Nothing Special   »   [go: up one dir, main page]

RU2532943C1 - Onboard system for fuel control and measurement with compensation for fuel temperature - Google Patents

Onboard system for fuel control and measurement with compensation for fuel temperature Download PDF

Info

Publication number
RU2532943C1
RU2532943C1 RU2013129805/11A RU2013129805A RU2532943C1 RU 2532943 C1 RU2532943 C1 RU 2532943C1 RU 2013129805/11 A RU2013129805/11 A RU 2013129805/11A RU 2013129805 A RU2013129805 A RU 2013129805A RU 2532943 C1 RU2532943 C1 RU 2532943C1
Authority
RU
Russia
Prior art keywords
fuel
aircraft
control
output
tanks
Prior art date
Application number
RU2013129805/11A
Other languages
Russian (ru)
Inventor
Юрий Иванович Новиков
Дмитрий Владимирович Земсков
Ольга Евгеньевна Котенева
Original Assignee
Открытое акционерное общество "Техприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Техприбор" filed Critical Открытое акционерное общество "Техприбор"
Priority to RU2013129805/11A priority Critical patent/RU2532943C1/en
Application granted granted Critical
Publication of RU2532943C1 publication Critical patent/RU2532943C1/en

Links

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

FIELD: aircraft engineering.
SUBSTANCE: this system comprises fuel parameter transducers fitted in aircraft fuel tanks: Fuel level and dielectric constant, fuel upper and lower level indicators, onboard computer with left and right control modules, control channels and memory cells on fuel tank geometry, left and right fuel age modules, comparator and balance adjuster. System onboard computer incorporates inputs to receive extra data from fuel flow rate transducers and aircraft roll and pitch transducers.
EFFECT: higher accuracy, validity and efficiency of measurement fuel mass store, fuel reserve supply and control over aircraft balance at standard and emergent conditions of system operation.
1 dwg

Description

Предлагаемое изобретение относится к авиаприборостроению и может быть использовано для измерения массового запаса топлива на самолете и управления распределением топлива в топливных баках самолета.The present invention relates to aircraft instrumentation and can be used to measure the mass fuel supply on an airplane and control the distribution of fuel in the fuel tanks of an airplane.

Известна бортовая топливоизмерительная система, предназначенная для измерения запаса топлива на борту самолета [Патент Российской Федерации №2156444, МПК G01F 23/26, опубл. 2000]. Она содержит датчики уровня топлива, установленные в топливных баках, бортовой вычислитель, датчик температуры топлива, установленный в одном из топливных баков, устройство сравнения и индикатор. Массовый запас топлива в этой системе определяется путем коррекции в бортовом вычислителе объемного запаса топлива по измеренному значению температуры топлива в одном из топливных баков, причем объемный запас топлива определяется в бортовом вычислителе на основе информации, полученной от датчиков уровня топлива.Known on-board fuel measuring system designed to measure the fuel supply on board the aircraft [Patent of the Russian Federation No. 2156444, IPC G01F 23/26, publ. 2000]. It contains fuel level sensors installed in the fuel tanks, an on-board computer, a fuel temperature sensor installed in one of the fuel tanks, a comparison device and an indicator. The mass fuel supply in this system is determined by correcting the volume of fuel in the on-board computer from the measured value of the fuel temperature in one of the fuel tanks, and the volume of fuel is determined in the on-board computer based on information received from the fuel level sensors.

Недостатками известной системы являются наличие методической погрешности определения массового запаса топлива, вызванной разбросом температур топлива в различных топливных баках, а также невозможность обнаружения разбаланса топлива в симметрично расположенных топливных баках противоположных бортов самолета.The disadvantages of the known system are the presence of a methodological error in determining the mass supply of fuel caused by the dispersion of fuel temperatures in different fuel tanks, as well as the inability to detect fuel imbalance in symmetrically located fuel tanks of opposite sides of the aircraft.

Указанные недостатки частично отсутствуют в известной бортовой топливоизмерительной системе с температурной компенсацией [Патент на изобретение Российской Федерации №2189926, МПК 7 B64D 37/00, 37/14, G01F 23/26, опубл. 2002].These disadvantages are partially absent in the known on-board fuel metering system with temperature compensation [Patent for the invention of the Russian Federation No. 2189926, IPC 7 B64D 37/00, 37/14, G01F 23/26, publ. 2002].

В состав этой системы, предназначенной для измерения массового запаса и разбаланса топлива на борту самолета, входят бортовой вычислитель, устройство сравнения, индикатор, а также установленные в топливных баках сигнализаторы уровня топлива и датчики параметров топлива: уровня и температуры.The composition of this system, designed to measure the mass supply and unbalance of fuel on board an aircraft, includes an on-board computer, a comparison device, an indicator, as well as fuel level indicators and fuel level sensors installed in the fuel tanks: level and temperature.

Известная система характеризуется достаточно низкой погрешностью измерения массового запаса топлива на борту самолета, что достигнуто за счет установки датчиков температуры топлива во всех стационарных топливных баках самолета.The known system is characterized by a sufficiently low error in measuring the mass fuel supply on board the aircraft, which is achieved by installing fuel temperature sensors in all stationary fuel tanks of the aircraft.

Однако в известной системе балансировка топлива по бортам самолета выполняется с существенной методической погрешностью, что приводит к возникновению разбаланса топлива, нарушающего поперечную центровку самолета в полете, поскольку массы топлива в правых и левых симметрично расположенных топливных баках самолета могут существенно отличаться между собой.However, in the known system, balancing the fuel on board the aircraft is carried out with a significant methodological error, which leads to a fuel imbalance that violates the lateral alignment of the aircraft in flight, since the fuel masses in the right and left symmetrically located fuel tanks of the aircraft can differ significantly from each other.

Указанная методическая погрешность вызвана тем, что в известной системе текущие значения массы топлива в каждом из топливных баков определяются путем вычитания массы топлива, израсходованного авиадвигателями из топливных баков в полете, из массы топлива, залитого в эти баки при заправке самолета топливом на земле.The specified methodological error is caused by the fact that in the known system the current values of the fuel mass in each of the fuel tanks are determined by subtracting the mass of fuel consumed by the aircraft engines from the fuel tanks in flight from the mass of fuel poured into these tanks when refueling the aircraft with fuel on the ground.

Так как обе указанные величины: масса израсходованного топлива и масса заправленного топлива, в конкретном топливном баке вычисляются в известной системе с погрешностью интегрирования мгновенного расхода топлива по времени полета, а также с погрешностью измерения значений температуры и диэлектрической проницаемости топлива в упомянутом баке, то в известной системе возникает и возрастает по мере интегрирования по времени полета погрешность определения фактической массы топлива в топливном баке, что приводит к возрастанию разбаланса топлива и нарушению поперечной центровки самолета по топливу.Since both of these values: the mass of spent fuel and the mass of refueling, in a particular fuel tank are calculated in the known system with the error of integration of the instantaneous fuel consumption over the flight time, as well as with the error of measuring the temperature and dielectric constant of the fuel in the said tank, the system arises and increases with integration over the flight time, the error in determining the actual mass of fuel in the fuel tank, which leads to an increase in imbalance fuel and violation of the transverse alignment of the aircraft fuel.

Указанный недостаток частично устранен в наиболее близкой к предлагаемому изобретению по технической сущности и достигаемому техническому результату и принятой за ближайший аналог (прототип) топливомерно-расходомерной системе самолета с температурной компенсацией [Патент Российской Федерации №2327611, МПК G01F 23/26, B64D 37/14, B64D 37/00, опубл. 2008], в состав которой входят бортовой вычислитель, содержащий входы для приема информации от датчиков расхода топлива, устройство сравнения, устройство балансировки, устройство заправки, индикатор, а также установленные в топливных баках сигнализаторы нижнего уровня топлива и подключенные к бортовому вычислителю датчики параметров топлива: уровня и температуры, причем бортовой вычислитель соединен информационной линией связи с устройством сравнения и содержит выход для подключения с помощью информационной линии связи к внешним системам самолета, а устройство балансировки снабжено выходами для передачи сигналов управления перекачкой топлива.This drawback is partially eliminated in the closest to the proposed invention in terms of technical nature and the achieved technical result and adopted as the closest analogue (prototype) of the fuel and flow meter system of the aircraft with temperature compensation [Patent of the Russian Federation No. 2327611, IPC G01F 23/26, B64D 37/14 , B64D 37/00, publ. 2008], which includes an on-board computer that contains inputs for receiving information from fuel consumption sensors, a comparison device, a balancing device, a fueling device, an indicator, as well as low fuel level warning devices installed in the fuel tanks and fuel parameter sensors connected to the on-board computer: level and temperature, moreover, the on-board computer is connected by an information communication line to a comparison device and contains an output for connecting using an information line to an external system moms of the aircraft, and the balancing device is equipped with outputs for transmitting control signals for pumping fuel.

Известная система позволяет с достаточной точностью измерять массу топлива в каждом из топливных баков самолета и на самолете в целом, определять величину резервного остатка топлива и управлять балансировкой самолета по топливу в штатном режиме работы, т.е. при отсутствии отказов элементов системы или существенных изменений внешних условий.The known system allows with sufficient accuracy to measure the mass of fuel in each of the fuel tanks of the aircraft and on the aircraft as a whole, to determine the amount of reserve fuel remaining and to control the balance of the aircraft by fuel in normal operation, i.e. in the absence of failures of system elements or significant changes in external conditions.

Однако при существенном изменении условий полета, например, вызванных пространственными эволюциями самолета, или существенных отклонениях параметров заправляемого топлива от номинальных, например, вызванных отклонением фактического значения плотности заправляемого топлива от номинального значения, а также при отказах элементов или связей системы, известная система недостаточно точно измеряет массовый запас топлива, а также недостаточно достоверно формирует сигнал о резервном остатке топлива.However, with a significant change in flight conditions, for example, caused by spatial evolutions of the aircraft, or significant deviations of the refueling fuel parameters from the nominal ones, for example, caused by the deviation of the actual density of the refueling fuel from the nominal value, as well as in case of failures of elements or connections of the system, the known system does not accurately measure a massive fuel supply, and also not sufficiently reliably generates a signal about the reserve fuel balance.

Также недостаточно точно, достоверно и эффективно известная система управляет поперечной балансировкой самолета по топливу, в особенности на завершающей стадии полета, а также в нештатном режиме работы. Балансировка самолета по топливу необходима для устранения разбаланса топлива между симметрично расположенными топливными баками противоположных бортов самолета, приводящего к нарушению поперечной центровки самолета. Для управления балансировкой в известной системе формируются сигналы управления перекачкой топлива из топливных баков с количеством топлива, большим номинального, в симметрично расположенные топливные баки с количеством топлива, меньшим номинального.It is also not accurate enough, reliably and effectively known system controls the lateral balancing of the aircraft for fuel, especially at the final stage of flight, as well as in emergency mode. Fuel balancing is necessary to eliminate the fuel imbalance between symmetrically located fuel tanks of the opposite sides of the aircraft, leading to a violation of the lateral alignment of the aircraft. To control the balancing in a known system, control signals are formed for pumping fuel from fuel tanks with a fuel amount greater than the nominal one into symmetrically located fuel tanks with a fuel amount less than the nominal one.

Назначением балансировочной перекачки топлива является восстановление номинальной поперечной центровки самолета путем выравнивания масс топлива на его левом и правом бортах. Формирование сигналов управления перекачкой топлива производится на основании сопоставления в устройстве сравнения значений остатка топлива в левых и правых симметрично расположенных топливных баках самолета. Запас топлива в топливном баке определяется путем вычитания массы топлива, израсходованного из этого бака в полете, из массы топлива, заправленного в него на земле. Однако при определении разбаланса топлива в известной системе масса израсходованного из топливных баков топлива определяется по информации о расходе топлива из этих баков. Так как израсходованная в полете масса топлива вычисляется в известной системе методом интегрирования расхода топлива по времени полета, то ошибка интегрирования нарастает со временем полета и уже к середине полета может достигнуть существенной величины.The purpose of balancing fuel transfer is to restore the nominal lateral alignment of the aircraft by leveling the mass of fuel on its port and starboard sides. The formation of fuel transfer control signals is made based on the comparison in the device for comparing the values of the remaining fuel in the left and right symmetrically located fuel tanks of the aircraft. The fuel supply in the fuel tank is determined by subtracting the mass of fuel consumed from this tank in flight from the mass of fuel charged to it on the ground. However, when determining the fuel imbalance in the known system, the mass of fuel consumed from the fuel tanks is determined from the information on the fuel consumption from these tanks. Since the fuel mass consumed in flight is calculated in a known system by integrating the fuel consumption over the flight time, the integration error increases with the flight time and can reach a significant value by the middle of the flight.

Поэтому использованный в известной системе способ определения величины разбаланса по информации об объемном расходе топлива содержит существенную, возрастающую со временем полета методическую погрешность измерения, что не позволяет известной системе вести эффективное управление поперечной центровкой самолета по топливу начиная уже с середины полета.Therefore, the method used in the known system for determining the imbalance from the information on the volumetric fuel consumption contains a significant methodological measurement error that increases with the flight time, which does not allow the known system to effectively control the lateral alignment of the aircraft by fuel starting from the middle of the flight.

Кроме того, в известной системе разбаланс топлива вообще не может быть достоверно определен при отказе любого из датчиков расхода топлива.In addition, in the known system, the fuel imbalance in general cannot be reliably determined in case of failure of any of the fuel flow sensors.

Помимо этого в известной системе не может быть достоверно определена масса топлива в топливном баке, содержащем датчики параметров топлива: уровня и температуры, в нештатном режиме работы, т.е. при отказе любого из упомянутых датчиков, в особенности при отказе датчиков уровня топливаIn addition, in the known system, the mass of fuel in a fuel tank containing sensors of fuel parameters: level and temperature, in an abnormal mode of operation, i.e. in case of failure of any of the above sensors, especially in case of failure of the fuel level sensors

Кроме того, в известной системе достоверный сигнал о резервном остатке топлива может быть сформирован только в штатном режиме работы при отсутствии отказов и существенных изменений внешних условий.In addition, in the known system, a reliable signal about the reserve fuel balance can be generated only in the normal mode of operation in the absence of failures and significant changes in external conditions.

Это объясняется тем, что сигнал о резервном остатке топлива вырабатывается в известной системе только сигнализатором нижнего уровня топлива. Поэтому в нештатном режиме работы при отказе упомянутого сигнализатора или при существенном изменении внешних условий его работы, например при пространственных эволюциях самолета, сигнал о резервном остатке либо вообще не может быть сформирован либо формируется с существенной ошибкой.This is because the signal on the reserve fuel remaining is generated in the known system only by the low fuel level warning device. Therefore, in an abnormal mode of operation in case of failure of the aforementioned signaling device or with a significant change in the external conditions of its operation, for example, during spatial evolutions of an aircraft, a signal about the reserve balance either cannot be generated at all or is formed with a significant error.

Задачей предлагаемого изобретения и его техническим результатом является повышение точности и надежности работы системы, как в штатном, так и в нештатном режимах.The objective of the invention and its technical result is to increase the accuracy and reliability of the system, both in regular and emergency modes.

Указанная задача решается:The specified task is solved:

во-первых, за счет повышения точности измерения массы топлива путем метрологического комплексирования информации об уровне, диэлектрической проницаемости и плотности топлива, углах пространственного положения его свободной поверхности и о геометрии топливных баков,firstly, by increasing the accuracy of measuring the mass of fuel by metrological integration of information about the level, permittivity and density of the fuel, the angles of the spatial position of its free surface and the geometry of the fuel tanks,

во-вторых, за счет метрологического парирования отказов датчиков параметров топлива путем использования информации от соответствующего исправного датчика, расположенного на противоположном борту самолета симметрично отказавшему,secondly, due to the metrological parry of the failures of the fuel parameter sensors by using information from the corresponding serviceable sensor located on the opposite side of the aircraft symmetrically refused,

в-третьих, за счет мажоритарного формирования сигнала о резервном остатке топлива с использованием трех физически разнородных источников измерительной информации.thirdly, due to the majority formation of a signal about the reserve fuel balance using three physically dissimilar sources of measurement information.

Для решения поставленной задачи бортовая система контроля топлива с компенсацией по температуре топлива, содержащая бортовой вычислитель, устройство сравнения, устройство балансировки, устройство заправки, индикатор и установленные в топливных баках сигнализаторы нижнего уровня топлива, а также установленные в топливных баках и подключенные к бортовому вычислителю датчики параметров топлива: уровня и температуры, причем бортовой вычислитель содержит входы для подключения к датчикам расхода топлива, выход для подключения с помощью информационной линии связи к внешним системам самолета и соединен с помощью информационной линии связи с устройством сравнения, а устройство балансировки снабжено выходами для передачи сигналов управления перекачкой топлива, дополнена новыми элементами и связями.To solve this problem, an on-board fuel control system with fuel temperature compensation, containing an on-board calculator, a comparison device, a balancing device, a refueling device, an indicator and low fuel level warning devices installed in the fuel tanks, as well as sensors installed in the fuel tanks and connected to the on-board computer fuel parameters: level and temperature, moreover, the on-board computer contains inputs for connecting to fuel consumption sensors, an output for connecting with and information line to external aircraft systems and is connected via an information line to a comparison device, and the balancing device is equipped with outputs for transmitting fuel transfer control signals, supplemented with new elements and connections.

Предложенная система отличается от прототипа тем, что в ее состав дополнительно введены левый и правый модули управления, каждый из которых снабжен основным и дублирующим входами, правые и левые модули топливомера, пульт управления, задатчик плотности топлива, установленные в топливных баках сигнализаторы верхнего уровня топлива, а также правые и левые контрольные каналы и правые и левые ячейки памяти, причем число контрольных каналов и число ячеек памяти равны, каждое, числу топливных баков, задатчик плотности топлива, устройство заправки и индикатор входят в состав пульта управления, правые и левые ячейки памяти входят в состав правого и левого модулей управления соответственно, а модули управления и контрольные каналы входят в состав бортового вычислителя.The proposed system differs from the prototype in that it has additionally introduced left and right control modules, each of which is equipped with primary and backup inputs, right and left fuel gauge modules, a control panel, a fuel density adjuster, fuel level high level indicators installed in the fuel tanks, as well as the right and left control channels and the right and left memory cells, the number of control channels and the number of memory cells being equal, each, to the number of fuel tanks, fuel density adjuster, lock device Set and display part of the remote control, the right and left memory cell included in the right and left control modules respectively, and the control modules and control channels included in the onboard computer.

Помимо этого устройство сравнения снабжено дополнительным выходом, предназначенным для подключения к соответствующему входу внешних систем самолета, бортовой вычислитель дополнен входом, предназначенным для подключения с помощью информационной линии связи к датчику углов крена и тангажа самолета, а датчики температуры топлива установлены в топливных баках на высоте сигнализаторов нижнего уровня топлива.In addition, the comparison device is equipped with an additional output intended for connecting to the corresponding input of the aircraft's external systems, the on-board computer is supplemented with an input intended for connecting using the communication line to the aircraft’s roll and pitch angle sensors, and fuel temperature sensors are installed in the fuel tanks at the height of the signaling devices lower fuel level.

Элементы предложенной системы имеют следующие связи и соединения.Elements of the proposed system have the following connections and connections.

Датчики параметров топлива подключены к бортовому вычислителю через модули топливомера, причем установленные в конкретном топливном баке упомянутые датчики подключены к бортовому вычислителю через модуль топливомера, соответствующий упомянутому баку. При этом выходы каждого из левых модулей топливомера соединены с помощью соответствующих информационных линий связи с основным входом левого модуля управления и с дублирующим входом правого модуля управления, а выходы каждого из правых модулей топливомера соединены с помощью соответствующих информационных линий связи с основным входом правого модуля управления и с дублирующим входом левого модуля управления.The fuel parameter sensors are connected to the on-board computer through the fuel gauge modules, said sensors installed in the specific fuel tank being connected to the on-board computer through the fuel gauge module corresponding to the tank. In this case, the outputs of each of the left fuel gauge modules are connected using the corresponding communication lines to the main input of the left control module and to the redundant input of the right control module, and the outputs of each of the right fuel gauge modules are connected using the corresponding information lines to the main input of the right control module and with redundant input of the left control module.

Левый и правый модули управления соединены между собой двусторонней информационной линией связи, причем выход каждого из упомянутых модулей подключен с помощью соответствующей информационной линии связи к выходу бортового вычислителя, соединенному с устройством сравнения, выход каждого из левых контрольных каналов соединен соответствующей двусторонней информационной линией связи с одним из входов левого модуля управления, а выход каждого из правых контрольных каналов соединен соответствующей двусторонней информационной линией связи с одним из входов правого модуля управления; пульт управления соединен с бортовым вычислителем двусторонней информационной линией связи, а выход устройства заправки и выход задатчика плотности топлива соединены, каждый, с одним из входов индикатора.The left and right control modules are interconnected by a two-way communication line, and the output of each of these modules is connected using the corresponding information line to the output of the on-board computer connected to the comparison device, the output of each of the left control channels is connected by a corresponding two-way communication line with one from the inputs of the left control module, and the output of each of the right control channels is connected by a corresponding two-way information line ides with one of the inputs of the right control module; the control panel is connected to the on-board computer with a two-way communication line, and the output of the refueling device and the output of the fuel density adjuster are connected, each, to one of the indicator inputs.

Датчики параметров топлива подключены к бортовому вычислителю через соответствующие модули топливомера следующим образом: выходы каждого из установленных в конкретном топливном баке датчиков уровня топлива объединены между собой и соединены с одним из входов модуля топливомера, соответствующего упомянутому баку, а выход установленного в том же топливном баке датчика температуры топлива соединен с другим входом упомянутого модуля. Выход каждого из сигнализаторов нижнего уровня топлива соединен с одним из соответствующих входов бортового вычислителя, а выход устройства сравнения с помощью информационной линии связи соединен со входом устройства балансировки, выходы которого предназначены для передачи сигналов управления перекачкой топлива во внешние системы самолета.The fuel parameter sensors are connected to the on-board computer via the corresponding fuel gauge modules as follows: the outputs of each of the fuel level sensors installed in a particular fuel tank are connected to each other and connected to one of the inputs of the fuel gauge module corresponding to the mentioned tank, and the output of the sensor installed in the same fuel tank fuel temperature is connected to another input of said module. The output of each of the lower fuel level alarms is connected to one of the corresponding inputs of the on-board computer, and the output of the comparison device is connected to the input of the balancing device, using the information line, whose outputs are used to transmit control signals for pumping fuel to external aircraft systems.

Устройство и работа предложенной системы поясняются Фигурой.The device and operation of the proposed system are illustrated by the Figure.

На Фигуре представлена функциональная схема предложенной системы для случая, когда число топливных баков n=4. Так как число входов модулей топливомера, число контрольных каналов и число ячеек памяти предложенной системы пропорциональны числу топливных баков (или топливных отсеков) с установленными в них датчиками параметров топлива и сигнализаторами уровня топлива, то при изменении числа топливных баков (или топливных отсеков) изменяется только число упомянутых элементов и входов, однако структура взаимосвязей между элементами системы при этом остается неизменной. Поэтому сущность предложенного изобретения не зависит от числа топливных баков (или топливных отсеков), при условии что это число - четное, а левые и правые топливные баки симметричны.The Figure shows a functional diagram of the proposed system for the case when the number of fuel tanks n = 4. Since the number of inputs of the fuel gauge modules, the number of control channels and the number of memory cells of the proposed system are proportional to the number of fuel tanks (or fuel compartments) with fuel parameters sensors and fuel level indicators installed in them, only the number of fuel tanks (or fuel compartments) changes the number of the mentioned elements and inputs, however, the structure of the relationships between the elements of the system remains unchanged. Therefore, the essence of the proposed invention does not depend on the number of fuel tanks (or fuel compartments), provided that this number is even, and the left and right fuel tanks are symmetrical.

На Фигуре введены следующие обозначения:The following notation is introduced in the Figure:

1 - датчик уровня топлива, 2 - датчик температуры топлива, 3 - сигнализатор нижнего уровня топлива, 4 - переборка, 5 - первый левый топливный бак, 6 - второй левый топливный бак, 7 - первый правый топливный бак, 8 - второй правый топливный бак, 9 - первый левый модуль топливомера, 10 - второй левый модуль топливомера, 11 - первый правый модуль топливомера, 12 - второй правый модуль топливомера, 13 - левый модуль управления, 14 - правый модуль управления, 15 - бортовой вычислитель, 16 - основной вход модуля управления, 17 - дублирующий вход модуля управления, 18 - первая левая ячейка памяти, 19 - вторая левая ячейка памяти, 20 - первая правая ячейка памяти, 21 - вторая правая ячейка памяти, 22 - первый левый контрольный канал, 23 - второй левый контрольный канал, 24 - первый правый контрольный канал, 25 - второй правый контрольный канал, 26 - устройство сравнения, 27 - устройство балансировки, 28 - пульт управления, 29 - устройство заправки, 30 - индикатор, 31 - задатчик плотности топлива, 32 - датчик углов крена и тангажа самолета, 33 - датчик расхода топлива, 34 - внешние системы самолета.1 - fuel level sensor, 2 - fuel temperature sensor, 3 - low fuel level indicator, 4 - bulkhead, 5 - first left fuel tank, 6 - second left fuel tank, 7 - first right fuel tank, 8 - second right fuel tank 9 - the first left fuel gauge module, 10 - the second left fuel gauge module, 11 - the first right fuel gauge module, 12 - the second right fuel gauge module, 13 - the left control module, 14 - the right control module, 15 - the on-board computer, 16 - the main input control module, 17 - redundant input of the control module, 18 - first le vaya memory cell, 19 - the second left memory cell, 20 - the first right memory cell, 21 - the second right memory cell, 22 - the first left control channel, 23 - the second left control channel, 24 - the first right control channel, 25 - the second right control channel, 26 — a comparison device, 27 — a balancing device, 28 — a control panel, 29 — a refueling device, 30 — an indicator, 31 — a fuel density adjuster, 32 — an aircraft roll and pitch angle sensor, 33 — a fuel consumption sensor, 34 — external aircraft systems.

Датчики уровня топлива 1 и температуры топлива 2, а также сигнализаторы нижнего уровня топлива 3 установлены в топливных отсеках, которые с помощью переборок 4 могут быть выделены в первом и втором левых топливных баках 5 и 6 соответственно, и в первом и втором правых топливных баках 7 и 8 соответственно.The sensors of the fuel level 1 and fuel temperature 2, as well as the lower fuel level sensors 3 are installed in the fuel compartments, which with the help of bulkheads 4 can be allocated in the first and second left fuel tanks 5 and 6, respectively, and in the first and second right fuel tanks 7 and 8, respectively.

Выходы датчиков уровня топлива 1, установленных в первом левом топливном баке 5, объединены между собой и подключены к одному из входов первого левого модуля топливомера 9.The outputs of the fuel level sensors 1, installed in the first left fuel tank 5, are interconnected and connected to one of the inputs of the first left module of the fuel meter 9.

Аналогичным способом объединены между собой и подключены к одному из входов второго левого модуля топливомера 10 датчики уровня топлива 1 второго левого топливного бака 6, объединены между собой и подключены к одному из входов первого правого модуля топливомера 11 датчики уровня топлива 1 первого правого топливного бака 7, объединены между собой и подключены к одному из входов второго правого модуля топливомера 12 датчики уровня топлива 1 второго правого топливного бака 8.In a similar way, fuel level sensors 1 of the second left fuel tank 6 are connected to each other and connected to one of the inputs of the second left fuel gauge module 10, fuel level sensors 1 are connected to one of the inputs of the first right fuel gauge module 11 of the first right fuel tank 7, are interconnected and connected to one of the inputs of the second right module of the fuel gauge 12 fuel level sensors 1 of the second right fuel tank 8.

Таким же образом датчик температуры топлива 2, установленный в конкретном топливном баке 5, 6, 7, 8, подключен к другому входу модуля топливомера 9, 10, 11, 12, отвечающего упомянутому топливному баку.In the same way, the fuel temperature sensor 2, installed in a particular fuel tank 5, 6, 7, 8, is connected to another input of the fuel gauge module 9, 10, 11, 12 corresponding to the said fuel tank.

Модули управления 13, 14 входят в состав бортового вычислителя 15. Выход каждого из сигнализаторов нижнего уровня топлива 3 подсоединен к соответствующему входу бортового вычислителя 15. Один из выходов первого левого модуля топливомера 9 соединен информационной линией связи с основным входом 16 левого модуля управления 13, а другой выход упомянутого модуля топливомера соединен информационной линией связи с дублирующим входом 17 правого модуля управления 14; точно так же один из выходов второго левого модуля топливомера 10 соединен информационной линией связи с основным входом 16 левого модуля управления 13, а другой выход упомянутого модуля топливомера соединен информационной линией связи с дублирующим входом 17 правого модуля управления 14.The control modules 13, 14 are part of the on-board computer 15. The output of each of the lower fuel level sensors 3 is connected to the corresponding input of the on-board computer 15. One of the outputs of the first left fuel meter module 9 is connected by a communication line to the main input 16 of the left control module 13, and the other output of said fuel gauge module is connected by a communication line to the backup input 17 of the right control module 14; in the same way, one of the outputs of the second left fuel gauge module 10 is connected by the communication line to the main input 16 of the left control module 13, and the other output of the mentioned fuel gauge module is connected by the communication line with the backup input 17 of the right control module 14.

Аналогично один из выходов первого правого модуля топливомера 11 соединен информационной линией связи с основным входом 16 правого модуля управления 14, а другой выход упомянутого модуля 11 соединен информационной линией связи с дублирующим входом 17 левого модуля управления 13; точно так же один из выходов второго правого модуля топливомера 12 соединен информационной линией связи с основным входом 16 правого модуля управления 14, а другой выход упомянутого модуля 12 соединен информационной линией связи с дублирующим входом 17 левого модуля управления 13.Similarly, one of the outputs of the first right module of the fuel gauge 11 is connected by a communication line to the main input 16 of the right control module 14, and the other output of the said module 11 is connected by a communication line to the backup input 17 of the left control module 13; in the same way, one of the outputs of the second right module of the fuel gauge 12 is connected by the communication line to the main input 16 of the right control module 14, and the other output of the mentioned module 12 is connected by the information line of communication with the backup input 17 of the left control module 13.

Левый модуль управления 13 содержит первую и вторую левые ячейки памяти 18 и 19 соответственно, предназначенные для хранения информации о геометрии первого и второго левых топливных баков 5 и 6 соответственно, а правый модуль управления 14 снабжен первой и второй правыми ячейками памяти 20 и 21 соответственно, предназначенными для хранения информации о геометрии первого и второго правых топливных баков 7 и 8 соответственно. Левый и правый модули управления 13 и 14 связаны между собой двусторонней информационной линией связи, кроме того, левый модуль управления 13 соединен двусторонней информационной линией связи с первым левым контрольным каналом 22 и двусторонней информационной линией связи со вторым левым контрольным каналом 22; таким же образом правый модуль управления 14 соединен двусторонней информационной линией связи с первым правым контрольным каналом 24 и двусторонней информационной линией связи со вторым правым контрольным каналом 25. Все упомянутые контрольные каналы входят в состав бортового вычислителя 15.The left control module 13 contains the first and second left memory cells 18 and 19, respectively, designed to store information about the geometry of the first and second left fuel tanks 5 and 6, respectively, and the right control module 14 is provided with the first and second right memory cells 20 and 21, respectively. designed to store information about the geometry of the first and second right fuel tanks 7 and 8, respectively. The left and right control modules 13 and 14 are interconnected by a two-way communication line, in addition, the left control module 13 is connected by a two-way communication line with the first left control channel 22 and a two-way information line with the second left control channel 22; in the same way, the right control module 14 is connected by a two-way communication line with the first right control channel 24 and a two-way information line with the second right control channel 25. All of the control channels mentioned are part of the on-board computer 15.

Выход левого модуля управления 13 и выход правого модуля управления 14 подключены, каждый, с помощью соответствующей информационной линии связи к выходу бортового вычислителя 15, соединенному с помощью информационной линии связи со входом устройства сравнения 26, подключенному с помощью информационной линии связи ко входу устройства балансировки 27.The output of the left control module 13 and the output of the right control module 14 are connected, each, using the corresponding information line to the output of the on-board computer 15, connected via the information line to the input of the comparison device 26, connected via the information line to the input of the balancing device 27 .

Бортовой вычислитель 15 соединен двусторонней информационной линией связи с пультом управления 27, в состав которого входят устройство заправки 29, индикатор 30 и задатчик плотности топлива 31, причем выход устройства заправки 29 и выход задатчика плотности топлива 31 соединены, каждый, с соответствующим входом индикатора 30. Датчик углов крена и тангажа самолета 32, взаимодействующий с предложенной системой, соединен информационной линией связи с соответствующим входом бортового вычислителя 15. Каждый из датчиков расхода топлива 33, взаимодействующих с предложенной системой, также подключен к соответствующему входу бортового вычислителя 15, один из выходов которого соединен с помощью информационной линии связи с соответствующим входом внешних систем самолета 34, в состав которых входят информационная система и силовая установка. Дополнительный выход устройства сравнения 26, а также каждый из выходов устройства балансировки 27, подключен к одному из входов внешних систем самолета 34.The on-board computer 15 is connected by a two-way communication line with the control panel 27, which includes a refueling device 29, an indicator 30 and a fuel density adjuster 31, the output of the refueling device 29 and the output of the fuel density adjuster 31 are each connected to a corresponding input of the indicator 30. The roll angle and pitch angle sensor of the aircraft 32, interacting with the proposed system, is connected by an information line to the corresponding input of the on-board computer 15. Each of the fuel flow sensors 33, interacts uyuschih with the proposed system is also connected to the corresponding input onboard computer 15, one output of which is connected via the information link with external systems corresponding input plane 34, which include information system and power unit. An additional output of the comparison device 26, as well as each of the outputs of the balancing device 27, is connected to one of the inputs of the external systems of the aircraft 34.

На различных стадиях предполетной подготовки и полета самолета предложенная система выполняет нижеперечисленные функции.At various stages of pre-flight preparation and flight of the aircraft, the proposed system performs the following functions.

При предполетной подготовке предложенная системаIn pre-flight preparation, the proposed system

- управляет заправкой топливом каждого топливного бака 5, 6, 7, 8 самолета.- controls the fueling of each fuel tank 5, 6, 7, 8 of the aircraft.

В полете предложенная системаIn flight proposed system

- измеряет массовый запас топлива в топливных баках 5, 6, 7, 8 и на самолете в целом как в штатном режиме работы (при отсутствии отказов), так и в нештатном режиме (при наличии отказов);- measures the mass fuel supply in the fuel tanks 5, 6, 7, 8 and on the plane as a whole both in the normal operation mode (in the absence of failures) and in the emergency mode (in the presence of failures);

- управляет балансировкой топлива в штатном и нештатном режимах;- manages fuel balancing in normal and emergency modes;

- вырабатывает сигнал о резервном остатке топлива в штатном и нештатном режимах.- generates a signal about the reserve fuel balance in the normal and emergency modes.

- В ходе предполетной подготовки самолета управление заправкой топливом топливных баков 5, 6, 7, 8 производится с пульта управления 27.- During the pre-flight preparation of the aircraft, the fueling of the fuel tanks 5, 6, 7, 8 is controlled from the control panel 27.

С помощью устройства заправки 29, входящего в состав упомянутого пульта, оператором задается и индицируется на индикаторе 30 заданное значение массы топлива mn в n-м топливном баке, а также суммарная масса топлива на самолете m (массовый запас топлива), равная сумме масс топлива, заправленных в каждый из топливных баков 5, 6, 7, 8 (здесь n - номер топливного бака; согласно принятой на Фигуре нумерации n=5, 6, 7, 8).Using the refueling device 29, which is part of the above-mentioned console, the operator sets and displays on the indicator 30 the set value of the fuel mass m n in the nth fuel tank, as well as the total fuel mass on the plane m (mass fuel supply) equal to the sum of the fuel mass tucked into each of the fuel tanks 5, 6, 7, 8 (here n is the number of the fuel tank; according to the numbering adopted in the Figure, n = 5, 6, 7, 8).

Кроме того, с помощью задатчика плотности топлива 31 оператором задается и индицируется на индикаторе 30 паспортное значение плотности заправляемого топлива ρо. Данные о заданных значениях массы топлива mn в каждом из топливных баков 5, 6, 7, 8, о суммарной массе топлива на самолете m и о паспортном значении плотности топлива ρо передаются по двусторонней информационной линии связи с пульта управления 28 в бортовой вычислитель 15.In addition, using the fuel density adjuster 31, the operator sets and displays on the indicator 30 the passport density value of the refueling fuel ρ о . Data on the given values of the fuel mass m n in each of the fuel tanks 5, 6, 7, 8, on the total fuel mass on the plane m and on the passport value of the fuel density ρ о are transmitted via a two-way information line from the control panel 28 to the on-board computer 15 .

По мере заполнения топливных баков 5, 6, 7, 8 топливом датчики уровня топлива 1, установленные в каждом из этих баков, формируют аналоговую измерительную информацию о текущем значении уровня топлива h(τ)n в n-м топливном баке (здесь τ - текущее значение времени). При этом датчик температуры топлива 2, установленный в том же топливном баке, формирует аналоговую корректирующую информацию о температуре tn топлива в n-м топливном баке 5, 6, 7, 8.As the fuel tanks 5, 6, 7, 8 are filled with fuel, the fuel level sensors 1 installed in each of these tanks generate analog measuring information about the current fuel level value h (τ) n in the nth fuel tank (here τ is the current time value). In this case, the fuel temperature sensor 2 installed in the same fuel tank generates analog corrective information about the temperature t n of the fuel in the nth fuel tank 5, 6, 7, 8.

Сформированные датчиками 1 и 2 параметров топлива, установленными в n-м топливном баке, измерительная и корректирующая информации поступают на соответствующие входы одного из модулей топливомера 9, 10, 11, 12, соответствующего данному топливному баку, например информация с выхода каждого из датчиков 1 и 2, установленных в первом левом топливном баке 5, поступает на соответствующие входы первого левого модуля топливомера 9.The measurement and correction information generated by the sensors 1 and 2 of the fuel parameters installed in the nth fuel tank are fed to the corresponding inputs of one of the fuel gauge modules 9, 10, 11, 12 corresponding to the given fuel tank, for example, information from the output of each of the sensors 1 and 2 installed in the first left fuel tank 5, is fed to the corresponding inputs of the first left module of the fuel gauge 9.

В каждом из модулей топливомера 9, 10, 11, 12 принятая аналоговая информация нормализуется, преобразуется в цифровую форму и по информационным линиям связи передается с соответствующих выходов каждого из упомянутых модулей на соответствующие входы модулей управления 13, 14: с выходов первого левого модуля топливомера 9 - на основной вход 16 левого модуля управления 13 и на дублирующий вход 17 правого модуля управления 14, с выходов второго левого модуля топливомера 10 - на основной вход 16 левого модуля управления 13 и на дублирующий вход 17 правого модуля управления 14, с выходов первого правого модуля топливомера 11 - на основной вход 16 правого модуля управления 14 и на дублирующий вход 17 левого модуля управления 13, а с выходов второго правого модуля топливомера 12 - на основной вход 16 правого модуля управления 14 и на дублирующий вход 17 левого модуля управления 13.In each of the fuel gauge modules 9, 10, 11, 12, the received analog information is normalized, converted to digital form, and transmitted via information lines from the respective outputs of each of these modules to the corresponding inputs of the control modules 13, 14: from the outputs of the first left fuel gauge module 9 - to the main input 16 of the left control module 13 and to the backup input 17 of the right control module 14, from the outputs of the second left module of the fuel gauge 10 - to the main input 16 of the left control module 13 and to the backup input 17 of the right mode I control 14, from the outputs of the first right module of the fuel gauge 11 to the main input 16 of the right control module 14 and to the backup input 17 of the left control module 13, and from the outputs of the second right module of the fuel gauge 12 to the main input 16 of the right control module 14 and to the backup input 17 of the left control module 13.

При этом в штатном режиме работы системы в модулях управления 13, 14 используется только та информация, которая поступает на их основные входы 16, а в нештатном - только та информация, которая поступает на основной вход модуля управления, соответствующего борту, не содержащему отказавших датчиков уровня топлива 1, и на дублирующий вход 17 модуля управления, соответствующего борту, содержащему хотя бы один отказавший датчик уровня топлива 1.Moreover, in the normal mode of operation of the system in the control modules 13, 14, only that information is used that arrives at their main inputs 16, and in non-standard mode, only that information is received at the main input of the control module corresponding to the board that does not contain failed level sensors fuel 1, and to the backup input 17 of the control module corresponding to the board containing at least one failed fuel level sensor 1.

По информации о текущем значении уровня топлива h(τ)n в n-м топливном баке 5, 6, 7, 8 в модуле управления 13, 14, соответствующем борту этого бака, с использованием данных о геометрии n-го топливного бака, затребованных из ячейки памяти 18, 19, 20, 21, соответствующей упомянутому баку, и информации об углах γ и β пространственной эволюции самолета, полученной бортовым вычислителем 15 от датчика углов крена и тангажа самолета 32, вычисляется текущее значение объема топлива в n-м топливном баке:According to the information about the current value of the fuel level h (τ) n in the nth fuel tank 5, 6, 7, 8 in the control module 13, 14 corresponding to the side of this tank, using the geometry data of the nth fuel tank requested from memory cells 18, 19, 20, 21 corresponding to the aforementioned tank, and information on the angles γ and β of the spatial evolution of the aircraft received by the on-board computer 15 from the roll angle and pitch sensor of the aircraft 32, the current value of the fuel volume in the nth fuel tank is calculated:

V ( τ ) n = F [ h ( τ ) n ; f ( h , γ , β ) n ] , ( 1 )

Figure 00000001
V ( τ ) n = F [ h ( τ ) n ; f ( h , γ , β ) n ] , ( one )
Figure 00000001

где F - алгоритмическая зависимость, связывающая текущее значение объема топлива в n-м топливном баке с текущим значением уровня топлива в этом баке в зависимости от геометрии n-го топливного бака и углов крена γ и тангажа β самолета;where F is an algorithmic dependence linking the current value of the fuel volume in the nth fuel tank with the current value of the fuel level in this tank depending on the geometry of the nth fuel tank and roll angles γ and pitch β of the aircraft;

h(τ)n - текущее значение уровня топлива в n-м топливном баке;h (τ) n is the current value of the fuel level in the nth fuel tank;

f(h,γ,β)n - алгоритмическая функция, связывающая геометрию плоского горизонтального сечения n-го топливного бака с координатой этого сечения, равной значению уровня топлива h при нескольких значениях углов крена γ и тангажа β самолета, например при номинальных, максимальных и минимальных значениях. При заправке самолета топливом углы γ и β принимаются равными углам стояночного положения самолета γо и βо которые вводятся в память бортового вычислителя 15 при загрузке рабочей программы. Необходимо отметить, что объем топлива в баке фактически зависит от углов γт, βт пространственного положения свободной поверхности топлива. Однако поскольку значения упомянутых углов можно считать равными углам γ, β крена и тангажа самолета:f (h, γ, β) n is an algorithmic function connecting the geometry of the flat horizontal section of the nth fuel tank with the coordinate of this section equal to the value of the fuel level h for several values of the angle of heel γ and pitch β of the aircraft, for example, at nominal, maximum and minimum values. When refueling an airplane with fuel, the angles γ and β are taken equal to the angles of the airplane's parking position, γ о and β о, which are entered into the memory of the on-board computer 15 when the work program is loaded. It should be noted that the volume of fuel in the tank actually depends on the angles γ t , β t of the spatial position of the free surface of the fuel. However, since the values of the mentioned angles can be considered equal to the angles γ, β of the roll and pitch of the aircraft:

γт≈γ, βт≈β,γ t ≈γ, β t ≈β,

то в качестве аргументов выражения (2) использованы углы γ и β.then the angles γ and β are used as arguments of expression (2).

Значения алгоритмической функции f(h,γ,β)n для первого и второго левых топливных баков 5 и 6 хранятся в ячейках памяти левого модуля управления 13: в первой и второй левых ячейках памяти 18 и 19 соответственно. Аналогично значения упомянутой функции для первого и второго правых топливных баков 7 и 8 хранятся в первой и второй правых ячейках памяти 20 и 21 соответственно правого модуля управления 14.The values of the algorithmic function f (h, γ, β) n for the first and second left fuel tanks 5 and 6 are stored in the memory cells of the left control module 13: in the first and second left memory cells 18 and 19, respectively. Similarly, the values of the above-mentioned functions for the first and second right fuel tanks 7 and 8 are stored in the first and second right memory cells 20 and 21, respectively, of the right control module 14.

Т.к. масса m связана с объемом V и плотностью ρ известной формулой m=Vρ, то, на основе вычисленных по формуле (1) текущих значений объемов топлива V(τ)n в каждом из топливных баков 5, 6, 7, 8, в модулях управления 13, 14 определяются текущие значения массы топлива в каждом из этих баков в соответствии с выражением:Because mass m is related to volume V and density ρ by the well-known formula m = Vρ, then, based on the current values of fuel volumes V (τ) n calculated by formula (1) in each of the fuel tanks 5, 6, 7, 8, in the control modules 13, 14, the current values of the fuel mass in each of these tanks are determined in accordance with the expression:

m ( τ ) n = F [ h ( τ ) n ; f ( h , γ , β ) n ] ρ o ( 1 + α t n ) , ( 2 )

Figure 00000002
m ( τ ) n = F [ h ( τ ) n ; f ( h , γ , β ) n ] ρ o ( one + α t n ) , ( 2 )
Figure 00000002

где ρо - паспортное значение плотности топлива;where ρ about - passport value of the density of the fuel;

α - температурный коэффициент топлива;α is the temperature coefficient of fuel;

tn - температура топлива в n-м топливном баке.t n - fuel temperature in the nth fuel tank.

Остальные обозначения пояснены при рассмотрении выражения (1).The remaining notation is explained when considering the expression (1).

Использованное в формуле (2) паспортное значение плотности топлива ρо поступает на вход бортового вычислителя 15 по двусторонней информационной линии связи с выхода пульта управления 28, а значение температурного коэффициента плотности топлива α вводится в память бортового вычислителя 15 при загрузке рабочей программы.The passport value of the fuel density ρ о used in formula (2) is input to the on-board computer 15 via a two-way information line from the output of the control panel 28, and the temperature coefficient of the fuel density α is entered into the memory of the on-board computer 15 when the work program is loaded.

При достижении в n-м топливном баке равенства заданного значения массы топлива mn текущему значению массы топлива m(τ)n When the n-th fuel tank reaches the equality of the specified value of the fuel mass m n the current value of the fuel mass m (τ) n

m n = m ( τ ) n ( 3 )

Figure 00000003
m n = m ( τ ) n ( 3 )
Figure 00000003

в бортовом вычислителе 15 вырабатывается и с его выхода по информационной линии связи передается во внешние системы самолета 34 команда на прекращение подачи топлива в n-й топливный бак, и заправка данного бака топливом прекращается. При выполнении равенства (3) для всех n=5, 6, 7, 8 заправка самолета топливом заканчивается.in the on-board computer 15 is generated and from its output on the communication line is transmitted to the external systems of the aircraft 34 command to stop the supply of fuel to the nth fuel tank, and refueling of this tank with fuel is stopped. When equality (3) is fulfilled for all n = 5, 6, 7, 8, the fueling of the aircraft ends.

- В полете самолета предложенная система измеряет массу топлива в каждом из топливных баков 5, 6, 7, 8 и на самолете в целом путем метрологического комплексирования измерительной информации о топливе, вырабатываемой несколькими независимыми, физически разнородными источниками информации.- In flight, the proposed system measures the mass of fuel in each of the fuel tanks 5, 6, 7, 8 and on the plane as a whole by metrological integration of the fuel measurement information generated by several independent, physically diverse sources of information.

При этом описанная выше процедура измерения текущих значений уровня топлива, объема топлива и массы топлива в каждом из топливных баков 5, 6, 7, 8 и на самолете в целом сохраняется и алгоритмически соответствует выражениям (1) и (2).Moreover, the procedure described above for measuring current values of the fuel level, fuel volume and fuel mass in each of the fuel tanks 5, 6, 7, 8 and on the plane as a whole is stored and algorithmically corresponds to expressions (1) and (2).

В процессе полета заправленное на земле топливо расходуется авиадвигателями из топливных баков 5, 6, 7, 8 и его количество непрерывно уменьшается. В итоге понижаются текущие значения уровня топлива h(τ)n в каждом из топливных баков 5, 6, 7, 8, а также изменяются текущие значения температуры топлива tn в этих баках из-за их теплообмена с окружающим воздухом и текущие значения углов крена γ и тангажа β самолета из-за пространственных эволюции самолета. Это приводит к изменению текущей информации о топливе, вырабатываемой датчиками уровня топлива 1, датчиками температуры топлива 2, а также датчиком углов крена γ и тангажа β самолета 32, которая поступает на соответствующие входы модулей топливомера 9, 10, 11, 12, а также на соответствующий вход бортового вычислителя 15.During the flight, fuel refueled on the ground is consumed by aircraft engines from fuel tanks 5, 6, 7, 8 and its amount is continuously reduced. As a result, the current values of the fuel level h (τ) n in each of the fuel tanks 5, 6, 7, 8 decrease, and the current values of the fuel temperature t n in these tanks change due to their heat exchange with the surrounding air and the current values of the angle of heel γ and β pitch of the aircraft due to the spatial evolution of the aircraft. This leads to a change in current fuel information generated by fuel level sensors 1, fuel temperature sensors 2, as well as a roll angle sensor γ and pitch β of aircraft 32, which is fed to the corresponding inputs of the fuel gauge modules 9, 10, 11, 12, as well as the corresponding input of the on-board computer 15.

С выходов упомянутых модулей текущая информация передается по информационным линиям связи на соответствующие входы модулей управления 13, 14, в которых вычисляются в соответствии с (2) изменяющиеся в полете текущие значения массы топлива m(τ)n в каждом из топливных баков 5, 6, 7, 8 и на самолете в целом.From the outputs of the above-mentioned modules, current information is transmitted via communication lines to the corresponding inputs of the control modules 13, 14, in which, in accordance with (2), the current values of the fuel mass m (τ) n varying in flight in each of the fuel tanks 5, 6 are calculated 7, 8 and on the plane as a whole.

Если в полете самолета происходит выход из строя одного из датчиков параметров топлива 1, 2, формирующих аналоговую информацию о топливе в топливных баках 5, 6, 7, 8, предложенная система продолжает работу в нештатном режиме с сохранением точности и надежности измерений. С этой целью в нештатном режиме в модулях управления 13, 14 производится метрологическое парирование информации отказавших датчиков. Поскольку параметрический отказ топливного датчика, заключающийся в плавном изменении его передаточной функции, маловероятен, в модулях управления 13, 14 контролируются только случаи катастрофических отказов: короткого замыкания датчика или обрыва его линии связи.If during the flight of an aircraft one of the sensors of fuel parameters 1, 2 fails, which generates analog information about the fuel in the fuel tanks 5, 6, 7, 8, the proposed system continues to operate in an emergency mode while maintaining the accuracy and reliability of measurements. For this purpose, in an emergency mode in the control modules 13, 14, metrological parry of the information of the failed sensors is performed. Since the parametric failure of the fuel sensor, which consists in a smooth change in its transfer function, is unlikely, in the control modules 13, 14 only cases of catastrophic failures are controlled: a short circuit of the sensor or a break in its communication line.

Так как при катастрофическом отказе датчик не функционирует, то сигнал на выходе отказавшего датчика температуры топлива 2 отсутствует. Отсутствие сигнала на выходе датчика работающей системы является достоверным диагностическим признаком его отказа. При обнаружении отказа датчика 2 в одном из модулей управления 13, 14, соответствующем борту упомянутого датчика, формируется команда на переключение выхода отказавшего датчика на выход одноименного исправного датчика, расположенного на противоположном борту самолета симметрично отказавшему. При этом информация о параметре топлива, формируемая отказавшим датчиком 2, заменяется соответствующей информацией от симметрично расположенного датчика 2, и предложенная система продолжает работу без существенного изменения погрешности измерения.Since the sensor does not function in the event of a catastrophic failure, there is no signal at the output of the failed fuel temperature sensor 2. The absence of a signal at the output of the sensor of a working system is a reliable diagnostic sign of its failure. If a sensor 2 failure is detected in one of the control modules 13, 14 corresponding to the board of the mentioned sensor, a command is generated to switch the output of the failed sensor to the output of the sensor of the same name located on the opposite side of the aircraft symmetrically to the failed one. Moreover, the fuel parameter information generated by the failed sensor 2 is replaced by the corresponding information from the symmetrically located sensor 2, and the proposed system continues to work without a significant change in the measurement error.

Однако катастрофический отказ датчика уровня топлива 1 не может быть обнаружен описанным способом по отсутствию выходного сигнала, т.к. расположенные в каждом из топливных баков 5, 6, 7, 8 датчики уровня топлива 1 предложенной системы объединены в пределах каждого топливного бака в группу параллельно соединенных датчиков.However, a catastrophic failure of the fuel level sensor 1 cannot be detected by the described method by the absence of an output signal, because the fuel level sensors 1 of the proposed system located in each of the fuel tanks 5, 6, 7, 8 are integrated within each fuel tank into a group of sensors connected in parallel.

Хотя при отказе одного или нескольких датчиков уровня топлива 1 этой группы сигнал на ее выходе скачкообразно изменяется, он, тем не менее, сохраняет конечную величину, и факт отказа не может быть установлен по отсутствию сигнала на выходе группы датчиков уровня топлива 1. Поэтому в предложенной системе отказ датчика уровня топлива 1 устанавливается методом допускового контроля путем периодического сравнения параметров контролируемой группы датчиков уровня 1 с параметрами одного из контрольных каналов 22, 23, 24, 25, соответствующего упомянутой группе.Although in case of failure of one or several fuel level sensors 1 of this group, the signal at its output changes stepwise, it nevertheless preserves the final value, and the fact of failure cannot be established by the absence of a signal at the output of the group of fuel level sensors 1. Therefore, in the proposed the system failure of the fuel level sensor 1 is established by the method of tolerance control by periodically comparing the parameters of the monitored group of level 1 sensors with the parameters of one of the control channels 22, 23, 24, 25 corresponding to that mentioned oh group.

Каждый из контрольных каналов 22, 23, 24, 25, входящих в состав бортового вычислителя 15, содержит в своей памяти допусковые значения контролируемых параметров соответствующей группы датчиков уровня топлива 1: контрольный канал 22 содержит допусковые значения группы датчиков уровня топлива 1 топливного бака 5, контрольный канал 23 - группы датчиков уровня топлива 1 топливного бака 6, контрольный канал 24 - группы датчиков уровня топлива 1 топливного бака 7, а контрольный канал 25 - группы датчиков уровня топлива 1 топливного бака 8.Each of the control channels 22, 23, 24, 25, which are part of the on-board computer 15, contains in its memory the tolerance values of the monitored parameters of the corresponding group of fuel level sensors 1: control channel 22 contains the tolerance values of the group of fuel level sensors 1 of the fuel tank 5, control channel 23 - groups of fuel level sensors 1 of the fuel tank 6, control channel 24 - groups of fuel level sensors 1 of the fuel tank 7, and control channel 25 - groups of fuel level sensors 1 of the fuel tank 8.

Отказ одного из датчиков в группе приводит к скачкообразному изменению ее контролируемых параметров, которые выходят за пределы допусковых значений. При допусковом контроле параметров группы, содержащей отказавший датчик уровня топлива 1, ее параметры сравниваются с параметрами соответствующего контрольного канала 22, 23, 24, 25 в соответствующем модуле управления 13, 14. В результате сравнения в упомянутом модуле выявляется факт несоответствия допуску, свидетельствующий о выходе из строя одного или нескольких датчиков уровня топлива 1 в подконтрольной группе и формируется команда на переключение.Failure of one of the sensors in the group leads to an abrupt change in its monitored parameters that go beyond tolerance values. During tolerance control of the parameters of the group containing the failed fuel level sensor 1, its parameters are compared with the parameters of the corresponding control channel 22, 23, 24, 25 in the corresponding control module 13, 14. As a result of the comparison, the fact of non-compliance with the tolerance indicating exit failure of one or more fuel level sensors 1 in the controlled group and a switching command is generated.

В соответствии с командой на переключение информация от забракованной группы датчиков уровня топлива 1 заменяется информацией от симметрично расположенной группы датчиков уровня топлива 1 противоположного борта.In accordance with the switching command, information from the rejected group of fuel level sensors 1 is replaced by information from a symmetrically located group of fuel level sensors 1 of the opposite side.

Например, при обнаружении отказа одного из датчиков уровня топлива 1, установленного в первом левом топливном баке 5, в левом модуле управления 13 формируется и транслируется по двусторонней информационной линии связи в правый модуль управления 14 команда на переключение, в соответствии с которой прерывается прием информации, передаваемой забракованной группой датчиков 1 на соответствующий вход первого левого модуля топливомера 9 и, далее, с выходов последнего, - на основной вход 16 левого модуля управления 13 и дублирующий вход 17 правого модуля управления 14. Взамен прерванной информации в бортовом вычислителе 15 используется дублирующая информация, формируемая группой датчиков уровня топлива 1, расположенной симметрично забракованной группе в первом правом топливном баке 7. Дублирующая информация поступает на соответствующий вход первого правого модуля топливомера 11 и, далее, - на основной вход 16 правого модуля управления 14 и дублирующий вход 17 левого модуля управления 13. В левом модуле управления 13 бортового вычислителя 15 вычисляется в соответствии с алгоритмической зависимостью (2) текущее значение массы топлива m(τ)5 в первом левом топливном баке 5 на основании дублирующей информации, поступающей на дублирующий вход 17 упомянутого модуля.For example, if a failure of one of the fuel level sensors 1 installed in the first left fuel tank 5 is detected, a switching command is generated and transmitted via the two-way information line to the right control module 14 in the left control unit 13, according to which the information is interrupted, transmitted by the rejected group of sensors 1 to the corresponding input of the first left fuel meter module 9 and, further, from the outputs of the latter, to the main input 16 of the left control module 13 and a redundant input 17 of the right mode For control 14. Instead of the interrupted information, the on-board computer 15 uses duplicate information generated by the group of fuel level sensors 1 located symmetrically to the rejected group in the first right fuel tank 7. The duplicate information is fed to the corresponding input of the first right module of the fuel meter 11 and, further, to the main input 16 of the right control module 14 and the redundant input 17 of the left control module 13. In the left control module 13 of the on-board computer 15 is calculated in accordance with the algorithmic dependence By (2), the current value of the fuel mass m (τ) 5 in the first left fuel tank 5 is based on the duplicate information received at the duplicate input 17 of the mentioned module.

Очевидно, что замена основной информации о количестве топлива в топливном баке 5 дублирующей информацией о количестве топлива в симметрично расположенном топливном баке 7 сопровождается методической погрешностью δm5(мет.) измерения массы топлива в топливном баке 5, вызванной неизбежным различием текущих значений массы топлива в топливных баках 5 и 7.Obviously, the replacement of basic information about the amount of fuel in the fuel tank 5 with duplicate information about the amount of fuel in a symmetrically located fuel tank 7 is accompanied by a methodological error δm 5 (met.) Of measuring the mass of fuel in the fuel tank 5, caused by the inevitable difference in the current values of the mass of fuel in the fuel tanks 5 and 7.

Однако величина методической погрешности δm5(мет.) существенно меньше величины инструментальной погрешности δm5(инстр.) измерения массы топлива в топливном баке 5 с помощью забракованной группы датчиков уровня топлива 1, установленных в этом баке:However, the value of the methodical error δm 5 (met.) Is significantly less than the value of the instrumental error δm 5 (inst.) Of measuring the mass of fuel in the fuel tank 5 using a rejected group of fuel level sensors 1 installed in this tank:

δ m 5 ( м е т . ) < < δ m 5 ( и н с т р . ) . ( 4 )

Figure 00000004
δ m 5 ( m e t . ) < < δ m 5 ( and n from t R . ) . ( four )
Figure 00000004

Полученное для топливного бака 5 неравенство (4) справедливо для любого n-го топливного бака 5, 6, 7, 8:The inequality (4) obtained for the fuel tank 5 is valid for any n-th fuel tank 5, 6, 7, 8:

δ m n ( м е т . ) < < δ m n ( и н с т р . ) , ( 5 )

Figure 00000005
δ m n ( m e t . ) < < δ m n ( and n from t R . ) , ( 5 )
Figure 00000005

где δmn(мет.) и δmn(инстр.) - методическая и инструментальная погрешности измерения массы топлива в n-м топливном баке соответственно.where δm n (met.) and δm n (instr.) are the methodological and instrumental errors of measuring the mass of fuel in the nth fuel tank, respectively.

Неравенство (5) определяет целесообразность и эффективность метрологического парирования катастрофического отказа датчика уровня топлива 1 в любом из топливных баков 5, 6, 7, 8 путем замены основной информации об уровне топлива дублирующей информацией.Inequality (5) determines the appropriateness and effectiveness of the metrological parry of the catastrophic failure of the fuel level sensor 1 in any of the fuel tanks 5, 6, 7, 8 by replacing the basic information about the fuel level with duplicate information.

- Помимо измерения массового запаса топлива в топливных баках 5, 6, 7, 8 и на самолете в целом предложенная система контролирует в полете самолета симметрию выработки топлива из топливных баков 5, 6, 7, 8 авиадвигателями левого и правого бортов. Целью контроля является недопущение нарушения поперечной центровки самолета вследствие существенного различия количества топлива в симметрично расположенных топливных баках 5 и 7, 6 и 8.- In addition to measuring the mass fuel supply in the fuel tanks 5, 6, 7, 8 and on the aircraft as a whole, the proposed system controls the symmetry of fuel production from the fuel tanks 5, 6, 7, 8 by aircraft engines on the left and right sides in flight. The purpose of control is to prevent violation of the transverse alignment of the aircraft due to a significant difference in the amount of fuel in the symmetrically located fuel tanks 5 and 7, 6 and 8.

Контроль балансировки самолета по топливу предложенной системой производится путем периодического сравнения в устройстве сравнения 27 текущих значений массы топлива m(τ)5 с массой m(τ)7 и массы топлива m(τ)6 с массой m(τ)8 в каждой паре симметрично расположенных топливных баков 5, 7 и 6, 8.The balance of the aircraft’s fuel balance by the proposed system is carried out by periodically comparing in the comparison device 27 current values of the fuel mass m (τ) 5 with mass m (τ) 7 and fuel mass m (τ) 6 with mass m (τ) 8 in each pair located fuel tanks 5, 7 and 6, 8.

Текущее значение массы топлива m(τ)n в n-м топливном баке 5, 6, 7, 8 вычисляется в соответствии с алгоритмической функцией, приведенной в правой части выражения (2), в одном из модулей управления 13, 14, соответствующем борту упомянутого бака, и передается с выхода этого модуля по соответствующим информационным линиям связи на вход устройства сравнения 26.The current value of the fuel mass m (τ) n in the nth fuel tank 5, 6, 7, 8 is calculated in accordance with the algorithmic function given in the right part of expression (2) in one of the control modules 13, 14 corresponding to the board of the aforementioned tank, and is transmitted from the output of this module through the corresponding information lines of communication to the input of the comparison device 26.

В устройстве сравнения 26 вычисляется текущее значение разбаланса топлива в симметрично расположенных топливных баках 5 и 7, 6 и 8 противоположных бортов самолета в соответствии с равенствами:In the comparison device 26, the current value of the fuel unbalance in the symmetrically located fuel tanks 5 and 7, 6 and 8 of the opposite sides of the aircraft is calculated in accordance with the equalities:

Δ m ( τ ) 1 = m ( τ ) 5 m ( τ ) 7 , Δ m ( τ ) 2 = m ( τ ) 6 m ( τ ) 8 , ( 6 )

Figure 00000006
Δ m ( τ ) one = m ( τ ) 5 - m ( τ ) 7 , Δ m ( τ ) 2 = m ( τ ) 6 - m ( τ ) 8 , ( 6 )
Figure 00000006

где Δm(τ)1 и Δm(τ)2, - текущие значения разбаланса топлива между первыми топливными баками 5 и 7 соответственно, и вторыми топливными баками 6 и 8 соответственно;where Δm (τ) 1 and Δm (τ) 2 , are the current values of the fuel imbalance between the first fuel tanks 5 and 7, respectively, and the second fuel tanks 6 and 8, respectively;

m(τ)5, m(τ)6, m(τ)7 и m(τ)8, - текущие значения массы топлива в каждом из топливных баков 6, 7, 8 и 9 соответственно.m (τ) 5 , m (τ) 6 , m (τ) 7 and m (τ) 8 , are the current values of the fuel mass in each of the fuel tanks 6, 7, 8, and 9, respectively.

Для обеспечения номинальной поперечной центровки самолета каждая из абсолютных величин разбаланса топлива |Δm(τ)1| и |Δm(τ)2|, полученного в соответствии с выражениями (6), не должна превышать предельно допустимого значения разбаланса топлива Δm(τ)max, установленного для каждой пары топливных баков 5, 7 и 6, 8:To ensure nominal lateral alignment of the aircraft, each of the absolute values of the fuel unbalance | Δm (τ) 1 | and | Δm (τ) 2 | obtained in accordance with expressions (6), must not exceed the maximum permissible value of the fuel unbalance Δm (τ) max established for each pair of fuel tanks 5, 7 and 6, 8:

| Δ m ( τ ) 1 | Δ m ( τ ) 1 max , | Δ m ( τ ) 2 | Δ m ( τ ) 2 max , ( 7 )

Figure 00000007
| | | Δ m ( τ ) one | | | Δ m ( τ ) one max , | | | Δ m ( τ ) 2 | | | Δ m ( τ ) 2 max , ( 7 )
Figure 00000007

где |Δm(τ)1 и |Δm(τ)2| - абсолютные значения разбаланса топлива между первыми топливными баками 5 и 7 и вторыми топливными баками 6 и 8 соответственно;where | Δm (τ) 1 and | Δm (τ) 2 | - absolute values of the fuel imbalance between the first fuel tanks 5 and 7 and the second fuel tanks 6 and 8, respectively;

Δm(τ)1max и Δm(τ)2max - предельно допустимые значения разбаланса топлива между упомянутыми топливными баками.Δm (τ) 1max and Δm (τ) 2max are the maximum permissible values of the fuel unbalance between the mentioned fuel tanks.

Предельно допустимые значения разбаланса топлива вводятся в память устройства балансировки 27 при загрузке рабочей программы. Вычисленные в устройстве сравнения 26 в соответствии с выражениями (6) текущие алгебраические значения разбаланса топлива поступают по информационной линии связи с выхода последнего на вход устройства балансировки 27, в котором производится сопоставление абсолютных величин поступивших значений разбаланса топлива с предельно допустимыми значениями в соответствии с неравенствами (7). При существенной разбалансировке симметрично расположенных топливных баков 5, 7 и 6, 8 одно или оба неравенства (7) не выполняются. В этом случае в устройстве балансировки 26 учитывается знак текущей величины недопустимого разбаланса: «плюс» или «минус», полученный в устройстве сравнения 26 в соответствии с выражениями (6).The maximum allowable values of the fuel unbalance are entered into the memory of the balancing device 27 when loading the working program. The current algebraic values of the fuel unbalance calculated in the comparison device 26 in accordance with expressions (6) are received via the information line from the output of the latter to the input of the balancing device 27, in which the absolute values of the received values of the fuel unbalance are compared with the maximum allowable values in accordance with the inequalities ( 7). With a significant imbalance of symmetrically located fuel tanks 5, 7 and 6, 8, one or both of the inequalities (7) are not satisfied. In this case, in the balancing device 26, the sign of the current value of the unacceptable imbalance is taken into account: “plus” or “minus” obtained in the comparison device 26 in accordance with expressions (6).

В случае знака «минус» в устройстве балансировки 27 формируется сигнал на перекачку топлива из правого топливного бака 7 или 8 в симметрично расположенный левый топливный бак 5 или 6 соответственно, а в случае знака «плюс», наоборот, - из левого топливного бака 5 или 6 в симметрично расположенный правый топливный бак 7 или 8 соответственно.In the case of the minus sign in the balancing device 27, a signal is generated for pumping fuel from the right fuel tank 7 or 8 to the symmetrically located left fuel tank 5 or 6, respectively, and in the case of the plus sign, on the contrary, from the left fuel tank 5 or 6 into a symmetrically located right fuel tank 7 or 8, respectively.

Сформированный сигнал управления перекачкой топлива передается с одного из выходов устройства балансировки 27 на соответствующий вход внешних систем самолета 34 для управления направленной перекачкой топлива из топливного бака 5, 6, 7, 8 с большей массой топлива по сравнению с номинальной в топливный бак 5, 6, 7, 8 с меньшей массой топлива по сравнению с номинальной.The generated fuel transfer control signal is transmitted from one of the outputs of the balancing device 27 to the corresponding input of external systems of the aircraft 34 to control the directed pumping of fuel from the fuel tank 5, 6, 7, 8 with a larger mass of fuel compared to the nominal fuel tank 5, 6, 7, 8 with a lower mass of fuel compared to the nominal.

Направленная перекачка топлива продолжается вплоть до выполнения неравенств (7) в устройстве балансировки 27, после чего это устройство снимает сигнал на перекачку топлива с соответствующего входа внешних систем самолета 34.Directional fuel transfer continues until inequalities (7) are satisfied in balancing device 27, after which this device removes the fuel transfer signal from the corresponding input of external systems of the aircraft 34.

При вычислении текущих значений расбаланса топлива в устройстве сравнения 26 в соответствии с равенствами (6) значительная часть погрешности вычисления возникает вследствие различия между собой передаточных функций левого и правого модулей управления 13, 14. Если упомянутые различия существенны, достоверное определение величины разбаланса топлива предложенной системой оказывается затруднительным. Поэтому в случае когда обнаружено отличие между собой передаточных функций левого и правого модулей управления 13, 14, вызывающее существенную инструментальную погрешность определения разбаланса топлива, предложенная система может быть переведена в режим нормализации (усреднения) передаточных функций упомянутых модулей. Переход в режим нормализации необходим в случае замены в процессе эксплуатации предложенной системы одного из отказавших модулей управления 13, 14 исправным модулем при обнаружении существенных различий передаточных функций упомянутых модулей на контрольных испытаниях предложенной системы и т.п. При переходе в режим нормализации оператором формируется на пульте управления 28 и передается по двусторонней информационной линии связи в бортовой вычислитель 15 команда «нормализация», в соответствии с которой текущее значение массы топлива m(τ)n в n-м топливном баке вычисляется, с целью усреднения передаточных функций, не в одном, а в каждом из модулей управления 13, 14 и передается с выхода каждого из них по соответствующим информационным линиям связи на вход устройства сравнения 26, в котором определяется среднее арифметическое двух вычисленных текущих значений массы: m( τ n ) ¯

Figure 00000008
.When calculating the current values of the fuel unbalance in the comparison device 26 in accordance with equalities (6), a significant part of the calculation error arises due to the difference between the transfer functions of the left and right control modules 13, 14. If the mentioned differences are significant, a reliable determination of the amount of fuel unbalance by the proposed system turns out to be embarrassing. Therefore, in the case when a difference between the transfer functions of the left and right control modules 13, 14 is detected, which causes a significant instrumental error in determining the fuel imbalance, the proposed system can be transferred to the normalization (averaging) mode of the transfer functions of the mentioned modules. The transition to normalization mode is necessary if during operation of the proposed system one of the failed control modules 13, 14 is replaced by a working module if significant differences in the transfer functions of the said modules are detected during the control tests of the proposed system, etc. When the operator enters normalization mode, the operator generates a “normalization” command on the control panel 28 and transmits a normalization command 15 to the on-board computer 15, according to which the current value of the fuel mass m (τ) n in the nth fuel tank is calculated, with the aim of averaging the transfer functions, not in one but in each of the control modules 13, 14 and is transmitted from the output of each of them via the corresponding information lines to the input of the comparison device 26, in which the arithmetic average of two current mass values: m ( τ n ) ¯
Figure 00000008
.

Аналогичным образом текущее значение массы топлива m(τ)n+2 в (n+2)-м топливном баке противоположного борта, расположенном симметрично n-му топливному баку, вычисляется в каждом из модулей управления 13, 14 и передается с выхода каждого из них по соответствующим информационным линиям связи на вход устройства сравнения 26, в котором определяется среднее арифметическое двух вычисленных текущих значений массы: m ( τ ) n + 2 ¯

Figure 00000009
.Similarly, the current value of the fuel mass m (τ) n + 2 in the (n + 2) -m fuel tank of the opposite side, located symmetrically to the n-th fuel tank, is calculated in each of the control modules 13, 14 and transmitted from the output of each of them on the corresponding information communication lines to the input of the comparison device 26, in which the arithmetic average of two calculated current mass values is determined: m ( τ ) n + 2 ¯
Figure 00000009
.

В режиме нормализации устройство сравнения 26 вычисляет текущее значение разбаланса топлива Δm(τ) между n-м и симметрично расположенным (n+2)-м топливными баками в соответствии с выражением:In normalization mode, the comparison device 26 calculates the current value of the fuel imbalance Δm (τ) between the nth and symmetrically located (n + 2) -m fuel tanks in accordance with the expression:

Δ m ( τ ) = m ( τ ) n ¯ m ( τ ) n + 2 ¯ , ( 8 )

Figure 00000010
Δ m ( τ ) = m ( τ ) n ¯ - m ( τ ) n + 2 ¯ , ( 8 )
Figure 00000010

где m ( τ ) n ¯

Figure 00000011
и m ( τ ) n + 2 ¯
Figure 00000009
- средние арифметические текущих значений массы топлива в n-м и (n+2)-м топливных баках соответственно.Where m ( τ ) n ¯
Figure 00000011
and m ( τ ) n + 2 ¯
Figure 00000009
- arithmetic average of the current values of the mass of fuel in the nth and (n + 2) -m fuel tanks, respectively.

Значение разбаланса топлива, вычисленное по формулам (8), в отличие от значения, вычисленного по формулам (6), практически не зависит от инструментальной погрешности, вызванной различиями передаточных функций левого и правого модулей управления 13 и 14.The value of the fuel imbalance calculated by formulas (8), in contrast to the value calculated by formulas (6), is practically independent of the instrumental error caused by differences in the transfer functions of the left and right control modules 13 and 14.

Поясним на примере процесс вычисления текущего значения массы топлива в одном из топливных баков 5, 6, 7, 8 в режиме нормализации. Например, при вычислении текущего значения массы топлива m(τ)5 в первом левом топливном баке 5 аналоговая информация о значениях параметров топлива поступает с выхода каждого из датчиков параметров топлива 1 и 2, установленных в этом баке, на соответствующие входы первого левого модуля топливомера 9 и далее с выхода этого модуля, уже в цифровой форме, поступает по соответствующим информационным линиям связи на основной вход 16 левого модуля управления 13 и на дублирующий вход 17 правого модуля управления 14. В левом модуле управления 13 вычисляется основное текущее значение массы топлива m(τ)5 в топливном баке 5, а в правом модуле управления 14 - дублирующее значение массы топлива m'(τ)5 в упомянутом баке. Вычисленные значения масс топлива передаются с выхода каждого из модулей управления 13, 14 по соответствующим информационным линиям связи на вход устройства сравнения 26, в котором вычисляется среднее арифметическое текущего значения массы топлива в первом левом топливном баке 5:Let us illustrate, by way of example, the process of calculating the current value of the mass of fuel in one of the fuel tanks 5, 6, 7, 8 in normalization mode. For example, when calculating the current value of the fuel mass m (τ) 5 in the first left fuel tank 5, analog information about the values of the fuel parameters is received from the output of each of the fuel parameter sensors 1 and 2 installed in this tank, to the corresponding inputs of the first left fuel gauge module 9 and then from the output of this module, already in digital form, it enters the main input 16 of the left control module 13 and to the redundant input 17 of the right control module 14 through the corresponding communication lines. In the left control module 13 it calculates This is the main current value of the fuel mass m (τ) 5 in the fuel tank 5, and in the right control module 14, the duplicate value of the fuel mass m '(τ) 5 in the mentioned tank. The calculated values of the masses of fuel are transmitted from the output of each of the control modules 13, 14 through the corresponding information lines to the input of the comparison device 26, in which the arithmetic average of the current value of the mass of fuel in the first left fuel tank 5 is calculated:

m ( τ ) 5 ¯ = 0,5 [ m ( τ ) 5 + m ' ( τ ) 5 ] , ( 9 )

Figure 00000012
m ( τ ) 5 ¯ = 0.5 [ m ( τ ) 5 + m '' ( τ ) 5 ] , ( 9 )
Figure 00000012

где m(τ)5 и m'(τ)5 соответственно - основное и дублирующее текущие значения массы топлива в первом левом топливном баке 5.where m (τ) 5 and m '(τ) 5, respectively, are the main and duplicate current values of the fuel mass in the first left fuel tank 5.

Аналогичным образом вычисляется среднее арифметическое текущего значения массы топлива в первом правом топливном баке 7:Similarly, the arithmetic average of the current value of the mass of fuel in the first right fuel tank 7 is calculated:

m ( τ ) 7 ¯ = 0,5 [ m ( τ ) 7 + m ' ( τ ) 7 ] . ( 10 )

Figure 00000013
m ( τ ) 7 ¯ = 0.5 [ m ( τ ) 7 + m '' ( τ ) 7 ] . ( 10 )
Figure 00000013

Полученные в устройстве сравнения 26 средние арифметические текущих значений массы топлива в топливных баках 5 и 7 используются для определения уточненного значения разбаланса топлива между топливными баками 5 и 7 в режиме нормализации:The arithmetic mean values of the current fuel mass in the fuel tanks 5 and 7 obtained in the comparison device 26 are used to determine the updated value of the fuel unbalance between the fuel tanks 5 and 7 in the normalization mode:

Δ m ( τ ) 1 = m ( τ ) 5 ¯ m ( τ ) 7 ¯ , ( 11 )

Figure 00000014
Δ m ( τ ) one = m ( τ ) 5 ¯ - m ( τ ) 7 ¯ , ( eleven )
Figure 00000014

где m ( τ ) 5 ¯

Figure 00000015
и m ( τ ) 7 ¯
Figure 00000016
- средние арифметические текущих значений массы топлива в первом левом и в первом правом топливных баках 5 и 7 соответственно, вычисленные в режиме нормализации.Where m ( τ ) 5 ¯
Figure 00000015
and m ( τ ) 7 ¯
Figure 00000016
- arithmetic average of the current values of the fuel mass in the first left and first right fuel tanks 5 and 7, respectively, calculated in the normalization mode.

Таким же образом в устройстве сравнения 26 определяется уточненное значение разбаланса топлива между топливными баками 6 и 8 в режиме нормализации:In the same way, in the comparison device 26, an updated value of the fuel unbalance between the fuel tanks 6 and 8 is determined in the normalization mode:

Δ m ( τ ) 2 = m ( τ ) 6 ¯ m ( τ ) 8 ¯ . ( 12 )

Figure 00000017
Δ m ( τ ) 2 = m ( τ ) 6 ¯ - m ( τ ) 8 ¯ . ( 12 )
Figure 00000017

Полученные по формулам (11) и (12) значения разбаланса топлива передаются из устройства сравнения 26 по информационной линии связи в устройство балансировки 27, в котором в соответствии с неравенствами (7) анализируются величина и знак разбаланса.The values of the fuel unbalance obtained by formulas (11) and (12) are transferred from the comparison device 26 via the information communication line to the balancing device 27, in which, in accordance with inequalities (7), the magnitude and sign of the unbalance are analyzed.

Применение в предложенной системе принципа нормализации инструментальной погрешности средств измерения, возникающей вследствие различия их передаточных функций, позволяет управлять балансировкой самолета по топливу даже в том случае, когда передаточные функции упомянутых средств измерения - модулей управления 13 и 14 - существенно различаются между собой.The application in the proposed system of the principle of normalizing the instrumental error of measuring instruments arising due to the difference in their transfer functions allows you to control the balance of the aircraft with respect to fuel even when the transfer functions of the said measuring means - control modules 13 and 14 - differ significantly from each other.

- По мере выработки заправленного на земле запаса топлива авиадвигателями летящего самолета текущие значения уровня топлива h(τ)n в каждом из топливных баков 5, 6, 7, 8 непрерывно уменьшаются вплоть до уровней, на которых установлены сигнализаторы нижнего уровня топлива 3.- As the supply of fuel filled on the ground by aircraft engines of a flying airplane is depleted, the current values of the fuel level h (τ) n in each of the fuel tanks 5, 6, 7, 8 continuously decrease down to the levels at which the low fuel level warning devices 3 are installed.

При достижении уровнем топлива в любом из топливных баков 5, 6, 7, 8 значения, равного высоте установки сигнализатора нижнего уровня топлива 3, последний вырабатывает сигнал о достижении резервного остатка топлива. Этот сигнал с выхода сработавшего сигнализатора нижнего уровня топлива 3 поступает на соответствующий вход бортового вычислителя 15, в котором формируется и передается по соответствующим информационным линиям связи во внешние системы самолета 34 и на индикатор 30 пульта управления 28 сигнал о достижении резервного остатка топлива в одном из топливных баков 5, 6, 7, 8 для принятия экипажем решения о продолжении полета. При этом на индикаторе 30 могут высвечиваться сигнал «резервный остаток» и номер соответствующего топливного бака.When the fuel level in any of the fuel tanks 5, 6, 7, 8 reaches a value equal to the installation height of the low fuel level switch 3, the latter generates a signal that the reserve fuel balance has been reached. This signal from the output of the triggered low fuel level warning device 3 is fed to the corresponding input of the on-board computer 15, in which a signal is generated and transmitted via the corresponding communication lines to the aircraft's external systems 34 and to the indicator 30 of the control panel 28 about the reserve fuel remaining in one of the fuel tanks 5, 6, 7, 8 for the crew to decide on the continuation of the flight. In this case, the indicator "reserve balance" and the number of the corresponding fuel tank may be displayed on the indicator 30.

Ввиду важности сигнала о резервном остатке топлива, непосредственно влияющего на безопасность полета, в предложенной системе основной сигнал, вырабатываемый сигнализатором нижнего уровня топлива 3, может быть дополнен дублирующими сигналами о резервном остатке топлива, которые формируются бортовым вычислителем 15 на основе измерительной информации, вырабатываемой независимыми источниками информации, использующими физические принципы измерения, существенно отличающиеся от принципа измерения сигнализатора нижнего уровня топлива 3.In view of the importance of the signal about the reserve fuel remaining directly affecting flight safety, in the proposed system, the main signal generated by the low fuel level switch 3 can be supplemented by duplicate signals about the reserve fuel remaining, which are generated by the on-board computer 15 based on the measurement information generated by independent sources information using physical measurement principles that differ significantly from the measurement principle of the low fuel level switch 3.

Дублирующие сигналы о резервном остатке топлива могут формироваться расходомерной и топливомерной частями предложенной системы. Топливомерная часть предложенной системы, отвечающая за формирование одного из дублирующих сигналов о резервном остатке топлива, включает в себя датчики температуры топлива 2, модули топливомера 9, 10, 11, 12 и модули управления 13, 14 и в процессе полета, помимо информации о значениях температуры топлива, может вырабатывать также информацию о резервном остатке топлива, в том случае, когда датчики температуры топлива 2 установлены в топливных баках 5, 6, 7, 8 на высоте сигнализаторов нижнего уровня топлива 3. При понижении уровня топлива в одном из топливных баков 5, 6, 7, 8 ниже высоты установки упомянутого датчика 2 выходной сигнал последнего скачкообразно изменяется в связи со скачкообразным изменением температуры окружающей среды при замене жидкого топлива газом. Скачок выходного сигнала передается через соответствующий модуль топливомера 9, 10, 11, 12 в бортовой вычислитель 15. При этом в бортовом вычислителе 15 формируется и с его выхода поступает по информационной линии связи на вход внешних систем самолета 34 первый дублирующий сигнал о достижении резервного остатка топлива.Duplicate signals about the reserve fuel balance can be formed by the flow meter and fuel meter parts of the proposed system. The fuel gauge part of the proposed system, which is responsible for generating one of the duplicate signals about the reserve fuel balance, includes fuel temperature sensors 2, fuel gauge modules 9, 10, 11, 12 and control modules 13, 14 and during the flight, in addition to information on temperature values fuel, can also generate information about the reserve fuel remaining, in the case when the fuel temperature sensors 2 are installed in the fuel tanks 5, 6, 7, 8 at the height of the low fuel level warning devices 3. When the fuel level is lowered in one of fuel tanks 5, 6, 7, 8 below the installation height of said sensor 2, the output signal of the latter changes abruptly due to the abrupt change in ambient temperature when replacing liquid fuel with gas. The output signal jump is transmitted through the corresponding fuel gauge module 9, 10, 11, 12 to the on-board calculator 15. In this case, the on-board calculator 15 generates and from its output enters the aircraft’s external systems input 34 the first duplicate signal on reaching the reserve fuel balance .

Расходомерная часть предложенной системы включает в себя бортовой вычислитель 15, содержащий входы для связи с каждым из датчиков расхода топлива 33, взаимодействующих с предложенной системой. Величина суммарного остатка топлива m(τ) по расходомеру определяется в бортовом вычислителе 15 в два этапа: вначале производится интегрирование текущего значения расхода топлива из n-го топливного бака 5, 6, 7, 8 по времени полета, а затем значение вычисленного определенного интеграла, равное массе топлива, израсходованного из n-го топливного бака, вычитается из массы топлива, заправленного в этот бак.The flow meter part of the proposed system includes an on-board computer 15, containing inputs for communication with each of the fuel consumption sensors 33, interacting with the proposed system. The value of the total fuel remaining m (τ) by the flow meter is determined in the on-board calculator 15 in two stages: first, the current value of the fuel consumption from the nth fuel tank 5, 6, 7, 8 is integrated over the flight time, and then the value of the calculated definite integral equal to the mass of fuel consumed from the nth fuel tank is subtracted from the mass of fuel charged into this tank.

Полученная при этом разность представляет собой запас топлива m(τ)n в n-м топливном баке 5, 6, 7, 8 по расходомеру. Вычисленные в бортовом вычислителе 15 значения запасов топлива по расходомеру m(τ)n в каждом из топливных баков 5, 6, 7, 8 передаются с выходов каждого из модулей управления 13, 14 по соответствующим информационным линиям связи на вход устройства сравнения 26 в котором определяется величина суммарного запаса топлива m(τ) по расходомеру:The resulting difference is the fuel supply m (τ) n in the nth fuel tank 5, 6, 7, 8 in the flow meter. The values of the fuel reserves calculated in the on-board calculator 15 by the flow meter m (τ) n in each of the fuel tanks 5, 6, 7, 8 are transmitted from the outputs of each of the control modules 13, 14 through the corresponding communication lines to the input of the comparison device 26 in which the value of the total fuel reserve m (τ) for the flow meter:

m ( τ ) = Σ n m ( τ ) n , ( 13 )

Figure 00000018
m ( τ ) = Σ n m ( τ ) n , ( 13 )
Figure 00000018

где ∑n - символ суммирования n текущих значений массы топлива m(τ)n в каждом из топливных баков 5, 6, 7, 9.where ∑ n is the summation symbol n of the current values of the fuel mass m (τ) n in each of the fuel tanks 5, 6, 7, 9.

Полученная в соответствии с равенством (13) величина суммарного запаса топлива по расходомеру сравнивается с минимально допустимой величиной запаса топлива на самолете:Obtained in accordance with equality (13), the value of the total fuel supply for the flow meter is compared with the minimum allowable fuel supply on the plane:

m ( τ ) m ( τ ) min ; ( 14 )

Figure 00000019
m ( τ ) m ( τ ) min ; ( fourteen )
Figure 00000019

значение m(τ)min вводится в память устройства сравнения 26 при загрузке рабочей программы.the value of m (τ) min is entered into the memory of the comparison device 26 when loading the working program.

При невыполнении неравенства (14) в устройстве сравнения 26 вырабатывается и с его выхода передается на соответствующий вход внешних систем самолета 34 второй дублирующий сигнал о достижении резервного остатка топлива.If inequality (14) is not satisfied, a second duplicate signal is generated in the comparison device 26 and, from its output, is transmitted to the corresponding input of the external systems of the aircraft 34 to achieve the reserve fuel balance.

Так как все три упомянутых сигнала о резервном остатке топлива вырабатываются предложенной системой с использованием трех различных источников информации, использующих существенно различные и независимые между собой физические принципы измерения параметров топлива, вероятность одновременного существенного искажения двух из трех сигналов о резервном остатке топлива маловероятна.Since all three of the mentioned signals about the reserve fuel remainder are generated by the proposed system using three different sources of information using substantially different and independent physical principles of measuring fuel parameters, the probability of simultaneous significant distortion of two of the three signals about the reserve fuel remainder is unlikely.

Это предоставляет экипажу возможность надежно оценивать достоверность команд о резервном остатке топлива на основе простейшей мажоритарной логики для трех независимых случайных событий по принципу «два из трех».This provides the crew with the opportunity to reliably evaluate the reliability of the fuel reserve remaining teams based on the simplest majority logic for three independent random events according to the “two out of three” principle.

Следовательно, формируемая предложенной системой информация о резервном остатке топлива отличается высокой достоверностью и надежностью не только в штатном, но и в нештатном режиме работы системы: при отказе одного из датчиков, формирующих эту информацию, или при существенном искажении одного из сигналов о достижении резервного остатка топлива.Therefore, the information on the reserve fuel balance generated by the proposed system is highly reliable and reliable not only in the regular, but also in the emergency mode of operation of the system: in case of failure of one of the sensors forming this information, or in case of significant distortion of one of the signals about the achievement of the reserve fuel balance .

Таким образом, в предложенной бортовой системе контроля топлива с компенсацией по температуре топлива поставленная задача решена за счет метрологического комплексирования информации о топливе, формируемой несколькими независимыми источниками, парирования информации отказавших датчиков информацией исправных датчиков, расположенных симметрично отказавшим, и за счет мажоритарного формирования сигнала о резервном остатке топлива по двум из трех различных независимых сигналов.Thus, in the proposed on-board fuel control system with compensation for fuel temperature, the problem was solved by metrological aggregation of fuel information generated by several independent sources, by parrying the information of failed sensors with information from serviceable sensors located symmetrically by the failed ones, and by majority signal generation of the reserve fuel remaining in two of three different independent signals.

Claims (1)

Бортовая система контроля топлива с компенсацией по температуре топлива, содержащая бортовой вычислитель, устройство сравнения, устройство заправки, индикатор, устройство балансировки, снабженное выходами для передачи сигналов управления перекачкой топлива во внешние системы самолета, установленные в топливных баках сигнализаторы нижнего уровня топлива, а также установленные в топливных баках датчики параметров топлива: уровня и температуры, подключенные к бортовому вычислителю, снабженному входами для подключения к датчикам расхода топлива, выходом для подключения с помощью информационной линии связи к внешним системам самолета и выходом, соединенным с помощью информационной линии связи со входом устройства сравнения, отличающаяся тем, что в нее дополнительно введены правый и левый модули управления, каждый из которых снабжен основным и дублирующим входами, правые и левые модули топливомера, пульт управления, задатчик плотности топлива, установленные в топливных баках сигнализаторы верхнего уровня топлива, а также правые и левые контрольные каналы и правые и левые ячейки памяти, причем число контрольных каналов и число ячеек памяти равны, каждое, числу топливных баков, при этом бортовой вычислитель дополнен входом для подключения с помощью информационной линии связи к датчику углов крена и тангажа самолета, устройство сравнения дополнено выходом для подключения к внешним системам самолета, датчики температуры топлива установлены на высоте сигнализаторов нижнего уровня топлива, правые и левые ячейки памяти входят в состав правого и левого модулей управления соответственно, модули управления и контрольные каналы входят в состав бортового вычислителя, а задатчик плотности топлива, индикатор и устройство заправки - в состав пульта управления, кроме того, каждый из правых модулей топливомера соединен с помощью соответствующих информационных линий связи с основным входом правого модуля управления и с дублирующим входом левого модуля управления, а каждый из левых модулей топливомера соединен с помощью соответствующих информационных линий связи с основным входом левого модуля управления и с дублирующим входом правого модуля управления, модули управления соединены между собой двусторонней информационной линией связи, а каждый из правых и каждый из левых контрольных каналов соединен соответствующей двусторонней информационной линией связи с одним из входов соответствующего модуля управления, помимо этого пульт управления соединен с бортовым вычислителем двусторонней информационной линией связи, выход задатчика плотности топлива и выход устройства заправки соединены, каждый, с одним из входов индикатора, выходы каждого из датчиков уровня топлива, установленных в одном топливном баке, объединены между собой и соединены с одним из входов соответствующего этому баку модуля топливомера, а выход датчика температуры топлива, установленного в том же топливном баке, соединен с другим входом упомянутого модуля, кроме того, выход каждого из сигнализаторов нижнего уровня топлива соединен с одним из входов бортового вычислителя, выход каждого из модулей управления соединен с помощью соответствующей информационной линии связи с выходом бортового вычислителя, соединенным с устройством сравнения, подключенным с помощью информационной линии связи к устройству балансировки. Fuel temperature-compensated on-board fuel control system comprising an on-board computer, a comparison device, a fueling device, an indicator, a balancing device equipped with outputs for transmitting fuel transfer control signals to external aircraft systems, low fuel level warning devices installed in the fuel tanks, as well as installed in fuel tanks sensors of fuel parameters: level and temperature, connected to an on-board computer equipped with inputs for connecting to flow sensors yes fuel, an output for connecting using an information line to external systems of the aircraft and an output connected using an information line to the input of the comparison device, characterized in that it additionally introduces right and left control modules, each of which is equipped with a main and backup inputs, right and left fuel gauge modules, control panel, fuel density adjuster, fuel level indicators installed in the fuel tanks, as well as left and right control channels and right and left memory cells, the number of control channels and the number of memory cells, each equal to the number of fuel tanks, while the on-board computer is supplemented with an input for connecting using the communication line to the roll angle and pitch sensor of the aircraft, the comparison device is supplemented with an output for connecting to external systems aircraft, fuel temperature sensors are installed at the height of the lower fuel level warning devices, the right and left memory cells are part of the right and left control modules, respectively, control modules and control channels are part of the on-board computer, and the fuel density adjuster, indicator and refueling device are part of the control panel, in addition, each of the right fuel gauge modules is connected via the corresponding data lines to the main input of the right control module and to the redundant input of the left control module, and each of the left fuel gauge modules is connected using the corresponding information lines to the main input of the left control module and to the redundant input of the right module communications, control modules are interconnected by a two-way communication line, and each of the right and each of the left control channels is connected by a corresponding two-way communication line to one of the inputs of the corresponding control module, in addition, the control panel is connected to the on-board computer by a two-way communication line, output the fuel density setpoint and the output of the fueling device are connected, each, with one of the indicator inputs, the outputs of each of the fuel level sensors, installed in the same fuel tank, are interconnected and connected to one of the inputs of the fuel meter module corresponding to this tank, and the output of the fuel temperature sensor installed in the same fuel tank is connected to the other input of the mentioned module, in addition, the output of each of the lower level indicators fuel is connected to one of the inputs of the on-board computer, the output of each of the control modules is connected using the corresponding information line to the output of the on-board computer connected to the comparison device, sub connected using the information line to the balancing device.
RU2013129805/11A 2013-06-28 2013-06-28 Onboard system for fuel control and measurement with compensation for fuel temperature RU2532943C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013129805/11A RU2532943C1 (en) 2013-06-28 2013-06-28 Onboard system for fuel control and measurement with compensation for fuel temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013129805/11A RU2532943C1 (en) 2013-06-28 2013-06-28 Onboard system for fuel control and measurement with compensation for fuel temperature

Publications (1)

Publication Number Publication Date
RU2532943C1 true RU2532943C1 (en) 2014-11-20

Family

ID=53382556

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129805/11A RU2532943C1 (en) 2013-06-28 2013-06-28 Onboard system for fuel control and measurement with compensation for fuel temperature

Country Status (1)

Country Link
RU (1) RU2532943C1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2327611C1 (en) * 2006-11-07 2008-06-27 ОАО "Техприбор" Fuel flow meter system with fuel temperature compensation
RU2327613C1 (en) * 2006-11-07 2008-06-27 ОАО "Техприбор" Airborne aircraft fuel flow meter system with fuel temperature and dielectric permeability compensation
US20120029786A1 (en) * 2010-07-30 2012-02-02 Pratt & Whitney Canada Corp. Aircraft engine control during icing of temperature probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2327611C1 (en) * 2006-11-07 2008-06-27 ОАО "Техприбор" Fuel flow meter system with fuel temperature compensation
RU2327613C1 (en) * 2006-11-07 2008-06-27 ОАО "Техприбор" Airborne aircraft fuel flow meter system with fuel temperature and dielectric permeability compensation
US20120029786A1 (en) * 2010-07-30 2012-02-02 Pratt & Whitney Canada Corp. Aircraft engine control during icing of temperature probe

Similar Documents

Publication Publication Date Title
EP3128298B1 (en) Methods and systems for direct fuel quantity measurement
RU2327611C1 (en) Fuel flow meter system with fuel temperature compensation
RU2327614C1 (en) Airborne aircraft fuel flow meter system with fuel dielectric permeability compensation
RU137262U1 (en) FUEL MEASUREMENT SYSTEM WITH COMPENSATION BY FUEL TEMPERATURE
RU130585U1 (en) FUEL CONTROL AND MANAGEMENT SYSTEM WITH COMPENSATION ON DIELECTRIC FUEL PERMEABILITY
RU2532962C1 (en) Onboard fuel metering system with compensation for fuel temperature
RU2532946C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU137265U1 (en) FUEL CONTROL AND MEASUREMENT SYSTEM WITH COMPENSATION ON FUEL TEMPERATURE
RU2532943C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU2532975C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU2532974C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU2532940C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU137264U1 (en) FUEL CONTROL SYSTEM WITH COMPENSATION BY FUEL TEMPERATURE
RU2532978C1 (en) Onboard system for fuel control and measurement with compensation for fuel temperature
RU2532966C1 (en) Onboard system for fuel control with compensation for fuel temperature
RU2532967C2 (en) Onboard fuel metering system with compensation for dielectric constant
RU2532965C2 (en) Onboard fuel metering system with compensation for dielectric constant
RU2532968C2 (en) Onboard fuel control system with compensation for fuel dielectric constant
RU137267U1 (en) FUEL SYSTEM COMPENSATED BY FUEL TEMPERATURE
RU2532969C2 (en) Onboard system for fuel control and measurement with compensation for fuel dielectric constant
RU2532970C2 (en) Onboard system for fuel control and measurement with compensation for fuel dielectric constant
RU2532964C2 (en) Onboard system for fuel control and measurement with compensation for fuel dielectric constant
RU137263U1 (en) FUEL MEASUREMENT AND MONITORING SYSTEM WITH COMPENSATION ON FUEL TEMPERATURE
RU137261U1 (en) FUEL CONTROL AND MANAGEMENT SYSTEM WITH COMPENSATION ON FUEL TEMPERATURE
RU137268U1 (en) FUEL CONTROL SYSTEM WITH COMPENSATION ON FUEL TEMPERATURE