RU2646876C1 - Method of protecting the operator from production noise - Google Patents
Method of protecting the operator from production noise Download PDFInfo
- Publication number
- RU2646876C1 RU2646876C1 RU2017120740A RU2017120740A RU2646876C1 RU 2646876 C1 RU2646876 C1 RU 2646876C1 RU 2017120740 A RU2017120740 A RU 2017120740A RU 2017120740 A RU2017120740 A RU 2017120740A RU 2646876 C1 RU2646876 C1 RU 2646876C1
- Authority
- RU
- Russia
- Prior art keywords
- sound
- absorbing
- layers
- operator
- perforated
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title abstract description 5
- 239000000463 material Substances 0.000 claims abstract description 98
- -1 titanium hydride Chemical compound 0.000 claims abstract description 23
- 239000011358 absorbing material Substances 0.000 claims abstract description 22
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000835 fiber Substances 0.000 claims abstract description 14
- 239000011152 fibreglass Substances 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000011049 filling Methods 0.000 claims abstract description 10
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 229910000048 titanium hydride Inorganic materials 0.000 claims abstract description 9
- 229920003023 plastic Polymers 0.000 claims abstract description 8
- 239000004033 plastic Substances 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 7
- 238000007667 floating Methods 0.000 claims abstract description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 4
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 4
- 239000010935 stainless steel Substances 0.000 claims abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 239000004576 sand Substances 0.000 claims abstract description 3
- 239000006096 absorbing agent Substances 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 5
- 239000006260 foam Substances 0.000 claims description 5
- 238000002955 isolation Methods 0.000 claims description 5
- 239000004677 Nylon Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229920003225 polyurethane elastomer Polymers 0.000 claims description 4
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 claims description 3
- 210000003850 cellular structure Anatomy 0.000 claims description 3
- 239000010451 perlite Substances 0.000 claims description 3
- 235000019362 perlite Nutrition 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 230000007480 spreading Effects 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 239000012611 container material Substances 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 11
- 239000011491 glass wool Substances 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract 2
- 229920006051 Capron® Polymers 0.000 abstract 1
- 239000000395 magnesium oxide Substances 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 43
- 238000013016 damping Methods 0.000 description 17
- 239000011490 mineral wool Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 4
- 238000004078 waterproofing Methods 0.000 description 4
- 210000002268 wool Anatomy 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000006261 foam material Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
Description
Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.The invention relates to industrial acoustics, in particular to broadband sound attenuation, and can be used in all sectors of the economy as a means of protection against noise.
Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая защита по патенту РФ №2366785, 2007 г. [прототип], как способ акустической защиты оператора, заключающийся в том, что рабочее место оператора оснащают средствами снижения шума.The closest technical solution to the technical nature and the achieved result is acoustic protection according to the patent of the Russian Federation No. 2366785, 2007 [prototype], as a way of acoustic protection for the operator, namely that the operator’s workplace is equipped with noise reduction means.
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента звукопоглощения.The disadvantage of the technical solution adopted as a prototype is the relatively low efficiency of sound attenuation due to the relatively low coefficient of sound absorption.
Технический результат - повышение эффективности шумоглушения за счет повышения коэффициента звукопоглощения путем увеличения поверхностей звукопоглощения при сохранении габаритных размеров помещения.The technical result is an increase in sound attenuation efficiency by increasing the sound absorption coefficient by increasing the sound absorption surfaces while maintaining the overall dimensions of the room.
Это достигается тем, что в способе акустической защиты, заключающемся в том, что рабочее место оператора оснащают средствами снижения шума, рабочее место оператора располагают между акустическими экранами и защищают тем самым оператора от прямого звука, который распространяется от виброактивного оборудования, а чтобы повысить эффективность защиты от отраженных звуковых волн над рабочей зоной устанавливают акустический подвесной потолок, размещенный в верхней зоне помещения, и для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании, при этом осуществляют двухкаскадную виброзащиту оператора.This is achieved by the fact that in the method of acoustic protection, namely, that the operator’s workplace is equipped with noise reduction means, the operator’s workplace is placed between the acoustic screens and thereby protect the operator from direct sound that is spread from the vibroactive equipment, and in order to increase the protection efficiency from the reflected sound waves above the working area, an acoustic suspended ceiling is installed located in the upper area of the room, and to reduce sound vibration, the operator’s workplace they floor with an elastic foundation, while the operator carries out two-stage vibration protection.
На фиг. 1 изображен общий вид устройства для акустической защиты оператора, на фиг. 2 - конструкция пола помещения на упругом основании, на фиг. 3 представлен фронтальный разрез предлагаемого штучного звукопоглотителя, на фиг. 4 - его профильная проекция, на фиг. 5 - вариант конструкция пола помещения на упругом основании, на фиг. 6 изображено акустическое устройство акустического подвесного потолка 5, размещенного в верхней зоне помещения, в зоне ферм 4, на фиг. 7 - схема звукопоглощающего элемента акустического устройства акустического подвесного потолка, на фиг. 8 - схема теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3.In FIG. 1 shows a general view of an apparatus for acoustic protection of an operator; FIG. 2 - floor structure of the premises on an elastic base, in FIG. 3 shows a frontal section of the proposed piece sound absorber, in FIG. 4 is a profile projection thereof, in FIG. 5 is an embodiment of a floor construction of a room on an elastic base; 6 shows the acoustic device of the acoustic suspended
Способ защиты оператора от производственного шума производственного помещения (фиг. 1) содержит каркас здания, выполненный в виде упругого основания 1, являющегося полом помещения (фиг. 2), теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3, которые в свою очередь соединены с металлоконструкцией 4, например, в виде фермы. Акустический подвесной потолок 5 размещен в зоне ферм 4 и выполнен в виде установленных с определенным шагом кулисных звукопоглотителей, нижняя часть которых выступает за нижнюю часть ферм 4 в сторону основания 1. На ограждениях 2 закреплены акустические стеновые панели 6. На упругом основании 1 помещения установлено виброакустическое оборудование 7 и 8 с различными спектральными характеристиками уровней звуковой мощности. Рабочее место оператора 15, включающее в себя пульты управления 16 и 17 оборудованием 7 и 8, расположено между акустическими экранами 9 и 11, причем в одном из них, например 9-м, выполнен смотровой звукоизолирующий люк 10 для контроля визуализации наблюдения за технологическим процессом. Каркас здания сверху закрыт звукоизолирующим покрытием 12, выполняющим также функцию кровли, в котором расположены вертикальные 13 и наклонные 14 оконные проемы в виде вакуумных звукоизолирующих стеклопакетов.The method of protecting the operator from industrial noise in the production room (Fig. 1) comprises a building frame made in the form of an
Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 18, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 19 межэтажного перекрытия с полостями 20 через слои вибродемпфирующего материала 21 и гидроизоляционного материала 22, установленные с зазором относительно несущих стен 23 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 18 по всем направлениям слои вибродемпфирующего материала 21 и гидроизоляционного материала 22 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 7 и базовой несущей плите 19 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 20 заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом.The floor structure on an elastic foundation (Fig. 2) contains a
Конструкция поверхности 1 помещения (пол цеха) может быть выполнена в виде плавающего пола (фиг. 5), которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий. Эта конструкция представляет собой слой 30 звукоизоляционного прокладочного материала «Пенотерм НПП ЛЭ», расположенного на плите перекрытия 29, поверх которого выполняется цементно-песчаная стяжка 32 через металлическую сетку 31. На стяжку 32 укладывается подложка 33 типа «Порилекс», затем ламинат 34 с плинтусом 35.The design of the
ЗАО «Уралпластик», являясь крупнейшим производителем вспененных полимеров в России, специально разработало вибродемпфирующий материал ПЕНОТЕРМ НПП ЛЭ для шумоизоляции междуэтажных перекрытий. Пенотерм НПП ЛЭ - рулонный вибродемпфирующий материал с закрытопористой ячеистой структурой, изготовленный экструзионным методом из полипропилена, с введением вспенивателя, антипиренов, стабилизирующих, пластифицирующих и других технологических добавок, обеспечивающих оптимальный показатель динамического модуля упругости ЕД=0,66 МПа и сохранение всех заложенных характеристик в течение всего срока службы объекта. Упругие свойства скелета материала пенотерм НПП ЛЭ, химическая стойкость и наличие воздуха, заключенного в его порах, обуславливают гашение энергии удара и вибрации, что способствует снижению ударного и воздушного шума. Структура пенополипропилена способна препятствовать воздействию агрессивных сред, механическим нагрузкам и процессу старения.CJSC Uralplastic, being the largest producer of foamed polymers in Russia, specially developed the vibration damping material PENOTERM NPP LE for noise insulation of floors. Penotherm NPP LE is a roll vibrodamping material with a closed-cell cellular structure, made of polypropylene by extrusion, with the addition of a blowing agent, flame retardants, stabilizing, plasticizing and other technological additives that provide an optimal dynamic modulus of elasticity ED = 0.66 MPa and preserve all the inherent characteristics in throughout the life of the facility. The elastic properties of the skeleton of the foam material of the NPP LE, the chemical resistance and the presence of air enclosed in its pores, dampen shock energy and vibration, which helps to reduce shock and airborne noise. The structure of polypropylene is able to inhibit the effects of aggressive environments, mechanical stress and the aging process.
Основные физико-механические свойства материала пенотерм НПП ЛЭ:The main physical and mechanical properties of the foam material NPP LE:
На стяжку 35 может укладываться подложка 34 типа «Шумофф Микс Ф», - это вибропоглощающий материал на основе битума специальной марки, состоящий из 8 слоев, обладающий высокими массой и показателями демпфирования. Данная структура материала позволяет максимально эффективно гасить шум от вибрации панели, на которую смонтирован. Клеевой монтажный слой (KMC) выполнен в виде мастичного слоя на каучуковой основе, который выигрывает у обычного клеевого слоя за счет таких свойств, как: он менее критичен к чистоте обрабатываемой поверхности. Битумные слои выдерживают минусовые температуры и не становятся хрупкими. Между слоями битума есть армирующий слой, позволяющий не разрушиться материалу, даже в случае излома одного из битумных слоев. Перечисленные выше свойства, позволяют работать без теплового пистолета при температурах 15°С, что невозможно для аналогов. Благодаря массе, толщине и многослойности данный материал может эффективно гасить шум на пластиковых и металлических конструкциях толщиной до 3 мм. К таким конструкциям можно отнести в том числе металлические входные двери и лестницы. Выпускается в виде листов размером 370×270.On the screed 35, a substrate 34 of the type “Shumoff Mix F” can be laid, it is a vibration-absorbing material based on special grade bitumen, consisting of 8 layers, which has a high mass and damping rates. This material structure allows you to most effectively absorb noise from vibration of the panel on which it is mounted. The adhesive mounting layer (KMC) is made in the form of a rubber-based mastic layer, which outperforms the conventional adhesive layer due to properties such as: it is less critical to the cleanliness of the processed surface. Bituminous layers withstand sub-zero temperatures and do not become brittle. Between the layers of bitumen there is a reinforcing layer, which allows the material not to collapse, even in the case of a break in one of the bitumen layers. The properties listed above allow you to work without a heat gun at temperatures of 15 ° C, which is impossible for analogues. Due to its mass, thickness and multi-layering, this material can effectively dampen noise on plastic and metal structures up to 3 mm thick. Such structures include metal entrance doors and stairs. Available in the form of sheets of size 370 × 270.
прочность связи с поверхностью 5 Н/смbond strength to the surface 5 N / cm
На ламинат 34 оборудование 11 может устанавливаться посредством полиуретанового эластомера для виброизоляции - материалы SYLOMER SR австрийской фирмы Getzner Werkstoffe GmbH, которые представляют собой микропористые полиуретановые эластомеры со смешанной ячеистой структурой и специально разработаны для решения задач виброизоляции. Свойства материала позволяют реализовывать полноплоскостные, ленточные или точечные виброизолирующие опоры, что облегчает процесс проектирования. Широкий ряд стандартных марок материала позволяет осуществить оптимальный выбор типа материала в зависимости от нагрузки и площади опор. Материал SYLOMER SR применяется в качестве упругого элемента для виброизоляции инженерного оборудования, фундаментов зданий, рельсовых путей, в конструкциях плавающих полов и др. Характеристики виброопор подбираются в соответствии с условиями применения, видом конструкции и методом строительства.Equipment 11 can be installed on laminate 34 using a polyurethane elastomer for vibration isolation - SYLOMER SR materials of the Austrian company Getzner Werkstoffe GmbH, which are microporous polyurethane elastomers with a mixed cellular structure and are specially designed to solve vibration isolation problems. Material properties make it possible to realize full-plane, tape or point vibration-isolating supports, which facilitates the design process. A wide range of standard grades of material allows for the optimal selection of the type of material depending on the load and the area of the supports. SYLOMER SR material is used as an elastic element for vibration isolation of engineering equipment, building foundations, rail tracks, in the construction of floating floors, etc. The characteristics of the vibration mounts are selected in accordance with the conditions of use, type of construction and construction method.
Отличительные особенности: не подвержен гидролизу, а также воздействию разбавленных щелочей, кислот, растворителей и масел; выдерживает долговременные циклические нагрузки (более 2 млн циклов нагружения); воспринимает значительные перегрузки; при воздействии статической нагрузки материал не теряет своих свойств в течение 30 и более лет. Distinctive features: not subject to hydrolysis, as well as to the effects of diluted alkalis, acids, solvents and oils; withstands long-term cyclic loads (more than 2 million loading cycles); perceives significant overload; when exposed to static load, the material does not lose its properties for 30 years or more.
Размеры:Dimensions:
Толщина: 12,5 мм и 25 мм. Длина рулона: 5 м. Ширина рулона: 1,5 м. Thickness: 12.5 mm and 25 mm. Roll length: 5 m. Roll width: 1.5 m.
Физические характеристики:Physical characteristics:
Интервал температур: от -30 до +70°С. Пиковая температура (кратковременно): +120°С.Temperature range: from -30 to + 70 ° С. Peak temperature (short-term): + 120 ° С.
Конструкция пола на упругом основании работает следующим образом. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.The floor structure on an elastic base works as follows. When installing
Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглощающего материала, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор шумопоглощающего материала. Причем иглопробивные маты состоят из волокон, имеющих диаметр не ниже предельно допустимого гигиенического значения, не содержат канцерогенных асбестовых и керамических волокон, а в их состав не входят такие вредные связующие, как фенол. Поэтому с уверенностью их можно отнести к классу теплозвукоизоляционных материалов, соответствующих высоким гигиеническим и противопожарным требованиям. Добавим, что стекловолокнистые материалы имеют низкую теплопроводность, не поддаются влиянию пара, масла, воды, обладают высокой температурной стабильностью.The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of sound-absorbing material, which is a model of Helmholtz resonators, where energy losses occur due to friction of the mass of air in the resonator neck vibrating with the excitation frequency against the wall of the neck itself, which has the form of a branched pore networks of sound-absorbing material. Moreover, needle-punched mats consist of fibers having a diameter not lower than the maximum permissible hygienic value, do not contain carcinogenic asbestos and ceramic fibers, and such harmful binders as phenol are not included in their composition. Therefore, with confidence they can be attributed to the class of heat and sound insulating materials that meet high hygienic and fire safety requirements. We add that fiberglass materials have low thermal conductivity, are not influenced by steam, oil, water, and have high temperature stability.
Акустические стеновые панели 6 могут быть выполнены в виде плит из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».
Штучный звукопоглотитель состоит из жесткого каркаса 1, подвешиваемого за крючья 4 на тросах (см. фиг. 3, 4) либо непосредственно крепящегося к потолку производственного здания. Внутри каркаса расположен звукопоглощающий материал 2, обернутый сетчатой капроновой тканью 3 или стеклотканью. В некоторых случаях поверх стеклоткани 3 к каркасу 1 может быть прикреплен просечно-вытяжной стальной лист (на чертеже не показан). Каркас может быть выполнен по форме в виде прямоугольного параллелепипеда (фиг. 1, фиг. 2) с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5, или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2.The piece sound absorber consists of a
Внутри каркаса 1 могут быть полости 5, не заполненные звукопоглощающим материалом, причем их расположение может быть выполнено послойно рядами (на чертеже не показано) или в шахматном порядке, как показано на фиг. 1. Каркас 1 подвешивается за крючья 4, как показано на фиг. 1, или крючья могут быть расположены с вершинах куба (на чертеже не показано). При этих схемах подвеса должны соблюдаться оптимальные соотношения размеров: D - от центра каркаса до точки подвеса к потолку и С - расстояние между осями соседних каркасов (фиг. 4), причем отношение этих размеров должно находиться в оптимальном интервале величин: C:D=1:1…4:1.Inside the
Заполнение осуществляют звукопоглощающим негорючим материалом (например, винипором, стекловолокном) с защитным слоем 3 из стеклоткани, предотвращающим выпадение звукопоглотителя.The filling is carried out with a sound-absorbing non-combustible material (for example, vinipore, fiberglass) with a
В качестве звукопоглощающего материала может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.As a sound-absorbing material, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the
В качестве звукопоглощающего материала может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая ваты типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена.Rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene can be used as sound-absorbing material.
Просечно-вытяжной стальной лист может быть выполнен с коэффициентом перфорации перфорированной поверхности, принимаемым равным или более 0,25.Expanded steel sheet can be made with a coefficient of perforation of the perforated surface, taken equal to or more than 0.25.
Штучный звукопоглотитель работает следующим образом.Piece sound absorber works as follows.
Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем 2 полостями. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных полостями 5. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило, большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот.Sound waves propagating in the production room interact with 2 cavities filled with sound absorber. Sound absorption at low and medium frequencies occurs due to the acoustic effect, constructed on the principle of Helmholtz resonators formed by
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем 2, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей 5 увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a
Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки штучного звукопоглотителя на требуемый частотный диапазон шумоподавления и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.An advantage of the invention is its versatility of application for various production facilities having a wide variety of noise characteristics. At the same time, it should be noted the relative ease of setting up a piece of sound absorber for the required frequency range of noise reduction and its economically feasible efficiency (meaning reducing noise to sanitary standards). In addition, the implementation of the sound absorber of non-combustible materials makes the design fireproof.
Способ защиты оператора от производственного шума осуществляют следующим образом.The way to protect the operator from industrial noise is as follows.
Рабочее место оператора 15 располагают между акустическими экранами 9 и 11 и защищают оператора от прямого звука, который распространяется от виброактивного оборудования 7 и 8. Для того чтобы повысить эффективность защиты от отраженных звуковых волн, над рабочей зоной (рабочим местом) устанавливают акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4). Он снижает уровни звуковых волн, исходящих от оборудования 7 и 8, за счет многократного отражения звуковых волн от кулисных звукопоглотителей. Для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании. При установке виброактивного оборудования 7 и 8 на плиту 18 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.The operator’s workplace 15 is placed between the acoustic screens 9 and 11 and protects the operator from direct sound that is spreading from the
Рабочее место оператора 15 надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка, или движущиеся части оборудования.The operator’s workstation 15 is reliably protected both from the acoustic load on the operator and from mechanical factors of the production environment, such as, for example, shavings in the workshop, or moving parts of the equipment.
Звуковая энергия от оборудования 7 и 8, находящегося в помещении, пройдя через перфорированную стенку акустических стеновых панелей 6, попадает на слои звукопоглощающего материала (который может быть как мягким, например из базальтового или стеклянного волокна, так и жестким, например камня-ракушечника). Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например, типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой. При этом акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4), снижает уровни звуковых волн, исходящих от оборудования 7 и 8, а рабочее место оператора 15, расположенное между акустическими экранами 9 и 11, надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка или движущиеся части оборудования.Sound energy from
На фиг. 6 изображено акустическое устройство акустического подвесного потолка 5, размещенного в верхней зоне помещения, в зоне ферм 4, на фиг. 7 - схема звукопоглощающего элемента акустического устройства акустического подвесного потолка.In FIG. 6 shows the acoustic device of the acoustic suspended
Акустическое устройство акустического подвесного потолка (фиг. 6) состоит по крайней мере из двух звукопоглощающих секций 36, каждая из которых содержит стенки из гофрированного перфорированного материала 37, между которыми расположены звукопоглощающие элементы 38. Стенки гофрированного материала 37 выполнены с щелевой перфорацией из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Звукопоглощающие секции 24 подвешены, например, на тросах 39 за крючья 40.The acoustic device of the acoustic suspended ceiling (Fig. 6) consists of at least two sound-absorbing
Каждый из звукопоглощающих элементов 38 (фиг. 7) выполнен в виде перфорированных 41 и 46 пластин, между которыми симметрично расположены слои 42 и 45 звукоотражающего материала, а в центре между слоями 30 и 33 звукоотражающего материала находятся слои 43 и 44 звукопоглощающего материала разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые расположены соответственно у перфорированных 41 и 46 пластин, причем перфорированная пластина может быть выполнена из пластмассовой, например капроновой или металлической сетки с мелкой ячейкой.Each of the sound-absorbing elements 38 (Fig. 7) is made in the form of perforated 41 and 46 plates, between which the
В качестве материала звукоотражающих слоев 42, 45 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.As the material of the sound-reflecting
В качестве материала звукоотражающих слоев 42, 45 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting
В качестве звукопоглощающего материала слоев 43, 44 используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден», или жесткий пористый шумопоглощающий материал, например металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30…45%, или крошка из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм.As sound-absorbing material of
В качестве звукопоглощающего материала использован пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов.As a sound-absorbing material, a porous sound-absorbing ceramic material having a bulk density of 500 ÷ 1000 kg / m 3 and consisting of 100 mass parts of perlite with a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 mass parts of one or more sintering materials and 10 ÷ 20 mass parts of binder materials.
В качестве звукоотражающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As a sound-reflecting material, a material based on aluminum-containing alloys was used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, for example foam aluminum, or sound-proofing boards based on glass staple fibers of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .
Акустическое устройство акустического подвесного потолка работает следующим образом.The acoustic device of the acoustic suspended ceiling is as follows.
Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через стенки из гофрированного перфорированного материала и перфорированные пластины 41 и 46 звукопоглощающих элементов попадает на слои 42, 45 звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые падают затем на слои 43, 44 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например, выполненного из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов Гельмгольца, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through walls of corrugated perforated material and
Рабочее место оператора оснащают средствами снижения шума, при этом рабочее место располагают между акустическими экранами и защищают тем самым оператора от прямого звука, который распространяется от виброактивного оборудования, а для повышения эффективности защиты от отраженных звуковых волн над рабочей зоной устанавливают акустический подвесной потолок, размещенный в верхней зоне помещения, при этом для снижения звуковой вибрации рабочее место оператора оснащают двухкаскадной системой виброзащиты, выполненной в виде пола на упругом основании, который содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала, установленные с зазором относительно несущих стен производственного помещения, а слои вибродемпфирующего материала и гидроизоляционного материала выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите перекрытия, причем полости заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом. Акустическое устройство акустического подвесного потолка, размещенного в зоне ферм, оснащают по крайней мере двумя звукопоглощающими секциями, каждая из которых содержит стенки из гофрированного перфорированного материала, между которыми расположены звукопоглощающие элементы.The operator’s workplace is equipped with noise reduction means, while the workplace is located between the acoustic screens and thereby protect the operator from direct sound that is spreading from vibroactive equipment, and to increase the effectiveness of protection from reflected sound waves, an acoustic suspended ceiling is installed over the working area, located in the upper zone of the room, while to reduce sound vibration, the operator’s workplace is equipped with a two-stage vibration protection system made in the form of a floor on an elastic Ohm base, which contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate of the floor with cavities through layers of vibration damping material and waterproofing material, installed with a gap relative to the bearing walls of the production room, and layers of vibration damping material and waterproofing material are made with flanging, tightly adjacent to the supporting structures of the walls and the base supporting slab, and the cavity and filled with vibration damping material, for example, foamed polymer, or polyethylene, or polypropylene. The acoustic device of an acoustic suspended ceiling located in the truss zone is equipped with at least two sound-absorbing sections, each of which contains walls of corrugated perforated material, between which sound-absorbing elements are located.
Стенки гофрированного материала выполняют с щелевой перфорацией из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, при этом звукопоглощающие секции подвешивают на тросах за крючья, а каждый из звукопоглощающих элементов выполняют в виде перфорированных пластин, между которыми симметрично располагают слои звукоотражающего материала.The walls of the corrugated material are made with slotted perforations made of stainless steel or galvanized sheet 0.7 mm thick with a polymer protective and decorative coating of the
В центре между слоями звукоотражающего материала располагают слои звукопоглощающего материалов разной плотности, в два слоя, причем слои звукоотражающего материала выполняют сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, которые располагают соответственно у перфорированных пластин, причем перфорированная пластина выполнена из пластмассовой, капроновой или металлической сетки с мелкой ячейкой, при этом в качестве звукопоглощающего материала используют пористый звукопоглощающий керамический материал, имеющий объемную плотность 500÷1000 кг/м3 и состоящий из 100 массовых частей перлита с диаметром частиц 0,5÷2,0 мм, 100÷200 массовых частей одного или нескольких спекающих материалов и 10÷20 массовых частей связующих материалов, а в качестве материала звукоотражающих слоев применяют материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий.In the center between the layers of sound-reflecting material are layers of sound-absorbing materials of different densities, in two layers, and the layers of sound-reflecting material perform a complex profile consisting of uniformly distributed hollow tetrahedrons, which allow reflecting the sound waves incident in all directions, which are located respectively on the perforated plates, and the perforated the plate is made of plastic, kapron or metal mesh with a small cell, while being sound-absorbing sound absorbing material is a porous ceramic material having a bulk density of 500 ÷ 1000 kg / m3 and consisting of 100 parts by weight of perlite having a particle diameter of 0.5 ÷ 2.0 mm, 100 ÷ 200 parts by weight of one or more sintering materials and 10 ÷ 20 mass parts of the binder materials, and as the material of the sound-reflecting layers, a material based on aluminum-containing alloys is used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength e within 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foamed aluminum.
На фиг. 8 представлен вариант схемы теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3 производственного помещения.In FIG. 8 shows a variant of the design of heat and sound insulating
Теплозвукоизолирующее ограждение 2 выполнено в виде жесткой стенки 47 и перфорированной стенки 48, между которыми расположен двухслойный комбинированный звукопоглощающий элемент, причем слой 49, прилегающий к жесткой стенке 47, выполнен звукопоглощающим, а прилегающий к перфорированной стенке 48, слой 50, выполнен с перфорацией 51 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны.The heat and sound insulating
В качестве звукопоглощающего материала слоя 49 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. При этом поверхность волокнистых звукопоглотителей обрабатывается пористыми красками, пропускающими воздух, например, типа Acutex Т или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом,As the sound-absorbing material of
В качестве материала звукоотражающего слоя 50 применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As the material of the sound-reflecting
Звукопоглощающая (облицовка) работает следующим образом.Sound-absorbing (lining) works as follows.
Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 48, попадает на слой 50 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а часть звуковой энергии проходит через слой 50 из звукоотражающего материала и взаимодействует со слоем 49 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии. Коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Выполнение перфорации на звукоотражающим слое способствует более эффективному шумоглушению на средних частотах, так как часть звуковых волн будет проходить через перфорацию 51 и рассеиваться на слое 49 из звукопоглощающего материала.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120740A RU2646876C1 (en) | 2017-06-14 | 2017-06-14 | Method of protecting the operator from production noise |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120740A RU2646876C1 (en) | 2017-06-14 | 2017-06-14 | Method of protecting the operator from production noise |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2646876C1 true RU2646876C1 (en) | 2018-03-12 |
Family
ID=61627551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017120740A RU2646876C1 (en) | 2017-06-14 | 2017-06-14 | Method of protecting the operator from production noise |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2646876C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112562999A (en) * | 2020-11-13 | 2021-03-26 | 广西电网有限责任公司贵港供电局 | Noise reduction device for dry-type transformer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3881569A (en) * | 1973-09-06 | 1975-05-06 | Jr William O Evans | Soundproofing panel construction |
RU2059772C1 (en) * | 1994-07-07 | 1996-05-10 | Московская государственная текстильная академия им.А.Н.Косыгина | Acoustic panel |
RU2277075C2 (en) * | 2000-10-17 | 2006-05-27 | МИЗУТАНИ, Масару | Porous sound-absorbing ceramic article and method of production of such article (versions) |
RU2530434C1 (en) * | 2013-08-21 | 2014-10-10 | Олег Савельевич Кочетов | Kochetov's acoustic panel |
RU2013133942A (en) * | 2013-07-22 | 2015-01-27 | Олег Савельевич Кочетов | METHOD OF PROTECTING THE OPERATOR FROM PRODUCTION NOISE |
RU2547524C1 (en) * | 2013-10-09 | 2015-04-10 | Олег Савельевич Кочетов | Kochetov(s system for acoustic protection of operator |
-
2017
- 2017-06-14 RU RU2017120740A patent/RU2646876C1/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3881569A (en) * | 1973-09-06 | 1975-05-06 | Jr William O Evans | Soundproofing panel construction |
RU2059772C1 (en) * | 1994-07-07 | 1996-05-10 | Московская государственная текстильная академия им.А.Н.Косыгина | Acoustic panel |
RU2277075C2 (en) * | 2000-10-17 | 2006-05-27 | МИЗУТАНИ, Масару | Porous sound-absorbing ceramic article and method of production of such article (versions) |
RU2013133942A (en) * | 2013-07-22 | 2015-01-27 | Олег Савельевич Кочетов | METHOD OF PROTECTING THE OPERATOR FROM PRODUCTION NOISE |
RU2530434C1 (en) * | 2013-08-21 | 2014-10-10 | Олег Савельевич Кочетов | Kochetov's acoustic panel |
RU2547524C1 (en) * | 2013-10-09 | 2015-04-10 | Олег Савельевич Кочетов | Kochetov(s system for acoustic protection of operator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112562999A (en) * | 2020-11-13 | 2021-03-26 | 广西电网有限责任公司贵港供电局 | Noise reduction device for dry-type transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2471935C1 (en) | Comfort structure of room | |
RU2528802C1 (en) | Sound absorbing element | |
RU2543826C2 (en) | Shop acoustic finishing | |
RU2490400C1 (en) | Acoustic structure for production premises | |
RU2583441C1 (en) | Kochetov device for acoustic protection of operator | |
RU2500860C1 (en) | Method of operator's acoustic protection | |
RU2530437C1 (en) | Kochetov's acoustic workshop structure | |
RU2547524C1 (en) | Kochetov(s system for acoustic protection of operator | |
RU2562356C1 (en) | Earthquake-resistant building structure | |
RU2544182C2 (en) | Earthquake-resistant building structure | |
RU2671261C1 (en) | Complex for acoustical protection of the operator | |
RU2611650C1 (en) | Low noise seismic resistance industrial building | |
RU2646876C1 (en) | Method of protecting the operator from production noise | |
RU139312U1 (en) | OPERATOR ACOUSTIC PROTECTION DEVICE | |
RU2671278C1 (en) | Workshop acoustic structure | |
RU2440470C1 (en) | Acoustic structure by kochetov | |
RU2543827C2 (en) | Shop acoustic finishing | |
RU2610013C1 (en) | Kochetov low-noise manufacturing building | |
RU2648733C2 (en) | Device for acoustic protection of operator | |
RU2651565C1 (en) | Acoustic construction for industrial premises | |
RU2425931C1 (en) | Production room with low noise level | |
RU2646238C1 (en) | Acoustic device | |
RU2565281C1 (en) | Kochetov's shop acoustic structure | |
RU2655639C2 (en) | Soundproofing enclosure | |
RU2579825C1 (en) | Kochetov(sacoustic structure for shop |