяной парафин и синтетический воск.
Термин "скважина" обозначает отверстие в пласте, выполненное посредством бурения или вставки канала в пласт. Скважина может иметь по существу круглое поперечное сечение или другую форму поперечного сечения. Используемые в этом документе термины "колодец" и "отверстие" в контексте отверстия в пласте могут быть взаимозаменяемыми с термином "скважина".
Чтобы получить разные продукты, пласт может быть подвергнут обработке различными способами. Для обработки пласта во время процесса термообработки могут использоваться различные этапы или процессы. В некоторых вариантах осуществления один или несколько участков пласта разрабатывают растворением, чтобы удалить растворимые минералы из участков. Добываемые растворением минералы могут быть произведены до, во время и/или после процесса термообработки пласта. В некоторых вариантах осуществления средняя температура одного или нескольких участков, добычу из которых осуществляют растворением, может поддерживаться ниже примерно 120°C.
В некоторых вариантах осуществления один или несколько участков пласта нагревают, чтобы удалить воду из участков и/или чтобы удалить метан и другие летучие углеводороды из участков. В некоторых вариантах осуществления в процессе удаления воды и летучих углеводородов средняя температура может быть поднята от температуры окружающей среды до температур ниже примерно 220°C.
В некоторых вариантах осуществления один или несколько участков пласта нагревают до температур, которые допускают перемещение и/или висбрекинг углеводородов в пласте. В некоторых вариантах осуществления средняя температура одного или нескольких участков пласта может быть поднята до температур активации углеводородов в участках (например, до температур из диапазона от 100°C до 250°C, от 120°C до 240°C или от 150°C до 230°C).
В некоторых вариантах осуществления один или несколько участков нагревают до температур, которые допускают реакции пиролиза в пласте. В некоторых вариантах осуществления средняя температура одного или нескольких участков пласта может быть поднята до температур пиролиза углеводородов в участках (например, до температур из диапазона от 230°C до 900°C, от 240°C до 400°C или от 250°C до 350°C).
Нагревание пласта, содержащего углеводороды, с помощью нескольких источников тепла может установить термические градиенты вокруг источников тепла, которые поднимают температуру углеводородов в пласте до желаемых температур с желаемыми скоростями нагрева. Скорость увеличения температуры через диапазон температур активации и/или диапазон температур пиролиза для желаемых продуктов может повлиять на качество и количество пластовых флюидов, получаемых из пласта, содержащего углеводороды. Медленно поднимая температуру пласта через диапазон температур активации и/или диапазон температур пиролиза, можно допустить получение из пласта углеводородов высокого качества, высокой плотности. Медленно поднимая температуру пласта через диапазон температур активации и/или диапазон температур пиролиза, можно позволить извлечь большое количество углеводородов, присутствующих в пласте в качестве углеводородного продукта.
В некоторых вариантах осуществления термообработки пласта участок пласта нагревают до желаемой температуры вместо медленного нагрева через диапазон температур. В некоторых вариантах осуществления желаемая температура составляет 300°C, 325°C или 350°C. В качестве желаемой температуры можно выбрать другое значение.
Суперпозиция теплоты от источников тепла позволяет установить в пласте желаемую температуру сравнительно быстро и эффективно. Подводимая в пласт энергия от источников тепла может быть отрегулирована так, чтобы поддерживать в пласте по существу желаемую температуру.
Продукты активации и/или пиролиза могут быть получены из пласта через эксплуатационные скважины. В некоторых вариантах осуществления среднюю температуру одного или нескольких участков поднимают до температур активации, и из эксплуатационных скважин получают углеводороды. Средняя температура одного или нескольких участков может быть поднята до температур пиролиза после того, как выход из-за активации опустится ниже выбранного значения. В некоторых вариантах осуществления средняя температура одного или нескольких участков может быть поднята до температур пиролиза без значительного выхода до достижения температур пиролиза. Пластовые флюиды, включая продукты пиролиза, могут быть получены через эксплуатационные скважины.
В некоторых вариантах осуществления средняя температура одного или нескольких участков может быть поднята до температур достаточных для того, чтобы после активации и пиролиза допустить выход синтез-газа. В некоторых вариантах осуществления, углеводороды могут быть нагреты до температур, достаточных для того, чтобы допустить выход синтез-газа без значительного выхода до достижения температур, достаточных для того, чтобы допустить выход синтез-газа. Например, синтез-газ может быть получен в диапазоне температур примерно от 400°C до 1200°C, от 500°C до 1100°C или от 550°C до 1000°C. Текучая среда, вырабатывающая синтез-газ (например, пар и/или вода) может быть введена в участки для выработки синтез-газа. Синтез-газ может быть получен из эксплуатационных скважин.
Добыча растворением, извлечение летучих углеводородов и воды, активация углеводородов, пиролиз углеводородов, выработка синтез-газа и/или другие процессы могут быть выполнены во время процесса термообработки пласта. В некоторых вариантах осуществления некоторые процессы могут быть выполнены после процесса термообработки пласта. Такие процессы могут включать в себя восстановление тепла от обработанных участков, сохранение текучих сред (например, воды и/или углеводородов) в ранее обработанных участках и/или отделение диокиси углерода в ранее обработанных участках.
На фиг. 1 показан схематический вид варианта осуществления участка системы термической обработки, предназначенной для обработки пласта, содержащего углеводороды. Система термической обработки пласта может включать в себя барьерные скважины 200. Барьерные скважины используют для того, чтобы образовать барьер вокруг обрабатываемой области. Барьер препятствует потоку флюидов в и/или из обрабатываемой области. Барьерная скважина включает в себя водопонижающие скважины, вакуумные скважины, захватывающие скважины, нагнетательные скважины, цементирующие скважины, морозильные скважины и их сочетания, но, не ограничиваясь этим. В некоторых вариантах осуществления барьерные скважины 200 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или препятствовать поступлению жидкой воды в участок пласта, который надо нагреть, или в нагреваемый пласт. В варианте осуществления, показано на фиг. 1, барьерные скважины 200 показаны проходящими только вдоль одной стороны источников 202 тепла, но барьерные скважины обычно окружают все используемые источники 202 тепла или источники, которые надо использовать, чтобы нагреть обрабатываемую область пласта.
Источники 202 тепла размещают, по меньшей мере, в части пласта. Источники 202 тепла могут включать в себя нагреватели, такие как изолированные проводники, нагреватели с проводником в канале, поверхностные горелки, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники 202 тепла также могут включать в себя другие типы нагревателей. Источники 202 тепла подают тепло, по меньшей мере, в часть пласта, чтобы нагреть углеводороды в пласте. Энергия может подаваться к источникам 202 тепла через линии 204 питания. Лини 204 питания могут структурно отличаться, в зависимости от типа источника тепла или источников тепла, используемых для нагрева пласта. Линии 204 питания для источников тепла могут передавать электричество для электронагревателей, топливо для камер сгорания, или могут передавать теплообменную текучую среду, которая циркулирует в пласте. В некоторых вариантах осуществления электричество для процесса термообработки пласта может обеспечиваться атомной электростанцией или атомными электростанциями. Использование атомной энергии может позволить сократить или ограничить выбросы окиси углерода в процессе термообработки пласта.
Когда пласт нагревают, поступление тепла в пласт может вызвать расширение пласта и геомеханическое перемещение. Источники тепла могут быть включены до, вместе или во время процесса обезвоживания. Реакцию пласта на нагрев можно смоделировать посредством компьютерной симуляции. Компьютерная симуляция может быть использована для разработки шаблона и последовательности активизации источников тепла в пласте так, чтобы геомеханическое перемещение пласта не оказало неблагоприятного воздействия на функциональность источников тепла, эксплуатационных скважин и другого оборудования в пласте.
Нагрев пласта может привести к увеличению проницаемости и/или пористости пласта. Увеличение проницаемости и/или пористости может привести к сокращению массы в пласте из-за испарения и удаления воды, удаления углеводородов и/или возникновения трещин. Текучая среда может легко течь в нагретый участок пласта, благодаря увеличенной проницаемости и/или пористости пласта. Благодаря увеличенной проницаемости и/или пористости пласта, текучая среда в нагретом участке пласта может перемещаться на значительное расстояние через пласт. Значительное расстояние может превышать 1000 м, в зависимости от различных факторов, таких как проницаемость пласта, свойства текучей среды, температура пласта и градиент давления, допускающий перемещение текучей среды. Способность текучей среды перемещаться на значительное расстояние в пласте позволяет расположить эксплуатационные скважины 206 сравнительно далеко от пласта.
Эксплуатационные скважины 206 используют для извлечения пластового флюида из пласта. В некоторых вариантах осуществления эксплуатационная скважина 206 включает в себя источник тепла. Источник тепла в эксплуатационной скважине может нагревать один или несколько участков пласта в эксплуатационной скважине или рядом с ней. В некоторых вариантах осуществления процесса термообработки пласта количество теплоты, подаваемой в пласт от эксплуатационной скважины на метр эксплуатационной скважины, меньше, чем количество теплоты, подаваемой в пласт от источника тепла, который нагревает пласт, на метр источника тепла. Теплота, подаваемая в пласт от эксплуатационной скважины, может увеличить проницаемость пласта возле эксплуатационной скважины посредством испарения и удаления флюида жидкой фазы возле эксплуатационной скважины и/или путем увеличения проницаемости пласта возле эксплуатационной скважины из-за формирования макро и/или микротрещин.
В эксплуатационной скважине может быть расположено более одного источника тепла. Источник тепла в нижнем участке эксплуатационной скважины может быть выключен, если суперпозиция теплоты от смежных источников тепла нагревает пласт достаточно, чтобы нейтрализовать преимущества, обеспечиваемые нагревом пласта от эксплуатационной скважины. В некоторых вариантах осуществления источник тепла в верхнем участке эксплуатационной скважины может оставаться включенным после выключения источника тепла в нижнем участке эксплуатационной скважины. Источник тепла в верхнем участке скважины может препятствовать конденсации и обратному стоку пластового флюида.
В некоторых вариантах осуществления источник тепла в эксплуатационной скважине 206 позволяет удалять пластовые флюиды в виде пара из пласта. Обеспечение нагрева в эксплуатационной скважине или через нее может: (1) препятствовать конденсации и/или обратному стоку пластового флюида, если такой пластовый флюид перемещается в эксплуатационной скважине вблизи от перекрывающей породы, (2) увеличить поступление тепла в пласт, (3) увеличить дебит эксплуатационной скважины по сравнению с эксплуатационной скважиной без источника тепла, (4) препятствовать конденсации высокоуглеродистых соединений (С6 углеводородов и более тяжелых) в эксплуатационной скважине и/или (5) увеличить проницаемость пласта в эксплуатационной скважине или возле нее.
Подземное давление в пласте может соответствовать давлению текучей среды, вырабатываемой в пласте. По мере увеличение температур в нагретом участке давление в нагретом участке может увеличиваться в результате теплового расширения присутствующих в нем флюидов, увеличенного образования флюидов и испарения воды. Управляя скоростью удаления флюидов из пласта, можно управлять давлением в пласте. Давление в пласте можно определить во множестве различных мест, например, возле эксплуатационной скважины или в ней, возле или у источников тепла или в контрольных скважинах.
В некоторых пластах, содержащих углеводороды, препятствуют выходу углеводородов из пласта до тех пор, пока, по меньшей мере, некоторые углеводороды в пласте не будут активированы и/или пиролизованы. Пластовый флюид может быть получен из пласта, когда пластовый флюид обладает выбранным свойством. В некоторых вариантах осуществления выбранное свойство включает в себя плотность в градусах АНИ, равную, по меньшей мере, 20°, 30° или 40°. Препятствие выходу до тех пор, пока, по меньшей мере, некоторые углеводороды в пласте не будут активированы и/или пиролизованы, может увеличить преобразование тяжелых углеводородов в легкие углеводороды. Препятствие начальному выходу может минимизировать выход тяжелых углеводородов из пласта. Выход существенного количества тяжелых углеводородов может потребовать дорогостоящего оборудования и/или сокращения срока службы производственного оборудования.
В некоторых пластах, содержащих углеводороды, углеводороды в пласте могут быть нагреты до температур активации и/или пиролиза до того, как в нагретом участке пласта возникнет существенная проницаемость. Начальное отсутствие проницаемости может препятствовать транспортировке выработанных флюидов к эксплуатационным скважинам 206. Во время начального нагревания давление флюидов в пласте может увеличиваться возле источников 202 тепла. Увеличенное давление флюидов может быть сброшено, проконтролировано, изменено и/или может управляться с помощью одного или нескольких источников 202 тепла. Например, выбранные источники 202 тепла или отдельные скважины понижения давления могут включать в себя клапаны понижения давления, которые позволяют удалить некоторые флюиды из пласта.
В некоторых вариантах осуществления может допускаться увеличение давления, возникающего из-за расширения подвижных флюидов пиролизных флюидов или других флюидов, выработанных в пласте, несмотря на то, что в пласте может еще отсутствовать открытый путь к эксплуатационным скважинам 206 или другая утечка давления. Может допускаться увеличение давления флюидов до пластового давления. Трещины в пласте, содержащем углеводороды, могут образовываться, если флюид достигает пластового давления. Например, в нагретом участке пласта могут образоваться трещины от источников 202 тепла до эксплуатационных скважин 206. Возникновение трещин в нагретом участке может сбросить часть давления в участке. Может быть необходимо поддерживать давление в пласте ниже выбранного давления, чтобы препятствовать нежелательному выходу, появлению трещин в перекрывающей или подстилающей породе и/или коксованию углеводородов в пласте.
После того, как достигнуты температуры активации и/или пиролиза и разрешен выход из пласта, давление в пласте может быть изменено, чтобы изменить и/или управлять составом получаемого пластового флюида, чтобы управлять долей конденсирующегося флюида по сравнению с неконденсирующимся флюидом в пластовом флюиде и/или чтобы управлять плотностью получаемого пластового флюида. Например, снижение давление может привести к выходу большего количества компонента конденсирующегося флюида. Компонент конденсирующегося флюида может содержать большую долю олефинов.
В некоторых вариантах осуществления процесса термообработки пласта в пласте может удерживаться давление достаточно высокое, чтобы способствовать выходу пластового флюида, имеющего плотность в градусах АНИ более 20°. Поддерживание увеличенного давления в пласте может препятствовать оседанию пласта во время термообработки. Поддерживание увеличенного давления может снизить или устранить потребность в сжатии пластовых флюидов у поверхности, чтобы транспортировать флюиды по коллекторным каналам к очистным сооружениям.
Как ни удивительно, поддерживание увеличенного давления в нагретом участке пласта может допускать выход большого количества углеводородов повышенного качества и сравнительно малого молекулярного веса. Давление может поддерживаться так, что получаемый пластовый флюид обладает минимальным количеством соединений, углеродное число которых превосходит выбранное углеродное число. Выбранное углеродное число может быть не больше 25, не больше 20, не больше 12 или не больше 8. Некоторые соединения с высоким углеродным числом могут быть увлечены паром в пласте и могут быть удалены из пласта с паром. Поддерживание увеличенного давления в пласте может препятствовать увлечению паром соединений с высоким углеродным числом и/или полициклических углеводородных составляющих. Соединения с высоким углеродным числом и/или полициклические углеводородные составляющие могут оставаться в жидкой фазе в пласте в течение значительных периодов времени. Значительные периоды времени могут обеспечить достаточное время для того, чтобы соединения пиролизовались для образования соединений с низким углеродным числом.
Полагают, что выработка углеводородов, обладающих сравнительно низким молекулярным весом, частично происходит из-за автогенной выработки и реакции углеводорода в части пласта, содержащего углеводороды. Например, поддерживание увеличенного давления может заставить углеводород, выработанный во время пиролиза, перейти в жидкую фазу в пласте. Нагрев участка до температуры, находящейся в диапазоне температур пиролиза, может пиролизовать углеводороды в пласте для получения жидкой фазы пиролизных флюидов. Компоненты полученной жидкой фазы пиролизных флюидов могут включать в себя ненасыщенные связи и/или радикалы. Водород (Н2) в жидкой фазе может сократить ненасыщенные связи выработанных пиролизных флюидов, тем самым, сокращая потенциал для полимеризации или образования длинноцепочечных соединений из выработанных пиролизных флюидов. Кроме того, Н2 также может нейтрализовать радикалы в выработанных пиролизных флюидах. Н2 в жидкой фазе может препятствовать возникновению реакции выработанных пиролизных флюидов друг с другом и/или с другими соединениями в пласте.
Пластовый флюид, полученный из эксплуатационных скважин 206, может быть транспортирован через коллекторный трубопровод 208 к очистным сооружениям. Пластовые флюиды также могут быть получены от источников 202 тепла. Например, флюид может быть получен от источников 202 тепла, чтобы управлять давлением в пласте, прилегающем к источникам тепла. Флюид, полученный от источников 202 тепла, может быть транспортирован через трубу или трубопровод в коллекторный трубопровод 208, или полученный флюид может быть транспортирован через трубу или трубопровод непосредственно к очистным сооружениям 210. Очистные сооружения 210 могут включать в себя сепарационные установки, реакторные установки, обогащающие установки, топливные элементы, турбины, сосуды для хранения и/или другие системы и установки для обработки полученных пластовых флюидов. Очистные сооружения могут получать транспортное топливо, по меньшей мере, из части добытых из пласта углеводородов. В некоторых вариантах осуществления транспортное топливо может представлять собой реактивное топливо, такое как JP-8.
В некоторых вариантах осуществления процесса термообработки пласта для нагрева пласта используют систему циркуляции. Использование системы циркуляции для термообработки пласта, содержащего углеводороды, может сократить затраты энергии для обработки пласта, сократить выбросы от процесса обработки и/или упростить установку нагревательной системы. В отдельных вариантах осуществления система циркуляции представляет собой систему замкнутой циркуляции. На фиг. 2 приведено схематическое представление системы для нагревания пласта, использующей систему циркуляции. Система может быть использована для нагревания углеводородов, расположенных сравнительно глубоко в земле, и которые расположены в сравнительно больших по протяженности пластах. В некоторых вариантах осуществления углеводороды могут залегать на глубине 100 м, 200 м, 300 м или глубже от поверхности. Система циркуляции также может быть использована для нагревания углеводородов, которые находятся на меньшей глубине под землей. Углеводороды могут залегать в пластах, которые имеют длину до 1000 м, 3000 м, 5000 м или больше. Нагреватели системы циркуляции могут быть расположены относительно соседних нагревателей так, что суперпозиция тепла между нагревателями системы циркуляции позволяет повысить температуру пласта, по меньшей мере, до температуры выше точки кипения водяного пластового флюида в пласте.
В некоторых вариантах осуществления нагреватели 220 формируют в пласте посредством бурения первой скважины и последующего бурения второй скважины, которая соединяется с первой скважиной. В u-образной скважине может быть размещен трубопровод, чтобы образовать u-образный нагреватель 220. Нагреватели 220 соединены с системой 226 циркуляции теплоносителя посредством трубопровода. В некоторых вариантах осуществления нагреватели располагают по треугольному шаблону. В некоторых вариантах осуществления могут использоваться другие правильные или неправильные шаблоны. В пласте также могут быть расположены эксплуатационные скважины и/или нагнетательные скважины. Эксплуатационные скважины и/или нагнетательные скважины могут иметь длинные, по существу горизонтальные участки, аналогичные нагревательным участкам нагревателей 220, или эксплуатационные скважины и/или нагнетательные скважины могут быть сориентированы иным образом (например, скважины могут быть вертикальными, или скважинами, включающими в себя один или несколько наклонных участков.
Как показано на фиг. 2, система 226 циркуляции теплоносителя может включать в себя источник 228 тепла, первый теплообменник 230, второй теплообменник 232 и двигатели 234 текучей среды. Источник 228 тепла нагревает теплоноситель до высокой температуры. Источник 228 тепла может представлять собой печь, солнечный коллектор, химический реактор, атомный реактор, топливный элемент и/или другой источник высокой температуры, способный подавать тепло для нагрева теплоносителя. Если теплоноситель является газом, то двигатели 234 текучей среды могут представлять собой компрессоры. Если теплоноситель является жидкостью, то двигатели 234 текучей среды могут представлять собой насосы.
После выхода из пласта 224 теплоноситель проходит через первый теплообменник 230 и второй теплообменник 232 к двигателям 234 текучей среды. Первый теплообменник 230 передает теплоту между теплоносителем, выходящим из пласта 224, и теплоносителем, выходящим из двигателей 234 текучей среды, чтобы повысить температуру теплоносителя, который поступает в источник 228 тепла, и снизить температуру теплоносителя, выходящего из пласта 224. Второй теплообменник 232 дополнительно снижает температуру теплоносителя. В некоторых вариантах осуществления второй теплообменник 232 включает в себя резервуар для теплоносителя или является им.
Теплоноситель проходит от второго теплообменника 232 к двигателям 234 текучей среды. Двигатели 234 текучей среды могут быть расположены до источника 228 тепла, так что двигатели текучей среды не обязательно должны работать при высокой температуре.
В некоторых вариантах осуществления теплоноситель представляет собой солевой расплав и/или расплавленный металл. В публикации заявки на патент США №2008-0078551 ДеВольта и др. описана система для размещения в скважине, при этом система включает в себя нагреватель в канале с жидким металлом между нагревателем и каналом для нагревания подземного грунта. Теплоноситель может представлять собой или включать в себя расплав таких солей, как соль, полученная естественным испарением воды, соли, представленные в Таблице 1, или другие соли. Расплавленные соли могут быть прозрачными в инфракрасном диапазоне, чтобы способствовать теплопередаче от изолированного проводника в контейнер. В некоторых вариантах осуществления соль, полученная естественным испарением воды, включает в себя нитрат натрия и нитрат калия (например, около 60% веса нитрата натрия и около 40% нитрата калия). Соль, полученная естественным испарением воды, плавится примерно при 220°C и является химически стабильной вплоть до температур около 593°C. Другие соли, которые можно использовать, включают в себя, но, не ограничиваясь, LiNO3 (температура плавления (Тm) 264°C, а температура разложения около 600°C) и эвтектические смеси, такие как 53% веса KNO3, 40% веса NaNO3 и 7% веса NaNO2 (Tm составляет около 142°C, а верхняя рабочая температура - свыше 500°C); 45,5% веса KNO3 и 54,5% веса NaNO2 (Tm около 142-145°C, верхняя рабочая температура - свыше 500°C); или 50% веса NaCl и 50% веса SrCl2 (Tm около 19°C верхняя рабочая температура - свыше 1200°C).
Таблица 1 | ||
Материал | Tm (°C) | Tb (°C) |
Zn | 420 | 907 |
CdBr2 | 568 | 863 |
Cdl2 | 388 | 744 |
CuBr2 | 498 | 900 |
PbBr2 | 371 | 892 |
TIBr | 460 | 819 |
TIF | 326 | 826 |
Thl4 | 566 | 837 |
SnF2 | 215 | 850 |
Snl2 | 320 | 714 |
ZnCl2 | 290 | 732 |
Источник 228 тепла представляет собой печь, которая нагревает теплоноситель до температуры в диапазоне от примерно 700°C до 900°C, от 770°C до 870°C или от 800°C до 850°C. В варианте осуществления источник 228 тепла нагревает теплоноситель до температуры около 820°C. Теплоноситель перетекает от источника 228 тепла к нагревателям 220. Тепло передают от нагревателей 220 в пласт 224, прилегающий к нагревателям. Температура теплоносителя, выходящего из пласта 224, может быть в диапазоне от примерно 350°C до 580°C, от 400°C до 530°C или от 450°C до 500°C. В варианте осуществления температура теплоносителя, выходящего из пласта 224, составляет около 480°C. Металлургия трубопровода, используемого для создания системы 226 циркуляции теплоносителя, может меняться, чтобы значительно сократить издержки, связанные с трубопроводом. На участке от источника 228 тепла до точки, в которой температура достаточно низка, может использоваться жаропрочная сталь, так что от этой точки до первого теплообменника 230 может использоваться менее дорогая сталь. Для создания трубопровода системы 226 циркуляции теплоносителя может использоваться несколько различных марок стали.
Когда теплоноситель циркулирует через трубопровод в пласте для нагревания пласта, теплота теплоносителя может привести к изменениям в трубопроводе. Теплота в трубопроводе может снизить прочность трубопровода, так как модуль Юнга и другие характеристики прочности изменяются под воздействием температуры. Из-за высоких температур в трубопроводе могут возникнуть проблемы, связанные с вытягиванием, могут возникнуть прогибы, и трубопровод может перейти из области упругой деформации в область пластической деформации.
Нагревание трубопровода может привести к тепловому расширению трубопровода. Для длинных нагревателей, размещенных в скважине, трубопровод может расшириться от 0 до 20 м или больше. В некоторых вариантах осуществления горизонтальный участок трубопровода зацементирован в пласте с применением теплопроводного цемента. Следует озаботиться тем, чтобы гарантировать, что в цементе отсутствуют значительные разрывы, чтобы предотвратить расширение трубопровода в разрывах и возможные неисправности. Тепловое расширение трубопровода может привести к появлению неровностей на трубе и/или увеличению толщины стенки трубы.
Для длинных нагревателей с плавным радиусом изгиба (например, около 10° изгиба на 30 м), аккомодация теплового расширения трубопровода может осуществляться в перекрывающей породе или на поверхности пласта. После того, как тепловое расширение завершено, может быть закреплено положение нагревателей относительно устий скважин. Когда нагревание завершено и пласт остужен, может быть прекращено закрепление положение нагревателей, так что тепловое расширение не разрушает нагреватели.
На фиг. 3-13 изображены схематические представления различных способов для аккомодации теплового расширения. В некоторых вариантах осуществления изменение длины нагревателя из-за теплового расширения может быть вмещено над устьем скважины. После того, как существенные изменения длины нагревателя из-за теплового расширения прекращаются, положение нагревателя относительно устья скважины может быть зафиксировано. Положение нагревателя относительно устья скважины может оставаться зафиксированным до конца нагревания пласта. После завершения нагревания положение нагревателя относительно устья скважины может быть освобождено (прекращена фиксация), чтобы приспособиться к тепловому сокращению нагревателя по мере охлаждения нагревателя.
На фиг. 3 изображен сильфон 246. Длина L сильфона 246 может изменяться, чтобы приспособиться к тепловому расширению и/или сжатию трубопровода 248. Сильфон 246 может быть расположен под землей или над поверхностью земли. В некоторых вариантах осуществления сильфон 246 включает в себя текучую среду, которая передает тепло из устья скважины.
На фиг. 4А показан трубопровод 248 с расширительной петлей 250 над устьем 214 скважины для аккомодации теплового расширения. Скользящие уплотнения в устье 214 скважины, сальниковые устройства или другое оборудование для управления давлением в устье скважины позволяют трубопроводу 248 смещаться относительно обсадной трубы 216. Расширение трубопровода 248 поглощается расширительной петлей 250. В некоторых вариантах осуществления для аккомодации расширения трубопровода 248 применяют две или больше расширительных петель 250.
На фиг. 4В показан трубопровод 248 со спирально свернутым или намотанным трубопроводом 252 над устьем 214 скважины для аккомодации теплового расширения. Скользящие уплотнения в устье 214 скважины, сальниковые устройства или другое оборудование для управления давлением в устье скважины позволяют трубопроводу 248 смещаться относительно обсадной трубы 216. Расширение трубопровода 248 поглощается спирально свернутым трубопроводом 252. В некоторых вариантах осуществления расширение поглощается спирально свернутым на катушке участком нагревателя, выходящего из пласта, с использованием установки для наматывания гибкой трубы.
В некоторых вариантах осуществления спирально свернутый трубопровод 252 может быть закрыт в изолированном объеме 254, как показано на фиг. 4С. Закрытие спирально свернутого трубопровода в изолированном объеме 254 может сократить теплопотери от спирально свернутого трубопровода и текучих сред, находящихся в спирально свернутом трубопроводе. В некоторых вариантах осуществления диаметр спирально свернутого трубопровода 252 принимает значение от 2 футов (около 0,6 м) до 4 футов (около 1,2 м), чтобы вместить до 50 футов или до 30 футов (примерно 9,1 м) расширения трубопровода 248. В некоторых вариантах осуществления спирально свернутый трубопровод 252 имеет диаметр от 4 дюймов (около 0,1016 м) до 6 дюймов (около 0,1524 м).
На фиг. 5 показан участок трубопровода 248 в перекрывающей породе 218 после того, как возникло тепловое расширение. Обсадная труба 216 имеет большой диаметр, чтобы вместить прогиб трубопровода 248. Между перекрывающей породой 218 и обсадной трубой 216 может располагаться изоляционный цемент 242. Тепловое расширение трубопровода 248 приводит к спиральному или синусоидальному изгибанию трубопровода. Спиральное или синусоидальное изгибание трубопровода 248 поглощает тепловое расширение трубопровода, включая горизонтальный трубопровод, примыкающий к обрабатываемой области, которую нагревают. Как показано на фиг. 6, трубопровод может содержать более одного канала, расположенного в обсадной трубе 216 большого диаметра. Наличие трубопровода 248 с несколькими каналами позволяет вместить тепловое расширение всего трубопровода в пласте, не увеличивая падение давления текучей среды, протекающей через трубопровод в перекрывающей породе 218.
В некоторых вариантах осуществления тепловое расширение подземного трубопровода передают к устью скважины. Расширение может быть поглощено одним или несколькими скользящими уплотнениями в устье скважины. Уплотнения могут включать в себя уплотнительные прокладки Grafoil®, уплотнительные прокладки Stellite® и/или уплотнительные прокладки Nitronic®. В некоторых вариантах осуществления уплотнения включают в себя уплотнения компании BST Lift Systems, Inc. (г. Вентура, шт. Калифорния, США).
На фиг. 7 изображено устье 214 скважины со скользящим уплотнением 238. Устье 214 скважины может включать в себя сальниковое устройство и/или другое оборудование для управления давлением. Циркулирующая текучая среда может проходить через канал 244. Канал 244 может быть, по меньшей мере, частично окружен изолированным каналом 236. Использование изолированного канала 236 может устранить необходимость в жаропрочном скользящем уплотнении и необходимость в уплотнении от теплоносителя. Расширением канала 244 могут управлять на поверхности посредством расширительных петель, сильфонов, спирально свернутых или намотанных трубопроводов и/или скользящих соединений. В некоторых вариантах осуществления пакеры 256 между изолированным каналом 236 и обсадной трубой 216 герметизируют скважину от давления в пласте и удерживают газ для дополнительной изоляции. Пакеры 256 могут представлять собой надувные пакеры и/или приемные гнезда полированного штока. В отдельных вариантах осуществления пакеры 256 функционируют вплоть до температур около 600°С. В некоторых вариантах осуществления пакеры 256 включают в себя уплотнения компании BST Lift Systems, Inc. (г. Вентура, шт. Калифорния, США).
В некоторых вариантах осуществления тепловым расширением подземного трубопровода управляют на поверхности с помощью телескопического соединения, которое позволяет каналу с теплоносителем расширяться из пласта, чтобы поглотить тепловое расширение. Горячий теплоноситель может проходить из зафиксированного канала в канал теплоносителя в пласте. Обратный путь теплоносителя из пласта может проходить из канала теплоносителя в зафиксированный канал. Скользящее уплотнение между зафиксированным каналом и трубопроводом в пласте и скользящее уплотнение между устьем скважины и трубопроводом в пласте может вмещать расширение канала теплоносителя в телескопическом соединении.
На фиг. 8 приведена система, в которой теплоноситель в канале 244 передают в зафиксированный канал 258 или из него. Изолирующая трубка 236 может окружать канал 244. Между изолирующей трубкой 236 и устьем скважины 214 может располагаться скользящее уплотнение 238. Пакеры между изолирующей трубкой 236 и обсадной трубой 216 могут герметизировать устье скважины от пластового давления. Уплотнения 284 теплоносителя могут быть расположены между участком зафиксированного канала 258 и каналом 244. Уплотнения 284 теплоносителя могут быть прикреплены к зафиксированному каналу 258. Результирующее телескопическое соединение позволяет изолирующей трубке 236 и каналу 244 смещаться относительно устья 214 скважины, чтобы вместить тепловое расширение трубопровода, расположенного в пласте. Канал 244 также может смещаться относительно зафиксированного канала 258, чтобы вместить тепловое расширение. Уплотнения 284 теплоносителя могут быть неизолированными и пространственно отделенными от теплоносителя, чтобы поддерживать уплотнения теплоносителя при сравнительно низких температурах.
В некоторых вариантах осуществления тепловое расширение обслуживают на поверхности с помощью телескопического соединения, где канал теплоносителя может свободно перемещаться, а зафиксированный канал представляет собой часть устья скважины. На фиг. 9 приведена система, в которой зафиксированный канал 258 прикреплен к устью 214 скважины. Зафиксированный канал 258 может включать в себя изолирующую трубку 236. Уплотнения 284 теплоносителя могут быть присоединены к верхнему участку канала 244. Уплотнения 284 теплоносителя могут быть неизолированными и пространственно отделенными от теплоносителя, чтобы поддерживать уплотнения теплоносителя при сравнительно низких температурах. Канал 244 может перемещаться относительно зафиксированного канала 258 без необходимости в скользящем уплотнении в устье 214 скважины.
На фиг. 10 изображен вариант осуществления уплотнений 284. Уплотнения 284 могут включать в себя набор 260 уплотнений, присоединенных к корпусу 262 пакера. Корпус 262 пакера может быть соединен с каналом 244 с использованием посадочных клиньев 264 пакера и уплотнения 266 изоляции пакера. Набор 260 уплотнений может примыкать к полированному участку 268 канала 258. В некоторых вариантах осуществления используют кулачковые ролики 270 для обеспечения опоры для набора 260 уплотнений. Например, если боковые нагрузки слишком большие для набора уплотнений. В некоторых вариантах осуществления к корпусу 262 присоединены скребки 272. Скребки 272 могут использоваться для очистки полированного участка 268, когда канал 258 вставляют через уплотнение 284. Скребки 272 могут быть размещены на верхней стороне уплотнений 284, если потребуется. В некоторых вариантах осуществления набор 260 уплотнений держат под нагрузкой для более хорошего контакта с помощью дугообразной пружины или другого предварительно нагруженного средства, чтобы усилить сжатие уплотнений.
В некоторых вариантах осуществления уплотнения 284 и канал 258 вместе проходят в канал 244. Блокировочные механизмы, такие как шпиндели, могут использоваться для закрепления уплотнений и каналов на месте. На фиг. 11 изображен вариант осуществления уплотнений 284, канала 244 и канала 258, закрепленных с помощью блокировочных механизмов 274. Блокировочные механизмы 274 включают в себя изоляционные уплотнения 276 и блокировочные плашки 278. Блокировочные механизмы 274 могут быть задействованы, когда уплотнения 284 и канал 258 входят в канал 244.
Когда блокировочные механизмы 274 примыкают к выбранному участку канала 244, пружины в блокировочных механизмах активируются и открывают и прикладывают изоляционные уплотнения 276 к поверхности канала 244 непосредственно над блокировочными плашками 278. Блокировочные механизмы 274 позволяют отводить изоляционные уплотнения 276, когда узел перемещается в канале 244. Изоляционные уплотнения открывают и прикладывают, когда профиль канала 244 задействует блокировочные механизмы.
Штифты 280 закрепляют блокировочные механизмы 274, уплотнения 280, канал 244 и канал 258 на месте. В отдельных вариантах осуществления штифты 280 разблокируют узел после выбранной температуры, чтобы допустить перемещение (смещение) каналов. Например, штифты 280 могут быть выполнены из материалов, которые термически деградируют (например, плавятся) при температуре, превосходящей желаемую.
В некоторых вариантах осуществления блокировочные механизмы 274 устанавливают на место с использованием мягких металлических уплотнений (например, мягкие металлические фрикционные уплотнения обычно используют для установки вставных штанговых насосов в тепловых скважинах). На фиг. 12 изображен вариант осуществления, где блокировочные механизмы устанавливают на место, используя мягкие металлические уплотнения 282. Мягкие металлические уплотнения 282 работают путем сжатия под действием сокращения внутреннего диаметра канала 244. Использование мягких металлических уплотнений может увеличить срок службы узла по сравнению со сроком службы при использовании эластомерных уплотнений.
В отдельных вариантах осуществления подъемные системы соединены с трубопроводом нагревателя, который выходит из пласта. Подъемные системы могут поднимать участки нагревателя из пласта, чтобы вместить тепловое расширение. На фиг. 13 изображено представление U-образной скважины 22, при этом в скважине расположен нагреватель 220. Скважина 222 может включать в себя обсадную трубу 216 и нижние уплотнения 286. Нагреватель 220 может включать в себя изолированные участки 288 с нагревательным участком 290, примыкающим к обрабатываемой области 240. Подвижные уплотнения 284 могут быть соединены с верхним участком нагревателя 220. Подъемные системы 292 могут быть соединены с изолированными участками 288 над устьем 214 скважины. Нереактивный газ (например, азот и/или углекислый газ) может быть введен в кольцеобразную область 294 под землей между обсадной трубой 216 и изолированными участками 288, чтобы предотвратить подъем газообразного пластового флюида к устью 214 скважины и обеспечить изолирующий газовый слой. Изолированные участки 288 могут представлять собой каналы в канале, при этом теплоноситель системы циркуляции протекает через внутренний канал. Внешний канал каждого изолированного участка 288 может иметь по существу более низкую температуру, чем внутренний канал. Более низкая температура внешнего канала позволяет использовать внешние каналы в качестве нагруженных несущих элементов для подъема нагревателя 220. Различие расширения внешнего канала и внутреннего канала может быть уменьшено с помощью внутренних сильфонов и/или скользящих уплотнений.
Подъемные системы 292 могут включать в себя гидравлические подъемники, автоматизированные катушки колтюбинга и/или системы подъема с противовесом, способные поддерживать нагреватель 220 и перемещать изолированные участки 288 в пласт или из него. Если подъемные системы 292 включают в себя гидравлические подъемники, то внешние каналы изолированных участков 288 могут поддерживаться прохладными посредством специальных гладких переходников. Гидравлические подъемники могут включать в себя два набора клиновых захватов. Первый набор клиновых захватов может быть соединен с нагревателем. Гидравлические подъемники могут поддерживать постоянное давление на нагревателе на полном ходе гидравлического цилиндра. Второй набор клиновых захватов может периодически устанавливаться на внешний канал, в то время как гидравлический цилиндр возвращается в исходной положение. Подъемные системы 292 также могут включать в себя тензометры и системы управления. Тензометры могут быть присоединены к внешнему каналу изолированных участков 288, либо тензометры могут быть присоединены к внутренним каналам изолированных участков ниже изоляции. Присоединить тензометры к внешнему каналу может быть проще, а соединение может быть более надежным.
Перед началом нагревания для систем управления могут быть установлены заданные значения с использованием подъемных систем 292 для подъема нагревателя 220, так что участки нагревателя контактируют с обсадной трубой 216 в изогнутых участках скважины 222. Натяжение, когда нагреватель 220 поднят, можно использовать в качестве заданного значения для системы управления. В других вариантах осуществления заданное значение выбирают другим способом. Когда начинают нагревание, нагревательный участок 290 начнет расширяться, и некоторый участок нагревателя будет расширяться горизонтально. Если расширение прижимает нагреватель 220 к обсадной трубе 216, то вес нагревателя будет опираться на точки контакта изолированных участков 288 и обсадной трубы. Натяжение, измеряемое подъемной системой 292, будет стремиться к нулю. Дополнительное тепловое расширение может привести к тому, что нагреватель 220 согнется и испортится. Вместо того чтобы позволить нагревателю 220 прижиматься к обсадной трубе 216, гидравлические подъемники подъемных систем 292 могут сместить части изолированных участков 288 вверх и из пласта, чтобы держать нагреватель сверху обсадной трубы. Системы управления подъемных систем 292 могут поднять нагреватель 220, чтобы поддерживать натяжение, измеряемое тензометрами, близкое к заданному значению. Подъемная система 292 также может быть использована, чтобы заново ввести изолированные участки 288 в пласт, когда пласт остывает, чтобы предотвратить повреждение нагревателя 220 во время теплового сжатия.
В отдельных вариантах осуществления тепловое расширение нагревателя завершается за сравнительно небольшой промежуток времени. В некоторых вариантах осуществления положение нагревателя фиксируют относительно устья скважины после того, как завершится тепловое расширение. Подъемные системы могут быть удалены от нагревателей и использованы на других нагревателях, которые еще не были нагреты. Подъемные системы можно заново присоединить к нагревателям, когда пласт остывает, чтобы учесть тепловое сокращение нагревателей.
В некоторых вариантах осуществления подъемными системами управляют, исходя из гидравлического давления подъемников. Изменения в натяжении трубы могут привести к изменению гидравлического давления. Система управления может поддерживать гидравлическое давление, по существу равное заданному значению гидравлического давления, чтобы обеспечить аккомодацию теплового расширения нагревателя в пласте.
В отдельных вариантах осуществления к трубопроводу, который выходит из пласта, присоединено натяжное колесо (подвижное колесо). Колесо может поднимать участки нагревателя из пласта для аккомодации теплового расширения и обеспечения натяжения нагревателя, чтобы предотвратить сгибание нагревателя в пласте. На фиг. 14 изображена U-образная скважина 222, при этом в скважине расположен нагреватель 220, соединенный с натяжным колесом 296. Скважина 222 может включать в себя обсадную трубу 216 и нижние уплотнения 286. Нагреватель 220 может включать в себя изолированные участки 288 с нагревательным участком 290, примыкающим к обрабатываемой области 240.
В некоторых вариантах осуществления длина нагревателя по горизонтали оставляет, по меньшей мере, 8000 футов (около 2400 м), а вертикальные участки имеют глубину, по меньшей мере, 1000 футов (около 300 м) или, по меньшей мере, около 1500 футов (примерно 450 м). В отдельных вариантах осуществления нагреватель 220 включает в себя трубу, внешний диаметр которой составляет примерно 3,5 дюйма или больше (например, трубу диаметром около 5,625 дюйма). В отдельных вариантах осуществления нагреватель 220 включает в себя спирально свернутую трубу. Нагреватель 220 может включать в себя такие материалы, как углеродистая сталь, 9% хромистая сталь (такая, как сталь марки Р91 или Т91), или 12% хромистая сталь (такая, как нержавеющая сталь марки 410, 410Cb или 410Nb).
В отдельных вариантах осуществления верхние участки нагревателя 220 соединены с натяжными колесами 296 на каждом конце нагревателя. В некоторых вариантах осуществления верхние участки нагревателя 220 наматывают на натяжные колеса 296 и разматывают с них. Например, нагреватель 220 может иметь участки, наматывающиеся на натяжное колесо, в то время как другой участок выходит с того же колеса 296. Один или несколько концов нагревателя 220 соединяют с системой 226 циркуляции после наматывания на натяжное колесо 296. В отдельных вариантах осуществления концы нагревателя 220 соединяют с системой 226 циркуляции (например, концы нагревателя соединяют с системой циркуляции, используя неподвижное соединение (в соединении не происходит никакого движения). Колеса 296 допускают выполнение неподвижных соединений с концами нагревателя 220 без использования какого-либо подвижного уплотнения, находящегося в контакте с горячими текучими средами, выходящими из системы 226 циркуляции.
В некоторых вариантах осуществления натяжные колеса 296 имеют диаметр примерно от 10 футов (около 3 м) до 30 футов (около 9 м) или от 15 футов (около 4,5 м) до 25 футов (около 7,6 м). В отдельных вариантах осуществления натяжные колеса 296 имеют диаметр около 20 футов (примерно 6 м).
В отдельных вариантах осуществления натяжные колеса 296 обеспечивают натяжение нагревателя 220. В отдельных вариантах осуществления натяжные колеса 296 обеспечивают постоянное натяжение нагревателя 220. В некоторых вариантах осуществления натяжение прикладывают путем размещения концевых участков нагревателя 220 в подвижной дуге. Натяжным колесам 296 может быть позволено перемещаться вверх и вниз (например, вверх и вниз вдоль стенки в вертикальной плоскости) при натяжении нагревателя 220. Например, для аккомодации расширения натяжные колеса 296 могут перемещаться вверх и вниз примерно на 40 футов (около 12 м) или на любую другую подходящую величину в зависимости от ожидаемого расширения нагревателя 220. В некоторых вариантах осуществления натяжные колеса 296 могут перемещаться в горизонтальной плоскости (налево и направо параллельно поверхности пласта). Допуская перемещение вверх и вниз во время натяжения, можно предотвратить или сократить степень сгибания нагревателя 220 из-за теплового расширения нагревателя.
Следует понимать, что изобретение не ограничено определенными описанными системами, которые, конечно, можно изменять. Также следует понимать, что используемая в этом документе терминология применяется только для описания отдельных вариантов осуществления и не предназначена для ограничения. Используемые в этом описании формы единственного числа включают в себя формы множественного числа, если обратное не указано явно. Таким образом, например, упоминание слова "сердцевина" включает в себя сочетание двух или более сердцевин, а упоминание слова "материал" включает в себя смеси материалов.
В виду этого описания специалистам в области техники станут понятны дополнительные модификации и альтернативные варианты осуществления различных аспектов изобретения. Соответственно, это описание следует истолковывать только как иллюстративное, используемое для доведения до специалистов в области техники общего способа реализации изобретения. Следует понимать, что показанные и описанные в этом документе формы изобретения приняты в качестве предпочтительных вариантов осуществления. Элементы и материалы, проиллюстрированные и описанные в этом документе, могут быть заменены, части и процессы могут быть выполнены в обратном порядке, а определенные признаки изобретения могут быть использованы независимо, как очевидно специалистам в области техники, после получения преимущества этого описания изобретения. В элементы, описанные в этом документе, могут быть внесены изменения, не отклоняясь от сущности и объема изобретения, описанного в прилагаемой формуле изобретения.
Claims (20)
1. Способ аккомодации теплового расширения нагревателя в пласте, содержащий этапы, на которых:
обеспечивают протекание теплоносителя через канал, чтобы передать теплоту в пласт; и
обеспечивают по существу постоянное натяжение концевого участка канала, который проходит за пределы пласта, причем по меньшей мере часть концевого участка канала намотана на подвижное колесо, при этом подвижное колесо является подвижным по меньшей мере в вертикальной плоскости, в то время как концевой участок канала намотан на подвижное колесо, причем подвижное колесо перемещают по меньшей мере в вертикальной плоскости для обеспечения по существу постоянного натяжения концевого участка канала.
2. Способ по п. 1, который дополнительно содержит этап, на котором поглощают расширение канала во время передачи теплоты в пласт путем обеспечения по существу постоянного натяжения концевого участка канала.
3. Способ по п. 1, в котором по меньшей мере часть концевого участка канала за пределами пласта является изолированной.
4. Способ по п. 1, в котором подвижное колесо перемещают по меньшей мере в вертикальной плоскости, в то время как канал расположен в пласте.
5. Способ по п. 1, в котором подвижное колесо является подвижным и в вертикальной плоскости, и в горизонтальной плоскости.
6. Способ по п. 1, в котором канал содержит нержавеющую сталь марки 410, нержавеющую сталь марки 410Cb, нержавеющую сталь марки 410Nb или сталь марки Р91.
7. Способ по п. 1, в котором теплоноситель содержит расплав соли.
8. Способ по п. 1, в котором конец канала соединен с блоком питания для нагревания и/или хранения теплоносителя.
9. Способ по п. 1, в котором диаметр колеса составляет по меньшей мере около 4,572 м.
10. Система для аккомодации теплового расширения нагревателя в пласте, содержащая:
канал, выполненный с возможностью передачи теплоты в пласт, когда теплоноситель протекает через канал; и подвижное колесо, причем по меньшей мере часть концевого участка канала намотана на подвижное колесо, при этом подвижное колесо является подвижным по меньшей мере в вертикальной плоскости, в то время как концевой участок канала намотан на подвижное колесо, причем подвижное колесо выполнено с возможностью перемещения по меньшей мере в вертикальной плоскости для поддержания по существу постоянного натяжения концевого участка канала для поглощения расширения канала, когда теплоноситель протекает через канал.
11. Система по п. 10, в которой по меньшей мере часть концевого участка канала за пределами пласта является изолированной.
12. Система по п. 10, в которой подвижное колесо выполнено с возможностью перемещения по меньшей мере в вертикальной плоскости, в то время как канал расположен в пласте.
13. Система по п. 10, в которой подвижное колесо является подвижным и в вертикальной плоскости, и в горизонтальной плоскости.
14. Система по п. 10, в которой канал содержит нержавеющую сталь марки 410, нержавеющую сталь марки 410Cb, нержавеющую сталь марки 410Nb или сталь марки Р91.
15. Система по п. 10, в которой теплоноситель содержит расплав соли.
16. Система по п. 10, в которой конец канала соединен с блоком питания для нагревания и/или хранения теплоносителя.
17. Система по п. 10, в которой диаметр колеса составляет по меньшей мере около 4,572 м.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161544817P | 2011-10-07 | 2011-10-07 | |
US61/544,817 | 2011-10-07 | ||
PCT/US2012/058582 WO2013052561A2 (en) | 2011-10-07 | 2012-10-04 | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014118474A RU2014118474A (ru) | 2015-11-20 |
RU2612774C2 true RU2612774C2 (ru) | 2017-03-13 |
Family
ID=48041334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014118474A RU2612774C2 (ru) | 2011-10-07 | 2012-10-04 | Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород |
Country Status (6)
Country | Link |
---|---|
US (1) | US9309755B2 (ru) |
CN (1) | CN103958824B (ru) |
CA (1) | CA2850741A1 (ru) |
IL (1) | IL231762A0 (ru) |
RU (1) | RU2612774C2 (ru) |
WO (1) | WO2013052561A2 (ru) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US10273790B2 (en) | 2014-01-14 | 2019-04-30 | Precision Combustion, Inc. | System and method of producing oil |
WO2015181579A1 (en) * | 2014-05-25 | 2015-12-03 | Genie Ip B.V. | Subsurface molten salt heater assembly having a catenary trajectory |
US10125588B2 (en) * | 2016-06-30 | 2018-11-13 | Must Holding Llc | Systems and methods for recovering bitumen from subterranean formations |
CN109594955A (zh) * | 2019-02-14 | 2019-04-09 | 中海油能源发展股份有限公司工程技术分公司 | 一种人工井壁防砂用加热固砂系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA005650B1 (ru) * | 2001-04-24 | 2005-04-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система и способ электрического нагрева скважины |
US20060124314A1 (en) * | 2002-06-28 | 2006-06-15 | Haheim Svein A | Assembly and a method for intervention of a subsea well |
US7708058B1 (en) * | 2009-03-18 | 2010-05-04 | Rri Holdings, Inc. | Selectably elevatable injector for coiled tubing |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US20100258291A1 (en) * | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
Family Cites Families (826)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734579A (en) | 1956-02-14 | Production from bituminous sands | ||
US2732195A (en) | 1956-01-24 | Ljungstrom | ||
US326439A (en) | 1885-09-15 | Protecting wells | ||
US345586A (en) | 1886-07-13 | Oil from wells | ||
US94813A (en) | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
US48994A (en) | 1865-07-25 | Improvement in devices for oil-wells | ||
US760304A (en) | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1457479A (en) | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US1510655A (en) | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1660818A (en) | 1924-05-07 | 1928-02-28 | Standard Oil Dev Co | Apparatus for recovering oil |
US1634236A (en) | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1811560A (en) | 1926-04-08 | 1931-06-23 | Standard Oil Dev Co | Method of and apparatus for recovering oil |
US1666488A (en) | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US1913395A (en) | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2144144A (en) | 1935-10-05 | 1939-01-17 | Meria Tool Company | Means for elevating liquids from wells |
US2244255A (en) | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2244256A (en) | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2381256A (en) | 1942-10-06 | 1945-08-07 | Texas Co | Process for treating hydrocarbon fractions |
US2390770A (en) | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2630307A (en) | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
GB674082A (en) | 1949-06-15 | 1952-06-18 | Nat Res Dev | Improvements in or relating to the underground gasification of coal |
US2670802A (en) | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2623596A (en) | 1950-05-16 | 1952-12-30 | Atlantic Refining Co | Method for producing oil by means of carbon dioxide |
US2714930A (en) | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
US2647306A (en) | 1951-04-14 | 1953-08-04 | John C Hockery | Can opener |
US2630306A (en) | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2777679A (en) | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2780450A (en) | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2759877A (en) | 1952-03-18 | 1956-08-21 | Sinclair Refining Co | Process and separation apparatus for use in the conversions of hydrocarbons |
US2789805A (en) | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
US2761663A (en) | 1952-09-05 | 1956-09-04 | Louis F Gerdetz | Process of underground gasification of coal |
US2780449A (en) | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2902270A (en) | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2923535A (en) | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2799341A (en) | 1955-03-04 | 1957-07-16 | Union Oil Co | Selective plugging in oil wells |
US2801089A (en) | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2889882A (en) | 1956-06-06 | 1959-06-09 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3120264A (en) | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
US3016053A (en) | 1956-08-02 | 1962-01-09 | George J Medovick | Underwater breathing apparatus |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US3127936A (en) | 1957-07-26 | 1964-04-07 | Svenska Skifferolje Ab | Method of in situ heating of subsurface preferably fuel containing deposits |
US2942223A (en) | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US3007521A (en) | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US3010516A (en) | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US2954826A (en) | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3061009A (en) | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3062282A (en) | 1958-01-24 | 1962-11-06 | Phillips Petroleum Co | Initiation of in situ combustion in a carbonaceous stratum |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US3004603A (en) | 1958-03-07 | 1961-10-17 | Phillips Petroleum Co | Heater |
US3032102A (en) | 1958-03-17 | 1962-05-01 | Phillips Petroleum Co | In situ combustion method |
US3004601A (en) | 1958-05-09 | 1961-10-17 | Albert G Bodine | Method and apparatus for augmenting oil recovery from wells by refrigeration |
US3048221A (en) | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3026940A (en) | 1958-05-19 | 1962-03-27 | Electronic Oil Well Heater Inc | Oil well temperature indicator and control |
US3010513A (en) | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US2958519A (en) | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US3044545A (en) | 1958-10-02 | 1962-07-17 | Phillips Petroleum Co | In situ combustion process |
US3050123A (en) | 1958-10-07 | 1962-08-21 | Cities Service Res & Dev Co | Gas fired oil-well burner |
US2974937A (en) | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3036632A (en) | 1958-12-24 | 1962-05-29 | Socony Mobil Oil Co Inc | Recovery of hydrocarbon materials from earth formations by application of heat |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US2969226A (en) | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3017168A (en) | 1959-01-26 | 1962-01-16 | Phillips Petroleum Co | In situ retorting of oil shale |
US3110345A (en) | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113619A (en) | 1959-03-30 | 1963-12-10 | Phillips Petroleum Co | Line drive counterflow in situ combustion process |
US3113620A (en) | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3181613A (en) | 1959-07-20 | 1965-05-04 | Union Oil Co | Method and apparatus for subterranean heating |
US3113623A (en) | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3116792A (en) | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3132692A (en) | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3095031A (en) | 1959-12-09 | 1963-06-25 | Eurenius Malte Oscar | Burners for use in bore holes in the ground |
US3131763A (en) | 1959-12-30 | 1964-05-05 | Texaco Inc | Electrical borehole heater |
US3163745A (en) | 1960-02-29 | 1964-12-29 | Socony Mobil Oil Co Inc | Heating of an earth formation penetrated by a well borehole |
US3127935A (en) | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
US3137347A (en) | 1960-05-09 | 1964-06-16 | Phillips Petroleum Co | In situ electrolinking of oil shale |
US3139928A (en) | 1960-05-24 | 1964-07-07 | Shell Oil Co | Thermal process for in situ decomposition of oil shale |
US3106244A (en) | 1960-06-20 | 1963-10-08 | Phillips Petroleum Co | Process for producing oil shale in situ by electrocarbonization |
US3142336A (en) | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3105545A (en) | 1960-11-21 | 1963-10-01 | Shell Oil Co | Method of heating underground formations |
US3164207A (en) | 1961-01-17 | 1965-01-05 | Wayne H Thessen | Method for recovering oil |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3191679A (en) | 1961-04-13 | 1965-06-29 | Wendell S Miller | Melting process for recovering bitumens from the earth |
US3207220A (en) | 1961-06-26 | 1965-09-21 | Chester I Williams | Electric well heater |
US3114417A (en) | 1961-08-14 | 1963-12-17 | Ernest T Saftig | Electric oil well heater apparatus |
US3246695A (en) | 1961-08-21 | 1966-04-19 | Charles L Robinson | Method for heating minerals in situ with radioactive materials |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3183675A (en) | 1961-11-02 | 1965-05-18 | Conch Int Methane Ltd | Method of freezing an earth formation |
US3170842A (en) | 1961-11-06 | 1965-02-23 | Phillips Petroleum Co | Subcritical borehole nuclear reactor and process |
US3209825A (en) | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3205946A (en) | 1962-03-12 | 1965-09-14 | Shell Oil Co | Consolidation by silica coalescence |
US3165154A (en) | 1962-03-23 | 1965-01-12 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3149670A (en) | 1962-03-27 | 1964-09-22 | Smclair Res Inc | In-situ heating process |
US3149672A (en) | 1962-05-04 | 1964-09-22 | Jersey Prod Res Co | Method and apparatus for electrical heating of oil-bearing formations |
US3208531A (en) | 1962-08-21 | 1965-09-28 | Otis Eng Co | Inserting tool for locating and anchoring a device in tubing |
US3182721A (en) | 1962-11-02 | 1965-05-11 | Sun Oil Co | Method of petroleum production by forward in situ combustion |
US3288648A (en) | 1963-02-04 | 1966-11-29 | Pan American Petroleum Corp | Process for producing electrical energy from geological liquid hydrocarbon formation |
US3205942A (en) | 1963-02-07 | 1965-09-14 | Socony Mobil Oil Co Inc | Method for recovery of hydrocarbons by in situ heating of oil shale |
US3221505A (en) | 1963-02-20 | 1965-12-07 | Gulf Research Development Co | Grouting method |
US3221811A (en) | 1963-03-11 | 1965-12-07 | Shell Oil Co | Mobile in-situ heating of formations |
US3250327A (en) | 1963-04-02 | 1966-05-10 | Socony Mobil Oil Co Inc | Recovering nonflowing hydrocarbons |
US3241611A (en) | 1963-04-10 | 1966-03-22 | Equity Oil Company | Recovery of petroleum products from oil shale |
GB959945A (en) | 1963-04-18 | 1964-06-03 | Conch Int Methane Ltd | Constructing a frozen wall within the ground |
US3237689A (en) | 1963-04-29 | 1966-03-01 | Clarence I Justheim | Distillation of underground deposits of solid carbonaceous materials in situ |
US3205944A (en) | 1963-06-14 | 1965-09-14 | Socony Mobil Oil Co Inc | Recovery of hydrocarbons from a subterranean reservoir by heating |
US3233668A (en) | 1963-11-15 | 1966-02-08 | Exxon Production Research Co | Recovery of shale oil |
US3285335A (en) | 1963-12-11 | 1966-11-15 | Exxon Research Engineering Co | In situ pyrolysis of oil shale formations |
US3273640A (en) | 1963-12-13 | 1966-09-20 | Pyrochem Corp | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3303883A (en) | 1964-01-06 | 1967-02-14 | Mobil Oil Corp | Thermal notching technique |
US3275076A (en) | 1964-01-13 | 1966-09-27 | Mobil Oil Corp | Recovery of asphaltic-type petroleum from a subterranean reservoir |
US3342258A (en) | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3294167A (en) | 1964-04-13 | 1966-12-27 | Shell Oil Co | Thermal oil recovery |
US3284281A (en) | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3302707A (en) | 1964-09-30 | 1967-02-07 | Mobil Oil Corp | Method for improving fluid recoveries from earthen formations |
US3310109A (en) | 1964-11-06 | 1967-03-21 | Phillips Petroleum Co | Process and apparatus for combination upgrading of oil in situ and refining thereof |
US3380913A (en) | 1964-12-28 | 1968-04-30 | Phillips Petroleum Co | Refining of effluent from in situ combustion operation |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3338306A (en) | 1965-03-09 | 1967-08-29 | Mobil Oil Corp | Recovery of heavy oil from oil sands |
US3358756A (en) | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
DE1242535B (de) | 1965-04-13 | 1967-06-22 | Deutsche Erdoel Ag | Verfahren zur Restausfoerderung von Erdoellagerstaetten |
US3316344A (en) | 1965-04-26 | 1967-04-25 | Central Electr Generat Board | Prevention of icing of electrical conductors |
US3342267A (en) | 1965-04-29 | 1967-09-19 | Gerald S Cotter | Turbo-generator heater for oil and gas wells and pipe lines |
US3352355A (en) | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
US3346044A (en) | 1965-09-08 | 1967-10-10 | Mobil Oil Corp | Method and structure for retorting oil shale in situ by cycling fluid flows |
US3349845A (en) | 1965-10-22 | 1967-10-31 | Sinclair Oil & Gas Company | Method of establishing communication between wells |
US3379248A (en) | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3386508A (en) | 1966-02-21 | 1968-06-04 | Exxon Production Research Co | Process and system for the recovery of viscous oil |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
US3595082A (en) | 1966-03-04 | 1971-07-27 | Gulf Oil Corp | Temperature measuring apparatus |
US3410977A (en) | 1966-03-28 | 1968-11-12 | Ando Masao | Method of and apparatus for heating the surface part of various construction materials |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3513913A (en) | 1966-04-19 | 1970-05-26 | Shell Oil Co | Oil recovery from oil shales by transverse combustion |
US3372754A (en) | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
US3412011A (en) | 1966-09-02 | 1968-11-19 | Phillips Petroleum Co | Catalytic cracking and in situ combustion process for producing hydrocarbons |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
US3389975A (en) | 1967-03-10 | 1968-06-25 | Sinclair Research Inc | Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide |
NL6803827A (ru) | 1967-03-22 | 1968-09-23 | ||
US3515213A (en) | 1967-04-19 | 1970-06-02 | Shell Oil Co | Shale oil recovery process using heated oil-miscible fluids |
US3528501A (en) | 1967-08-04 | 1970-09-15 | Phillips Petroleum Co | Recovery of oil from oil shale |
US3480082A (en) | 1967-09-25 | 1969-11-25 | Continental Oil Co | In situ retorting of oil shale using co2 as heat carrier |
US3434541A (en) | 1967-10-11 | 1969-03-25 | Mobil Oil Corp | In situ combustion process |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3477058A (en) | 1968-02-01 | 1969-11-04 | Gen Electric | Magnesia insulated heating elements and methods of production |
US3580987A (en) | 1968-03-26 | 1971-05-25 | Pirelli | Electric cable |
US3455383A (en) | 1968-04-24 | 1969-07-15 | Shell Oil Co | Method of producing fluidized material from a subterranean formation |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3529682A (en) | 1968-10-03 | 1970-09-22 | Bell Telephone Labor Inc | Location detection and guidance systems for burrowing device |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3502372A (en) | 1968-10-23 | 1970-03-24 | Shell Oil Co | Process of recovering oil and dawsonite from oil shale |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3501201A (en) | 1968-10-30 | 1970-03-17 | Shell Oil Co | Method of producing shale oil from a subterranean oil shale formation |
US3617471A (en) | 1968-12-26 | 1971-11-02 | Texaco Inc | Hydrotorting of shale to produce shale oil |
US3562401A (en) | 1969-03-03 | 1971-02-09 | Union Carbide Corp | Low temperature electric transmission systems |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3618663A (en) | 1969-05-01 | 1971-11-09 | Phillips Petroleum Co | Shale oil production |
US3605890A (en) | 1969-06-04 | 1971-09-20 | Chevron Res | Hydrogen production from a kerogen-depleted shale formation |
US3526095A (en) | 1969-07-24 | 1970-09-01 | Ralph E Peck | Liquid gas storage system |
US3599714A (en) | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3547193A (en) | 1969-10-08 | 1970-12-15 | Electrothermic Co | Method and apparatus for recovery of minerals from sub-surface formations using electricity |
US3661423A (en) | 1970-02-12 | 1972-05-09 | Occidental Petroleum Corp | In situ process for recovery of carbonaceous materials from subterranean deposits |
US3943160A (en) | 1970-03-09 | 1976-03-09 | Shell Oil Company | Heat-stable calcium-compatible waterflood surfactant |
US3647358A (en) | 1970-07-23 | 1972-03-07 | Anti Pollution Systems | Method of catalytically inducing oxidation of carbonaceous materials by the use of molten salts |
US3759574A (en) | 1970-09-24 | 1973-09-18 | Shell Oil Co | Method of producing hydrocarbons from an oil shale formation |
US4305463A (en) | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3680633A (en) | 1970-12-28 | 1972-08-01 | Sun Oil Co Delaware | Situ combustion initiation process |
US3675715A (en) | 1970-12-30 | 1972-07-11 | Forrester A Clark | Processes for secondarily recovering oil |
US3700280A (en) | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
US3770398A (en) | 1971-09-17 | 1973-11-06 | Cities Service Oil Co | In situ coal gasification process |
US3812913A (en) | 1971-10-18 | 1974-05-28 | Sun Oil Co | Method of formation consolidation |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3766982A (en) | 1971-12-27 | 1973-10-23 | Justheim Petrol Co | Method for the in-situ treatment of hydrocarbonaceous materials |
US3759328A (en) | 1972-05-11 | 1973-09-18 | Shell Oil Co | Laterally expanding oil shale permeabilization |
US3794116A (en) | 1972-05-30 | 1974-02-26 | Atomic Energy Commission | Situ coal bed gasification |
US3779602A (en) | 1972-08-07 | 1973-12-18 | Shell Oil Co | Process for solution mining nahcolite |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3809159A (en) | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US3804172A (en) | 1972-10-11 | 1974-04-16 | Shell Oil Co | Method for the recovery of oil from oil shale |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US3804169A (en) | 1973-02-07 | 1974-04-16 | Shell Oil Co | Spreading-fluid recovery of subterranean oil |
US3947683A (en) | 1973-06-05 | 1976-03-30 | Texaco Inc. | Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones |
US4076761A (en) | 1973-08-09 | 1978-02-28 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3881551A (en) | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US3907045A (en) | 1973-11-30 | 1975-09-23 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3853185A (en) | 1973-11-30 | 1974-12-10 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3882941A (en) | 1973-12-17 | 1975-05-13 | Cities Service Res & Dev Co | In situ production of bitumen from oil shale |
US3946812A (en) | 1974-01-02 | 1976-03-30 | Exxon Production Research Company | Use of materials as waterflood additives |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US3922148A (en) | 1974-05-16 | 1975-11-25 | Texaco Development Corp | Production of methane-rich gas |
ZA753184B (en) | 1974-05-31 | 1976-04-28 | Standard Oil Co | Process for recovering upgraded hydrocarbon products |
US3948755A (en) | 1974-05-31 | 1976-04-06 | Standard Oil Company | Process for recovering and upgrading hydrocarbons from oil shale and tar sands |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US3892270A (en) | 1974-06-06 | 1975-07-01 | Chevron Res | Production of hydrocarbons from underground formations |
US4006778A (en) | 1974-06-21 | 1977-02-08 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbon from tar sands |
US4026357A (en) | 1974-06-26 | 1977-05-31 | Texaco Exploration Canada Ltd. | In situ gasification of solid hydrocarbon materials in a subterranean formation |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US4014575A (en) | 1974-07-26 | 1977-03-29 | Occidental Petroleum Corporation | System for fuel and products of oil shale retort |
US4005752A (en) | 1974-07-26 | 1977-02-01 | Occidental Petroleum Corporation | Method of igniting in situ oil shale retort with fuel rich flue gas |
US3941421A (en) | 1974-08-13 | 1976-03-02 | Occidental Petroleum Corporation | Apparatus for obtaining uniform gas flow through an in situ oil shale retort |
GB1454324A (en) | 1974-08-14 | 1976-11-03 | Iniex | Recovering combustible gases from underground deposits of coal or bituminous shale |
US3948319A (en) | 1974-10-16 | 1976-04-06 | Atlantic Richfield Company | Method and apparatus for producing fluid by varying current flow through subterranean source formation |
AR205595A1 (es) | 1974-11-06 | 1976-05-14 | Haldor Topsoe As | Procedimiento para preparar gases rico en metano |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US4138442A (en) | 1974-12-05 | 1979-02-06 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3952802A (en) | 1974-12-11 | 1976-04-27 | In Situ Technology, Inc. | Method and apparatus for in situ gasification of coal and the commercial products derived therefrom |
US3986556A (en) | 1975-01-06 | 1976-10-19 | Haynes Charles A | Hydrocarbon recovery from earth strata |
US4042026A (en) | 1975-02-08 | 1977-08-16 | Deutsche Texaco Aktiengesellschaft | Method for initiating an in-situ recovery process by the introduction of oxygen |
US3972372A (en) | 1975-03-10 | 1976-08-03 | Fisher Sidney T | Exraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4096163A (en) | 1975-04-08 | 1978-06-20 | Mobil Oil Corporation | Conversion of synthesis gas to hydrocarbon mixtures |
US3924680A (en) | 1975-04-23 | 1975-12-09 | In Situ Technology Inc | Method of pyrolysis of coal in situ |
US3973628A (en) | 1975-04-30 | 1976-08-10 | New Mexico Tech Research Foundation | In situ solution mining of coal |
US4016239A (en) | 1975-05-22 | 1977-04-05 | Union Oil Company Of California | Recarbonation of spent oil shale |
US3987851A (en) | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US3986557A (en) | 1975-06-06 | 1976-10-19 | Atlantic Richfield Company | Production of bitumen from tar sands |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US3993132A (en) | 1975-06-18 | 1976-11-23 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbons from tar sands |
US4069868A (en) | 1975-07-14 | 1978-01-24 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US3954140A (en) | 1975-08-13 | 1976-05-04 | Hendrick Robert P | Recovery of hydrocarbons by in situ thermal extraction |
US3986349A (en) | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US3994340A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Method of recovering viscous petroleum from tar sand |
US3994341A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Recovering viscous petroleum from thick tar sand |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US4087130A (en) | 1975-11-03 | 1978-05-02 | Occidental Petroleum Corporation | Process for the gasification of coal in situ |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4018280A (en) | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US3992474A (en) | 1975-12-15 | 1976-11-16 | Uop Inc. | Motor fuel production with fluid catalytic cracking of high-boiling alkylate |
US4019575A (en) | 1975-12-22 | 1977-04-26 | Chevron Research Company | System for recovering viscous petroleum from thick tar sand |
US3999607A (en) | 1976-01-22 | 1976-12-28 | Exxon Research And Engineering Company | Recovery of hydrocarbons from coal |
US4031956A (en) | 1976-02-12 | 1977-06-28 | In Situ Technology, Inc. | Method of recovering energy from subsurface petroleum reservoirs |
US4008762A (en) | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4010800A (en) | 1976-03-08 | 1977-03-08 | In Situ Technology, Inc. | Producing thin seams of coal in situ |
US4048637A (en) | 1976-03-23 | 1977-09-13 | Westinghouse Electric Corporation | Radar system for detecting slowly moving targets |
DE2615874B2 (de) | 1976-04-10 | 1978-10-19 | Deutsche Texaco Ag, 2000 Hamburg | Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen |
GB1544245A (en) | 1976-05-21 | 1979-04-19 | British Gas Corp | Production of substitute natural gas |
US4049053A (en) | 1976-06-10 | 1977-09-20 | Fisher Sidney T | Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4193451A (en) | 1976-06-17 | 1980-03-18 | The Badger Company, Inc. | Method for production of organic products from kerogen |
US4067390A (en) | 1976-07-06 | 1978-01-10 | Technology Application Services Corporation | Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc |
US4057293A (en) | 1976-07-12 | 1977-11-08 | Garrett Donald E | Process for in situ conversion of coal or the like into oil and gas |
US4043393A (en) | 1976-07-29 | 1977-08-23 | Fisher Sidney T | Extraction from underground coal deposits |
US4091869A (en) | 1976-09-07 | 1978-05-30 | Exxon Production Research Company | In situ process for recovery of carbonaceous materials from subterranean deposits |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4065183A (en) | 1976-11-15 | 1977-12-27 | Trw Inc. | Recovery system for oil shale deposits |
US4059308A (en) | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4077471A (en) | 1976-12-01 | 1978-03-07 | Texaco Inc. | Surfactant oil recovery process usable in high temperature, high salinity formations |
US4064943A (en) | 1976-12-06 | 1977-12-27 | Shell Oil Co | Plugging permeable earth formation with wax |
US4089374A (en) | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4084637A (en) | 1976-12-16 | 1978-04-18 | Petro Canada Exploration Inc. | Method of producing viscous materials from subterranean formations |
US4093026A (en) | 1977-01-17 | 1978-06-06 | Occidental Oil Shale, Inc. | Removal of sulfur dioxide from process gas using treated oil shale and water |
US4277416A (en) | 1977-02-17 | 1981-07-07 | Aminoil, Usa, Inc. | Process for producing methanol |
US4085803A (en) | 1977-03-14 | 1978-04-25 | Exxon Production Research Company | Method for oil recovery using a horizontal well with indirect heating |
US4151877A (en) | 1977-05-13 | 1979-05-01 | Occidental Oil Shale, Inc. | Determining the locus of a processing zone in a retort through channels |
US4099567A (en) | 1977-05-27 | 1978-07-11 | In Situ Technology, Inc. | Generating medium BTU gas from coal in situ |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4144935A (en) | 1977-08-29 | 1979-03-20 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4140180A (en) | 1977-08-29 | 1979-02-20 | Iit Research Institute | Method for in situ heat processing of hydrocarbonaceous formations |
NL181941C (nl) | 1977-09-16 | 1987-12-01 | Ir Arnold Willem Josephus Grup | Werkwijze voor het ondergronds vergassen van steenkool of bruinkool. |
US4125159A (en) | 1977-10-17 | 1978-11-14 | Vann Roy Randell | Method and apparatus for isolating and treating subsurface stratas |
SU915451A1 (ru) | 1977-10-21 | 1988-08-23 | Vnii Ispolzovania | Способ подземной газификации топлива |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4114688A (en) | 1977-12-05 | 1978-09-19 | In Situ Technology Inc. | Minimizing environmental effects in production and use of coal |
US4158467A (en) | 1977-12-30 | 1979-06-19 | Gulf Oil Corporation | Process for recovering shale oil |
US4148359A (en) | 1978-01-30 | 1979-04-10 | Shell Oil Company | Pressure-balanced oil recovery process for water productive oil shale |
DE2812490A1 (de) | 1978-03-22 | 1979-09-27 | Texaco Ag | Verfahren zur ermittlung der raeumlichen ausdehnung von untertaegigen reaktionen |
US4162707A (en) | 1978-04-20 | 1979-07-31 | Mobil Oil Corporation | Method of treating formation to remove ammonium ions |
US4197911A (en) | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4186801A (en) | 1978-12-18 | 1980-02-05 | Gulf Research And Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4185692A (en) | 1978-07-14 | 1980-01-29 | In Situ Technology, Inc. | Underground linkage of wells for production of coal in situ |
US4184548A (en) | 1978-07-17 | 1980-01-22 | Standard Oil Company (Indiana) | Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort |
US4257650A (en) | 1978-09-07 | 1981-03-24 | Barber Heavy Oil Process, Inc. | Method for recovering subsurface earth substances |
US4183405A (en) | 1978-10-02 | 1980-01-15 | Magnie Robert L | Enhanced recoveries of petroleum and hydrogen from underground reservoirs |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4299086A (en) | 1978-12-07 | 1981-11-10 | Gulf Research & Development Company | Utilization of energy obtained by substoichiometric combustion of low heating value gases |
US4265307A (en) | 1978-12-20 | 1981-05-05 | Standard Oil Company | Shale oil recovery |
US4258955A (en) | 1978-12-26 | 1981-03-31 | Mobil Oil Corporation | Process for in-situ leaching of uranium |
US4274487A (en) | 1979-01-11 | 1981-06-23 | Standard Oil Company (Indiana) | Indirect thermal stimulation of production wells |
US4324292A (en) | 1979-02-21 | 1982-04-13 | University Of Utah | Process for recovering products from oil shale |
US4260192A (en) | 1979-02-21 | 1981-04-07 | Occidental Research Corporation | Recovery of magnesia from oil shale |
US4243511A (en) | 1979-03-26 | 1981-01-06 | Marathon Oil Company | Process for suppressing carbonate decomposition in vapor phase water retorting |
US4248306A (en) | 1979-04-02 | 1981-02-03 | Huisen Allan T Van | Geothermal petroleum refining |
US4282587A (en) | 1979-05-21 | 1981-08-04 | Daniel Silverman | Method for monitoring the recovery of minerals from shallow geological formations |
US4216079A (en) | 1979-07-09 | 1980-08-05 | Cities Service Company | Emulsion breaking with surfactant recovery |
US4234230A (en) | 1979-07-11 | 1980-11-18 | The Superior Oil Company | In situ processing of mined oil shale |
US4228854A (en) | 1979-08-13 | 1980-10-21 | Alberta Research Council | Enhanced oil recovery using electrical means |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4549396A (en) | 1979-10-01 | 1985-10-29 | Mobil Oil Corporation | Conversion of coal to electricity |
US4250230A (en) | 1979-12-10 | 1981-02-10 | In Situ Technology, Inc. | Generating electricity from coal in situ |
US4250962A (en) | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4398151A (en) | 1980-01-25 | 1983-08-09 | Shell Oil Company | Method for correcting an electrical log for the presence of shale in a formation |
US4359687A (en) | 1980-01-25 | 1982-11-16 | Shell Oil Company | Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain |
US4285547A (en) | 1980-02-01 | 1981-08-25 | Multi Mineral Corporation | Integrated in situ shale oil and mineral recovery process |
USRE30738E (en) | 1980-02-06 | 1981-09-08 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4303126A (en) | 1980-02-27 | 1981-12-01 | Chevron Research Company | Arrangement of wells for producing subsurface viscous petroleum |
US4445574A (en) | 1980-03-24 | 1984-05-01 | Geo Vann, Inc. | Continuous borehole formed horizontally through a hydrocarbon producing formation |
US4417782A (en) | 1980-03-31 | 1983-11-29 | Raychem Corporation | Fiber optic temperature sensing |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
US4273188A (en) | 1980-04-30 | 1981-06-16 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4306621A (en) | 1980-05-23 | 1981-12-22 | Boyd R Michael | Method for in situ coal gasification operations |
US4409090A (en) | 1980-06-02 | 1983-10-11 | University Of Utah | Process for recovering products from tar sand |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4381641A (en) | 1980-06-23 | 1983-05-03 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4401099A (en) | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4299285A (en) | 1980-07-21 | 1981-11-10 | Gulf Research & Development Company | Underground gasification of bituminous coal |
US4396062A (en) | 1980-10-06 | 1983-08-02 | University Of Utah Research Foundation | Apparatus and method for time-domain tracking of high-speed chemical reactions |
US4353418A (en) | 1980-10-20 | 1982-10-12 | Standard Oil Company (Indiana) | In situ retorting of oil shale |
US4384613A (en) | 1980-10-24 | 1983-05-24 | Terra Tek, Inc. | Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases |
US4366864A (en) | 1980-11-24 | 1983-01-04 | Exxon Research And Engineering Co. | Method for recovery of hydrocarbons from oil-bearing limestone or dolomite |
US4401163A (en) | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4448251A (en) | 1981-01-08 | 1984-05-15 | Uop Inc. | In situ conversion of hydrocarbonaceous oil |
US4423311A (en) | 1981-01-19 | 1983-12-27 | Varney Sr Paul | Electric heating apparatus for de-icing pipes |
US4366668A (en) | 1981-02-25 | 1983-01-04 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4382469A (en) | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
US4363361A (en) | 1981-03-19 | 1982-12-14 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4390067A (en) | 1981-04-06 | 1983-06-28 | Exxon Production Research Co. | Method of treating reservoirs containing very viscous crude oil or bitumen |
US4399866A (en) | 1981-04-10 | 1983-08-23 | Atlantic Richfield Company | Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit |
US4444255A (en) | 1981-04-20 | 1984-04-24 | Lloyd Geoffrey | Apparatus and process for the recovery of oil |
US4380930A (en) | 1981-05-01 | 1983-04-26 | Mobil Oil Corporation | System for transmitting ultrasonic energy through core samples |
US4378048A (en) | 1981-05-08 | 1983-03-29 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases using different platinum catalysts |
US4429745A (en) | 1981-05-08 | 1984-02-07 | Mobil Oil Corporation | Oil recovery method |
US4384614A (en) | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US4428700A (en) | 1981-08-03 | 1984-01-31 | E. R. Johnson Associates, Inc. | Method for disposing of waste materials |
US4456065A (en) | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US4344483A (en) | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4452491A (en) | 1981-09-25 | 1984-06-05 | Intercontinental Econergy Associates, Inc. | Recovery of hydrocarbons from deep underground deposits of tar sands |
US4425967A (en) | 1981-10-07 | 1984-01-17 | Standard Oil Company (Indiana) | Ignition procedure and process for in situ retorting of oil shale |
US4605680A (en) | 1981-10-13 | 1986-08-12 | Chevron Research Company | Conversion of synthesis gas to diesel fuel and gasoline |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4410042A (en) | 1981-11-02 | 1983-10-18 | Mobil Oil Corporation | In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant |
US4444258A (en) | 1981-11-10 | 1984-04-24 | Nicholas Kalmar | In situ recovery of oil from oil shale |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
FR2519688A1 (fr) | 1982-01-08 | 1983-07-18 | Elf Aquitaine | Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud |
US4397732A (en) | 1982-02-11 | 1983-08-09 | International Coal Refining Company | Process for coal liquefaction employing selective coal feed |
GB2117030B (en) | 1982-03-17 | 1985-09-11 | Cameron Iron Works Inc | Method and apparatus for remote installations of dual tubing strings in a subsea well |
US4530401A (en) | 1982-04-05 | 1985-07-23 | Mobil Oil Corporation | Method for maximum in-situ visbreaking of heavy oil |
US4537252A (en) | 1982-04-23 | 1985-08-27 | Standard Oil Company (Indiana) | Method of underground conversion of coal |
US4491179A (en) | 1982-04-26 | 1985-01-01 | Pirson Sylvain J | Method for oil recovery by in situ exfoliation drive |
US4455215A (en) | 1982-04-29 | 1984-06-19 | Jarrott David M | Process for the geoconversion of coal into oil |
US4412585A (en) | 1982-05-03 | 1983-11-01 | Cities Service Company | Electrothermal process for recovering hydrocarbons |
US4415034A (en) | 1982-05-03 | 1983-11-15 | Cities Service Company | Electrode well completion |
US4524826A (en) | 1982-06-14 | 1985-06-25 | Texaco Inc. | Method of heating an oil shale formation |
US4457374A (en) | 1982-06-29 | 1984-07-03 | Standard Oil Company | Transient response process for detecting in situ retorting conditions |
US4442896A (en) | 1982-07-21 | 1984-04-17 | Reale Lucio V | Treatment of underground beds |
US4407973A (en) | 1982-07-28 | 1983-10-04 | The M. W. Kellogg Company | Methanol from coal and natural gas |
US4449594A (en) | 1982-07-30 | 1984-05-22 | Allied Corporation | Method for obtaining pressurized core samples from underpressurized reservoirs |
US4479541A (en) | 1982-08-23 | 1984-10-30 | Wang Fun Den | Method and apparatus for recovery of oil, gas and mineral deposits by panel opening |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4544478A (en) | 1982-09-03 | 1985-10-01 | Chevron Research Company | Process for pyrolyzing hydrocarbonaceous solids to recover volatile hydrocarbons |
US4458767A (en) | 1982-09-28 | 1984-07-10 | Mobil Oil Corporation | Method for directionally drilling a first well to intersect a second well |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
CA1214815A (en) | 1982-09-30 | 1986-12-02 | John F. Krumme | Autoregulating electrically shielded heater |
US4927857A (en) | 1982-09-30 | 1990-05-22 | Engelhard Corporation | Method of methanol production |
US4695713A (en) | 1982-09-30 | 1987-09-22 | Metcal, Inc. | Autoregulating, electrically shielded heater |
US4498531A (en) | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4485869A (en) | 1982-10-22 | 1984-12-04 | Iit Research Institute | Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ |
DE3365337D1 (en) | 1982-11-22 | 1986-09-18 | Shell Int Research | Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons |
US4474238A (en) | 1982-11-30 | 1984-10-02 | Phillips Petroleum Company | Method and apparatus for treatment of subsurface formations |
US4498535A (en) | 1982-11-30 | 1985-02-12 | Iit Research Institute | Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US4501326A (en) | 1983-01-17 | 1985-02-26 | Gulf Canada Limited | In-situ recovery of viscous hydrocarbonaceous crude oil |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4640352A (en) | 1983-03-21 | 1987-02-03 | Shell Oil Company | In-situ steam drive oil recovery process |
US4458757A (en) | 1983-04-25 | 1984-07-10 | Exxon Research And Engineering Co. | In situ shale-oil recovery process |
US4545435A (en) | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
US4524827A (en) | 1983-04-29 | 1985-06-25 | Iit Research Institute | Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations |
US4518548A (en) | 1983-05-02 | 1985-05-21 | Sulcon, Inc. | Method of overlaying sulphur concrete on horizontal and vertical surfaces |
US4794226A (en) | 1983-05-26 | 1988-12-27 | Metcal, Inc. | Self-regulating porous heater device |
US5073625A (en) | 1983-05-26 | 1991-12-17 | Metcal, Inc. | Self-regulating porous heating device |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
DE3319732A1 (de) | 1983-05-31 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol |
US4658215A (en) | 1983-06-20 | 1987-04-14 | Shell Oil Company | Method for induced polarization logging |
US4583046A (en) | 1983-06-20 | 1986-04-15 | Shell Oil Company | Apparatus for focused electrode induced polarization logging |
US4717814A (en) | 1983-06-27 | 1988-01-05 | Metcal, Inc. | Slotted autoregulating heater |
US4439307A (en) | 1983-07-01 | 1984-03-27 | Dravo Corporation | Heating process gas for indirect shale oil retorting through the combustion of residual carbon in oil depleted shale |
US5209987A (en) | 1983-07-08 | 1993-05-11 | Raychem Limited | Wire and cable |
US4985313A (en) | 1985-01-14 | 1991-01-15 | Raychem Limited | Wire and cable |
US4598392A (en) | 1983-07-26 | 1986-07-01 | Mobil Oil Corporation | Vibratory signal sweep seismic prospecting method and apparatus |
US4501445A (en) | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US4538682A (en) | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4573530A (en) | 1983-11-07 | 1986-03-04 | Mobil Oil Corporation | In-situ gasification of tar sands utilizing a combustible gas |
US4698149A (en) | 1983-11-07 | 1987-10-06 | Mobil Oil Corporation | Enhanced recovery of hydrocarbonaceous fluids oil shale |
US4489782A (en) | 1983-12-12 | 1984-12-25 | Atlantic Richfield Company | Viscous oil production using electrical current heating and lateral drain holes |
US4598772A (en) | 1983-12-28 | 1986-07-08 | Mobil Oil Corporation | Method for operating a production well in an oxygen driven in-situ combustion oil recovery process |
US4571491A (en) | 1983-12-29 | 1986-02-18 | Shell Oil Company | Method of imaging the atomic number of a sample |
US4583242A (en) | 1983-12-29 | 1986-04-15 | Shell Oil Company | Apparatus for positioning a sample in a computerized axial tomographic scanner |
US4613754A (en) | 1983-12-29 | 1986-09-23 | Shell Oil Company | Tomographic calibration apparatus |
US4542648A (en) | 1983-12-29 | 1985-09-24 | Shell Oil Company | Method of correlating a core sample with its original position in a borehole |
US4540882A (en) | 1983-12-29 | 1985-09-10 | Shell Oil Company | Method of determining drilling fluid invasion |
US4635197A (en) | 1983-12-29 | 1987-01-06 | Shell Oil Company | High resolution tomographic imaging method |
US4662439A (en) | 1984-01-20 | 1987-05-05 | Amoco Corporation | Method of underground conversion of coal |
US4623401A (en) | 1984-03-06 | 1986-11-18 | Metcal, Inc. | Heat treatment with an autoregulating heater |
US4644283A (en) | 1984-03-19 | 1987-02-17 | Shell Oil Company | In-situ method for determining pore size distribution, capillary pressure and permeability |
US4637464A (en) | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4552214A (en) | 1984-03-22 | 1985-11-12 | Standard Oil Company (Indiana) | Pulsed in situ retorting in an array of oil shale retorts |
US4570715A (en) | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577690A (en) | 1984-04-18 | 1986-03-25 | Mobil Oil Corporation | Method of using seismic data to monitor firefloods |
US4592423A (en) | 1984-05-14 | 1986-06-03 | Texaco Inc. | Hydrocarbon stratum retorting means and method |
US4597441A (en) | 1984-05-25 | 1986-07-01 | World Energy Systems, Inc. | Recovery of oil by in situ hydrogenation |
US4620592A (en) | 1984-06-11 | 1986-11-04 | Atlantic Richfield Company | Progressive sequence for viscous oil recovery |
US4663711A (en) | 1984-06-22 | 1987-05-05 | Shell Oil Company | Method of analyzing fluid saturation using computerized axial tomography |
US4577503A (en) | 1984-09-04 | 1986-03-25 | International Business Machines Corporation | Method and device for detecting a specific acoustic spectral feature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
US4576231A (en) | 1984-09-13 | 1986-03-18 | Texaco Inc. | Method and apparatus for combating encroachment by in situ treated formations |
US4597444A (en) | 1984-09-21 | 1986-07-01 | Atlantic Richfield Company | Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation |
US4691771A (en) | 1984-09-25 | 1987-09-08 | Worldenergy Systems, Inc. | Recovery of oil by in-situ combustion followed by in-situ hydrogenation |
US4616705A (en) | 1984-10-05 | 1986-10-14 | Shell Oil Company | Mini-well temperature profiling process |
US4598770A (en) | 1984-10-25 | 1986-07-08 | Mobil Oil Corporation | Thermal recovery method for viscous oil |
US4572299A (en) | 1984-10-30 | 1986-02-25 | Shell Oil Company | Heater cable installation |
US4634187A (en) | 1984-11-21 | 1987-01-06 | Isl Ventures, Inc. | Method of in-situ leaching of ores |
US4669542A (en) | 1984-11-21 | 1987-06-02 | Mobil Oil Corporation | Simultaneous recovery of crude from multiple zones in a reservoir |
US4585066A (en) | 1984-11-30 | 1986-04-29 | Shell Oil Company | Well treating process for installing a cable bundle containing strands of changing diameter |
US4704514A (en) | 1985-01-11 | 1987-11-03 | Egmond Cor F Van | Heating rate variant elongated electrical resistance heater |
US4645906A (en) | 1985-03-04 | 1987-02-24 | Thermon Manufacturing Company | Reduced resistance skin effect heat generating system |
US4643256A (en) | 1985-03-18 | 1987-02-17 | Shell Oil Company | Steam-foaming surfactant mixtures which are tolerant of divalent ions |
US4785163A (en) | 1985-03-26 | 1988-11-15 | Raychem Corporation | Method for monitoring a heater |
US4698583A (en) | 1985-03-26 | 1987-10-06 | Raychem Corporation | Method of monitoring a heater for faults |
NO861531L (no) | 1985-04-19 | 1986-10-20 | Raychem Gmbh | Varmelegeme. |
US4671102A (en) | 1985-06-18 | 1987-06-09 | Shell Oil Company | Method and apparatus for determining distribution of fluids |
US4626665A (en) | 1985-06-24 | 1986-12-02 | Shell Oil Company | Metal oversheathed electrical resistance heater |
US4623444A (en) | 1985-06-27 | 1986-11-18 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4605489A (en) | 1985-06-27 | 1986-08-12 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4662438A (en) | 1985-07-19 | 1987-05-05 | Uentech Corporation | Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole |
US4719423A (en) | 1985-08-13 | 1988-01-12 | Shell Oil Company | NMR imaging of materials for transport properties |
US4728892A (en) | 1985-08-13 | 1988-03-01 | Shell Oil Company | NMR imaging of materials |
US4778586A (en) | 1985-08-30 | 1988-10-18 | Resource Technology Associates | Viscosity reduction processing at elevated pressure |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
US4662443A (en) | 1985-12-05 | 1987-05-05 | Amoco Corporation | Combination air-blown and oxygen-blown underground coal gasification process |
US4849611A (en) | 1985-12-16 | 1989-07-18 | Raychem Corporation | Self-regulating heater employing reactive components |
US4730162A (en) | 1985-12-31 | 1988-03-08 | Shell Oil Company | Time-domain induced polarization logging method and apparatus with gated amplification level |
US4706751A (en) | 1986-01-31 | 1987-11-17 | S-Cal Research Corp. | Heavy oil recovery process |
US4694907A (en) | 1986-02-21 | 1987-09-22 | Carbotek, Inc. | Thermally-enhanced oil recovery method and apparatus |
US4640353A (en) | 1986-03-21 | 1987-02-03 | Atlantic Richfield Company | Electrode well and method of completion |
US4734115A (en) | 1986-03-24 | 1988-03-29 | Air Products And Chemicals, Inc. | Low pressure process for C3+ liquids recovery from process product gas |
DE3612946A1 (de) * | 1986-04-17 | 1987-10-22 | Kernforschungsanlage Juelich | Verfahren und vorrichtung zur erdoelfoerderung |
US4651825A (en) | 1986-05-09 | 1987-03-24 | Atlantic Richfield Company | Enhanced well production |
US4814587A (en) | 1986-06-10 | 1989-03-21 | Metcal, Inc. | High power self-regulating heater |
US4682652A (en) | 1986-06-30 | 1987-07-28 | Texaco Inc. | Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells |
US4893504A (en) | 1986-07-02 | 1990-01-16 | Shell Oil Company | Method for determining capillary pressure and relative permeability by imaging |
US4769602A (en) | 1986-07-02 | 1988-09-06 | Shell Oil Company | Determining multiphase saturations by NMR imaging of multiple nuclides |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4818370A (en) | 1986-07-23 | 1989-04-04 | Cities Service Oil And Gas Corporation | Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions |
US4772634A (en) | 1986-07-31 | 1988-09-20 | Energy Research Corporation | Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer |
US4744245A (en) | 1986-08-12 | 1988-05-17 | Atlantic Richfield Company | Acoustic measurements in rock formations for determining fracture orientation |
US4696345A (en) | 1986-08-21 | 1987-09-29 | Chevron Research Company | Hasdrive with multiple offset producers |
US4769606A (en) | 1986-09-30 | 1988-09-06 | Shell Oil Company | Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations |
US5043668A (en) | 1987-08-26 | 1991-08-27 | Paramagnetic Logging Inc. | Methods and apparatus for measurement of electronic properties of geological formations through borehole casing |
US5316664A (en) | 1986-11-24 | 1994-05-31 | Canadian Occidental Petroleum, Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US4983319A (en) | 1986-11-24 | 1991-01-08 | Canadian Occidental Petroleum Ltd. | Preparation of low-viscosity improved stable crude oil transport emulsions |
US5340467A (en) | 1986-11-24 | 1994-08-23 | Canadian Occidental Petroleum Ltd. | Process for recovery of hydrocarbons and rejection of sand |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4766958A (en) | 1987-01-12 | 1988-08-30 | Mobil Oil Corporation | Method of recovering viscous oil from reservoirs with multiple horizontal zones |
US4756367A (en) | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
US4817711A (en) | 1987-05-27 | 1989-04-04 | Jeambey Calhoun G | System for recovery of petroleum from petroleum impregnated media |
US4818371A (en) | 1987-06-05 | 1989-04-04 | Resource Technology Associates | Viscosity reduction by direct oxidative heating |
US4787452A (en) | 1987-06-08 | 1988-11-29 | Mobil Oil Corporation | Disposal of produced formation fines during oil recovery |
US4821798A (en) | 1987-06-09 | 1989-04-18 | Ors Development Corporation | Heating system for rathole oil well |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4884455A (en) | 1987-06-25 | 1989-12-05 | Shell Oil Company | Method for analysis of failure of material employing imaging |
US4827761A (en) | 1987-06-25 | 1989-05-09 | Shell Oil Company | Sample holder |
US4856341A (en) | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
US4776638A (en) | 1987-07-13 | 1988-10-11 | University Of Kentucky Research Foundation | Method and apparatus for conversion of coal in situ |
US4848924A (en) | 1987-08-19 | 1989-07-18 | The Babcock & Wilcox Company | Acoustic pyrometer |
US4828031A (en) | 1987-10-13 | 1989-05-09 | Chevron Research Company | In situ chemical stimulation of diatomite formations |
US4762425A (en) | 1987-10-15 | 1988-08-09 | Parthasarathy Shakkottai | System for temperature profile measurement in large furnances and kilns and method therefor |
US4815791A (en) | 1987-10-22 | 1989-03-28 | The United States Of America As Represented By The Secretary Of The Interior | Bedded mineral extraction process |
US5306640A (en) | 1987-10-28 | 1994-04-26 | Shell Oil Company | Method for determining preselected properties of a crude oil |
US4987368A (en) | 1987-11-05 | 1991-01-22 | Shell Oil Company | Nuclear magnetism logging tool using high-temperature superconducting squid detectors |
US4842448A (en) | 1987-11-12 | 1989-06-27 | Drexel University | Method of removing contaminants from contaminated soil in situ |
US4808925A (en) | 1987-11-19 | 1989-02-28 | Halliburton Company | Three magnet casing collar locator |
US4823890A (en) | 1988-02-23 | 1989-04-25 | Longyear Company | Reverse circulation bit apparatus |
US4883582A (en) | 1988-03-07 | 1989-11-28 | Mccants Malcolm T | Vis-breaking heavy crude oils for pumpability |
US4866983A (en) | 1988-04-14 | 1989-09-19 | Shell Oil Company | Analytical methods and apparatus for measuring the oil content of sponge core |
US4885080A (en) | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US5046560A (en) | 1988-06-10 | 1991-09-10 | Exxon Production Research Company | Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents |
US4928765A (en) | 1988-09-27 | 1990-05-29 | Ramex Syn-Fuels International | Method and apparatus for shale gas recovery |
US4856587A (en) | 1988-10-27 | 1989-08-15 | Nielson Jay P | Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix |
US5064006A (en) | 1988-10-28 | 1991-11-12 | Magrange, Inc | Downhole combination tool |
US4848460A (en) | 1988-11-04 | 1989-07-18 | Western Research Institute | Contained recovery of oily waste |
US5065501A (en) | 1988-11-29 | 1991-11-19 | Amp Incorporated | Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4940095A (en) | 1989-01-27 | 1990-07-10 | Dowell Schlumberger Incorporated | Deployment/retrieval method and apparatus for well tools used with coiled tubing |
US5103920A (en) | 1989-03-01 | 1992-04-14 | Patton Consulting Inc. | Surveying system and method for locating target subterranean bodies |
CA2015318C (en) | 1990-04-24 | 1994-02-08 | Jack E. Bridges | Power sources for downhole electrical heating |
US4895206A (en) | 1989-03-16 | 1990-01-23 | Price Ernest H | Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes |
US4913065A (en) | 1989-03-27 | 1990-04-03 | Indugas, Inc. | In situ thermal waste disposal system |
DE3918265A1 (de) | 1989-06-05 | 1991-01-03 | Henkel Kgaa | Verfahren zur herstellung von tensidgemischen auf ethersulfonatbasis und ihre verwendung |
US5059303A (en) | 1989-06-16 | 1991-10-22 | Amoco Corporation | Oil stabilization |
US5041210A (en) | 1989-06-30 | 1991-08-20 | Marathon Oil Company | Oil shale retorting with steam and produced gas |
DE3922612C2 (de) | 1989-07-10 | 1998-07-02 | Krupp Koppers Gmbh | Verfahren zur Erzeugung von Methanol-Synthesegas |
US4982786A (en) | 1989-07-14 | 1991-01-08 | Mobil Oil Corporation | Use of CO2 /steam to enhance floods in horizontal wellbores |
US5050386A (en) | 1989-08-16 | 1991-09-24 | Rkk, Limited | Method and apparatus for containment of hazardous material migration in the earth |
US5097903A (en) | 1989-09-22 | 1992-03-24 | Jack C. Sloan | Method for recovering intractable petroleum from subterranean formations |
US5305239A (en) | 1989-10-04 | 1994-04-19 | The Texas A&M University System | Ultrasonic non-destructive evaluation of thin specimens |
US4926941A (en) | 1989-10-10 | 1990-05-22 | Shell Oil Company | Method of producing tar sand deposits containing conductive layers |
US5656239A (en) | 1989-10-27 | 1997-08-12 | Shell Oil Company | Method for recovering contaminants from soil utilizing electrical heating |
US4984594A (en) | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US5020596A (en) | 1990-01-24 | 1991-06-04 | Indugas, Inc. | Enhanced oil recovery system with a radiant tube heater |
US5082055A (en) | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
US5011329A (en) | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
CA2009782A1 (en) | 1990-02-12 | 1991-08-12 | Anoosh I. Kiamanesh | In-situ tuned microwave oil extraction process |
DE4004240C1 (ru) * | 1990-02-12 | 1990-11-29 | Forschungszentrum Juelich Gmbh, 5170 Juelich, De | |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
US5027896A (en) | 1990-03-21 | 1991-07-02 | Anderson Leonard M | Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry |
GB9007147D0 (en) | 1990-03-30 | 1990-05-30 | Framo Dev Ltd | Thermal mineral extraction system |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5126037A (en) | 1990-05-04 | 1992-06-30 | Union Oil Company Of California | Geopreater heating method and apparatus |
US5032042A (en) | 1990-06-26 | 1991-07-16 | New Jersey Institute Of Technology | Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil |
US5201219A (en) | 1990-06-29 | 1993-04-13 | Amoco Corporation | Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core |
US5054551A (en) | 1990-08-03 | 1991-10-08 | Chevron Research And Technology Company | In-situ heated annulus refining process |
US5109928A (en) | 1990-08-17 | 1992-05-05 | Mccants Malcolm T | Method for production of hydrocarbon diluent from heavy crude oil |
US5046559A (en) | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
US5060726A (en) | 1990-08-23 | 1991-10-29 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
BR9004240A (pt) | 1990-08-28 | 1992-03-24 | Petroleo Brasileiro Sa | Processo de aquecimento eletrico de tubulacoes |
US5085276A (en) | 1990-08-29 | 1992-02-04 | Chevron Research And Technology Company | Production of oil from low permeability formations by sequential steam fracturing |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5207273A (en) | 1990-09-17 | 1993-05-04 | Production Technologies International Inc. | Method and apparatus for pumping wells |
JPH04272680A (ja) | 1990-09-20 | 1992-09-29 | Thermon Mfg Co | スイッチ制御形ゾーン式加熱ケーブル及びその組み立て方法 |
US5182427A (en) | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
US5400430A (en) | 1990-10-01 | 1995-03-21 | Nenniger; John E. | Method for injection well stimulation |
US5517593A (en) | 1990-10-01 | 1996-05-14 | John Nenniger | Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint |
US5105880A (en) * | 1990-10-19 | 1992-04-21 | Chevron Research And Technology Company | Formation heating with oscillatory hot water circulation |
US5070533A (en) | 1990-11-07 | 1991-12-03 | Uentech Corporation | Robust electrical heating systems for mineral wells |
FR2669077B2 (fr) | 1990-11-09 | 1995-02-03 | Institut Francais Petrole | Methode et dispositif pour effectuer des interventions dans des puits ou regnent des temperatures elevees. |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5060287A (en) | 1990-12-04 | 1991-10-22 | Shell Oil Company | Heater utilizing copper-nickel alloy core |
US5217076A (en) | 1990-12-04 | 1993-06-08 | Masek John A | Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess) |
US5190405A (en) | 1990-12-14 | 1993-03-02 | Shell Oil Company | Vacuum method for removing soil contaminants utilizing thermal conduction heating |
US5289882A (en) | 1991-02-06 | 1994-03-01 | Boyd B. Moore | Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas |
US5103909A (en) | 1991-02-19 | 1992-04-14 | Shell Oil Company | Profile control in enhanced oil recovery |
US5261490A (en) | 1991-03-18 | 1993-11-16 | Nkk Corporation | Method for dumping and disposing of carbon dioxide gas and apparatus therefor |
US5204270A (en) | 1991-04-29 | 1993-04-20 | Lacount Robert B | Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation |
DE69216405T2 (de) | 1991-06-17 | 1997-04-24 | Electric Power Research Institute, Inc., Palo Alto, Calif. | Energieanlage mit komprimiertem luftspeicher |
ES2071419T3 (es) | 1991-06-21 | 1995-06-16 | Shell Int Research | Catalizador y procedimiento de hidrogenacion. |
IT1248535B (it) | 1991-06-24 | 1995-01-19 | Cise Spa | Sistema per misurare il tempo di trasferimento di un'onda sonora |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5189283A (en) | 1991-08-28 | 1993-02-23 | Shell Oil Company | Current to power crossover heater control |
US5168927A (en) | 1991-09-10 | 1992-12-08 | Shell Oil Company | Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation |
US5193618A (en) | 1991-09-12 | 1993-03-16 | Chevron Research And Technology Company | Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations |
US5347070A (en) | 1991-11-13 | 1994-09-13 | Battelle Pacific Northwest Labs | Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material |
US5349859A (en) | 1991-11-15 | 1994-09-27 | Scientific Engineering Instruments, Inc. | Method and apparatus for measuring acoustic wave velocity using impulse response |
DE69209466T2 (de) | 1991-12-16 | 1996-08-14 | Inst Francais Du Petrol | Aktive oder passive Überwachungsanordnung für unterirdische Lagerstätte mittels fester Stationen |
CA2058255C (en) | 1991-12-20 | 1997-02-11 | Roland P. Leaute | Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells |
US5246071A (en) | 1992-01-31 | 1993-09-21 | Texaco Inc. | Steamflooding with alternating injection and production cycles |
US5420402A (en) | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
US5211230A (en) | 1992-02-21 | 1993-05-18 | Mobil Oil Corporation | Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion |
GB9207174D0 (en) | 1992-04-01 | 1992-05-13 | Raychem Sa Nv | Method of forming an electrical connection |
US5255740A (en) | 1992-04-13 | 1993-10-26 | Rrkt Company | Secondary recovery process |
US5332036A (en) | 1992-05-15 | 1994-07-26 | The Boc Group, Inc. | Method of recovery of natural gases from underground coal formations |
MY108830A (en) | 1992-06-09 | 1996-11-30 | Shell Int Research | Method of completing an uncased section of a borehole |
US5226961A (en) | 1992-06-12 | 1993-07-13 | Shell Oil Company | High temperature wellbore cement slurry |
US5392854A (en) | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5255742A (en) | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5297626A (en) | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5236039A (en) | 1992-06-17 | 1993-08-17 | General Electric Company | Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale |
US5295763A (en) | 1992-06-30 | 1994-03-22 | Chambers Development Co., Inc. | Method for controlling gas migration from a landfill |
US5305829A (en) | 1992-09-25 | 1994-04-26 | Chevron Research And Technology Company | Oil production from diatomite formations by fracture steamdrive |
US5229583A (en) | 1992-09-28 | 1993-07-20 | Shell Oil Company | Surface heating blanket for soil remediation |
US5339904A (en) | 1992-12-10 | 1994-08-23 | Mobil Oil Corporation | Oil recovery optimization using a well having both horizontal and vertical sections |
US5358045A (en) | 1993-02-12 | 1994-10-25 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition |
CA2096034C (en) | 1993-05-07 | 1996-07-02 | Kenneth Edwin Kisman | Horizontal well gravity drainage combustion process for oil recovery |
US5360067A (en) | 1993-05-17 | 1994-11-01 | Meo Iii Dominic | Vapor-extraction system for removing hydrocarbons from soil |
US5325918A (en) | 1993-08-02 | 1994-07-05 | The United States Of America As Represented By The United States Department Of Energy | Optimal joule heating of the subsurface |
WO1995006093A1 (en) | 1993-08-20 | 1995-03-02 | Technological Resources Pty. Ltd. | Enhanced hydrocarbon recovery method |
US5377756A (en) | 1993-10-28 | 1995-01-03 | Mobil Oil Corporation | Method for producing low permeability reservoirs using a single well |
US5388642A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using membrane separation of oxygen from air |
US5388645A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5566755A (en) | 1993-11-03 | 1996-10-22 | Amoco Corporation | Method for recovering methane from a solid carbonaceous subterranean formation |
US5388643A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using pressure swing adsorption separation |
US5388641A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations |
US5388640A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5589775A (en) | 1993-11-22 | 1996-12-31 | Vector Magnetics, Inc. | Rotating magnet for distance and direction measurements from a first borehole to a second borehole |
US5411086A (en) | 1993-12-09 | 1995-05-02 | Mobil Oil Corporation | Oil recovery by enhanced imbitition in low permeability reservoirs |
US5435666A (en) | 1993-12-14 | 1995-07-25 | Environmental Resources Management, Inc. | Methods for isolating a water table and for soil remediation |
US5433271A (en) | 1993-12-20 | 1995-07-18 | Shell Oil Company | Heat injection process |
US5411089A (en) | 1993-12-20 | 1995-05-02 | Shell Oil Company | Heat injection process |
US5404952A (en) | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
US5634984A (en) | 1993-12-22 | 1997-06-03 | Union Oil Company Of California | Method for cleaning an oil-coated substrate |
MY112792A (en) | 1994-01-13 | 2001-09-29 | Shell Int Research | Method of creating a borehole in an earth formation |
US5411104A (en) | 1994-02-16 | 1995-05-02 | Conoco Inc. | Coalbed methane drilling |
CA2144597C (en) | 1994-03-18 | 1999-08-10 | Paul J. Latimer | Improved emat probe and technique for weld inspection |
US5415231A (en) | 1994-03-21 | 1995-05-16 | Mobil Oil Corporation | Method for producing low permeability reservoirs using steam |
US5439054A (en) | 1994-04-01 | 1995-08-08 | Amoco Corporation | Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation |
US5431224A (en) | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5409071A (en) | 1994-05-23 | 1995-04-25 | Shell Oil Company | Method to cement a wellbore |
EP0771419A4 (en) | 1994-07-18 | 1999-06-23 | Babcock & Wilcox Co | SENSOR TRANSPORT SYSTEM FOR A TORCH WELDING DEVICE |
US5632336A (en) | 1994-07-28 | 1997-05-27 | Texaco Inc. | Method for improving injectivity of fluids in oil reservoirs |
US5525322A (en) | 1994-10-12 | 1996-06-11 | The Regents Of The University Of California | Method for simultaneous recovery of hydrogen from water and from hydrocarbons |
US5553189A (en) | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5624188A (en) | 1994-10-20 | 1997-04-29 | West; David A. | Acoustic thermometer |
US5498960A (en) | 1994-10-20 | 1996-03-12 | Shell Oil Company | NMR logging of natural gas in reservoirs |
US5497087A (en) | 1994-10-20 | 1996-03-05 | Shell Oil Company | NMR logging of natural gas reservoirs |
US5554453A (en) | 1995-01-04 | 1996-09-10 | Energy Research Corporation | Carbonate fuel cell system with thermally integrated gasification |
WO1996021871A1 (en) | 1995-01-12 | 1996-07-18 | Baker Hughes Incorporated | A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers |
US6088294A (en) | 1995-01-12 | 2000-07-11 | Baker Hughes Incorporated | Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction |
DE19505517A1 (de) | 1995-02-10 | 1996-08-14 | Siegfried Schwert | Verfahren zum Herausziehen eines im Erdreich verlegten Rohres |
US5621844A (en) | 1995-03-01 | 1997-04-15 | Uentech Corporation | Electrical heating of mineral well deposits using downhole impedance transformation networks |
CA2152521C (en) | 1995-03-01 | 2000-06-20 | Jack E. Bridges | Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits |
US5935421A (en) | 1995-05-02 | 1999-08-10 | Exxon Research And Engineering Company | Continuous in-situ combination process for upgrading heavy oil |
US5569845A (en) | 1995-05-16 | 1996-10-29 | Selee Corporation | Apparatus and method for detecting molten salt in molten metal |
US5911898A (en) | 1995-05-25 | 1999-06-15 | Electric Power Research Institute | Method and apparatus for providing multiple autoregulated temperatures |
US5571403A (en) | 1995-06-06 | 1996-11-05 | Texaco Inc. | Process for extracting hydrocarbons from diatomite |
AU3721295A (en) | 1995-06-20 | 1997-01-22 | Elan Energy | Insulated and/or concentric coiled tubing |
US5899958A (en) | 1995-09-11 | 1999-05-04 | Halliburton Energy Services, Inc. | Logging while drilling borehole imaging and dipmeter device |
US5759022A (en) | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
GB9526120D0 (en) | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
EP0870100B1 (en) | 1995-12-27 | 2000-03-29 | Shell Internationale Researchmaatschappij B.V. | Flameless combustor and method |
IE960011A1 (en) | 1996-01-10 | 1997-07-16 | Padraig Mcalister | Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures |
US5751895A (en) | 1996-02-13 | 1998-05-12 | Eor International, Inc. | Selective excitation of heating electrodes for oil wells |
US5826655A (en) | 1996-04-25 | 1998-10-27 | Texaco Inc | Method for enhanced recovery of viscous oil deposits |
US5652389A (en) | 1996-05-22 | 1997-07-29 | The United States Of America As Represented By The Secretary Of Commerce | Non-contact method and apparatus for inspection of inertia welds |
US6022834A (en) | 1996-05-24 | 2000-02-08 | Oil Chem Technologies, Inc. | Alkaline surfactant polymer flooding composition and process |
US5769569A (en) | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5828797A (en) | 1996-06-19 | 1998-10-27 | Meggitt Avionics, Inc. | Fiber optic linked flame sensor |
BR9709857A (pt) | 1996-06-21 | 2002-05-21 | Syntroleum Corp | processo e sistema de produção de gás de sìntese |
PE17599A1 (es) | 1996-07-09 | 1999-02-22 | Syntroleum Corp | Procedimiento para convertir gases a liquidos |
US5826653A (en) | 1996-08-02 | 1998-10-27 | Scientific Applications & Research Associates, Inc. | Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US5861137A (en) | 1996-10-30 | 1999-01-19 | Edlund; David J. | Steam reformer with internal hydrogen purification |
US5816325A (en) | 1996-11-27 | 1998-10-06 | Future Energy, Llc | Methods and apparatus for enhanced recovery of viscous deposits by thermal stimulation |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6427124B1 (en) | 1997-01-24 | 2002-07-30 | Baker Hughes Incorporated | Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries |
SE510452C2 (sv) | 1997-02-03 | 1999-05-25 | Asea Brown Boveri | Transformator med spänningsregleringsorgan |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
GB9704181D0 (en) | 1997-02-28 | 1997-04-16 | Thompson James | Apparatus and method for installation of ducts |
US5923170A (en) | 1997-04-04 | 1999-07-13 | Vector Magnetics, Inc. | Method for near field electromagnetic proximity determination for guidance of a borehole drill |
US5926437A (en) | 1997-04-08 | 1999-07-20 | Halliburton Energy Services, Inc. | Method and apparatus for seismic exploration |
US5984578A (en) | 1997-04-11 | 1999-11-16 | New Jersey Institute Of Technology | Apparatus and method for in situ removal of contaminants using sonic energy |
GB2364382A (en) | 1997-05-02 | 2002-01-23 | Baker Hughes Inc | Optimising hydrocarbon production by controlling injection according to an injection parameter sensed downhole |
US5802870A (en) | 1997-05-02 | 1998-09-08 | Uop Llc | Sorption cooling process and system |
WO1998050179A1 (en) | 1997-05-07 | 1998-11-12 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
CZ294883B6 (cs) | 1997-06-05 | 2005-04-13 | Shell Internationale Research Maatschappij B. V. | Způsob remediace |
US6102122A (en) | 1997-06-11 | 2000-08-15 | Shell Oil Company | Control of heat injection based on temperature and in-situ stress measurement |
US6112808A (en) | 1997-09-19 | 2000-09-05 | Isted; Robert Edward | Method and apparatus for subterranean thermal conditioning |
US5984010A (en) | 1997-06-23 | 1999-11-16 | Elias; Ramon | Hydrocarbon recovery systems and methods |
CA2208767A1 (en) | 1997-06-26 | 1998-12-26 | Reginald D. Humphreys | Tar sands extraction process |
WO1999001640A1 (fr) | 1997-07-01 | 1999-01-14 | Alexandr Petrovich Linetsky | Procede d'exploitation de gisements de gaz et de petrole et d'accroissement du taux d'extraction de gaz et de petrole |
US5868202A (en) | 1997-09-22 | 1999-02-09 | Tarim Associates For Scientific Mineral And Oil Exploration Ag | Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations |
US6149344A (en) | 1997-10-04 | 2000-11-21 | Master Corporation | Acid gas disposal |
US6354373B1 (en) | 1997-11-26 | 2002-03-12 | Schlumberger Technology Corporation | Expandable tubing for a well bore hole and method of expanding |
US6152987A (en) | 1997-12-15 | 2000-11-28 | Worcester Polytechnic Institute | Hydrogen gas-extraction module and method of fabrication |
US6094048A (en) | 1997-12-18 | 2000-07-25 | Shell Oil Company | NMR logging of natural gas reservoirs |
NO305720B1 (no) | 1997-12-22 | 1999-07-12 | Eureka Oil Asa | FremgangsmÕte for Õ °ke oljeproduksjonen fra et oljereservoar |
US6026914A (en) | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
US6035701A (en) | 1998-04-15 | 2000-03-14 | Lowry; William E. | Method and system to locate leaks in subsurface containment structures using tracer gases |
ID27811A (id) | 1998-05-12 | 2001-04-26 | Lockheed Martin Corp Cs | Sistem dan proses untuk pemulihan hidrokarbon sekunder |
US6016868A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking |
US6016867A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking |
US5958365A (en) | 1998-06-25 | 1999-09-28 | Atlantic Richfield Company | Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
WO2000019061A1 (en) | 1998-09-25 | 2000-04-06 | Sonnier Errol A | System, apparatus, and method for installing control lines in a well |
US6192748B1 (en) | 1998-10-30 | 2001-02-27 | Computalog Limited | Dynamic orienting reference system for directional drilling |
US5968349A (en) | 1998-11-16 | 1999-10-19 | Bhp Minerals International Inc. | Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands |
AU3127000A (en) | 1998-12-22 | 2000-07-12 | Chevron Chemical Company Llc | Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins |
US6078868A (en) | 1999-01-21 | 2000-06-20 | Baker Hughes Incorporated | Reference signal encoding for seismic while drilling measurement |
AU3592800A (en) | 1999-02-09 | 2000-08-29 | Schlumberger Technology Corporation | Completion equipment having a plurality of fluid paths for use in a well |
US6429784B1 (en) | 1999-02-19 | 2002-08-06 | Dresser Industries, Inc. | Casing mounted sensors, actuators and generators |
US6283230B1 (en) | 1999-03-01 | 2001-09-04 | Jasper N. Peters | Method and apparatus for lateral well drilling utilizing a rotating nozzle |
US6155117A (en) | 1999-03-18 | 2000-12-05 | Mcdermott Technology, Inc. | Edge detection and seam tracking with EMATs |
US6561269B1 (en) | 1999-04-30 | 2003-05-13 | The Regents Of The University Of California | Canister, sealing method and composition for sealing a borehole |
US6110358A (en) | 1999-05-21 | 2000-08-29 | Exxon Research And Engineering Company | Process for manufacturing improved process oils using extraction of hydrotreated distillates |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6269310B1 (en) | 1999-08-25 | 2001-07-31 | Tomoseis Corporation | System for eliminating headwaves in a tomographic process |
CA2281276C (en) * | 1999-08-31 | 2007-02-06 | Suncor Energy Inc. | A thermal solvent process for the recovery of heavy oil and bitumen and in situ solvent recycle |
US6193010B1 (en) | 1999-10-06 | 2001-02-27 | Tomoseis Corporation | System for generating a seismic signal in a borehole |
US6196350B1 (en) | 1999-10-06 | 2001-03-06 | Tomoseis Corporation | Apparatus and method for attenuating tube waves in a borehole |
US6288372B1 (en) | 1999-11-03 | 2001-09-11 | Tyco Electronics Corporation | Electric cable having braidless polymeric ground plane providing fault detection |
US6353706B1 (en) | 1999-11-18 | 2002-03-05 | Uentech International Corporation | Optimum oil-well casing heating |
US6422318B1 (en) | 1999-12-17 | 2002-07-23 | Scioto County Regional Water District #1 | Horizontal well system |
US6679332B2 (en) | 2000-01-24 | 2004-01-20 | Shell Oil Company | Petroleum well having downhole sensors, communication and power |
US6981553B2 (en) | 2000-01-24 | 2006-01-03 | Shell Oil Company | Controlled downhole chemical injection |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US6715550B2 (en) | 2000-01-24 | 2004-04-06 | Shell Oil Company | Controllable gas-lift well and valve |
US6352216B1 (en) * | 2000-02-11 | 2002-03-05 | Halliburton Energy Services, Inc. | Coiled tubing handling system and methods |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
EG22420A (en) | 2000-03-02 | 2003-01-29 | Shell Int Research | Use of downhole high pressure gas in a gas - lift well |
US6357526B1 (en) | 2000-03-16 | 2002-03-19 | Kellogg Brown & Root, Inc. | Field upgrading of heavy oil and bitumen |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
GB0009662D0 (en) | 2000-04-20 | 2000-06-07 | Scotoil Group Plc | Gas and oil production |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US20030066642A1 (en) | 2000-04-24 | 2003-04-10 | Wellington Scott Lee | In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
ATE276427T1 (de) | 2000-04-24 | 2004-10-15 | Shell Int Research | In-situ-gewinnung von kohlenwasserstoffen aus einer kerogen enthaltenden formation |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6584406B1 (en) | 2000-06-15 | 2003-06-24 | Geo-X Systems, Ltd. | Downhole process control method utilizing seismic communication |
WO2002057805A2 (en) | 2000-06-29 | 2002-07-25 | Tubel Paulo S | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
US20020110476A1 (en) | 2000-12-14 | 2002-08-15 | Maziasz Philip J. | Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US6516891B1 (en) | 2001-02-08 | 2003-02-11 | L. Murray Dallas | Dual string coil tubing injector assembly |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
US7040399B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of an oil shale formation using a controlled heating rate |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
WO2002086029A2 (en) | 2001-04-24 | 2002-10-31 | Shell Oil Company | In situ recovery from a relatively low permeability formation containing heavy hydrocarbons |
CA2668389C (en) | 2001-04-24 | 2012-08-14 | Shell Canada Limited | In situ recovery from a tar sands formation |
MY129091A (en) | 2001-09-07 | 2007-03-30 | Exxonmobil Upstream Res Co | Acid gas disposal method |
US6755251B2 (en) | 2001-09-07 | 2004-06-29 | Exxonmobil Upstream Research Company | Downhole gas separation method and system |
WO2003035987A2 (en) | 2001-10-24 | 2003-05-01 | Shell Oil Company | Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
NZ532090A (en) | 2001-10-24 | 2006-10-27 | Shell Int Research | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
US7032809B1 (en) | 2002-01-18 | 2006-04-25 | Steel Ventures, L.L.C. | Seam-welded metal pipe and method of making the same without seam anneal |
CA2473372C (en) | 2002-01-22 | 2012-11-20 | Presssol Ltd. | Two string drilling system using coil tubing |
US6958195B2 (en) | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
US6715553B2 (en) | 2002-05-31 | 2004-04-06 | Halliburton Energy Services, Inc. | Methods of generating gas in well fluids |
US6942037B1 (en) | 2002-08-15 | 2005-09-13 | Clariant Finance (Bvi) Limited | Process for mitigation of wellbore contaminants |
CA2499759C (en) | 2002-08-21 | 2011-03-08 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric drill string |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US6942032B2 (en) | 2002-11-06 | 2005-09-13 | Thomas A. La Rovere | Resistive down hole heating tool |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US7055602B2 (en) | 2003-03-11 | 2006-06-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery |
NZ567052A (en) | 2003-04-24 | 2009-11-27 | Shell Int Research | Thermal process for subsurface formations |
US6951250B2 (en) | 2003-05-13 | 2005-10-04 | Halliburton Energy Services, Inc. | Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well |
WO2005010320A1 (en) | 2003-06-24 | 2005-02-03 | Exxonmobil Upstream Research Company | Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
AU2004288130B2 (en) | 2003-11-03 | 2009-12-17 | Exxonmobil Upstream Research Company | Hydrocarbon recovery from impermeable oil shales |
EP1738053A1 (en) | 2004-04-23 | 2007-01-03 | Shell Internationale Research Maatschappij B.V. | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
AU2006239999B2 (en) | 2005-04-22 | 2010-06-17 | Shell Internationale Research Maatschappij B.V. | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
GB2445132B (en) * | 2005-09-24 | 2011-07-06 | Philip Head | Coiled tubing and power cables |
EP1941001A2 (en) | 2005-10-24 | 2008-07-09 | Shell Internationale Research Maatschappij B.V. | Methods of producing alkylated hydrocarbons from a liquid produced from an in situ heat treatment |
US7921907B2 (en) | 2006-01-20 | 2011-04-12 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
US7743826B2 (en) | 2006-01-20 | 2010-06-29 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
US7500517B2 (en) | 2006-02-16 | 2009-03-10 | Chevron U.S.A. Inc. | Kerogen extraction from subterranean oil shale resources |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US7644993B2 (en) | 2006-04-21 | 2010-01-12 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
US7665524B2 (en) | 2006-09-29 | 2010-02-23 | Ut-Battelle, Llc | Liquid metal heat exchanger for efficient heating of soils and geologic formations |
US20080207970A1 (en) | 2006-10-13 | 2008-08-28 | Meurer William P | Heating an organic-rich rock formation in situ to produce products with improved properties |
AU2007313396B2 (en) | 2006-10-13 | 2013-08-15 | Exxonmobil Upstream Research Company | Optimized well spacing for in situ shale oil development |
RU2453692C2 (ru) | 2006-10-20 | 2012-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ обработки пласта битуминозных песков и транспортное топливо, изготовленное с использованием способа |
DE102007040606B3 (de) | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US7788967B2 (en) | 2007-05-02 | 2010-09-07 | Praxair Technology, Inc. | Method and apparatus for leak detection |
US7798237B2 (en) * | 2007-05-07 | 2010-09-21 | Nabors Alaska Drilling, Inc. | Enclosed coiled tubing rig |
AU2008253749B2 (en) | 2007-05-15 | 2014-03-20 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20090260811A1 (en) | 2008-04-18 | 2009-10-22 | Jingyu Cui | Methods for generation of subsurface heat for treatment of a hydrocarbon containing formation |
CN102209835B (zh) | 2008-11-06 | 2014-04-16 | 美国页岩油公司 | 从地下矿床中采收烃的加热器和方法 |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8485256B2 (en) | 2010-04-09 | 2013-07-16 | Shell Oil Company | Variable thickness insulated conductors |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8464792B2 (en) | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
-
2012
- 2012-10-04 US US13/644,443 patent/US9309755B2/en not_active Expired - Fee Related
- 2012-10-04 CA CA2850741A patent/CA2850741A1/en not_active Abandoned
- 2012-10-04 WO PCT/US2012/058582 patent/WO2013052561A2/en active Application Filing
- 2012-10-04 RU RU2014118474A patent/RU2612774C2/ru not_active IP Right Cessation
- 2012-10-04 CN CN201280048984.XA patent/CN103958824B/zh not_active Expired - Fee Related
-
2014
- 2014-03-27 IL IL231762A patent/IL231762A0/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA005650B1 (ru) * | 2001-04-24 | 2005-04-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система и способ электрического нагрева скважины |
US20060124314A1 (en) * | 2002-06-28 | 2006-06-15 | Haheim Svein A | Assembly and a method for intervention of a subsea well |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US7708058B1 (en) * | 2009-03-18 | 2010-05-04 | Rri Holdings, Inc. | Selectably elevatable injector for coiled tubing |
US20100258291A1 (en) * | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
Also Published As
Publication number | Publication date |
---|---|
US9309755B2 (en) | 2016-04-12 |
CN103958824A (zh) | 2014-07-30 |
IL231762A0 (en) | 2014-05-28 |
RU2014118474A (ru) | 2015-11-20 |
CA2850741A1 (en) | 2013-04-11 |
CN103958824B (zh) | 2016-10-26 |
US20130087337A1 (en) | 2013-04-11 |
WO2013052561A3 (en) | 2014-05-08 |
WO2013052561A2 (en) | 2013-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9022109B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
RU2530729C2 (ru) | Системы и способы формирования подземных стволов скважин | |
AU2009251533B2 (en) | Using mines and tunnels for treating subsurface hydrocarbon containing formations | |
CA2666956C (en) | Heating tar sands formations to visbreaking temperatures | |
CA2626905C (en) | Systems and methods for producing hydrocarbons from tar sands with heat created drainage paths | |
RU2612774C2 (ru) | Аккомодация теплового расширения для систем с циркулирующей текучей средой, используемых для нагревания толщи пород | |
AU2011237624B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171005 |