RU2510021C2 - Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation - Google Patents
Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation Download PDFInfo
- Publication number
- RU2510021C2 RU2510021C2 RU2012103070/15A RU2012103070A RU2510021C2 RU 2510021 C2 RU2510021 C2 RU 2510021C2 RU 2012103070/15 A RU2012103070/15 A RU 2012103070/15A RU 2012103070 A RU2012103070 A RU 2012103070A RU 2510021 C2 RU2510021 C2 RU 2510021C2
- Authority
- RU
- Russia
- Prior art keywords
- water
- biochemical
- pipeline
- continuous measurement
- oxygen
- Prior art date
Links
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Изобретение относится к приборостроению и теории измерений и вычислений и предназначено для непрерывного измерения биохимического потребления кислорода (БПКt), биохимической потребности в кислороде (БПК) и скорости биохимического потребления кислорода в водной среде (k1).The invention relates to instrumentation and the theory of measurements and calculations and is intended for continuous measurement of biochemical oxygen consumption (BOD t ), biochemical oxygen demand (BOD) and the rate of biochemical oxygen consumption in an aqueous medium (k 1 ).
Аналогов заявленному изобретению, насколько нам известно, нет. Известны лишь способы и устройства для дискретных измерений, причем не БПК (потребности), а всего лишь БПКt, т.е. биохимического потребления кислорода за интервал времени t, где наиболее применяемым значением t является t=5 суток.Analogues of the claimed invention, as far as we know, no. Only methods and devices for discrete measurements are known, and not BOD (needs), but only BOD t , i.e. biochemical oxygen consumption over a time interval t, where the most applicable value of t is t = 5 days.
Целью заявленного изобретения является создание уникальных, ранее недоступных возможностей для непрерывного мониторинга трех важнейших показателей качества воды: биохимического потребления кислорода, биохимической потребности в кислороде, скорости биохимического окисления. Достижение этой цели позволит своевременно выявлять факты увеличения концентрации органических загрязняющих веществ (ЗВ) (например, вследствие несанкционированных сбросов ЗВ в водный объект), а также факты уменьшения скорости биохимического окисления (например, вследствие сбросов токсинов, подавляющих жизнедеятельность аэробных микроорганизмов).The aim of the claimed invention is to create unique, previously inaccessible opportunities for continuous monitoring of the three most important indicators of water quality: biochemical oxygen consumption, biochemical oxygen demand, rate of biochemical oxidation. Achieving this goal will allow timely detection of facts of an increase in the concentration of organic pollutants (pollutants) (for example, as a result of unauthorized releases of pollutants into a water body), as well as facts of a decrease in the rate of biochemical oxidation (for example, as a result of discharges of toxins that suppress the activity of aerobic microorganisms).
Указанная цель достигается тем, что:The specified goal is achieved by the fact that:
- организуется непрерывный водозабор с постоянным расходом воды из исследуемого створа водного объекта;- a continuous water intake is organized with a constant flow of water from the studied site of the water body;
- отбираемая на анализ вода пропускается через трубопровод постоянного сечения длиной L метров;- the water sampled for analysis is passed through a constant section pipeline of length L meters;
- начиная с нулевого створа с интервалом ΔL метров, в трубопроводе устанавливаются датчики непрерывного измерения концентрации растворенного кислорода;- starting from zero gauge with an interval of ΔL meters, sensors for continuous measurement of dissolved oxygen concentration are installed in the pipeline;
- скорость течения в трубопроводе подбирается таким образом, чтобы время прохождения воды между соседними створами составляло интересуемую величину ΔT;- the flow velocity in the pipeline is selected in such a way that the time of passage of water between adjacent sections is of interest ΔT;
- по разности концентраций кислорода в нулевом (начальном) и j-ом створах (j=1, 2, …,
Для сравнимости результатов измерений биохимического потребления кислорода устройством «УНИ БПК» с результатами классического (дискретного) измерения, когда анализируемая проба воды помещается в колбу с притертой пробкой и хранится в темноте при температуре 20°С в течение определенного времени t (например, t=5 суток), стенки трубопровода устройства «УНИ БПК» должны быть светонепроницаемыми, а само устройство должно находиться в помещении с постоянной температурой 20°С.To compare the results of measuring the biochemical oxygen consumption by the UNI BPK device with the results of the classical (discrete) measurement, when the analyzed water sample is placed in a flask with a ground stopper and stored in the dark at a temperature of 20 ° С for a certain time t (for example, t = 5 days), the pipe walls of the UNI BPK device should be lightproof, and the device itself should be in a room with a constant temperature of 20 ° C.
Особый интерес для исследователей представит возможность параллельного измерения показателей качества воды: при температурой 20°С и при реальной температуре водного объекта. Для этого достаточно установить второе устройство, непосредственно погруженное в водный объект. В отличие от классического измерения (когда образец воды выдерживается в термостате), здесь не потребуется дополнительного пересчета результатов на температуру водного объекта.Of particular interest to researchers will be the possibility of parallel measurement of water quality indicators: at a temperature of 20 ° C and at a real temperature of a water body. To do this, it is enough to install a second device directly immersed in a water body. Unlike the classical measurement (when a water sample is kept in a thermostat), there will be no need for additional conversion of the results to the temperature of the water body.
Способ и устройство для непрерывного измерения биохимического потребления кислорода, биохимической потребности в кислороде и скорости биохимического окисления, состоящее из водозаборного модуля и трубопровода с непрозрачными стенками, на котором в определенных сечениях установлены датчики непрерывного измерения концентрации растворенного кислорода, позволяющие вести мониторинг одновременно трех упомянутых показателей качества воды, отличающееся от существующих способов и устройств (кислородомеров/БПК-тестеров) тем, что позволяет измерять не только биохимическое потребление кислорода БПК, (где обычно t=5 сут), но и биохимическую потребность в кислороде (БПК) и скорость биохимического окисления (k1), причем делать это не в дискретном, а непрерывном режиме.Method and device for continuous measurement of biochemical oxygen consumption, biochemical oxygen demand and biochemical oxidation rate, consisting of a water intake module and a pipe with opaque walls, on which sensors of continuous measurement of dissolved oxygen concentration are installed in certain sections, allowing monitoring of the three mentioned quality indicators simultaneously water that differs from existing methods and devices (oxygen meters / BOD testers) in that it allows t measure not only the biochemical oxygen demand of BOD, (where usually t = 5 days), but also the biochemical oxygen demand (BOD) and the rate of biochemical oxidation (k 1 ), and do this not in a discrete, but continuous mode.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012103070/15A RU2510021C2 (en) | 2012-01-31 | 2012-01-31 | Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012103070/15A RU2510021C2 (en) | 2012-01-31 | 2012-01-31 | Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012103070A RU2012103070A (en) | 2012-10-20 |
RU2510021C2 true RU2510021C2 (en) | 2014-03-20 |
Family
ID=47145129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012103070/15A RU2510021C2 (en) | 2012-01-31 | 2012-01-31 | Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2510021C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2608443C2 (en) * | 2015-05-28 | 2017-01-18 | ООО "НПФ "Альфа БАССЕНС" | Method for rapid analysis of biochemical consumption of oxygen and device therefor |
RU2721713C1 (en) * | 2019-10-21 | 2020-05-21 | Федеральное государственное бюджетное учреждение "Гидрохимический институт" (ФГБУ "ГХИ") | Method of assessing the ecological state of water bodies |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106018720B (en) * | 2016-05-19 | 2017-12-05 | 国家海洋局第二海洋研究所 | Culture in situ system and its application method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414182A1 (en) * | 1989-08-23 | 1991-02-27 | Forschungszentrum Jülich Gmbh | Apparatus for determining the rate of the biochemical oxygen demand and its utilisation |
DE4314981A1 (en) * | 1992-05-15 | 1993-12-02 | Lange Gmbh Dr Bruno | Measuring biochemical oxygen@ demand - using a cuvette which is coated with polymer-immobilised bio-catalyst |
RU2139530C1 (en) * | 1998-08-04 | 1999-10-10 | Хохлов Виктор Васильевич | Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water |
-
2012
- 2012-01-31 RU RU2012103070/15A patent/RU2510021C2/en active IP Right Revival
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0414182A1 (en) * | 1989-08-23 | 1991-02-27 | Forschungszentrum Jülich Gmbh | Apparatus for determining the rate of the biochemical oxygen demand and its utilisation |
DE4314981A1 (en) * | 1992-05-15 | 1993-12-02 | Lange Gmbh Dr Bruno | Measuring biochemical oxygen@ demand - using a cuvette which is coated with polymer-immobilised bio-catalyst |
RU2139530C1 (en) * | 1998-08-04 | 1999-10-10 | Хохлов Виктор Васильевич | Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water |
Non-Patent Citations (1)
Title |
---|
РД 52.24.420-2005. Руководящий документ «БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СКЛЯНОЧНЫМ МЕТОДОМ», 01.01.2006. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2608443C2 (en) * | 2015-05-28 | 2017-01-18 | ООО "НПФ "Альфа БАССЕНС" | Method for rapid analysis of biochemical consumption of oxygen and device therefor |
RU2721713C1 (en) * | 2019-10-21 | 2020-05-21 | Федеральное государственное бюджетное учреждение "Гидрохимический институт" (ФГБУ "ГХИ") | Method of assessing the ecological state of water bodies |
Also Published As
Publication number | Publication date |
---|---|
RU2012103070A (en) | 2012-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Churchill et al. | The prediction of stream reaeration rates | |
Besmer et al. | The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems | |
Spaulding et al. | Autonomous in situ measurements of seawater alkalinity | |
Buchanan | Time of travel of soluble contaminants in streams | |
Long et al. | Oxygen metabolism and pH in coastal ecosystems: Eddy Covariance Hydrogen ion and Oxygen Exchange System (ECHOES) | |
RU2510021C2 (en) | Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation | |
Rutgersson et al. | Enhanced air–sea CO2 transfer due to water-side convection | |
Meyer et al. | In situ determination of nitrate and hydrogen sulfide in the Baltic Sea using an ultraviolet spectrophotometer | |
CN106018359A (en) | Sewage plant water-quality monitoring early-warning method and system | |
Besmer et al. | Evaluating monitoring strategies to detect precipitation-induced microbial contamination events in karstic springs used for drinking water | |
Baker et al. | Conservative and reactive solute dynamics | |
Rieckermann et al. | Estimating sewer leakage from continuous tracer experiments | |
Henríquez et al. | Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion | |
Hamilton | Sources of uncertainty in Canadian low flow hydrometric data | |
RU2382337C2 (en) | Method for measurement of two-phase three-component medium flow | |
KR20070037481A (en) | Heavy metal contained waste water monitoring system by using ph and electronic conductivity etc | |
Gresch et al. | Using reactive tracers to detect flow field anomalies in water treatment reactors | |
Caradot et al. | Application of online water quality sensors for integrated CSO impact assessment in Berlin (Germany) | |
Rajwa et al. | Dissolved oxygen in rivers: concepts and measuring techniques | |
Veesommai et al. | River water-quality analysis:“critical contaminate detection”,“classification of multiple-water-quality-parameters values” and “real-time notification” by rspa processes | |
Pressl et al. | In-line river monitoring–new challenges and opportunities | |
Shoda et al. | Real-time, continuous water-quality monitoring in Indiana and Kentucky | |
Hammond et al. | High-frequency sensor data capture short-term variability in Fe and Mn cycling due to hypolimnetic oxygenation and seasonal dynamics in a drinking water reservoir | |
Krenz | Measuring CO2 emissions from a small boreal lake and its connecting streams using automatic floating chambers | |
Oelßner et al. | Determination of carbon dioxide dynamics in lakes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150201 |
|
NF4A | Reinstatement of patent |
Effective date: 20161010 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180201 |
|
NF4A | Reinstatement of patent |
Effective date: 20190801 |