RU2670231C1 - Способ перекристаллизации октогена - Google Patents
Способ перекристаллизации октогена Download PDFInfo
- Publication number
- RU2670231C1 RU2670231C1 RU2017139835A RU2017139835A RU2670231C1 RU 2670231 C1 RU2670231 C1 RU 2670231C1 RU 2017139835 A RU2017139835 A RU 2017139835A RU 2017139835 A RU2017139835 A RU 2017139835A RU 2670231 C1 RU2670231 C1 RU 2670231C1
- Authority
- RU
- Russia
- Prior art keywords
- octogene
- seed
- solution
- crystallization
- hmx
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000001953 recrystallisation Methods 0.000 title abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 35
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims abstract description 30
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000002425 crystallisation Methods 0.000 claims abstract description 19
- 230000008025 crystallization Effects 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000004090 dissolution Methods 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims abstract 6
- 239000012047 saturated solution Substances 0.000 claims abstract 2
- 239000000028 HMX Substances 0.000 claims description 39
- UZGLIIJVICEWHF-UHFFFAOYSA-N octogen Chemical compound [O-][N+](=O)N1CN([N+]([O-])=O)CN([N+]([O-])=O)CN([N+]([O-])=O)C1 UZGLIIJVICEWHF-UHFFFAOYSA-N 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 6
- 238000010899 nucleation Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 230000006911 nucleation Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000004222 uncontrolled growth Effects 0.000 abstract 1
- 238000009826 distribution Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- POCJOGNVFHPZNS-ZJUUUORDSA-N (6S,7R)-2-azaspiro[5.5]undecan-7-ol Chemical compound O[C@@H]1CCCC[C@]11CNCCC1 POCJOGNVFHPZNS-ZJUUUORDSA-N 0.000 description 1
- BSPUVYFGURDFHE-UHFFFAOYSA-N Nitramine Natural products CC1C(O)CCC2CCCNC12 BSPUVYFGURDFHE-UHFFFAOYSA-N 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- POCJOGNVFHPZNS-UHFFFAOYSA-N isonitramine Natural products OC1CCCCC11CNCCC1 POCJOGNVFHPZNS-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B21/00—Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
- C06B21/0091—Elimination of undesirable or temporary components of an intermediate or finished product, e.g. making porous or low density products, purifying, stabilising, drying; Deactivating; Reclaiming
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к способу перекристаллизации октогена. Способ осуществляют путем проведения изогидрической кристаллизации из насыщенного октогеном раствора ε-капролактама в ацетонитриле с добавлением в нагретый раствор затравки октогена с последующим охлаждением с постоянной скоростью при перемешивании. При этом используют 40-60%-ный раствор е-капролактама в ацетонитриле, массовое соотношение октоген на затравку : октоген на растворение : кристаллизационная смесь составляет 1:(7-17):(100-160). Затравку октогена с размером частиц 5-30 мкм добавляют при температуре раствора 75-80°С. Затем проводят выдержку в течение 15-60 мин, а охлаждение ведут со скоростью 0,15-0,20°С/мин. Методика обеспечивает стабильно воспроизводимое получение целевого продукта с узким диапазоном размеров частиц (фракция 400-600 мкм составляет более 80%) и одновременное достижение формы частиц, близкой к изометрической, с минимизацией количества дефектов их поверхности без стадии механической окатки за счет реализации условий, позволяющих исключить в кристаллизационной среде неконтролируемое образование зародышей новых частиц из октогена, используемого на растворение, и неконтролируемый рост размера частиц октогена, используемого на затравку. 2 ил., 2 пр.
Description
Изобретение относится к области органической химии, а именно к способу перекристаллизации октогена (циклического нитрамина), применяемого в высокоэнергетических составах различного назначения.
Для обеспечения необходимых свойств высокоэнергетических составов требуется октоген определенной дисперсности с узким диапазоном распределения частиц по размеру и имеющий форму частиц, близкую к изометричной (соотношение осей 1:1:1-1:1:1,5).
Из уровня техники известны способы получения октогена различной дисперсности в результате его перекристаллизации с использованием различных растворителей и смесей растворителей, часто с одновременным проведением механической окатки.
Известен способ кристаллизации октогена по патенту РФ №2024495 (опубл. 15.12.1994 г. ) из раствора ε-капролактама при нагревании с последующим охлаждением с постоянной скоростью.
Известный способ представляет собой многоступенчатый процесс, включающий неоднократный нагрев и охлаждение, требующий проведения упаривания маточного раствора и использования роторно-вихревого аппарата, что снижает его технологичность, существенно увеличивает экономические затраты. Высокая скорость охлаждения (0,5-1°С/мин) может привести к ухудшению формы частиц и образованию дефектов из-за их ускоренного роста, т.е. к нестабильной воспроизводимости ожидаемых результатов и низкой эффективности известного способа. Кроме того, известный способ позволяет получать частицы октогена только с существенным разбросом размеров (500-1000 мкм), что снижает эксплуатационные возможности целевого продукта при использовании в высокоэнергетических составах, так как не обеспечивает постоянство их требуемых функциональных характеристик и ухудшает реологические свойства составов при изготовлении.
Известен способ перекристаллизации октогена по патенту РФ №2362758 (опубл.27.07.2009 г. ) из раствора ε-капролактама при нагревании с проведением выдержки и последующим охлаждением с постоянной скоростью.
Известный способ обеспечивает получение частиц октогена с недостаточно узким диапазоном распределения по размеру (5-250 мкм) и преимущественно для использования в высокоэнергетических составах с низкими реологическими свойствами, что снижает эксплуатационные возможности целевого продукта: отражается на способе переработки составов, увеличивая продолжительность переработки и усложняя технологическое оснащение производственного процесса, а также не обеспечивает постоянство требуемых функциональных характеристик высокоэнергетических составов. Высокая скорость охлаждения (0,25-0,7°С/мин) может привести к ухудшению формы частиц и образованию дефектов из-за их ускоренного роста, т.е. к нестабильной воспроизводимости ожидаемых результатов и низкой эффективности известного способа.
Известен способ перекристаллизации октогена, принятый за прототип (Перекристаллизация октогена с использованием бинарных кристаллизационных систем/К.В. Трескова, Е.В. Петрунина, В.Н. Золотухин, В.Н. Беляев/ Материалы IX Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых «Технологии и оборудование химической, биотехнологической и пищевой промышленности». - Бийск: Изд-во Алт.гос.техн. ун-та, 2016. -С. 43-45), путем проведения изогидрической кристаллизации из насыщенного октогеном раствора е-капролактама в ацетонитриле с добавлением в нагретый раствор затравки октогена с последующим охлаждением с постоянной скоростью.
Известный способ декларирует получение частиц целевого продукта округлой формы, но при этом не позволяет достичь узкого диапазона распределения частиц по размеру (не конкретизирована верхняя граница диапазона, указана только нижняя - 250 мкм), что снижает эксплуатационные возможности целевого продукта при использовании в высокоэнергетических составах, требующих использования узкофракционного октогена в соответствии с существующей потребностью достижения постоянства их необходимых функциональных характеристик и при изготовлении таких составов ухудшает их реологические свойства.
Следует отметить, что в описании известного способа отсутствуют данные о соотношении используемых октогена и кристаллизационной среды, о соотношении ацетонитрила и ε-капролактама в кристаллизационной среде, о количестве и размере частиц используемой затравки. Отсутствие вышеуказанных данных не позволяет практически воспроизвести способ, охарактеризованный в известном источнике информации.
В способе по прототипу отсутствует выдержка как до, так и после внесения затравки, что может привести к неполному растворению исходного октогена, частицы которого будут выполнять функцию затравки, увеличивая долю мелкой фракции, а также оказывать неконтролируемое влияние на увеличение размера частиц целевого продукта, образующихся на частицах вносимой затравки, что в сочетании с высокой скоростью охлаждения (0,23-0,47°С/мин) может привести к ухудшению формы частиц и образованию дефектов из-за их ускоренного роста, а также способствовать образованию зародышей новых частиц октогена в растворе, не позволяя достаточно точно регулировать гранулометрический состав целевого продукта, что снижает воспроизводимость планируемых результатов. Все вышесказанное снижает эффективность способа по прототипу.
Задачей заявляемого технического решения является создание эффективного способа перекристаллизации октогена, обеспечивающего стабильно воспроизводимое получение целевого продукта с узким диапазоном размеров частиц (фракция 400-600 мкм составляет более 80%) и одновременным достижением формы частиц, близкой к изометрической, с минимизацией количества дефектов их поверхности без стадии механической окатки за счет реализации условий, позволяющих исключить в кристаллизационной среде неконтролируемое образование зародышей новых частиц из октогена, используемого на растворение, и неконтролируемый рост размера частиц октогена, используемого на затравку.
Кроме того, целевой продукт, получаемый предлагаемым способом, обладает расширенными эксплуатационными возможностями в части положительного влияния на постоянство воспроизведения требуемых функциональных характеристик высокоэнергетических составов и улучшения их реологических свойств, необходимых при изготовлении.
Поставленная задача решается предлагаемым способом перекристаллизации октогена путем проведения изогидрической кристаллизации из насыщенного октогеном раствора ε-капролактама в ацетонитриле с добавлением в нагретый раствор затравки октогена с последующим охлаждением с постоянной скоростью при перемешивании. Особенность заключается в том, что используют 40-60%-ный раствор ε-капролактама в ацетонитриле, массовое соотношение октоген на затравку: октоген на растворение: кристаллизационная смесь составляет 1:(7-17):(100-160), используют затравку октогена с размером частиц 5-30 мкм, добавляют ее при температуре раствора 75-80°С, затем проводят выдержку в течение 15-60 мин, а охлаждение ведут со скоростью 0,15-0,20°С/мин.
Проведенный сопоставительный анализ показывает, что заявляемый способ отличается от прототипа конкретизацией соотношения используемых октогена и кристаллизационной среды, соотношения ацетонитрила и ε-капролактама в кристаллизационной среде, количества и размера частиц используемой затравки; наличием выдержки; меньшей скоростью охлаждения.
Предлагаемая совокупность отличительных от прототипа признаков с остальными существенными признаками заявляемого способа позволяет решить поставленную задачу с получением комплекса одновременно достигаемых преимуществ, который невозможно достичь известным из уровня техники способом.
Заявляемые пределы соотношения компонентов кристаллизационной среды, массового соотношения октоген на затравку: октоген на растворениежристаллизационная смесь, а также пределы размеров частиц затравки, пределы температуры, при которой добавляют затравку, пределы времени выдержки и пределы скорости охлаждения, то есть весь комплекс параметров способа, являются оптимальными для стабильно воспроизводимого получения узкофракционного целевого продукта, в котором содержание фракции с размером частиц 400-600 мкм составляет более 80%, обладающего формой частиц, близкой к изометричной, с минимизацией количества дефектов их поверхности без стадии механической окатки.
Предлагаемый способ иллюстрируется фотографиями.
На фиг. 1 и 2 представлены фотографии частиц октогена, получаемых по предлагаемому способу, с электронного растрового и оптического микроскопа соответственно.
Сведения, подтверждающие возможность осуществления способа.
Пример 1. В реактор емкостью 300 мл, снабженный мешалкой и термометром, загружают 150 г 40% раствора е-капролактама в ацетонитриле и 12 г октогена. При перемешивании со скоростью 1000 об/мин нагревают кристаллизационную смесь до 75°С.При этой температуре дозируют 1, 2 г затравки октогена с размером частиц преимущественно 5 мкм. Осуществляют выдержку в течение 15 минут, затем проводят охлаждение с постоянной скоростью 0,2°С/мин до 25°С. После отфильтровывания получают целевой продукт следующего гранулометрического состава:
Номер сетки сита: 063 05 04 0315 025 016 01 005
Остаток на сите, %: 5 45 43 3 3 1 0 0
Пример 2. В реактор емкостью 300 мл, снабженный мешалкой и термометром, загружают 120 г 60% раствора ε-капролактама в ацетонитриле и 12 г октогена. При перемешивании со скоростью 1500 об/мин нагревают кристаллизационную смесь до 80°С.При этой температуре дозируют 1,2 г затравки октогена с размером частиц преимущественно 30 мкм. Осуществляют выдержку в течение 60 минут, затем проводят охлаждение с постоянной скоростью 0,15°С/мин до 15°С. После отфильтровывания получают целевой продукт следующего гранулометрического состава:
Номер сетки сита: 063 05 04 0315 025 016 01 005
Остаток на сите, %: 9 57 26 3 2 2 1 0
Конкретные режимы перемешивания при осуществлении предлагаемого способа подбирают в зависимости от объема и конструкции реактора.
Таким образом, заявляемый способ перекристаллизации октогена практически реализуем, технологически целесообразен и позволяет удовлетворить давно существующую потребность в решении поставленной задачи.
Claims (1)
- Способ перекристаллизации октогена путем проведения изогидрической кристаллизации из насыщенного октогеном раствора ε-капролактама в ацетонитриле с добавлением в нагретый раствор затравки октогена с последующим охлаждением с постоянной скоростью при перемешивании, отличающийся тем, что используют 40-60%-ный раствор ε-капролактама в ацетонитриле, массовое соотношение октоген на затравку : октоген на растворение : кристаллизационная смесь составляет 1:(7-17):(100-160), используют затравку октогена с размером частиц 5-30 мкм, добавляют ее при температуре раствора 75-80°С, затем проводят выдержку в течение 15-60 мин, а охлаждение ведут со скоростью 0,15-0,20°С/мин.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017139835A RU2670231C1 (ru) | 2017-11-15 | 2017-11-15 | Способ перекристаллизации октогена |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017139835A RU2670231C1 (ru) | 2017-11-15 | 2017-11-15 | Способ перекристаллизации октогена |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2670231C1 true RU2670231C1 (ru) | 2018-10-19 |
Family
ID=63862436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017139835A RU2670231C1 (ru) | 2017-11-15 | 2017-11-15 | Способ перекристаллизации октогена |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2670231C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA816157A (en) * | 1969-06-24 | D. Evans Albert | Crystallization of fine hmx | |
GB2156805A (en) * | 1984-04-04 | 1985-10-16 | Bofors Ab | Recrystallisation of the high explosives hmx and rdx |
DE3617408C1 (de) * | 1986-05-23 | 1987-06-11 | Dynamit Nobel Ag | Verfahren zur Herstellung von feinkoernigem beta-Oktogen |
RU2024495C1 (ru) * | 1990-04-24 | 1994-12-15 | Государственный научно-исследовательский институт "Кристалл" | Способ кристаллизации октогена |
US6214988B1 (en) * | 1999-01-03 | 2001-04-10 | Schlumberger Technology Corporation | Process for making an HMX product |
RU2362758C1 (ru) * | 2008-03-24 | 2009-07-27 | Федеральное Казенное Предприятие "Бийский Олеумный Завод" | Способ перекристаллизации октогена |
-
2017
- 2017-11-15 RU RU2017139835A patent/RU2670231C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA816157A (en) * | 1969-06-24 | D. Evans Albert | Crystallization of fine hmx | |
GB2156805A (en) * | 1984-04-04 | 1985-10-16 | Bofors Ab | Recrystallisation of the high explosives hmx and rdx |
DE3617408C1 (de) * | 1986-05-23 | 1987-06-11 | Dynamit Nobel Ag | Verfahren zur Herstellung von feinkoernigem beta-Oktogen |
RU2024495C1 (ru) * | 1990-04-24 | 1994-12-15 | Государственный научно-исследовательский институт "Кристалл" | Способ кристаллизации октогена |
US6214988B1 (en) * | 1999-01-03 | 2001-04-10 | Schlumberger Technology Corporation | Process for making an HMX product |
RU2362758C1 (ru) * | 2008-03-24 | 2009-07-27 | Федеральное Казенное Предприятие "Бийский Олеумный Завод" | Способ перекристаллизации октогена |
Non-Patent Citations (1)
Title |
---|
СТАТЬЯ "ПЕРЕКРИСТАЛЛИЗАЦИЯ ОКТОГЕНА С ИСПОЛЬЗОВАНИЕМ БИНАРНЫХ КРИСТАЛЛИЗАЦИОННЫХ СИСТЕМ", К.В. Трескова и др. Материалы IX Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых "Технологии и оборудование химической, биотехнологической и пищевой промышленности", г.Бийск, изд. Алт.гос.техн.ун-та им.И.И.Ползунова, 2016, с.43-45. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
van der Heijden et al. | Crystallization and Characterization of RDX, HMX, and CL-20 | |
Sivabalan et al. | Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity | |
US3095359A (en) | High-frequency treatment of matter | |
Karpowicz et al. | . beta.-Polymorph of hexahydro-1, 3, 5-trinitro-s-triazine. A Fourier transform infrared spectroscopy study of an energetic material | |
Li et al. | Multiple stage crystallization of gamma phase poly (vinylidene fluoride) induced by ion-dipole interaction as revealed by time-resolved FTIR and two-dimensional correlation analysis | |
RU2670231C1 (ru) | Способ перекристаллизации октогена | |
Schmidt et al. | Macromolecules made to order | |
CN103936534A (zh) | 一种特质细化hmx晶体及制备方法 | |
Giustiniano et al. | Nitrile N-oxides and nitrile imines as new fuels for the discovery of novel isocyanide-based multicomponent reactions | |
CN109665498A (zh) | 一种过硫酸铵结晶体的制备方法 | |
CN105693734A (zh) | 一种特质ε-HNIW晶体及其制备方法 | |
Yu et al. | Preparation and properties of RDX@ FOX-7 composites by microfluidic technology | |
CN108997238A (zh) | 一种细颗粒nto的制备方法 | |
US20060272755A1 (en) | Particles of explosive of low sensitivity to shock and associated treatment process | |
CN105985249A (zh) | 一种重结晶tatb的方法 | |
CN110590481B (zh) | 一种hmx大单晶的快速制备方法 | |
Zhang et al. | Application of microfluidic technology on preparation of nano LLM-105 | |
Zhang et al. | Novel technology for separation of binary eutectic-forming mixture by cocrystallization into different sizes combined with particle size fraction | |
Yao et al. | Fabrication and properties of sphere CL-20/RDX composites with different molar ratios | |
Hou et al. | A comparative study on the quality of protein crystals obtained using the cross-diffusion microbatch and sitting-drop vapor diffusion methods | |
JP2010260773A (ja) | アズルミン酸混合液及びその製造方法 | |
Chiriac | Polymerization in magnetic field. XVI. Kinetic aspects regarding methyl methacrylate polymerization in high magnetic field | |
Callahan et al. | On the investigation of the effect of apparatus configurations on the nucleation mechanisms in a cooling crystallization of sodium chlorate | |
JP5639873B2 (ja) | 晶析方法および晶析装置 | |
RU2777332C2 (ru) | Октоген, модифицированный углеродными нанотрубками, и способ его получения |