RU2581342C2 - Способ изготовления системы охлаждения электронного и микроэлектронного оборудования - Google Patents
Способ изготовления системы охлаждения электронного и микроэлектронного оборудования Download PDFInfo
- Publication number
- RU2581342C2 RU2581342C2 RU2014123346/02A RU2014123346A RU2581342C2 RU 2581342 C2 RU2581342 C2 RU 2581342C2 RU 2014123346/02 A RU2014123346/02 A RU 2014123346/02A RU 2014123346 A RU2014123346 A RU 2014123346A RU 2581342 C2 RU2581342 C2 RU 2581342C2
- Authority
- RU
- Russia
- Prior art keywords
- hydrophobic
- microchannel
- regions
- phase
- cooling system
- Prior art date
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек течения на гладкую поверхность микроканала на расстоянии В друг от друга при отношении L/B≥1. Значения L и В определяют исходя из свойств жидкости и поверхности. Обеспечивается эффективное снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью. 1 ил.
Description
Изобретение относится к области микроструктурных технологий.
В последние десятилетия существенное развитие в технике и технологиях получило использование микроканалов. В целом ряде практических приложений могут использоваться достаточно протяженные микроканалы. Одним из таких приложений являются системы охлаждения электронного и микроэлектронного оборудования. Особенностью таких систем является локальность тепловыделения, т.е. когда жидкость сначала транспортируется к месту тепловыделения по адиабатической секции или участку системы. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. Чаще всего в силу конструктивных особенностей мини- и микросистем размер канала должен оставаться неизменным на всем протяжении системы.
Одним из важнейших препятствий на пути внедрения и распространения микросистем с протяженными микроканалами являются значительные перепады давления вдоль канала. Значительные перепады давления вдоль канала, прежде всего, возникают из-за требования прокачивать строго определенное количество жидкости для обеспечения отвода определенного количества тепла. Часто в микросистемах (в системах охлаждения) используют кипящие среды, двухфазные потоки или пленочные течения. Однако проблема значительных перепадов давления вдоль канала остается для любых микросистем с участием не диспергированной жидкости. Сегодня эту проблему решают за счет использования покрытий с наноструктурными или микроструктурными областями, канавками или сквозными отверстиями. Во всех этих случаях приходится обрабатывать поверхность, что исключает использование этих способов на гладких поверхностях.
Задачей изобретения является создание эффективного способа снижения сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.
Известен способ и устройство для управления сопротивлением при движении потока жидкости на наноструктурированных или микроструктурированных поверхностях (патент US 2005069458, 2005 г., B01L 3/00; В81В 1/00; В81В 7/04; В82В 1/00; В82В 3/00; F15C 1/00; F15C 1/04; (IPC1-7): B01L 3/00), при котором для снижения сопротивления при движении потока жидкости на поверхность наносят множество наноструктурных или микроструктурных областей по заранее определенному шаблону. Наноструктурные или микроструктурные области представляют собой ячейки. Параметры областей можно менять для достижения желаемого уровня сопротивления при движении потока жидкости.
Известен способ микроканального охлаждения (патент ЕР 1662852 (A1), 2006 г., H01L 23/473; Н05К 7/20), при котором для снижения сопротивления при движении потока жидкости на поверхность микроканала наносят множество наноструктурных областей с гидрофобным покрытием. Наноструктурные области представляют собой выступающие структуры. Параметры наноструктурных областей, а также расстояние между ними определяют из свойств жидкости и поверхности.
Недостатками этих технических решений являются:
1) невозможность использования на гладких поверхностях;
2) высокие энергетические затраты на прокачку теплоносителя.
Наиболее близким к заявляемому является способ крепления микропузыря на поверхности пластины (патент US 20100166964, 2008 г., B05D 5/08), при котором для снижения сопротивления при движении потока жидкости на поверхности формируют множество канавок, в которых формируются пузыри, при этом канавки обрабатывают материалом с гидрофобными свойствами. В другом варианте для снижения сопротивления при движении потока жидкости на поверхности формируют множество сквозных отверстий, обработанных материалом с гидрофобными свойствами, где также образуются пузыри. Размер канавок и отверстий в диапазоне 1-1000 мкм.
Недостатком этого способа является невозможность его использования на гладких поверхностях, т.к. при формировании канавок или отверстий происходит повреждение поверхности.
Задачей изобретения является создание способа изготовления системы охлаждения электронного и микроэлектронного оборудования, при котором обеспечивается снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.
Поставленная задача решается тем, что в способе изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, при котором на поверхность микроканала наносят наноструктурные области с гидрофобными свойствами, согласно изобретению на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии В друг от друга при отношении L/В≥1.
Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно обладает гидрофильными свойствами. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Пузырьки коагулируют и образовывают «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль микроканала, а значит снижение энергетических затрат на прокачку теплоносителя.
Гидрофобные полосы наносят практически, не повреждая гладкую поверхность микроканала.
На фиг. 1 представлен общий вид поверхности микроканала с нанесенными гидрофобными полосами.
1 - гидрофобные полосы, 2 - необработанная поверхность микроканала, 3 - источник тепловыделения.
Способ осуществляется следующим образом.
Гидрофобные полосы наносят поперек течения на гладкую поверхность микроканала. Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно бывает гидрофильной. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Граница контрастного смачивания удерживает пузырьки и препятствует их распространению вдоль потока. Данный факт подтвержден экспериментально для условий земной гравитации, микрогравитации и гипергравитации до 1.8×g0 (Kabov О.A., Cheverda V., Biondi F., Zaytsev D., Chikov S., Queeckers P., Marengo M., Araneo L., Rioboo R., de Coninck J., Glushchuk A., Bykovskaya E., Iorio C, Bourdon В., and Memoli M., Dynamics and Boiling Incipience in Microgravity, pp 61, Results of ESA Parabolic Flights Experiments, Fifth International Topical Team Workshop on Two-Phase Systems for Ground and Space Applications, Kyoto, Japan, September 26-29, Book of Abstracts, 2010). В качестве рабочей жидкости использовалась вода в качестве поверхности - кремниевая подложка. Эксперименты показывают, что для условий земной гравитации гидрофобная зона покрыта пузырями размером, не превышавшим, как правило, 1 мм. Область пузырей четко ограничена границей контрастного смачивания.
Пузырьки могут коагулировать и образовывать «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Предполагается, что пузыри имеют форму сфероидов, причем их высота намного меньше основания. Пузыри перекрывают только незначительную часть сечения микроканала и практически не повышают сопротивления. Размер основания и высота пузыря могут регулироваться статическим контактным углом смачивания, обеспечиваемым наноструктурным покрытием (гидрофобными полосами), а также шириной этих полос.
Для получения гидрофобных полос часть поверхности микроканала обрабатывается химическим способом (нанесением монослоя молекул другого вещества) так, чтобы на поверхности появилась область с наноразмерной шероховатостью и более высоким значением контактного угла смачивания. Области поверхности с нанесенными на нее наноструктурами являются гидрофобными относительно остальной поверхности. Толщина наноструктур может составлять порядка 1 нм, в зависимости от типа поверхности, и не является принципиальным параметром, т.е. заметным термическим сопротивлением и заметным сужением канала. Разница между контактными углами смачивания на гидрофобных полосах и полосах с необработанной поверхностью должна составлять от 20-40 градусов и более.
Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль канала, а значит снижение энергетических затрат на прокачку теплоносителя. Снижение трения будет пропорционально отношению ширины гидрофобных полос к ширине полос необработанной поверхности канала, т.е. L/B. При значении L/B>>1 ожидается снижение сопротивления канала в 2 и более раз. Предполагается, что минимальная ширина полос необработанной поверхности канала по технологическим требованиям не может быть менее 100-300 мкм. Ширина гидрофобных полос определяется размерами основания пузыря, а также условиями их коагуляции и может составлять до 5000 мкм и более. Таким образом, условие L/B>>1 реально может быть достигнуто в предложенной системе.
Claims (1)
- Способ изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, включающий нанесение на поверхность микроканала наноструктурных областей с гидрофобными свойствами, отличающийся тем, что на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии B друг от друга при отношении L/B≥1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014123346/02A RU2581342C2 (ru) | 2014-06-06 | 2014-06-06 | Способ изготовления системы охлаждения электронного и микроэлектронного оборудования |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014123346/02A RU2581342C2 (ru) | 2014-06-06 | 2014-06-06 | Способ изготовления системы охлаждения электронного и микроэлектронного оборудования |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014123346A RU2014123346A (ru) | 2015-12-20 |
RU2581342C2 true RU2581342C2 (ru) | 2016-04-20 |
Family
ID=54871086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014123346/02A RU2581342C2 (ru) | 2014-06-06 | 2014-06-06 | Способ изготовления системы охлаждения электронного и микроэлектронного оборудования |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2581342C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2640888C1 (ru) * | 2016-12-30 | 2018-01-12 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) | Интенсивный конденсатор пара с контрастным и градиентным смачиванием |
RU2834198C1 (ru) * | 2024-08-08 | 2025-02-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Микроканал с комбинированными покрытиями для охлаждения электронных компонентов |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1237310A1 (ru) * | 1984-07-31 | 1986-06-15 | Специальное Проектно-Конструкторское И Технологическое Бюро Химического И Нефтяного Машиностроения | Способ получени покрыти на внутренней поверхности трубы и устройство дл его осуществлени |
US20050069458A1 (en) * | 2003-09-30 | 2005-03-31 | Hodes Marc Scott | Method and apparatus for controlling the flow resistance of a fluid on nanostructured or microstructured surfaces |
EP1662852A1 (en) * | 2004-11-24 | 2006-05-31 | Lucent Technologies Inc. | Techniques for microchannel cooling |
US20100166964A1 (en) * | 2008-12-26 | 2010-07-01 | Pusan National University Industry University Cooperation Foundation | Method for attaching micro bubble array on plate surface |
RU2433949C1 (ru) * | 2010-06-25 | 2011-11-20 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО"МЭИ(ТУ)") | Способ формирования нанорельефа на теплообменных поверхностях изделий |
-
2014
- 2014-06-06 RU RU2014123346/02A patent/RU2581342C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1237310A1 (ru) * | 1984-07-31 | 1986-06-15 | Специальное Проектно-Конструкторское И Технологическое Бюро Химического И Нефтяного Машиностроения | Способ получени покрыти на внутренней поверхности трубы и устройство дл его осуществлени |
US20050069458A1 (en) * | 2003-09-30 | 2005-03-31 | Hodes Marc Scott | Method and apparatus for controlling the flow resistance of a fluid on nanostructured or microstructured surfaces |
EP1662852A1 (en) * | 2004-11-24 | 2006-05-31 | Lucent Technologies Inc. | Techniques for microchannel cooling |
US20100166964A1 (en) * | 2008-12-26 | 2010-07-01 | Pusan National University Industry University Cooperation Foundation | Method for attaching micro bubble array on plate surface |
RU2433949C1 (ru) * | 2010-06-25 | 2011-11-20 | Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО"МЭИ(ТУ)") | Способ формирования нанорельефа на теплообменных поверхностях изделий |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2640888C1 (ru) * | 2016-12-30 | 2018-01-12 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) | Интенсивный конденсатор пара с контрастным и градиентным смачиванием |
RU2834198C1 (ru) * | 2024-08-08 | 2025-02-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") | Микроканал с комбинированными покрытиями для охлаждения электронных компонентов |
Also Published As
Publication number | Publication date |
---|---|
RU2014123346A (ru) | 2015-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghosh et al. | Enhancing dropwise condensation through bioinspired wettability patterning | |
Xu et al. | Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces | |
Yang et al. | Creation of topological ultraslippery surfaces for droplet motion control | |
McBride et al. | Evaporative crystallization in drops on superhydrophobic and liquid-impregnated surfaces | |
Yang et al. | Controllable water adhesion and anisotropic sliding on patterned superhydrophobic surface for droplet manipulation | |
Karapetsas et al. | Evaporation of sessile droplets laden with particles and insoluble surfactants | |
Arnaldo del Cerro et al. | Leidenfrost point reduction on micropatterned metallic surfaces | |
US10421072B2 (en) | Wettability patterned substrates for pumpless liquid transport and drainage | |
Gulfam et al. | Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states | |
Sen et al. | Scaling laws in directional spreading of droplets on wettability-confined diverging tracks | |
Hou et al. | Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity | |
Weisensee et al. | Hydrophobic and oleophobic re-entrant steel microstructures fabricated using micro electrical discharge machining | |
Lin | Evaporative self-assembly of ordered complex structures | |
Xia et al. | Influence of surface wettability on bubble formation and motion | |
Kita et al. | Drop mobility on superhydrophobic microstructured surfaces with wettability contrasts | |
Dilip et al. | Effect of absolute pressure on flow through a textured hydrophobic microchannel | |
Wang et al. | In situ wetting state transition on micro-and nanostructured surfaces at high temperature | |
Thomas et al. | Condensation of humid air on superhydrophobic surfaces: Effect of nanocoatings on a hierarchical interface | |
Yao et al. | Bioinspired cavity regulation on superhydrophobic spheres for drag reduction in an aqueous medium | |
Feng et al. | Octagon to square wetting area transition of water–ethanol droplets on a micropyramid substrate by increasing ethanol concentration | |
Wang et al. | Modified PDMS with inserted hydrophilic particles for water harvesting | |
RU2581342C2 (ru) | Способ изготовления системы охлаждения электронного и микроэлектронного оборудования | |
Yang et al. | Evaporative deposition of surfactant-laden nanofluid droplets over a silicon surface | |
Papageorgiou et al. | Superhydrophobic, hierarchical, plasma-nanotextured polymeric microchannels sustaining high-pressure flows | |
McClure et al. | Nanoscale and Macroscale Effects of Mineral Deposition During Water Evaporation on Nanoporous Surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QA4A | Patent open for licensing |
Effective date: 20180511 |