Nothing Special   »   [go: up one dir, main page]

RU2510021C2 - Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation - Google Patents

Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation Download PDF

Info

Publication number
RU2510021C2
RU2510021C2 RU2012103070/15A RU2012103070A RU2510021C2 RU 2510021 C2 RU2510021 C2 RU 2510021C2 RU 2012103070/15 A RU2012103070/15 A RU 2012103070/15A RU 2012103070 A RU2012103070 A RU 2012103070A RU 2510021 C2 RU2510021 C2 RU 2510021C2
Authority
RU
Russia
Prior art keywords
water
biochemical
pipeline
continuous measurement
oxygen
Prior art date
Application number
RU2012103070/15A
Other languages
Russian (ru)
Other versions
RU2012103070A (en
Inventor
Алексей Васильевич Готовцев
Виктор Иванович Данилов-Данильян
Анатолий Максимович Никаноров
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт водных проблем Российской академии наук (ИВП РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт водных проблем Российской академии наук (ИВП РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт водных проблем Российской академии наук (ИВП РАН)
Priority to RU2012103070/15A priority Critical patent/RU2510021C2/en
Publication of RU2012103070A publication Critical patent/RU2012103070A/en
Application granted granted Critical
Publication of RU2510021C2 publication Critical patent/RU2510021C2/en

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

FIELD: instrument making.
SUBSTANCE: invention is designed for continuous measurement of biochemical oxygen consumption (BOC), biochemical oxygen demand (BOD) and speed of biochemical oxygen consumption in water medium (k1). Essentially a new method is proposed, as well as a device making it possible to continuously measure at the same time BOC, BOD and k1 both in running water (river, waste water header, etc.), and in a water reservoir. The method for continuous measurement of specified indices is characterised by the fact that a continuous flow of water taken for analysis is organised from a water object into a pipeline, besides, the speed of water flow in the pipeline is selected so that within the required period of time T (where T - duration of biochemical consumption) water passes the distance between two adjacent transits of the pipeline, where sensors are installed for continuous measurement of concentration of dissolved oxygen in running water. The device for realisation of this method consists in a water-intake module and a pipeline with non-transparent walls, on which in transits there are sensors of continuous measurement of concentration of dissolved oxygen, making it possible to keep monitoring of simultaneously three specified indices of water quality.
EFFECT: device improvement.
2 cl

Description

Изобретение относится к приборостроению и теории измерений и вычислений и предназначено для непрерывного измерения биохимического потребления кислорода (БПКt), биохимической потребности в кислороде (БПК) и скорости биохимического потребления кислорода в водной среде (k1).The invention relates to instrumentation and the theory of measurements and calculations and is intended for continuous measurement of biochemical oxygen consumption (BOD t ), biochemical oxygen demand (BOD) and the rate of biochemical oxygen consumption in an aqueous medium (k 1 ).

Аналогов заявленному изобретению, насколько нам известно, нет. Известны лишь способы и устройства для дискретных измерений, причем не БПК (потребности), а всего лишь БПКt, т.е. биохимического потребления кислорода за интервал времени t, где наиболее применяемым значением t является t=5 суток.Analogues of the claimed invention, as far as we know, no. Only methods and devices for discrete measurements are known, and not BOD (needs), but only BOD t , i.e. biochemical oxygen consumption over a time interval t, where the most applicable value of t is t = 5 days.

Целью заявленного изобретения является создание уникальных, ранее недоступных возможностей для непрерывного мониторинга трех важнейших показателей качества воды: биохимического потребления кислорода, биохимической потребности в кислороде, скорости биохимического окисления. Достижение этой цели позволит своевременно выявлять факты увеличения концентрации органических загрязняющих веществ (ЗВ) (например, вследствие несанкционированных сбросов ЗВ в водный объект), а также факты уменьшения скорости биохимического окисления (например, вследствие сбросов токсинов, подавляющих жизнедеятельность аэробных микроорганизмов).The aim of the claimed invention is to create unique, previously inaccessible opportunities for continuous monitoring of the three most important indicators of water quality: biochemical oxygen consumption, biochemical oxygen demand, rate of biochemical oxidation. Achieving this goal will allow timely detection of facts of an increase in the concentration of organic pollutants (pollutants) (for example, as a result of unauthorized releases of pollutants into a water body), as well as facts of a decrease in the rate of biochemical oxidation (for example, as a result of discharges of toxins that suppress the activity of aerobic microorganisms).

Указанная цель достигается тем, что:The specified goal is achieved by the fact that:

- организуется непрерывный водозабор с постоянным расходом воды из исследуемого створа водного объекта;- a continuous water intake is organized with a constant flow of water from the studied site of the water body;

- отбираемая на анализ вода пропускается через трубопровод постоянного сечения длиной L метров;- the water sampled for analysis is passed through a constant section pipeline of length L meters;

- начиная с нулевого створа с интервалом ΔL метров, в трубопроводе устанавливаются датчики непрерывного измерения концентрации растворенного кислорода;- starting from zero gauge with an interval of ΔL meters, sensors for continuous measurement of dissolved oxygen concentration are installed in the pipeline;

- скорость течения в трубопроводе подбирается таким образом, чтобы время прохождения воды между соседними створами составляло интересуемую величину ΔT;- the flow velocity in the pipeline is selected in such a way that the time of passage of water between adjacent sections is of interest ΔT;

- по разности концентраций кислорода в нулевом (начальном) и j-ом створах (j=1, 2, …, L Δ L

Figure 00000001
) биохимическое потребление кислорода за периоды времени ΔT, 2ΔT, …, L Δ L Δ T
Figure 00000002
, также значения биохимической потребности и скорости окисления на моменты 0, ΔT, 2ΔT …, L Δ L Δ T 1
Figure 00000003
.- the difference in oxygen concentrations in the zero (initial) and j-th sections (j = 1, 2, ..., L Δ L
Figure 00000001
) biochemical oxygen consumption over time periods ΔT, 2ΔT, ..., L Δ L Δ T
Figure 00000002
, also the values of biochemical requirements and oxidation rates at moments 0, ΔT, 2ΔT ..., L Δ L Δ T - one
Figure 00000003
.

Для сравнимости результатов измерений биохимического потребления кислорода устройством «УНИ БПК» с результатами классического (дискретного) измерения, когда анализируемая проба воды помещается в колбу с притертой пробкой и хранится в темноте при температуре 20°С в течение определенного времени t (например, t=5 суток), стенки трубопровода устройства «УНИ БПК» должны быть светонепроницаемыми, а само устройство должно находиться в помещении с постоянной температурой 20°С.To compare the results of measuring the biochemical oxygen consumption by the UNI BPK device with the results of the classical (discrete) measurement, when the analyzed water sample is placed in a flask with a ground stopper and stored in the dark at a temperature of 20 ° С for a certain time t (for example, t = 5 days), the pipe walls of the UNI BPK device should be lightproof, and the device itself should be in a room with a constant temperature of 20 ° C.

Особый интерес для исследователей представит возможность параллельного измерения показателей качества воды: при температурой 20°С и при реальной температуре водного объекта. Для этого достаточно установить второе устройство, непосредственно погруженное в водный объект. В отличие от классического измерения (когда образец воды выдерживается в термостате), здесь не потребуется дополнительного пересчета результатов на температуру водного объекта.Of particular interest to researchers will be the possibility of parallel measurement of water quality indicators: at a temperature of 20 ° C and at a real temperature of a water body. To do this, it is enough to install a second device directly immersed in a water body. Unlike the classical measurement (when a water sample is kept in a thermostat), there will be no need for additional conversion of the results to the temperature of the water body.

Способ и устройство для непрерывного измерения биохимического потребления кислорода, биохимической потребности в кислороде и скорости биохимического окисления, состоящее из водозаборного модуля и трубопровода с непрозрачными стенками, на котором в определенных сечениях установлены датчики непрерывного измерения концентрации растворенного кислорода, позволяющие вести мониторинг одновременно трех упомянутых показателей качества воды, отличающееся от существующих способов и устройств (кислородомеров/БПК-тестеров) тем, что позволяет измерять не только биохимическое потребление кислорода БПК, (где обычно t=5 сут), но и биохимическую потребность в кислороде (БПК) и скорость биохимического окисления (k1), причем делать это не в дискретном, а непрерывном режиме.Method and device for continuous measurement of biochemical oxygen consumption, biochemical oxygen demand and biochemical oxidation rate, consisting of a water intake module and a pipe with opaque walls, on which sensors of continuous measurement of dissolved oxygen concentration are installed in certain sections, allowing monitoring of the three mentioned quality indicators simultaneously water that differs from existing methods and devices (oxygen meters / BOD testers) in that it allows t measure not only the biochemical oxygen demand of BOD, (where usually t = 5 days), but also the biochemical oxygen demand (BOD) and the rate of biochemical oxidation (k 1 ), and do this not in a discrete, but continuous mode.

Claims (2)

1. Способ непрерывного измерения биохимического потребления кислорода (БПКТ), биохимической потребности в кислороде (БПК) и скорости биохимического окисления (k1), характеризующийся тем, что организуют непрерывный поток забираемой на анализ воды из водного объекта в трубопровод, причем скорость течения воды в трубопроводе подбирают так, чтобы за требуемый период времени Т (где Т-длительность биохимического потребления) вода проходила расстояние между двумя соседними створами трубопровода, в которых установлены датчики для непрерывного измерения концентрации растворенного кислорода в проточной воде.1. The method of continuous measurement of biochemical oxygen consumption (BOD T ), biochemical oxygen demand (BOD) and biochemical oxidation rate (k 1 ), characterized in that they organize a continuous flow of water taken for analysis from a water body into the pipeline, and the water flow rate in the pipeline, they are selected so that for the required period of time T (where T is the duration of biochemical consumption), the water travels the distance between two adjacent sections of the pipeline in which sensors are installed for continuous measuring the concentration of dissolved oxygen in the flowing water. 2. Устройство для осуществления способа по п.1, состоящее из водозаборного модуля и трубопровода с непрозрачными стенками, на котором в определенных в п.1 створах установлены датчики непрерывного измерения концентрации растворенного кислорода, позволяющие вести мониторинг одновременно трех упомянутых показателей качества воды. 2. The device for implementing the method according to claim 1, consisting of a water intake module and a pipe with opaque walls, on which sensors for continuous measurement of dissolved oxygen concentration are installed in the sections defined in claim 1, which allow monitoring of the three mentioned water quality indicators simultaneously.
RU2012103070/15A 2012-01-31 2012-01-31 Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation RU2510021C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012103070/15A RU2510021C2 (en) 2012-01-31 2012-01-31 Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012103070/15A RU2510021C2 (en) 2012-01-31 2012-01-31 Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation

Publications (2)

Publication Number Publication Date
RU2012103070A RU2012103070A (en) 2012-10-20
RU2510021C2 true RU2510021C2 (en) 2014-03-20

Family

ID=47145129

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012103070/15A RU2510021C2 (en) 2012-01-31 2012-01-31 Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation

Country Status (1)

Country Link
RU (1) RU2510021C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608443C2 (en) * 2015-05-28 2017-01-18 ООО "НПФ "Альфа БАССЕНС" Method for rapid analysis of biochemical consumption of oxygen and device therefor
RU2721713C1 (en) * 2019-10-21 2020-05-21 Федеральное государственное бюджетное учреждение "Гидрохимический институт" (ФГБУ "ГХИ") Method of assessing the ecological state of water bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018720B (en) * 2016-05-19 2017-12-05 国家海洋局第二海洋研究所 Culture in situ system and its application method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414182A1 (en) * 1989-08-23 1991-02-27 Forschungszentrum Jülich Gmbh Apparatus for determining the rate of the biochemical oxygen demand and its utilisation
DE4314981A1 (en) * 1992-05-15 1993-12-02 Lange Gmbh Dr Bruno Measuring biochemical oxygen@ demand - using a cuvette which is coated with polymer-immobilised bio-catalyst
RU2139530C1 (en) * 1998-08-04 1999-10-10 Хохлов Виктор Васильевич Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414182A1 (en) * 1989-08-23 1991-02-27 Forschungszentrum Jülich Gmbh Apparatus for determining the rate of the biochemical oxygen demand and its utilisation
DE4314981A1 (en) * 1992-05-15 1993-12-02 Lange Gmbh Dr Bruno Measuring biochemical oxygen@ demand - using a cuvette which is coated with polymer-immobilised bio-catalyst
RU2139530C1 (en) * 1998-08-04 1999-10-10 Хохлов Виктор Васильевич Proximity analyzer of chemical and biochemical consumption of oxygen dissolved in water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
РД 52.24.420-2005. Руководящий документ «БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ СКЛЯНОЧНЫМ МЕТОДОМ», 01.01.2006. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608443C2 (en) * 2015-05-28 2017-01-18 ООО "НПФ "Альфа БАССЕНС" Method for rapid analysis of biochemical consumption of oxygen and device therefor
RU2721713C1 (en) * 2019-10-21 2020-05-21 Федеральное государственное бюджетное учреждение "Гидрохимический институт" (ФГБУ "ГХИ") Method of assessing the ecological state of water bodies

Also Published As

Publication number Publication date
RU2012103070A (en) 2012-10-20

Similar Documents

Publication Publication Date Title
Churchill et al. The prediction of stream reaeration rates
Besmer et al. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems
Spaulding et al. Autonomous in situ measurements of seawater alkalinity
Buchanan Time of travel of soluble contaminants in streams
Long et al. Oxygen metabolism and pH in coastal ecosystems: Eddy Covariance Hydrogen ion and Oxygen Exchange System (ECHOES)
RU2510021C2 (en) Method and device for continuous measurement of biochemical consumption of oxygen, biochemical demand for oxygen and speed of biochemical oxidation
Rutgersson et al. Enhanced air–sea CO2 transfer due to water-side convection
Meyer et al. In situ determination of nitrate and hydrogen sulfide in the Baltic Sea using an ultraviolet spectrophotometer
CN106018359A (en) Sewage plant water-quality monitoring early-warning method and system
Besmer et al. Evaluating monitoring strategies to detect precipitation-induced microbial contamination events in karstic springs used for drinking water
Baker et al. Conservative and reactive solute dynamics
Rieckermann et al. Estimating sewer leakage from continuous tracer experiments
Henríquez et al. Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion
Hamilton Sources of uncertainty in Canadian low flow hydrometric data
RU2382337C2 (en) Method for measurement of two-phase three-component medium flow
KR20070037481A (en) Heavy metal contained waste water monitoring system by using ph and electronic conductivity etc
Gresch et al. Using reactive tracers to detect flow field anomalies in water treatment reactors
Caradot et al. Application of online water quality sensors for integrated CSO impact assessment in Berlin (Germany)
Rajwa et al. Dissolved oxygen in rivers: concepts and measuring techniques
Veesommai et al. River water-quality analysis:“critical contaminate detection”,“classification of multiple-water-quality-parameters values” and “real-time notification” by rspa processes
Pressl et al. In-line river monitoring–new challenges and opportunities
Shoda et al. Real-time, continuous water-quality monitoring in Indiana and Kentucky
Hammond et al. High-frequency sensor data capture short-term variability in Fe and Mn cycling due to hypolimnetic oxygenation and seasonal dynamics in a drinking water reservoir
Krenz Measuring CO2 emissions from a small boreal lake and its connecting streams using automatic floating chambers
Oelßner et al. Determination of carbon dioxide dynamics in lakes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150201

NF4A Reinstatement of patent

Effective date: 20161010

MM4A The patent is invalid due to non-payment of fees

Effective date: 20180201

NF4A Reinstatement of patent

Effective date: 20190801