RU2607016C2 - Способ получения литого композиционного материала - Google Patents
Способ получения литого композиционного материала Download PDFInfo
- Publication number
- RU2607016C2 RU2607016C2 RU2014126683A RU2014126683A RU2607016C2 RU 2607016 C2 RU2607016 C2 RU 2607016C2 RU 2014126683 A RU2014126683 A RU 2014126683A RU 2014126683 A RU2014126683 A RU 2014126683A RU 2607016 C2 RU2607016 C2 RU 2607016C2
- Authority
- RU
- Russia
- Prior art keywords
- melt
- aluminum
- aluminium
- charge
- composite material
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/04—Light metals
- C22C49/06—Aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования. В способе осуществляют подготовку алюминиевой шихты, содержащей 20% лома алюминия и 80% лома алюминия с добавкой жидкого углеводорода, осуществляют загрузку в печь 20% алюминиевого лома, его расплавление и последующую загрузку в жидкий расплав алюминиевого лома с добавкой жидкого углеводорода, а после полного расплавления шихты осуществляют продувку расплава кислородом в течение 3 часов под сформированным на зеркале расплава слоем шлака, который по окончании продувки удаляют, и заливают полученный расплав в литейную форму. Изобретение обеспечивает получение литого композиционного материала с алюминиевой матрицей, армированного пластинчатыми включениями оксида алюминия, с высокими механическими свойствами. 1 ил., 1 табл.
Description
Изобретение относится к области композиционных материалов, а именно к металломатричным композиционным материалам на основе легких сплавов, армированных хаотично расположенными пластинчатыми включениями оксида матричного металла. Армированный пластинчатыми включениями оксида алюминия композиционный материал на алюминиевой матрице в настоящее время изготавливают методом спекания - спеченная алюминиевая пудра [Алюминиевые сплавы (свойства, обработка, применение). Справочник. Под редакцией Х. Нильсена, В. Хуфнагеля, Г. Ганулиса. Перевод с нем. М.Е. Дрица и Л.Х. Райтбарга. - М.: Металлургия, 1979. 679 с.]. Они обладают высокой теплопроводностью, низким коэффициентом термического расширения, малым удельным весом, высоким пределом прочности на растяжение в сочетании с практически полным отсутствием удлинения, высокой жаропрочностью. Получаемый таким способом композиционный материал весьма дорог, поскольку при спекании объем изделия уменьшается, что требует соответствующей оснастки, стойкость которой из-за термоциклирования невелика. По тем же причинам ограничены размеры и конфигурация спеченных изделий.
С другой стороны, известна технология получения литых дисперсно-упрочненных композиционных материалов, не ограниченных по размерам и конфигурации, которые получают замешиванием в расплав упрочняющих частиц. Дисперсно-упрочненные композиционные материалы системы алюминий-оксид алюминия весьма распространены в промышленности, но они не достигают уровня свойств спеченных композиционных материалов, поскольку армирующий компонент не может полностью перекрыть движение дислокации, а только ограничивает его скорость. Кроме того, плохое смачивание в системе алюминий-оксид алюминия затрудняет ввод наполнителя в расплав и таким образом приводит к повышению стоимости композита [Способ изготовления алюминиевых сплавов с дисперсным упрочнением. Андреев Г.Н.; Барахтина Н.Н.; Горшкова Н.Н.; Золоторевский Ю.С.; Разинов Г.Ф.; Серебрийский Э.И.; Чижиков В.В. Патент RU 2083321, B22D 19/H, B22D 11/00, B22D 21/04, С22С 21/00, заявл. 26.10.1993, опубл. 10.07.1997]. На решение этих проблем направлено данное изобретение.
Технической задачей данного изобретения является разработка способа получения композиционного материала с алюминиевой матрицей, армированной пластинчатыми включениями оксида алюминия методом литья.
Для решения поставленной задачи предложен способ получения композиционного материала, предусматривающий продувку алюминиевого расплава кислородом. Известно [Алюминиевые сплавы (свойства, обработка, применение). Справочник. Под редакцией Х. Нильсена, В. Хуфнагеля, Г. Ганулиса. Перевод с нем. М.Е. Дрица и Л.Х. Райтбарга. - М.: Металлургия, 1979. 679 с.], что взаимодействие расплава чистого алюминия с кислородом приводит к образованию оксидной пленки, состоящей из высокопрочного тугоплавкого оксида алюминия с толщиной слоя 20-50 нм, которая быстро растет. Адгезия оксидного слоя к расплаву весьма велика. При продувке расплава чистого алюминия кислородом формируются и всплывают на зеркало расплава заполненные кислородом пузыри, увлекая за собой жидкий расплав. Таким образом, при продувке расплава чистого алюминия кислородом весьма быстро весь расплав переходит в шлак, состоящий из макрослоев металла, перемежающихся с микрослоями оксида алюминия. Для решения этой проблемы предложено добавлять в шихту компоненты, содержащие водород. В качестве источника водорода можно использовать любые водородсодержащие материалы, но для обеспечения высокого и равномерного содержания водорода в расплаве предлагается использовать в качестве источника водорода жидкие углеводороды (минеральные масла), которыми покрывается поверхность шихты. При погружении замасленной шихты в расплав масло разлагается на водород и углерод. Водород насыщает жидкий металл. Избыток водорода выходит в атмосферу печи. Углерод является побочным продуктом реакции и остается в расплаве в виде саже-коксовых включений низкой плотности (1,6-2 г/см3), которые постепенно всплывают. Также углерод может образовывать карбиды компонентов сплава, которые также являются упрочняющей фазой. Как было указано выше, при продувке расплава кислородом формируются покрытые гамма-оксидом алюминия кислородные пузыри, которые всплывают к зеркалу расплава. В их гидравлическом «следе» возникает область пониженного давления, что приводит к выделению газообразного водорода. Пузыри водорода при контакте с оксидной пленкой абсорбируются с образованием комплексного соединения (Al2O3)*Н [В.Б. Деев, А.В. Феоктистов, И.Ф. Селянин, А.Л. Блумбах. Высокотемпературная обработка расплавов Al-Si Ползуновский альманах, 2003, №4. С. 85], что приводит к падению давления в пузыре водорода и его схлопыванию. Формирующаяся в результате ударная волна разрушает пленку гамма-оксида алюминия. Разрушение оксидной пленки облегчает наличие в ее структуре инородных оксидов. Отсюда использование в качестве матричного расплава технически чистого алюминия приводит к увеличению размеров пластинчатых включений, что отрицательно сказывается на литейных и механических свойствах композита.
Время продувки и расход кислорода определяются по интенсивности образования шлака на поверхности расплава. Незначительное количество шлака образуется в начале процесса продувки, затем толщина слоя шлака стабилизируется, в дальнейшем рост количества шлака свидетельствует об абсорбции всего растворенного в расплаве водорода на оксидной пленке и необходимости прекращения процесса.
Таким образом, расплав насыщается небольшими фрагментами оксидных пленок (Фиг. 1), которые являются армирующим компонентом композиционного материала. Условный предел текучести на растяжение полученного композита практически равен пределу прочности (разница не более 0,5%), относительное удлинение близко к 0. Практически полное отсутствие относительного удлинения связано с ограниченностью области течения матричного металла. Водород в сплаве связан в комплексном соединении, не образуя газовых раковин, балл пористости отливок не более 1. Себестоимость полученного композита ниже, чем у рядового алюминиевого литья, потому что для его производства могут быть использованы некондиционные дешевые шихтовые материалы, загрязненные углеводородами.
Литой композицонный материал изготавливают следующим образом.
Сырьевые материалы: использована металлошихта из лома АК12 по ГОСТ 15878 (химический состав металлошихты определен на спектрометре Аргон 5-СФ) толщиной до 20 мм. Около 80% лома было обмазано моторным маслом Лукойл Люкс 10W-40 по СТО 00044434-003-2005. Для продувки использовался кислород по ГОСТ 5583-78 в баллоне.
Оборудование: Печь сопротивления тигельная CAT-0,16 с чугунным окрашенным тиглем, редуктор кислородный БКО-50-12,5 с резиновым шлангом, фурма графитовая сечением 110 мм2, преобразователь термоэлектрический ТП 0395/6 по ТУ 4211-013-13282997-04.
Расплавление шихты: Включили печь. Задатчик температуры установили на уровне 700°C. В тигель печи загрузили около 20% металлозавалки, не покрытой пленками моторного масла. При расплавлении были залиты в металлическую форму (кокиль) контрольные образцы для испытаний на растяжение. Затем в жидкий расплав загружали постепенно замасленную шихту, утапливая ее в расплаве ковшом. Крышка печи открывалась только для загрузки шихты, чтобы ограничить доступ кислорода и снизить соответственно интенсивность горения масляных пленок. Покровные флюсы не использовали.
Продувка: Продувку начали после полного расплавления шихты и доведения температуры до 700°C. Крышка печи была снята и установлена фурма. Продувку проводили с расходом кислорода 0,05-0,07 Нсм2/мин. В течение 10 минут на зеркале расплава сформировался слой шлака толщиной около 1 см (кроме поверхности зеркала расплава по периметру тигля), ограничивающий «бурление» расплава и таким образом, благоприятно сказывающийся на усвоении кислорода. Длительность продувки была 3 часа. Толщина слоя шлака в процессе продувки не увеличивалась. Температура металла поддерживалась задатчиком на одном уровне.
Разливка: По окончании продувки фурма была извлечена из печи, слой шлака удален литейной ложкой. Заливка производилась ковшом из нержавеющей стали в литейную металлическую форму (кокиль), подогретый до 300°C газовой горелкой.
На шлифах (Фиг. 1) можно обнаружить армирующие металлическую матрицу иглообразные (фактически пластинчатые) компоненты с толщиной до 1-2 мкм, характерным размером 200-300 мкм, которые являются оксидными пленами, армирующими металлическую матрицу.
Предел прочности на растяжение σв и условный предел текучести σ0,2 полученного композиционного материала в сравнении с спеченной алюминиевой пудрой САП-1 [Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. - М.: Энергоатомиздат, 1991. - 1232 с.], литым алюминиевым сплавом исходного состава по данным [Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. - М.: Энергоатомиздат, 1991. - 1232 с.] и взятым до продувки кислородом образцом алюминиевого сплава исходного состава (контрольный образец) приведены в табл. 1. Измерения проведены на установке Инстрон 3385 на 3 образцах.
Из табл. 1 видно, что полученный композиционный материал обладает очень высоким условным пределом текучести, близким к САП-1 и значительно превосходящим результаты контрольного образца, который был поражен газовыми раковинами, что обусловило снижение механических свойств по сравнению со справочными данными. Высокий условный предел текучести обеспечивает сохранение геометрии отливки при высоких нагрузках. Кроме того, в полученном композиционном материале минимальный уровень газовых дефектов, что обеспечивает стабильность механических свойств вне зависимости от качества шихтовых материалов.
Claims (1)
- Способ получения литого композиционного материала с алюминиевой матрицей, армированной пластинчатыми включениями оксида алюминия, характеризующийся тем, что осуществляют подготовку алюминиевой шихты, содержащей 20% лома алюминия и 80% лома алюминия с добавкой жидкого углеводорода, осуществляют загрузку в печь 20% алюминиевого лома, его расплавление и последующую загрузку в жидкий расплав алюминиевого лома с добавкой жидкого углеводорода, а после полного расплавления шихты осуществляют продувку расплава кислородом в течение 3 часов под сформированным на зеркале расплава слоем шлака, который по окончании продувки удаляют, и заливают полученный расплав в литейную форму.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014126683A RU2607016C2 (ru) | 2014-07-01 | 2014-07-01 | Способ получения литого композиционного материала |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014126683A RU2607016C2 (ru) | 2014-07-01 | 2014-07-01 | Способ получения литого композиционного материала |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014126683A RU2014126683A (ru) | 2016-02-10 |
RU2607016C2 true RU2607016C2 (ru) | 2017-01-10 |
Family
ID=55312899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014126683A RU2607016C2 (ru) | 2014-07-01 | 2014-07-01 | Способ получения литого композиционного материала |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2607016C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712675C2 (ru) * | 2017-12-20 | 2020-01-30 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) | Способ получения литого композиционного материала |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4664704A (en) * | 1985-03-01 | 1987-05-12 | Toyota Jidosha Kabushiki Kaisha | Composite material made from matrix metal reinforced with mixed crystalline alumina-silica fibers and mineral fibers |
FR2641795B1 (fr) * | 1989-01-16 | 1993-09-24 | Bronzes Ind Sa | Fabrication de pieces en materiau composite |
FR2666819B1 (fr) * | 1990-09-19 | 1994-09-23 | Inst Aluminievoi Magnievoi | Procede et dispositif pour fabriquer un materiau composite a partir d'un metal de base. |
RU2083321C1 (ru) * | 1993-10-26 | 1997-07-10 | Центральный научно-исследовательский институт конструкционных материалов "Прометей" | Способ изготовления алюминиевых сплавов с дисперсным упрочнением |
RU2186867C1 (ru) * | 2001-01-09 | 2002-08-10 | Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" | Способ и устройство для получения литых композиционных материалов на основе алюминия |
-
2014
- 2014-07-01 RU RU2014126683A patent/RU2607016C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4664704A (en) * | 1985-03-01 | 1987-05-12 | Toyota Jidosha Kabushiki Kaisha | Composite material made from matrix metal reinforced with mixed crystalline alumina-silica fibers and mineral fibers |
FR2641795B1 (fr) * | 1989-01-16 | 1993-09-24 | Bronzes Ind Sa | Fabrication de pieces en materiau composite |
FR2666819B1 (fr) * | 1990-09-19 | 1994-09-23 | Inst Aluminievoi Magnievoi | Procede et dispositif pour fabriquer un materiau composite a partir d'un metal de base. |
RU2083321C1 (ru) * | 1993-10-26 | 1997-07-10 | Центральный научно-исследовательский институт конструкционных материалов "Прометей" | Способ изготовления алюминиевых сплавов с дисперсным упрочнением |
RU2186867C1 (ru) * | 2001-01-09 | 2002-08-10 | Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" | Способ и устройство для получения литых композиционных материалов на основе алюминия |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712675C2 (ru) * | 2017-12-20 | 2020-01-30 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) | Способ получения литого композиционного материала |
Also Published As
Publication number | Publication date |
---|---|
RU2014126683A (ru) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Boppana et al. | Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites | |
Maleki et al. | Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy | |
JP4678373B2 (ja) | マグネシウム合金材の製造方法 | |
Jiang et al. | Correlation of microstructure with mechanical properties and fracture behavior of A356-T6 aluminum alloy fabricated by expendable pattern shell casting with vacuum and low-pressure, gravity casting and lost foam casting | |
Janudom et al. | Characterization of flow behavior of semi-solid slurries containing low solid fractions in high-pressure die casting | |
Almadhoni et al. | Review of effective parameters of stir casting process on metallurgical properties of ceramics particulate Al composites | |
Rana et al. | Development and analysis of Al-matrix nano composites fabricated by ultrasonic assisted squeeze casting process | |
Storti et al. | Short-time performance of MWCNTs-coated Al2O3-C filters in a steel melt | |
Nateghian et al. | Behavior of double-oxide film defects in Al-0.05 wt pct Sr alloy | |
RU2607016C2 (ru) | Способ получения литого композиционного материала | |
Arami et al. | Microporosity control and thermal-fatigue resistance of A319 aluminum foundry alloy | |
Guler et al. | A study of expanded polyethylene (EPE) pattern application in aluminium lost foam casting | |
Bartar Esfahani et al. | The effect of strontium on the strength of layers of double oxide film defects | |
Reddy et al. | Degassing of aluminum metals and its alloys in non-ferrous foundry | |
Kaneda et al. | Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon | |
Hemanth | Action of chills on soundness and ultimate tensile strength (UTS) of aluminum–quartz particulate composite | |
EP2744612B1 (en) | Method for producing investment castings | |
JP7437024B2 (ja) | 金属成型品の製造方法 | |
RU2712675C2 (ru) | Способ получения литого композиционного материала | |
Martyushev et al. | Impact of protective release coatings with nanopowders on the quality of bronze castings surface | |
Dobrota et al. | The analysis of the homogeneity of chemical composition in castings made of Bronze with Tin | |
Chen | Optimization of mechanical properties in A356 via simulation and permanent mold test-bars | |
Hossein Elahi et al. | Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc | |
Lipowska et al. | Cast steel filtration trials using ceramic-carbon filters | |
RU2714522C1 (ru) | Способ определения технологической температуры плавления шихты при индукционной наплавке |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HZ9A | Changing address for correspondence with an applicant | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161119 |