RU2536389C2 - Резонатор с температурной компенсацией по меньшей мере первого и втрого порядка - Google Patents
Резонатор с температурной компенсацией по меньшей мере первого и втрого порядка Download PDFInfo
- Publication number
- RU2536389C2 RU2536389C2 RU2012130004/08A RU2012130004A RU2536389C2 RU 2536389 C2 RU2536389 C2 RU 2536389C2 RU 2012130004/08 A RU2012130004/08 A RU 2012130004/08A RU 2012130004 A RU2012130004 A RU 2012130004A RU 2536389 C2 RU2536389 C2 RU 2536389C2
- Authority
- RU
- Russia
- Prior art keywords
- resonator
- temperature
- order
- coating
- base
- Prior art date
Links
- 238000000576 coating method Methods 0.000 claims abstract description 61
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000011248 coating agent Substances 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 27
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 18
- 235000012239 silicon dioxide Nutrition 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- 229940119177 germanium dioxide Drugs 0.000 claims description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000011162 core material Substances 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000010453 quartz Substances 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 229910008065 Si-SiO Inorganic materials 0.000 description 2
- 229910006405 Si—SiO Inorganic materials 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical class [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02244—Details of microelectro-mechanical resonators
- H03H9/02433—Means for compensation or elimination of undesired effects
- H03H9/02448—Means for compensation or elimination of undesired effects of temperature influence
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/0072—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
- H03H3/0076—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Micromachines (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Изобретение относится к термокомпенсированному резонатору, который может использоваться в частотных генераторах. Технический результат - уменьшение частотного дрейфа в зависимости от температуры. Термокомпенсированный резонатор включает основу для деформации, сердцевина которой содержит первый материал, имеет по меньшей мере первое и второе покрытия, выполненные соответственно из второго и третьего материалов, причем для каждого материала изменение модуля Юнга в зависимости от температуры различное, каждая толщина первого и второго покрытий отрегулирована так, чтобы обеспечить резонатору практически нулевое изменение частоты первого и второго порядка в зависимости от температуры. 2 н. и 16 з. п. ф-лы, 9 ил.
Description
Область техники, к которой относится изобретение
Изобретение относится к термокомпенсированному резонатору типа балансирной пружины, микроэлектромеханической системы (МЭМС) (MEMS) или камертона, для изготовления временного или частотного генератора, температурные коэффициенты которого практически равны нулю для по меньшей мере первого и второго порядка.
Уровень техники
Патент ЕПВ №1422436 раскрывает балансирную пружину, сформированную из кремния и покрытую двуокисью кремния, чтобы получить практически нулевой температурный коэффициент вблизи температур сертификационного процесса COSC (швейцарский официальный институт хронометрического тестирования), т.е. между +8 и +38°С. Аналогично, международная заявка №WO 2008/043727 раскрывает резонатор МЭМС, который имеет сходные свойства малого дрейфа его модуля Юнга в том же самом температурном диапазоне.
Однако даже только частотный дрейф второго порядка в вышеуказанных описаниях требует сложной коррекции в зависимости от применения. Например, для электронных часов, которые могут быть сертифицированы COSC, электронная коррекция должна осуществляться на основе температурного измерения.
Раскрытие изобретения
Цель настоящего изобретения состоит в преодолении всех или части из вышеупомянутых недостатков за счет обеспечения резонатора с температурной компенсацией по меньшей мере первого и второго порядка.
Поэтому изобретение относится к термокомпенсированному резонатору, который содержит основу, используемую при изгибании, при этом сердцевина основы содержит первый материал, основа включает в себя по меньшей мере первое и второе покрытия, соответственно сделанные из второго и третьего материалов, причем изменение модуля Юнга каждого материала в зависимости от температуры отличается, а каждая толщина упомянутых первого и второго покрытий регулируется так, чтобы обеспечить упомянутому резонатору возможность иметь практически нулевые изменения частоты первого и второго порядка в зависимости от температуры.
Преимущественно, согласно данному изобретению, основа резонатора, используемая при изгибании, имеет множество покрытий, когда необходимо скомпенсировать порядки температурных коэффициентов. Таким образом, в зависимости от размеров и знаков каждого порядка материалов сердцевины и каждого покрытия каждая толщина рассчитывается так, чтобы обеспечить компенсацию для каждого порядка.
В соответствии с другими преимущественными признаками изобретения:
- основа включает в себя третье покрытие, выполненное из четвертого материала, изменения модуля Юнга которого в зависимости от температуры отличны от материалов сердцевины и остальных покрытий, причем каждая толщина упомянутых трех покрытий регулируется, чтобы обеспечить упомянутому резонатору возможность иметь практически нулевые изменения частоты первого, второго и третьего порядка в зависимости от температуры;
- основа сердцевины имеет изменения модуля Юнга первого и второго порядка в зависимости от температуры, которые являются отрицательными подобно монокристаллическому кремнию;
- основа включает в себя секцию практически четырехугольной формы, грани которой покрыты в одинаковых парах или полностью;
- первое покрытие имеет изменения модуля Юнга в зависимости от температуры положительные для первого порядка и отрицательные для второго порядка, как у двуокиси кремния;
- второе покрытие имеет изменения модуля Юнга в зависимости от температуры положительные для второго порядка и отрицательные для первого порядка, как у двуокиси германия, либо имеет отрицательные изменения модуля Юнга второго порядка в зависимости от температуры;
- первое покрытие переставляется со вторым покрытием;
- нанесение упомянутых покрытий осуществляется в первую очередь на поверхности, параллельные нейтральной плоскости основы, чтобы в наибольшей степени модифицировать частоту упомянутого резонатора;
- основа представляет собой стержень, свернутый вокруг самого себя для образования балансирной пружины, и соединяется с инерционным маховиком либо включает в себя по меньшей мере два симметрично установленных стержня, чтобы образовать камертон, либо она является резонатором МЭМС.
Наконец, изобретение относится также к временному или частотному генератору, такому, например, как хронометр, отличающемуся тем, что он включает в себя по меньшей мере один резонатор по любому из предшествующих вариантов.
Краткое описание чертежей
Прочие признаки и преимущества станут ясны из нижеследующего описания, данного посредством неограничивающей иллюстрации со ссылкой на приложенные чертежи, где:
фиг.1 является общей перспективной схемой балансирной пружины;
фиг.2 является эквивалентным сечением балансирной пружины по Фиг.1;
фиг.3 является схемой нескольких вариантов осуществления по изобретению;
фиг.4 является графиком, показывающим модули упругости каждого материала по
первому варианту осуществления изобретения;
фиг.5 является графиком, показывающим модули упругости каждого материала по второму варианту осуществления изобретения;
фиг.6 является графиком, показывающим отсутствие изменения частоты в резонаторе по изобретению;
фиг.7 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью кремния;
фиг.8 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью германия;
фиг.9 является графиком, показывающим изменения температурного коэффициента первого и второго порядка в кремниевой балансирной пружине, покрытой двуокисью кремния и двуокисью германия.
Подробное описание предпочтительных вариантов осуществления
Как пояснено выше, изобретение относится к резонатору, который может быть балансирной пружиной, камертоном или, в более общем виде, резонатором МЭМС (микроэлектромеханической системы). Для упрощения пояснения изобретения ниже представлено только применение в балансирной пружине. Однако специалисты без чрезмерных затруднений могут выполнить другие применения резонатора подобно указанным выше из представленного далее описания.
Аналогично, пояснение относится к сердцевине, в нашем случае балансирной пружины, сформированной из монокристаллического кремния. Однако материал сердцевины не ограничивается монокристаллическим кремнием, но может быть расширен до различных типов материалов, таких как, например, поликремний, стекло, нитрид, алмаз, монокристаллический кварц или металл.
График на Фиг.6 показывает характеристику температурного дрейфа для существующих резонаторов в зависимости от температуры. Первая кривая в виде сплошной линии, названная «Кварц с Z-срезом», показывает частотный дрейф монокристаллического кварцевого камертона на 32 кГц, сделанного в слегка повернутом Z-срезе. Вторая кривая в виде пунктира, названная «Si-SiO2», показывает частотный дрейф кремниевого резонатора МЭМС, покрытого двуокисью кремния.
Для обеих этих кривых видно, что дрейф является ненулевым в широком температурном диапазоне, в частности между -20 и +80°С. Этот частотный дрейф, главным образом, связан с изменением модуля Юнга в зависимости от температуры. Однако даже низкий частотный дрейф между +10 и +40°С двух ныне изготавливаемых примеров может потребовать внешней коррекции резонатора. Это случай, например, электронных часов, которые содержат кварцевый камертон, корректируемый электронным образом на основе температурного измерения часов для сертификации COSC.
Таким образом, преимущественно, цель изобретения состоит в том, чтобы предложить резонатор, в котором частотный дрейф в зависимости от температуры был еще более минимизирован, как показано штрихпунктирной линией, названной «составной», масштаб которой умышленно выдержан одинаковым относительно двух других кривых, чтобы показать значительное различие в дрейфе. Конкретнее, основа резонатора согласно изобретению включает в себя множество покрытий, когда имеются температурные коэффициенты, которые надо скомпенсировать.
Предпочтительно, основа резонатора поэтому включает в себя по меньшей мере два покрытия и, возможно, третье покрытие, если компенсация второго порядка все же вызывает неприемлемый частотный дрейф. Однако после компенсации третьего порядка частотный дрейф для любого резонатора становится пренебрежимым. Таким образом, в зависимости от размеров и знаков каждого порядка материалов сердцевины и каждого покрытия каждая толщина рассчитывается так, чтобы обеспечивать компенсацию для каждого порядка.
По определению относительное изменение частоты резонатора подчиняется следующему соотношению:
где
- A - постоянная, которая зависит от точки отсчета, в ppm (10-6);
- Т0 - исходная температура отсчета, в °С;
- α - температурный коэффициент первого порядка, выраженный в ppm·°С-1;
- β - температурный коэффициент второго порядка, выраженный в ppm·°С-2;
- γ - температурный коэффициент третьего порядка, выраженный в ppm·°С-3.
Кроме того, температурный коэффициент упругости (ТКУ) (СТЕ) представляет относительное изменение модуля Юнга в зависимости от температуры. Выражения «α» и «β», которые используются ниже, представляют таким образом, соответственно, температурные коэффициенты первого и второго порядка, т.е. относительное изменение частоты резонатора в зависимости от температуры. Выражения «α» и «β» зависят от температурного коэффициента упругости основы резонатора и коэффициента расширения основы. Кроме того, выражения «α» и «β» также учитывают коэффициенты, специфичные для любого отдельного инерционного блока, такого как, например, балансир в резонаторе на балансирной пружине. Поскольку колебания любого резонатора, предназначенного для временного или частотного генератора, должны поддерживаться, температурная зависимость может также включать в себя вклад от системы их поддержания. Предпочтительно, основа резонатора представляет собой сердцевину 3, покрытую по меньшей мере двумя покрытиями 4, 5.
Пример, проиллюстрированный на фиг.1-3, показывает балансирную пружину 1, выполненную заедино с гнездом 2, в которой температурные коэффициенты первого и второго порядка основы компенсируются. Фиг.2 предлагает поперечное сечение основы балансирной пружины, которое более ясно показывает ее прямоугольное сечение. Основа может, таким образом, определяться своими длиной l, высотой h и толщиной е. Фиг.3 показывает возможные, но не ограничивающие альтернативы А, А', В, С и D. Разумеется, покрытия 4 и 5 даны не в масштабе относительно измерений сердцевины 3, чтобы показать более ясно расположение каждой части 3, 4 и 5.
В первой альтернативе А единственная поверхность секции последовательно покрыта покрытием 4, а затем покрытием 5. Порядок, в котором покрытия 4 и 5 накладываются, не установлен, т.е. покрытия 4 и 5 могут переставляться. Кроме того, когда поверхности, которые покрыты, параллельны нейтральной плоскости F стержня, это видоизменяет частоту упомянутого резонатора более сильно, чем если нанесение осуществляется на поверхностях, перпендикулярных плоскости F изгиба. Разумеется, возможно также предусмотреть, чтобы каждое покрытие 4, 5 было представлено на отличной поверхности, как иллюстрируется в альтернативе А'.
Во второй альтернативе В или С сечение основы включает в себя пары одинаковых поверхностей. Таким образом, любые две параллельные поверхности включают в себя два покрытия 4, 5, наложенные не в конкретном порядке, т.е. покрытия 4 и 5 могут переставляться, как в примере В, либо каждая из параллельных поверхностей имеет одно из покрытий 4, 5, как в примере С. Разумеется, можно также предусмотреть, чтобы покрытие 4 было представлено на двух смежных поверхностях, а другие две поверхности были покрыты покрытием 5.
В третьей альтернативе D сечение основы включает в себя поверхности, которые полностью покрыты последовательно покрытием 4, а затем покрытием 5. Порядок, в котором нанесены покрытия 4 и 5, не имеет, однако, никакого значения, т.е. покрытия 4 и 5 могут переставляться.
Фиг.4 показывает график, иллюстрирующий температурную зависимость модуля Юнга каждого материала, чтобы проиллюстрировать вариант осуществления изобретения, который использует кремний, двуокись кремния и двуокись германия. Таким образом, модуль Юнга кремния уменьшается при увеличении температуры, когда модуль Юнга двух других материалов возрастает при нарастании температуры. Кроме того, увеличение более заметно для двуокиси кремния нежели двуокиси германия между двумя значениями температуры, т.е. между -20°С и +80°С.
Фактически температурный коэффициент упругости кремния отрицателен для первого и второго порядка, когда температурные коэффициенты упругости двух других материалов положительны для первого порядка. Однако температурный коэффициент упругости второго порядка отрицателен для двуокиси кремния, тогда как для двуокиси германия он положителен.
Однако данная интерпретация фиг.4 сосредоточена на температурном коэффициенте упругости материалов. Необходимо также учесть коэффициенты расширения материалов и эффект поддерживающей колебания системы, чтобы окончательно получить коэффициенты α, β изменения частоты резонатора. Для понимания этой последней интерпретации ее два коэффициента показаны на фиг.7 и 8.
Так, на фиг.7 сердцевина 3 имеет отрицательные температурные коэффициенты упругости первого и второго порядка, подобно кремнию, и покрыта покрытием 4, которое включает в себя положительный первого порядка и отрицательный второго порядка температурные коэффициенты упругости, как у двуокиси кремния. Коэффициенты расширения этих материалов, в частности, баланса (18 ppm/°C) также учтены. Эффект поддерживающей колебания системы здесь пренебрежим. Фиг.7 также показывает, что единица порядков α (непрерывные линии) и порядков β (прерывистые линии) не одна и та же. Можно видеть, что α первого порядка скомпенсирована после некоторой толщины покрытия, т.е. пересекает линию 0, однако β второго порядка просто уменьшается по отношению к материалу одной сердцевины. Таким образом, ясно, что хотя α первого порядка можно скомпенсировать, но это не для случая β второго порядка.
На фиг.8 сердцевина 34 имеет отрицательные температурные коэффициенты упругости первого и второго порядка, подобно кремнию, покрыта покрытием 5, которое имеет положительные температурные коэффициенты упругости первого и второго порядка, как у двуокиси германия. Как и на фиг.7, фиг.8 показывает, что единица порядков α (непрерывные линии) и порядков β (прерывистые линии) не одна и та же. Можно видеть, что с тонкой толщины покрытия β второго порядка скомпенсирована, т.е. пересекает линию 0, однако α первого порядка скомпенсирована для большей толщины. Однако важно для обоих порядков α и β скомпенсировать в зависимости от толщины единственного материала.
Это имеет место вследствие разности в размерах температурных коэффициентов упругости каждого материала на каждом порядке. Таким образом, хотя может показаться иллюзорным найти материал для покрытия, который был бы точно «обратным» сердцевине, который позволял бы наносить единственный компенсационный слой, изобретение предлагает добавлять покрытие для каждого порядка, подлежащего компенсации. Каждое покрытие не предназначено далее для «прямой» коррекции порядка, но для улучшения каждой из компенсаций.
На фиг.9 посредством примера показаны расчеты. В этом примере сердцевина 3 имеет отрицательные температурные коэффициенты упругости первого и второго порядков, подобно кремнию. Сердцевина 3 покрыта первым покрытием 4, которое имеет положительные температурные коэффициенты упругости первого порядка и отрицательные температурные коэффициенты упругости второго порядка, как у двуокиси кремния. Первое покрытие 4 в свою очередь покрыто вторым покрытием 5, которое имеет положительные температурные коэффициенты упругости первого и второго порядков, как у двуокиси германия.
Фиг.9 показывает, что с помощью расчета становится возможным регулировать толщину каждого покрытия 4, 5, чтобы компенсация порядков α и β сходилась на практически одной и той же конечной толщине, т.е. чтобы две кривые α и β пересекали линию 0 на одной и той же толщине. В примере по фиг.9 сердцевина 3, первое покрытие 4 и второе покрытие 5 имеют, таким образом, соответственные толщины примерно 40, 3,5 и 3,6 микрометров.
Таким образом, в зависимости от желательной толщины сердцевины 3 или желательного конечного сечения возможно предложить резонатор со значительно улучшенной температурной компенсацией по сравнению с «Кварцем с Z-срезом» или «Si-SiO2», показанным на фиг.6.
Конечно, данное изобретение не ограничивается проиллюстрированным примером, но способно дать различные варианты и альтернативы, которые будут ясны специалистам. В частности, для сердцевины 3 или покрытий 4, 5 можно предусматривать иные материалы, чтобы получать улучшенную температурную компенсацию.
Например, в высшей степени вероятно, что материал, который назовем Х (наподобие стабилизированных окислов циркония или гафния), имеющий отрицательный температурный коэффициент упругости первого порядка (как в случае большинства материалов) и положительный температурный коэффициент упругости второго порядка, может обеспечить температурную компенсацию. Этот пример иллюстрируется на фиг.5. Поэтому ясно, для данного типа материала, что первое покрытие имеет большую толщину, чем в варианте осуществления по фиг.4.
Claims (18)
1. Термокомпенсированный резонатор (1), включающий в себя основу, используемую при деформации, при этом сердцевина (3) основы содержит первый материал, отличающийся тем, что основа имеет по меньшей мере первое и второе покрытия (4, 5), соответственно выполненные из второго и третьего материалов, причем для каждого материала изменение модуля Юнга в зависимости от температуры различное, а каждая толщина упомянутых первого и второго покрытий отрегулированы так, чтобы обеспечить резонатору практически нулевое изменение частоты первого и второго порядка (α и β) в зависимости от температуры.
2. Резонатор (1) по п.1, отличающийся тем, что основа включает в себя третье покрытие, выполненное из четвертого материала, для которого изменение модуля Юнга в зависимости от температуры отличается от материалов сердцевины (3) и остальных покрытий (4, 5), причем каждая толщина упомянутых трех покрытий отрегулирована так, чтобы обеспечить резонатору практически нулевое изменение частоты первого, второго и третьего порядка (α, β, γ) в зависимости от температуры.
3. Резонатор (1) по п.1, отличающийся тем, что сердцевина (3) основы имеет отрицательные изменения модуля Юнга первого и второго порядка в зависимости от температуры.
4. Резонатор (1) по п.3, отличающийся тем, что сердцевина (3) основы включает в себя монокристаллический кремний.
5. Резонатор (1) по п.1, отличающийся тем, что основа имеет секцию практически четырехугольной формы с парами одинаковых граней.
6. Резонатор (1) по п.1, отличающийся тем, что основа имеет сечение практически четырехугольной формы, поверхности которого полностью покрыты.
7. Резонатор (1) по п.1, отличающийся тем, что первое покрытие (4) имеет положительные для первого порядка и отрицательные для второго порядка изменения модуля Юнга в зависимости от температуры.
8. Резонатор (1) по п.7, отличающийся тем, что первое покрытие (4) включает в себя двуокись кремния.
9. Резонатор (1) по п.7, отличающийся тем, что второе покрытие (5) имеет положительное второго порядка изменение модуля Юнга в зависимости от температуры.
10. Резонатор (1) по п.9, отличающийся тем, что второе покрытие (5) имеет положительное первого порядка изменение модуля Юнга в зависимости от температуры.
11. Резонатор (1) по п.10, отличающийся тем, что второе покрытие (5) включает в себя двуокись германия.
12. Резонатор (1) по п.9, отличающийся тем, что второе покрытие (5) имеет отрицательное первого порядка изменение модуля Юнга в зависимости от температуры.
13. Резонатор (1) по п.9, отличающийся тем, что первое покрытие (4) и второе покрытие (5) выполнены в обратной последовательности.
14. Резонатор (1) по п.1, отличающийся тем, что упомянутые покрытия нанесены в первую очередь на поверхности, параллельные нейтральной плоскости (F) основы, с тем чтобы в наибольшей степени модифицировать частоту упомянутого резонатора.
15. Резонатор (1) по п.1, отличающийся тем, что основа представляет собой свернутый стержень для образования балансирной пружины и соединена с инерционным маховиком.
16. Резонатор (1) по п.1, отличающийся тем, что основа включает в себя по меньшей мере два симметрично установленных стержня для образования камертона.
17. Резонатор (1) по п.1, отличающийся тем, что основа является резонатором микроэлектромеханической системы (МЭМС).
18. Хронометр, отличающийся тем, что включает в себя по меньшей мере один резонатор по любому из пп.1-17.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09179323A EP2337221A1 (fr) | 2009-12-15 | 2009-12-15 | Résonateur thermocompensé au moins aux premier et second ordres |
EP09179323.2 | 2009-12-15 | ||
PCT/EP2010/067181 WO2011072960A1 (fr) | 2009-12-15 | 2010-11-10 | Résonateur thermocompense au moins aux premier et second ordres |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012130004A RU2012130004A (ru) | 2014-01-27 |
RU2536389C2 true RU2536389C2 (ru) | 2014-12-20 |
Family
ID=42124576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012130004/08A RU2536389C2 (ru) | 2009-12-15 | 2010-11-10 | Резонатор с температурной компенсацией по меньшей мере первого и втрого порядка |
Country Status (8)
Country | Link |
---|---|
US (1) | US9071223B2 (ru) |
EP (2) | EP2337221A1 (ru) |
JP (1) | JP5876831B2 (ru) |
CN (1) | CN102687394B (ru) |
HK (1) | HK1176471A1 (ru) |
RU (1) | RU2536389C2 (ru) |
TW (1) | TWI521873B (ru) |
WO (1) | WO2011072960A1 (ru) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2590325A1 (fr) * | 2011-11-04 | 2013-05-08 | The Swatch Group Research and Development Ltd. | Résonateur thermocompensé en céramique |
EP2597536A1 (fr) * | 2011-11-25 | 2013-05-29 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Ressort spiral amélioré et procédé de fabrication dudit ressort spiral |
DE102011119660B4 (de) * | 2011-11-29 | 2014-12-11 | Epcos Ag | Mikroakustisches Bauelement mit Wellenleiterschicht |
US9695036B1 (en) | 2012-02-02 | 2017-07-04 | Sitime Corporation | Temperature insensitive resonant elements and oscillators and methods of designing and manufacturing same |
EP4439193A2 (fr) * | 2012-07-06 | 2024-10-02 | Rolex Sa | Procédé de traitement d'une surface d'un composant horloger et composant horloger obtenu par un tel procédé |
WO2014075859A1 (fr) * | 2012-11-16 | 2014-05-22 | Nivarox-Far S.A. | Résonateur moins sensible aux variations climatiques |
EP2765705B1 (fr) * | 2013-02-07 | 2015-08-19 | The Swatch Group Research and Development Ltd. | Résonateur thermocompensé par un métal à mémoire de forme |
EP2781968A1 (fr) * | 2013-03-19 | 2014-09-24 | Nivarox-FAR S.A. | Résonateur moins sensible aux variations climatiques |
US9300227B2 (en) * | 2013-06-05 | 2016-03-29 | Silicon Laboratories Inc. | Monolithic body MEMS devices |
DE102013114211B3 (de) * | 2013-07-22 | 2014-10-09 | Damasko Gmbh | Spiralfeder für mechanische Uhrwerke |
US9712128B2 (en) | 2014-02-09 | 2017-07-18 | Sitime Corporation | Microelectromechanical resonator |
US9705470B1 (en) | 2014-02-09 | 2017-07-11 | Sitime Corporation | Temperature-engineered MEMS resonator |
DE102014106114A1 (de) | 2014-04-30 | 2015-11-05 | Damasko Uhrenmanufaktur KG | Spiralfeder und Verfahren zu deren Herstellung und Uhrwerk |
EP2952972B1 (fr) * | 2014-06-03 | 2017-01-25 | The Swatch Group Research and Development Ltd. | Procédé de fabrication d'un spiral compensateur composite |
DE102014119731A1 (de) | 2014-06-26 | 2015-12-31 | Damasko Uhrenmanufaktur KG | Spiralfeder und Verfahren zu deren Herstellung und Uhrwerk |
HK1209578A2 (en) * | 2015-02-17 | 2016-04-01 | Master Dynamic Ltd | Silicon hairspring |
US10274897B2 (en) | 2015-06-15 | 2019-04-30 | Citizen Watch Co., Ltd. | Speed governor for timepiece |
EP3989009A1 (de) | 2015-07-03 | 2022-04-27 | Damasko Präzisionstechnik GmbH & Co. KG | Spiralfeder und verfahren zu deren herstellung |
EP3181940B2 (fr) | 2015-12-18 | 2023-07-05 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Procede de fabrication d'un spiral d'une raideur predeterminee par retrait localise de matiere |
EP3181939B1 (fr) * | 2015-12-18 | 2019-02-20 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Procede de fabrication d'un spiral d'une raideur predeterminee par ajout de matiere |
EP3181938B1 (fr) | 2015-12-18 | 2019-02-20 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Procede de fabrication d'un spiral d'une raideur predeterminee par retrait de matiere |
US10676349B1 (en) | 2016-08-12 | 2020-06-09 | Sitime Corporation | MEMS resonator |
EP3608728B1 (fr) * | 2018-08-08 | 2022-02-16 | Nivarox-FAR S.A. | Spiral thermocompensé coloré et son procédé de fabrication |
EP3825782B1 (fr) * | 2019-11-25 | 2023-11-15 | Patek Philippe SA Genève | Composant horloger renforcé |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU792535A1 (ru) * | 1977-12-26 | 1980-12-30 | Предприятие П/Я Х-5332 | Способ регулировани частотно-температурных характеристик кварцевых резонаторов |
RU2232461C2 (ru) * | 2002-04-08 | 2004-07-10 | Федеральное государственное унитарное предприятие Омский научно-исследовательский институт приборостроения | Миниатюрный высокочастотный фильтровый кварцевый резонатор с улучшенной моночастотностью и малым разбросом по динамическим параметрам |
WO2008043727A1 (fr) * | 2006-10-09 | 2008-04-17 | Csem Centre Suisse D'electronique Et De Microtechnique Sa Recherche Et Développement | Resonateur en silicium de type diapason |
JP2009201018A (ja) * | 2008-02-25 | 2009-09-03 | Kyocera Kinseki Corp | 水晶振動子及び水晶振動子の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6897743B2 (en) * | 2002-03-06 | 2005-05-24 | Piedek Technical Laboratory | Electronic apparatus with two quartz crystal oscillators utilizing different vibration modes |
EP1422436B1 (fr) * | 2002-11-25 | 2005-10-26 | CSEM Centre Suisse d'Electronique et de Microtechnique SA | Ressort spiral de montre et son procédé de fabrication |
US6987432B2 (en) * | 2003-04-16 | 2006-01-17 | Robert Bosch Gmbh | Temperature compensation for silicon MEMS resonator |
EP1473604B1 (fr) * | 2003-04-29 | 2010-06-23 | Patek Philippe SA Genève | Organe de régulation à balancier et à spiral plan pour mouvement d'horlogerie |
US7068125B2 (en) | 2004-03-04 | 2006-06-27 | Robert Bosch Gmbh | Temperature controlled MEMS resonator and method for controlling resonator frequency |
EP1605182B8 (fr) * | 2004-06-08 | 2010-07-14 | CSEM Centre Suisse d'Electronique et de Microtechnique S.A. - Recherche et Développement | Oscillateur balancier-spiral compensé en température |
EP1974465B1 (en) * | 2005-12-23 | 2015-04-15 | Nxp B.V. | A mems resonator, a method of manufacturing thereof, and a mems oscillator |
US7824098B2 (en) * | 2006-06-02 | 2010-11-02 | The Board Of Trustees Of The Leland Stanford Junior University | Composite mechanical transducers and approaches therefor |
-
2009
- 2009-12-15 EP EP09179323A patent/EP2337221A1/fr not_active Withdrawn
-
2010
- 2010-11-10 WO PCT/EP2010/067181 patent/WO2011072960A1/fr active Application Filing
- 2010-11-10 EP EP10781637.3A patent/EP2514094B1/fr active Active
- 2010-11-10 US US13/510,181 patent/US9071223B2/en active Active
- 2010-11-10 CN CN201080056806.2A patent/CN102687394B/zh active Active
- 2010-11-10 RU RU2012130004/08A patent/RU2536389C2/ru not_active IP Right Cessation
- 2010-11-10 JP JP2012542425A patent/JP5876831B2/ja active Active
- 2010-11-17 TW TW099139520A patent/TWI521873B/zh not_active IP Right Cessation
-
2013
- 2013-03-18 HK HK13103335.3A patent/HK1176471A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU792535A1 (ru) * | 1977-12-26 | 1980-12-30 | Предприятие П/Я Х-5332 | Способ регулировани частотно-температурных характеристик кварцевых резонаторов |
RU2232461C2 (ru) * | 2002-04-08 | 2004-07-10 | Федеральное государственное унитарное предприятие Омский научно-исследовательский институт приборостроения | Миниатюрный высокочастотный фильтровый кварцевый резонатор с улучшенной моночастотностью и малым разбросом по динамическим параметрам |
WO2008043727A1 (fr) * | 2006-10-09 | 2008-04-17 | Csem Centre Suisse D'electronique Et De Microtechnique Sa Recherche Et Développement | Resonateur en silicium de type diapason |
JP2009201018A (ja) * | 2008-02-25 | 2009-09-03 | Kyocera Kinseki Corp | 水晶振動子及び水晶振動子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2011072960A1 (fr) | 2011-06-23 |
EP2337221A1 (fr) | 2011-06-22 |
RU2012130004A (ru) | 2014-01-27 |
CN102687394A (zh) | 2012-09-19 |
CN102687394B (zh) | 2016-03-02 |
JP5876831B2 (ja) | 2016-03-02 |
US9071223B2 (en) | 2015-06-30 |
EP2514094A1 (fr) | 2012-10-24 |
TWI521873B (zh) | 2016-02-11 |
JP2013525743A (ja) | 2013-06-20 |
EP2514094B1 (fr) | 2017-05-03 |
US20120230159A1 (en) | 2012-09-13 |
TW201136154A (en) | 2011-10-16 |
HK1176471A1 (zh) | 2013-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2536389C2 (ru) | Резонатор с температурной компенсацией по меньшей мере первого и втрого порядка | |
RU2573275C2 (ru) | Керамический термокомпенсированный резонатор | |
JP5400093B2 (ja) | 1次係数および2次係数の温度補償型共振子 | |
RU2636132C2 (ru) | Резонатор, термокомпенсированный с помощью металла с памятью формы | |
US10324417B2 (en) | Method for fabrication of a balance spring of a predetermined stiffness by removal of material | |
CN100564927C (zh) | 带温度补偿的摆轮/游丝振荡器 | |
US10324418B2 (en) | Method for fabrication of a balance spring of predetermined thickness through the addition of material | |
US20160238994A1 (en) | Silicon hairspring | |
JP6343653B2 (ja) | 材料を局所的に除去することによって所定の剛性をもつひげぜんまいを製作する方法 | |
US20110037537A1 (en) | Thermocompensated mechanical resonator | |
CN107005224A (zh) | 温度补偿板谐振器 | |
KR20120005949A (ko) | 고정 질량중심을 가진 밸런스 스프링 | |
JP7227980B2 (ja) | 正確な剛性の計時器の温度補償ひげぜんまいを製造する方法 | |
US20110080224A1 (en) | Resonator | |
RU2643195C2 (ru) | Резонатор с согласованными пружиной баланса и балансом | |
JP7253405B2 (ja) | 熱補償振動体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181111 |