RU2512742C1 - Биполярный транзистор - Google Patents
Биполярный транзистор Download PDFInfo
- Publication number
- RU2512742C1 RU2512742C1 RU2012152560/28A RU2012152560A RU2512742C1 RU 2512742 C1 RU2512742 C1 RU 2512742C1 RU 2012152560/28 A RU2012152560/28 A RU 2012152560/28A RU 2012152560 A RU2012152560 A RU 2012152560A RU 2512742 C1 RU2512742 C1 RU 2512742C1
- Authority
- RU
- Russia
- Prior art keywords
- layer
- base
- emitter
- value
- region adjacent
- Prior art date
Links
Images
Landscapes
- Bipolar Transistors (AREA)
Abstract
Изобретение относится к полупроводниковой электронике. Биполярный транзистор, изготовленный на основе гетероэпитаксиальных структур, включает сапфировую подложку, на которой последовательно размещены буферный слой из нелегированного GaN, субколлекторный слой из сильнолегированного GaN n+-типа проводимости, коллектор из GaN n-типа проводимости, база, содержащая два слоя из твердого раствора InxGa1-xN р+-типа проводимости, эмиттер, содержащий два слоя из AlyGa1-yN n-типа проводимости, контактные слои и омические контакты. При этом биполярный транзистор выполнен с изменяющимся составом твердых растворов AlyGa1-yN и InxGa1-xN слоев базы и эмиттера, а также с изменяющейся концентрацией легирующих базу и эмиттер примесей. Технический результат заключается в повышении технических характеристик устройства, в частности уменьшении значения емкости эмиттера, сопротивления базы, емкости коллектор-база, обеспечении повышения эффективности эмиттера и предельной частоты. 1 ил.
Description
Изобретение относится к области полупроводниковой электроники и может быть использовано в усилителях, генераторах, переключателях, смесителях, а также в аналоговых СВЧ схемах, цифровых, а также в аналого-цифровых преобразователях, в области связи, радарах и др.
В последние годы интенсивно разрабатываются оптоэлектронные приборы, у которых активная область выполнена из гетероэпитаксиальных пленок широкозонных полупроводников, выполненных из нитридов металлов III группы периодической таблицы элементов Д.И.Менделеева - GaN, AlN (далее - нитриды металлов III группы) и твердых растворов на их основе (GaAlN, InGaN) [Pearton S.J. et al. GaN-based diodes and transistors for chemical, gas, biological and pressure sensing//Joumal of Physics: Condensed Matter, V.16 (29), pp.R961-R994, 2004].
Из уровня техники известен полупроводниковый прибор, содержащий подложку; первый контакт; первый слой легированного полупроводникового материала, осажденный на подложку; полупроводниковую область перехода, осажденную на первый слой; второй слой легированного полупроводникового материала, осажденный на область перехода. Причем этот второй слой обладает противоположным первому слою типом примесной проводимости; и второй контакт. При этом второй контакт находится в электрическом соединении со вторым слоем, а первый контакт встроен в полупроводниковый прибор между подложкой и областью перехода и находится в электрическом соединении с первым слоем. Известный полупроводниковый прибор выполнен на основе GaN и/или InGaN, и/или AlGaN (см. патент РФ №2394305, опубл. 27.01.2010).
Недостатком известного устройства являются его недостаточно высокие технические характеристики, обусловленные низким значением эффективности эмиттера, коллектора и базы.
Задачей настоящего изобретения является устранение вышеуказанных недостатков.
Технический результат заключается в повышении технических характеристик устройства, в частности уменьшении значения емкости эмиттера, сопротивлении базы, емкости коллектор-база, обеспечении повышения эффективности эмиттера и предельной частоты.
Технический результат обеспечивается тем, что биполярный транзистор, изготовленный на основе гетероэпитаксиальных структур, включает сапфировую подложку, на которой последовательно размещены буферный слой из нелегированного GaN, субколлекторный слой из сильнолегированного GaN n+-типа проводимости, коллектор из GaN n-типа проводимости, база, содержащая два слоя из твердого раствора InxGa1-xN р+-типа проводимости, эмиттер, содержащий два слоя из AlyGa1-yN n-типа проводимости, контактные слои, и омические контакты. При этом биполярный транзистор выполнен с изменяющимся составом твердых растворов AlyGa1-yN и InxGa1-xN слоев базы и эмиттера, а также с изменяющейся концентрацией легирующих базу и эмиттер примесей. Причем значение х в области, прилегающей к коллектору, соответствует величине 0,22 и изменяется вдоль первого слоя базы до величины 0,12 в области, прилегающей ко второму слоя базы, значение х в области, прилегающей к первому слою базы, составляет 0,12 и изменяется вдоль второго слоя базы до величины х=0,00 в области, прилегающей к первому слою эмиттера. Значение у в области, прилегающей ко второму слою базы, соответствует величине 0,22 и изменяется вдоль первого слоя эмиттера до величины 0,24 в области, прилегающей ко второму слоя эмиттера, значение у в области, прилегающей к первому слою эмиттера, составляет 0,24 и изменяется вдоль второго слоя эмиттера до величины y=0,25 в области, прилегающей к контактному слою. Концентрация легирующей примеси в области базы, прилегающей к коллектору, составляет 0,7*1019 см-3 и увеличивается вдоль слоев базы до 2,0*1019 см-3 в области, прилегающей к первому слою эмиттера, а концентрация легирующей примеси в области эмиттера, прилегающей к базе, составляет 5,0*1017 см-3 и увеличивается вдоль слоев эмиттера до значения 8,0*1017 см-3 в области, прилегающей к контактному слою.
Сущность настоящего изобретения поясняется иллюстрацией, на которой отображено настоящее устройство.
Устройство имеет следующие конструктивные элементы:
1 - подложка из сапфира;
2 - буферный слой из нелегированного GaN;
3 - субколлекторный слой из GaN;
4 - коллектор из GaN;
5 - первый слой базы InxGa1-xN;
6 - второй слой базы из InxGa1-xN;
7 - 1-й слой эмиттера из AlyGa1-yN;
8 - 2-й слой эмиттера AlyGa1-yN;
9 - первый контактный слой;
10 - второй контактный слой;
11 - третий контактный слой;
12 - четвертый контактный слой;
13 - омические контакты;
14 - омические контакты;
15 - омические контакты.
Настоящее устройство включает подложку из сапфира толщиной 450 мкм, буферный слой 2 из нелегированного GaN толщиной 200 нм, субколлекторный слой 3 из сильнолегированного GaN n+-типа проводимости толщиной 600 нм, высокоомный коллектор 4 из GaN n-типа проводимости, толщиной 700 нм; 1-й слой тонкой базы 5 из твердого раствора InxGa1-xN р+-типа проводимости, толщиной 50 нм, легирован Mg; 2-й слой базы 6 из твердого раствора InxGa1-xN р+-типа проводимости, толщиной 10 нм; первый слой широкозонного эмиттера 7 из AlyGa1-yN n-типа проводимости, толщиной 15 нм, легирован Si; второй слой эмиттера 8 из AlyGa1-yN n-типа проводимости, толщиной 60 нм, легирован Si; контактные слои 9-12; 13 - омический контакт к коллектору, 14 - омический контакт к базе и 15 - омический контакт к эмиттеру.
Настоящее устройство осуществляют следующим образом.
На подложке из сапфира 1 толщиной 450 мкм, методом, например, газовой эпитаксии из металлоорганических соединений - МОС-гидридной эпитаксии (МОСГЭ), в стандартном режиме наращивают буферный слой 2 из нелегированного GaN, толщиной 200 нм, поверх буферного слоя наращивают субколлекторный слой 3 из сильнолегированного GaN n+-типа проводимости, толщиной 600 нм, концентрацией легирующей примеси 3*1018 см-3, легированный Si. Далее наращивают высокоомный коллектор 4 из GaN n+-типа проводимости, толщиной 700 нм, концентрацией легирующей примеси 2*1016 cм-3, легированный Si. Поверх высокоомного коллектора 4 методом газовой эпитаксии из металлоорганических соединений - МОС-гидридной эпитаксии (МОСГЭ) при температуре 1100°С и давлении не менее 100 мм рт.ст. наращивают базу, включающую два слоя 5 и 6.
Первый слой тонкой базы 5 выполнен из InxGa1-xN p+-типа проводимости. Значение х вдоль первого слоя 5 базы (от коллектора до второго слоя базы 6) изменяется от х=0,22 до значения х=0,12. Первый слой базы выполнен толщиной 60 нм. Концентрация легирующей примеси изменяется вдоль первого слоя базы 5 от 0,7*1019 см-3 до 1,5*1019 см-3. Первый слой базы 5 выполнен легированным Mg. Второй слой тонкой базы 6 выполнен из InxGa1-xN p+-типа проводимости. Значением х вдоль второго слоя базы 6 изменяется (от первого слоя базы 5 и до первого слоя эмиттера 7) от х=0,12 до значения х=0,00, толщиной 10 нм. Концентрация легирующей примеси изменяется от 1,5*1019 см-3 до 2*1019 см-3. Второй слой базы 6 легирован Mg. При таком выполнении в области базы 5, 6 возникает удвоенное ускоряющее дрейфовое поле для носителей за счет изменения состава твердого раствора и концентрации легирующей примеси в базе. Это происходит из-за градиента ширины запрещенной зоны и градиента концентрации легирующих примесей вдоль базы.
Затем методом газовой эпитаксии из металлоорганических соединений - МОС-гидридной эпитаксии (МОСГЭ), при температуре 1000°С и давлении не менее 70 мм рт.ст., последовательно наращивают первый слой широкозонного эмиттера 7, n-типа проводимости, состава AlyGa1-yN. Значение у вдоль первого слоя эмиттера 7 изменяется от 0,22 до 0,24 (от базы ко второму слою эмиттера 8). Концентрация примеси изменяется от 5,0*1017 см-3 до 7,0*1017 см-3. Первый слой эмиттера 7 легирован Si и имеет толщину 45 нм. Затем наращивают второй слой эмиттера 8 n-типа проводимости из AlyGa1-yN. Значение н вдоль второго слоя эмиттера 8 изменяется от 0,24 до значения 0,25 (от первого слоя эмиттера 7 до контактного слоя 9). Второй слой 8 имеет толщину 15 нм и выполнен с концентрацией легирующей примеси от 7,0*1017 cм-3 до 8,0*1017 cм-3. Второй слой эмиттера легирован Si. При таком конструктивном выполнении в области эмиттера 7, 8 также возникает удвоенное ускоряющее дрейфовое поле для носителей за счет изменения состава твердого раствора и легирующих примесей в эмиттере. Это происходит из за градиента ширины запрещенной зоны и градиента концентрации легирующих примесей вдоль слоев эмиттера 7,8. Таким образом, в ГБТ существенно сокращается время пролета носителей, повышается предельная частота и эффективность эмиттера.
Поверх эмиттера размещают контактные слои 9-12. Контактный слой 9 выполнен из AlyGa1-yN n+-типа проводимости. Значение у вдоль слоя меняется от 0,25 до 0,05. Контактный слой 9 выполнен толщиной 30 нм и с концентрацией легирующей примеси 4*10 см-3. Слой легирован Si. Контактный слой 10 выполнен из GaN n+-типа проводимости толщиной 20 нм и с концентрацией легирующей примеси 4*10 см-3. Контактный слой 10 легирован Si. Контактный слой 11 выполнен из InxGa1-xN n+-типа проводимости. Значение х изменяется вдоль слоя от 0,05 до 0,5. Контактный слой 10 выполнен толщиной 50 нм и с концентрацией легирующей примеси 1*1019 см-3. Контактный слой 11 легирован Si. Контактный слой 12 выполнен из InxGa1-xN n+-типа проводимости. Значение х равно 0,5, толщина составляет 20 нм, концентрация легирующей примеси около 1*1019 см-3. Контактный слой 12 легирован Si. Контактные слои 9-12 наращивают для уменьшения переходного сопротивления омического контакта эмиттера.
Омические контакты 13, 15 к эмиттеру и к коллектору выполняют металлизацией из Ti/Al. При отжиге напиленной системы металлизации происходит взаимодействие Ti с N. В результате образуется TiN, формирующий основу контакта, Al служит диффузионным барьером и стабилизирует контакт. Омический контакт к базе 14 формируют напылением и последующим вжиганием Ni.
Технологический процесс создания низкоомных омических контактов чрезвычайно чувствителен к режимам (температуре и времени) вжигания металлизации омического контакта и толщинам слоев металлизации.
Кристалл транзистора, полученный после утонения, полировки и алмазного скрайбирования пластины, монтируют в корпус.
Разработанная конструкция ГБТ позволила реализовать:
- повышенное значение предельной частоты, повышенную рабочую температуру при рабочих напряжениях 30-50 В, высокую эффективность эмиттера;
- низкое значение сопротивления базы, существенно низкое значение емкости эмиттера, а также низкое значение емкости коллектор-база достигнутое за счет радиационной компенсации проводимости пассивной области базы.
Claims (1)
- Биполярный транзистор, изготовленный на основе гетероэпитаксиальных структур и включающий сапфировую подложку, на которой последовательно размещены буферный слой из нелегированного GaN, субколлекторный слой из сильнолегированного GaN n+-типа проводимости, коллектор из GaN n-типа проводимости, база, содержащая два слоя из твердого раствора InxGa1-xN р+-типа проводимости, эмиттер, содержащий два слоя из AlyGa1-yN n-типа проводимости, контактные слои, и омические контакты, при этом биполярный транзистор выполнен с изменяющимся составом твердых растворов AlyGa1-yN и InxGa1-xN слоев базы и эмиттера, а также изменяющейся концентрацией легирующих базу и эмиттер примесей, причем значение х в области, прилегающей к коллектору, соответствует величине 0,22 и изменяется вдоль первого слоя базы до величины 0,12 в области, прилегающей ко второму слою базы, значение х в области, прилегающей к первому слою базы, составляет 0,12 и изменяется вдоль второго слоя базы до величины х=0,00 в области, прилегающей к первому слою эмиттера, значение у в области, прилегающей ко второму слою базы, соответствует величине 0,22 и изменяется вдоль первого слоя эмиттера до величины 0,24 в области, прилегающей ко второму слоя эмиттера, значение y в области, прилегающей к первому слою эмиттера, составляет 0,24 и изменяется вдоль второго слоя эмиттера до величины y=0,25 в области, прилегающей к контактному слою, концентрация легирующей примеси в области базы, прилегающей к коллектору, составляет 0,7*1019 см-3 и увеличивается вдоль слоев базы до 2,0*1019 см-3 в области, прилегающей к первому слою эмиттера, а концентрация легирующей примеси в области эмиттера, прилегающей к базе, составляет 5,0*1017 см-3 и увеличивается вдоль слоев эмиттера до значения 8,0*1017 см-3 в области, прилегающей к контактному слою.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152560/28A RU2512742C1 (ru) | 2012-12-06 | 2012-12-06 | Биполярный транзистор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012152560/28A RU2512742C1 (ru) | 2012-12-06 | 2012-12-06 | Биполярный транзистор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2512742C1 true RU2512742C1 (ru) | 2014-04-10 |
Family
ID=50438870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012152560/28A RU2512742C1 (ru) | 2012-12-06 | 2012-12-06 | Биполярный транзистор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2512742C1 (ru) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498050B2 (en) * | 2000-09-13 | 2002-12-24 | Kabushiki Kaisha Toshiba | Bipolar transistor, semiconductor light emitting device and semiconductor device |
US7126171B2 (en) * | 2003-11-28 | 2006-10-24 | Sharp Kabushiki Kaisha | Bipolar transistor |
US7622788B2 (en) * | 2005-11-22 | 2009-11-24 | National Central University | GaN heterojunction bipolar transistor with a p-type strained InGaN base layer |
US7728359B2 (en) * | 2006-06-23 | 2010-06-01 | Panasonic Corporation | Nitride semiconductor based bipolar transistor and the method of manufacture thereof |
RU2394305C2 (ru) * | 2007-07-20 | 2010-07-10 | Гэлиэм Энтерпрайзис Пти Лтд | Полупроводниковый прибор со встроенными контактами (варианты) и способ изготовления полупроводниковых приборов со встроенными контактами (варианты) |
US7804106B2 (en) * | 2003-01-06 | 2010-09-28 | Nippon Telegraph And Telephone Corporation | P-type nitride semiconductor structure and bipolar transistor |
RU2010129083A (ru) * | 2007-12-14 | 2012-01-20 | Конинклейке Филипс Электроникс Н.В. (Nl) | Органическое светоизлучающее устройство с регулируемой инжекцией носителей заряда |
-
2012
- 2012-12-06 RU RU2012152560/28A patent/RU2512742C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6498050B2 (en) * | 2000-09-13 | 2002-12-24 | Kabushiki Kaisha Toshiba | Bipolar transistor, semiconductor light emitting device and semiconductor device |
US7804106B2 (en) * | 2003-01-06 | 2010-09-28 | Nippon Telegraph And Telephone Corporation | P-type nitride semiconductor structure and bipolar transistor |
US7126171B2 (en) * | 2003-11-28 | 2006-10-24 | Sharp Kabushiki Kaisha | Bipolar transistor |
US7622788B2 (en) * | 2005-11-22 | 2009-11-24 | National Central University | GaN heterojunction bipolar transistor with a p-type strained InGaN base layer |
US7728359B2 (en) * | 2006-06-23 | 2010-06-01 | Panasonic Corporation | Nitride semiconductor based bipolar transistor and the method of manufacture thereof |
RU2394305C2 (ru) * | 2007-07-20 | 2010-07-10 | Гэлиэм Энтерпрайзис Пти Лтд | Полупроводниковый прибор со встроенными контактами (варианты) и способ изготовления полупроводниковых приборов со встроенными контактами (варианты) |
RU2010129083A (ru) * | 2007-12-14 | 2012-01-20 | Конинклейке Филипс Электроникс Н.В. (Nl) | Органическое светоизлучающее устройство с регулируемой инжекцией носителей заряда |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090189191A1 (en) | Semiconductor device | |
US8981432B2 (en) | Method and system for gallium nitride electronic devices using engineered substrates | |
CN103201840A (zh) | 具有提高的缓冲击穿电压的hemt | |
JP2012156253A (ja) | 窒化物半導体素子の製造方法 | |
JP2012084562A (ja) | 半導体装置およびその製造方法 | |
US20120007049A1 (en) | Nitride-based semiconductor device and method for manufacturing the same | |
JP2023176028A (ja) | 電子濃度を低減するための構造および電子濃度を低減するためのプロセス | |
JPWO2015008430A1 (ja) | 半導体装置 | |
JP2005236287A (ja) | 窒化物基半導体デバイスのための低ドープ層 | |
US8614464B2 (en) | Nitride-based semiconductor device and method for manufacturing the same | |
JP2015126016A (ja) | 窒化物半導体素子及びその製造方法 | |
EP3823008A1 (en) | Methods of manufacturing semiconductor devices | |
US20200266292A1 (en) | Composite substrates of conductive and insulating or semi-insulating silicon carbide for gallium nitride devices | |
CN109950324A (zh) | p型阳极的Ⅲ族氮化物二极管器件及其制作方法 | |
CN115000168A (zh) | 一种p型氮化物增强型hemt器件及其制备方法 | |
CN212182338U (zh) | 半导体结构 | |
RU2512742C1 (ru) | Биполярный транзистор | |
RU135182U1 (ru) | Псевдоморфный гетероструктурный модулировано-легированный полевой транзистор | |
CN112242441A (zh) | 高电子迁移率晶体管 | |
JP2016167500A (ja) | 半導体装置の製造方法 | |
Lian et al. | DC characteristics of AlGaAs/GaAs/GaN HBTs formed by direct wafer fusion | |
CN114496788A (zh) | 一种p型沟道氮化镓晶体管及其制备方法 | |
US9306017B2 (en) | Bipolar transistor with lateral emitter and collector and method of production | |
RU2629659C1 (ru) | Способ изготовления полупроводникового прибора | |
RU140462U1 (ru) | Псевдоморфный гетероструктурный модулировано-легированный полевой транзистор |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20150707 |