RU2530447C1 - Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации - Google Patents
Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации Download PDFInfo
- Publication number
- RU2530447C1 RU2530447C1 RU2013125509/28A RU2013125509A RU2530447C1 RU 2530447 C1 RU2530447 C1 RU 2530447C1 RU 2013125509/28 A RU2013125509/28 A RU 2013125509/28A RU 2013125509 A RU2013125509 A RU 2013125509A RU 2530447 C1 RU2530447 C1 RU 2530447C1
- Authority
- RU
- Russia
- Prior art keywords
- multicomponent
- gas
- gaseous medium
- parameters
- gas analyser
- Prior art date
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Использование: область анализа газовых сред для определения их компонентного состава и устройства измерительно-аналитических комплексов, с помощью которых они определяются. Задача: разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации, обеспечивающего максимально достоверное определение динамики изменения состава газовых многокомпонентных смесей и других параметров их при непосредственном контакте с указанной смесью. Сущность изобретения: в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающего измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, поступающего от датчиков, размещенных в измерительной ячейке газоанализатора, с преобразованием его в цифровой сигнал, согласно предлагаемому способу, измерение параметров многокомпонентной газовой среды герметизированных контейнеров ведут автоматически дискретно по заложенной в газоанализатор программе с получением аналогового измерительного сигнала путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды с использованием измерительной ячейки газоанализатора, имеющей непосредственное сообщение с внутренним объемом контейнера, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в съемное запоминающее устройство, с записью в его памяти результатов проведенных динамических измерений. В устройстве для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, содержащем газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, в предлагаемом устройстве дополнительно в месте сопряжения газоанализатора с анализируемым герметизированным контейнером установлен переходной элемент, который с одной стороны посажен на входной штуцер газоанализатора, а противоположной частью соединен с обратным клапаном анализируемого герметизированного контейнера с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды с внутренним объемом измерительной ячейки газоанализатора, выполненного взрывозащищенным, малогабаритным и переносным, измерительная ячейка газоанализатора снабжена селективными и неселективными датчиками для измерения и содержания компонентов анализируемой газовой среды, и температуры, и влажности, и давления указанной среды, газоанализатор выполнен с возможностью подключения к нему съемной Флеш-карты в качестве съемного запоминающего устройства, все элементы измерительной системы газоанализатора совместно с компьютером и с Флеш-картой составляют измерительно-аналитический автоматизированный комплекс (ИААК). Технический результат: обеспечение возможности одновременного и непосредственного измерения состава, параметров температуры, влажности, давления измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, и исследования закономерностей изменения во времени указанных параметров. 2 н. и 1 з.п. ф-лы, 1 пр., 1 ил.
Description
Предлагаемое изобретение относится к области анализа многокомпонентных газовых сред для определения их компонентного состава и к устройствам измерительно-аналитических комплексов, с помощью которых они определяются.
Из предшествующего уровня техники известно устройство для анализа газовых смесей (патент РФ №2274855, МПК G01N 27/416, публ. 20.04.06), содержащее пробоотборное устройство, газоанализатор с измерительными ячейками, снабженными датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, выбранное в качестве прототипа предлагаемого устройства.
Известен способ анализа многокомпонентной газовой смеси (патент РФ №2274855, МПК G01N 27/416, публ. 20.04.06), включающий отбор пробы многокомпонентной газовой среды с использованием пробоотборного устройства, пропускание отобранной пробы через измерительную ячейку газоанализатора с датчиками, последующее измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, регистрируемого датчиками, с преобразованием его в цифровой сигнал для передачи его в ПК.
К недостаткам аналогов относится отсутствие возможности измерения одновременно параметров температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с критическими значениями их, допустимыми для конструкций данного типа при одновременном сохранении параметров среды.
Задачей авторов изобретения является разработка способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации, обеспечивающего максимально достоверное определение динамики изменения состава газовых многокомпонентных смесей и других параметров их при непосредственном контакте с указанной смесью.
Технический результат, обеспечиваемый при использовании предлагаемого способа и устройства, заключается в обеспечении возможности одновременного и непосредственного измерения состава, параметров температуры, влажности, давления измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможности сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, и исследования закономерностей изменения во времени указанных параметров, в том числе и в критических условиях.
Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающего измерение параметров многокомпонентной газовой среды герметизированных контейнеров с электронными приборами с получением аналогового измерительного сигнала, поступающего от датчиков, размещенных в измерительной ячейке газоанализатора, с преобразованием его в цифровой сигнал, согласно предлагаемому способу, измерение параметров многокомпонентной газовой среды герметизированных контейнеров ведут автоматически дискретно по заложенной в газоанализатор программе с получением аналогового измерительного сигнала путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды с использованием измерительной ячейки газоанализатора, имеющей непосредственное сообщение с внутренним объемом контейнера, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в съемное запоминающее устройство, с записью в его памяти результатов проведенных динамических измерений.
Кроме того, съемное запоминающее устройство с имеющимися в его памяти результатами проведенных динамических измерений транспортируют в удаленный центр компьютерной обработки, передают в компьютер с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют базу данных (БД) из всех измеренных параметров, сравнивают полученные результаты с БД критических значений этих параметров для каждого из анализируемых герметизированных контейнеров и на основании полученных данных исследуют закономерности изменения их во времени.
Указанные задача и технический результат обеспечиваются тем, что в отличие от известного устройства для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, содержащего газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, в предлагаемом устройстве дополнительно в месте сопряжения газоанализатора с анализируемым герметизированным контейнером установлен переходной элемент, который с одной стороны посажен на входной штуцер газоанализатора, а противоположной частью соединен с обратным клапаном анализируемого герметизированного контейнера с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды с внутренним объемом измерительной ячейки газоанализатора, выполненного взрывозащищенным, малогабаритным и переносным, измерительная ячейка газоанализатора снабжена селективными и неселективными датчиками для измерения и содержания компонентов анализируемой газовой среды, и температуры, и влажности, и давления указанной среды, газоанализатор выполнен с возможностью подключения к нему съемной Флеш-карты в качестве съемного запоминающего устройства, все элементы измерительной системы газоанализатора совместно с компьютером и с Флеш-картой составляют измерительно-аналитический автоматизированный комплекс (ИААК).
Предлагаемый способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство ИИААК для его реализации поясняется следующим образом.
На фиг.1 представлен вид устройства ИИААК для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, где:
1 - контейнер с электронными приборами и обратным клапаном; 2 - газоанализатор; 3 - переходной элемент для подсоединения газоанализатора к контейнеру; 4 - измерительная ячейка с датчиками; 5 -электронный блок управления; 6 - аккумуляторный блок питания; 7 - разъем для подключения зарядного устройства; 8 - разъем для подключения компьютера; 9- разъем для подключения Флеш-карты.
При эксплуатации удаленных объектов 1 с токсичными и горючими газовыми компонентами возникает необходимость постоянного контроля их внутренних сред для исключения возникновения критических ситуаций, характеризующихся приближением концентраций составляющих их компонентов к критическим значениям, превышающих ПДК (предельно допустимые концентрации), а также для исследования динамики изменения текущих значений концентраций и других параметров многокомпонентной газовой среды. Для постоянного и динамичного контроля параметров многокомпонентной среды в предлагаемом способе и устройстве для его реализации предусмотрено использовать в составе измерительно-аналитического оборудования съемных переходных устройств 3 разного конструктивного исполнения с возможностью соединения входного штуцера газоанализатора 2 с различными контролируемыми объектами 1 (герметизированными контейнерами), снабженными обратными клапанами с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды герметизированного контейнера с внутренним объемом измерительной ячейки 4 газоанализатора 2. Это позволит непосредственно измерять параметры многокомпонентной среды (концентрацию компонентов, давление, температуру, влажность) без нарушения герметичности контейнеров и параметров их сред.
В предлагаемом устройстве для анализа многокомпонентной газовой среды герметизированных контейнеров 1 с электронными приборами, содержащем газоанализатор 2 с измерительной ячейкой 4, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, предлагается дополнительно в месте сопряжения газоанализатора 2 с анализируемым герметизированным контейнером 1 установить сменный переходной элемент 3, одна часть постоянного сечения которого посажена на входной штуцер газоанализатора 2, а противоположная часть, выполненная с ответной частью, соответствующей сечению штуцера обратного клапана какого-либо из числа анализируемых герметизированных контейнеров 1, посажена на штуцер 3 обратного клапана контейнера 1 с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды с внутренним объемом измерительной ячейки 4 газоанализатора 2.
Измерительная ячейка 4 снабжена неселективными датчиками для измерения содержания компонентов анализируемой газовой среды и селективными датчиками для измерения температуры, влажности и давления указанной среды. Газоанализатор 2 выполнен взрывозащищенным с возможностью подключения к нему съемной Флеш-карты в качестве съемного запоминающего устройства через разъем 9.
Наблюдения за параметрами многокомпонентной смеси ведут дискретно в автоматическом режиме по заложенной в газоанализатор 2 программе. Аналоговый измерительный сигнал, поступающий от датчиков, размещенных в измерительной ячейке 4 газоанализатора 2, получают путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды с использованием измерительной ячейки газоанализатора, имеющей непосредственное сообщение с внутренним объемом контейнера. Затем полученный аналоговый измерительный сигнал преобразуют в блоке 5 газоанализатора 2 в цифровой сигнал, который передают в съемное запоминающее устройство (Флеш-карту) через разъем 9, с записью в его памяти результатов проведенных динамических измерений.
В блок управления 5 газоанализатора 2 закладка программного обеспечения производится посредством персонального компьютера (ПК) через разъем 8.
Флеш-карту, как съемное запоминающее устройство с имеющимися в его памяти результатами проведенных динамических измерений, транспортируют в удаленный центр компьютерной обработки, передают в (ПК) с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют базу данных (БД) из всех измеренных параметров, сравнивают полученные результаты с БД критических значений этих параметров для каждого из анализируемых герметизированных контейнеров и на основании полученных данных исследуют закономерности изменения их во времени.
В предлагаемом устройстве сменный переходной элемент, газоанализатор, выполненный малогабаритным, с измерительной ячейкой, вмонтированной в газоанализатор, Флеш-карта и ПК составляют единый ИААК.
Работает ИААК следующим образом. Первоначально подготовленный к работе газоанализатор 2 с заложенной в него программой подключают соответствующим переходным элементом 3 к контролируемому объекту - герметизированному контейнеру 1 через имеющийся в нем обратный клапан. Затем на газоанализатор 2 подают питание, запускают программу его работы, производят измерения текущих значений параметров контролируемых сред по программам, заложенным в газоанализатор 2. Результаты измерений передают на Флеш-карту, которую периодически (по завершении серии измерений) транспортируют в отдаленный центр компьютерной обработки данных (ПК), где графически и математически обрабатывают текущие значения измеренных параметров и формируют базу данных (БД) из всех измеренных параметров.
Таким образом, использование предлагаемых способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации позволяет обеспечить возможность одновременного измерения параметров температуры, влажности, давления и состава измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, а также возможность сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, без разгерметизации герметизированных контейнеров.
Возможность промышленной реализации предлагаемых способа и устройства подтверждается следующим примером.
Пример 1. В лабораторных условиях реализован предлагаемый способ на опытном образце устройства, представленного на фиг.1. В предлагаемом устройстве в качестве газоанализатора использован опытный макет газоанализатора с измерительной ячейкой, снабженной датчиками, в качестве переносного компьютера использован переносной ПК типа «Ноутбук», каждое переходное устройство из набора выполнено из нержавеющей стали. Опытный образец заявляемого герметизированного контейнера с электронными приборами выполнен стальным с электронными приборами в виде измерительных и регистрирующих приборов, снабженным обратным клапаном для сообщения с внешней средой. В контейнере сформирована газовая среда, содержащая воздух и водород, пары воды, при этом измерения проводили постоянно в режиме текущего времени с дискретностью измерений 1 раз в час.
Как показали эксперименты, при использовании предлагаемых способа для анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройства для его реализации обеспечен технический результат, заключающийся в обеспечении возможности одновременного измерения состава, параметров температуры, влажности, давления измеряемой многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, возможности сравнения текущих параметров этой среды с их критическими значениями, допустимыми для конструкций данного типа, и определения характера имеющихся изменений параметров.
Claims (3)
1. Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами, включающий измерение концентраций составляющих многокомпонентной газовой среды герметизированного контейнера с электронными приборами внутри с использованием газоанализатора с измерительной ячейкой, снабженной датчиками, последующее измерение параметров многокомпонентной газовой среды с получением аналогового измерительного сигнала, регистрируемого датчиками, и преобразованием его в цифровой сигнал, отличающийся тем, что измерения ведут дискретно автоматически по заложенной в газоанализатор программе с использованием показаний датчиков, непосредственно контактирующих с внутренней средой герметизированного контейнера, аналоговый измерительный сигнал получают путем регистрации показаний и селективных и неселективных датчиков, измеряющих и содержания газовых компонентов, и температуры, и влажности, и давления многокомпонентной газовой среды, затем полученный аналоговый измерительный сигнал преобразуют в цифровой сигнал, который передают в съемное запоминающее устройство, с записью в его памяти результатов проведенных динамических измерений.
2. Способ по п.1, отличающийся тем, что съемное запоминающее устройство с имеющимися в его памяти результатами проведенных динамических измерений транспортируют в удаленный центр компьютерной обработки, передают в компьютер с установленным программным обеспечением, где графически и математически обрабатывают текущие значения измеренных параметров и формируют базу данных (БД) из всех измеренных параметров, сравнивают полученные результаты с БД критических значений этих параметров для каждого из анализируемых герметизированных контейнеров и на основании полученных данных исследуют закономерности изменения их во времени.
3. Устройство для реализации способа анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами по п.1, содержащее газоанализатор с измерительной ячейкой, снабженной датчиками, регистрирующими параметры анализируемой многокомпонентной газовой среды герметизированных контейнеров, отличающееся тем, что в месте сопряжения газоанализатора с анализируемым герметизированным контейнером установлен переходной элемент, который с одной стороны посажен на входной штуцер газоанализатора, а противоположной частью соединен с обратным клапаном анализируемого герметизированного контейнера с образованием единого герметизированного объема для непосредственного диффузионного обмена анализируемой многокомпонентной газовой среды с внутренним объемом измерительной ячейки газоанализатора, выполненного взрывозащищенным, малогабаритным и переносным, измерительная ячейка газоанализатора снабжена селективными и неселективными датчиками для измерения и содержания компонентов анализируемой газовой среды, и температуры, и влажности, и давления указанной среды, газоанализатор выполнен с возможностью подключения к нему съемной Флеш-карты в качестве съемного запоминающего устройства, все элементы измерительной системы газоанализатора совместно с компьютером и с Флеш-картой составляют измерительно-аналитический автоматизированный комплекс.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013125509/28A RU2530447C1 (ru) | 2013-05-31 | 2013-05-31 | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013125509/28A RU2530447C1 (ru) | 2013-05-31 | 2013-05-31 | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2530447C1 true RU2530447C1 (ru) | 2014-10-10 |
Family
ID=53381658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013125509/28A RU2530447C1 (ru) | 2013-05-31 | 2013-05-31 | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2530447C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107421991A (zh) * | 2017-06-13 | 2017-12-01 | 潘志君 | 一种农药残留及气体检测方法、检测系统 |
RU225921U1 (ru) * | 2023-12-12 | 2024-05-14 | Общество с ограниченной ответственностью "Современные технические решения" (ООО "СТР") | Газоанализатор стационарный взрывозащищённый с защитой от фальсификации результатов измерений |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1052951A1 (ru) * | 1981-11-06 | 1983-11-07 | Харьковский Филиал Особого Конструкторского И Технологического Бюро "Союзтехморнефтегаз" | Недисперсионный многокомпонентный газоанализатор |
RU2209425C1 (ru) * | 2002-01-08 | 2003-07-27 | Антоненко Владимир Иванович | Способ распознавания газообразных веществ и устройство для его осуществления |
RU2274855C1 (ru) * | 2004-08-02 | 2006-04-20 | Юрий Николаевич Николаев | Способ анализа состава газовых смесей (варианты) и газоанализатор для его реализации |
RU2287803C2 (ru) * | 2004-05-13 | 2006-11-20 | Общество с ограниченной ответственностью "ЭМИ" | Многокомпонентный газоанализатор ик диапазона |
RU2302627C1 (ru) * | 2006-01-31 | 2007-07-10 | Общество с ограниченной ответственностью "Сенсорные Технологии" | Газоанализатор с открытым входом на основе пьезосенсоров |
-
2013
- 2013-05-31 RU RU2013125509/28A patent/RU2530447C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1052951A1 (ru) * | 1981-11-06 | 1983-11-07 | Харьковский Филиал Особого Конструкторского И Технологического Бюро "Союзтехморнефтегаз" | Недисперсионный многокомпонентный газоанализатор |
RU2209425C1 (ru) * | 2002-01-08 | 2003-07-27 | Антоненко Владимир Иванович | Способ распознавания газообразных веществ и устройство для его осуществления |
RU2287803C2 (ru) * | 2004-05-13 | 2006-11-20 | Общество с ограниченной ответственностью "ЭМИ" | Многокомпонентный газоанализатор ик диапазона |
RU2274855C1 (ru) * | 2004-08-02 | 2006-04-20 | Юрий Николаевич Николаев | Способ анализа состава газовых смесей (варианты) и газоанализатор для его реализации |
RU2302627C1 (ru) * | 2006-01-31 | 2007-07-10 | Общество с ограниченной ответственностью "Сенсорные Технологии" | Газоанализатор с открытым входом на основе пьезосенсоров |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107421991A (zh) * | 2017-06-13 | 2017-12-01 | 潘志君 | 一种农药残留及气体检测方法、检测系统 |
RU225921U1 (ru) * | 2023-12-12 | 2024-05-14 | Общество с ограниченной ответственностью "Современные технические решения" (ООО "СТР") | Газоанализатор стационарный взрывозащищённый с защитой от фальсификации результатов измерений |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112461944A (zh) | 变压器油中溶解气体在线监测装置的校准方法 | |
CN102778445A (zh) | 一种标态干基智能分析仪和检测方法 | |
KR101662609B1 (ko) | 복수개의 챔버 내 배출 가스 농도의 동시 실시간 연속 모니터링 시스템 | |
CN202854070U (zh) | 一种煤质成分在线检测装置 | |
RU2530447C1 (ru) | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации | |
EP2473869B1 (en) | Gas analysis data handling device for computing a gas flux and a corresponding computer-readable storage medium | |
RU2531061C1 (ru) | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации | |
Iswanto et al. | Design of gas concentration measurement and monitoring system for biogas power plant | |
Pérez et al. | Virtual instrument for emissions measurement of internal combustion engines | |
CN205103155U (zh) | 一种适用于有机相的气体在线检测仪 | |
RU2528273C1 (ru) | Способ анализа многокомпонентной газовой среды герметизированных контейнеров с электронными приборами и устройство для его реализации | |
KR20150114672A (ko) | 복수개의 챔버 내 배출 가스 농도의 동시 실시간 연속 모니터링 시스템 | |
Keimel | Comparison of low-cost CO2 non-dispersive infrared (NDIR) sensors for ambient greenhouse gas monitoring | |
RU2802163C1 (ru) | Устройство газового контроля | |
Crosbie et al. | Coupling an online ion conductivity measurement with the particle-into-liquid sampler: Evaluation and modeling using laboratory and field aerosol data | |
Wati et al. | Design of The Pollution Gas Carbon Monoxide (Co) Monitoring System Based on Microcontroller | |
Vovna et al. | Improving efficiency of information measurement system of coal mine air gas protection | |
Yang et al. | A laser absorption spectroscopy chamber system based on closed dynamic chamber method for multi-point synchronous monitoring ammonia emissions | |
Panaccione et al. | Multi-component liquid analyzer during steady-state and dynamic CO2 capture operations: Near real-time feedback in industrialized environment | |
RU2558650C1 (ru) | Способ определения параметров газовой среды в герметизированном контейнере с электромеханическими приборами и устройство для его реализации | |
RU2750849C1 (ru) | Комплекс постоянного контроля выбросов в режиме реального времени | |
Eergashboyevich et al. | Semiconductor Sensor for Hydrogen Sulfide on the Basis of Tungsten and Copper Oxides | |
RU2663310C1 (ru) | Способ контроля и прогнозирования состояния электромеханических приборов в многокомпонентной газовой среде герметизированных контейнеров | |
Annisa et al. | DESIGN OF CARBON MONOXIDE (CO) MEASUREMENT TOOL USING SIM900A AND SOLAR PANEL BASED ON WEMOS D1 MINI | |
Al-Okby et al. | Testing and Integration of Commercial Hydrogen Sensor for Ambient Monitoring Application |