RU2549402C1 - Каталитический нейтрализатор выхлопных газов - Google Patents
Каталитический нейтрализатор выхлопных газов Download PDFInfo
- Publication number
- RU2549402C1 RU2549402C1 RU2013141443/05A RU2013141443A RU2549402C1 RU 2549402 C1 RU2549402 C1 RU 2549402C1 RU 2013141443/05 A RU2013141443/05 A RU 2013141443/05A RU 2013141443 A RU2013141443 A RU 2013141443A RU 2549402 C1 RU2549402 C1 RU 2549402C1
- Authority
- RU
- Russia
- Prior art keywords
- oxide
- acz
- alcoholate
- layer
- complex
- Prior art date
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 102
- 239000010410 layer Substances 0.000 claims abstract description 127
- 239000003054 catalyst Substances 0.000 claims abstract description 84
- 239000002131 composite material Substances 0.000 claims abstract description 50
- 239000011247 coating layer Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 25
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 24
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 15
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 15
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007858 starting material Substances 0.000 claims abstract description 9
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 18
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000011164 primary particle Substances 0.000 claims description 7
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 4
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 238000006068 polycondensation reaction Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 38
- 239000010948 rhodium Substances 0.000 description 33
- 238000012360 testing method Methods 0.000 description 27
- 230000007423 decrease Effects 0.000 description 26
- 239000000843 powder Substances 0.000 description 23
- 239000000725 suspension Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 18
- 239000007789 gas Substances 0.000 description 18
- 238000000746 purification Methods 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 239000011232 storage material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910004625 Ce—Zr Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- IBMCQJYLPXUOKM-UHFFFAOYSA-N 1,2,2,6,6-pentamethyl-3h-pyridine Chemical compound CN1C(C)(C)CC=CC1(C)C IBMCQJYLPXUOKM-UHFFFAOYSA-N 0.000 description 1
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
- -1 zirconium oxynitrate dihydrate Chemical class 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/908—O2-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9207—Specific surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/014—Stoichiometric gasoline engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Изобретение относится к каталитическому нейтрализатору выхлопных газов. Каталитический нейтрализатор выхлопных газов содержит подложку, слой каталитического покрытия из пористого носителя на поверхности подложки и благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия. Слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой и нижний слой. В верхнем слое в качестве благороднометального катализатора нанесены частицы Rh. В нижнем слое в качестве благороднометального катализатора нанесены частицы Pd. Пористый носитель нижнего слоя образован сложным оксидом ACZ из оксида алюминия (Al2O3), оксида церия (CeO2) и оксида циркония (ZrO2). Сложный оксид ACZ получен алкоголятным способом. Исходными материалами в этом алкоголятном способе являются алкоголят металла и соль металла. Сложный оксид ACZ, полученный алкоголятным способом, представляет собой сложный оксид, в котором Al, Се и Zr становятся почти однородно смешанными на атомном или молекулярном уровне оксида. Атомное соотношение Ce/Zr в сложном оксиде ACZ составляет не более 0,6. Технический результат: увеличение долговечности катализатора, сохранение стабильной каталитической активности при низких температурах, высокая кислородаккумулирующая способность. 2 н. и 8 з.п. ф-лы, 5 ил., 3 табл., 9 пр.
Description
Предпосылки создания изобретения
1. Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к каталитическому нейтрализатору выхлопных газов и, более конкретно, относится к керамическому носителю, который является компонентом данного каталитического нейтрализатора.
2. Описание уровня техники
[0002] Трехкомпонентные каталитические нейтрализаторы широко используются в качестве катализаторов для очистки углеводорода (НС), монооксида углерода (СО) и оксидов азота (NOx), присутствующих в выхлопных газах, выходящих из двигателей, например, в автомобилях и т.д. В структуре типичного трехкомпонентного каталитического нейтрализатора, например, на поверхности высокотермостойкой керамической подложки формируется слой покрытия из оксида алюминия, а на указанный слой покрытия наносятся платина (Pt), палладий (Pd) и родий (Rh), которые являются благороднометальными катализаторами.
[0003] Для того чтобы эффективно очищать вышеуказанные компоненты выхлопного газа с использованием такого трехкомпонентного каталитического нейтрализатора, т.е. для того чтобы превращать их в H2O, CO2 и N2 окислением или восстановлением, соотношение топливовоздушной смеси, т.е. соотношение в смеси между воздухом и бензином, подаваемыми в двигатель, должно быть близким к стехиометрическому соотношению топливовоздушной смеси (стехиометрии). С целью увеличения ширины окна очистки каталитического нейтрализатора, т.е. того интервала соотношения топливовоздушной смеси, в котором каталитический нейтрализатор может эффективно функционировать, в каталитическом нейтрализаторе выхлопных газов также обычно широко используется кислородаккумулирующий материал, который обладает кислородаккумулирующей способностью (КАС) и типичным примером которого является оксид церия (CeO2). Кислородаккумулирующий материал, присутствующий в каталитическом нейтрализаторе выхлопных газов, работает следующим образом: когда соотношение топливовоздушной смеси в выхлопном газе является бедным (т.е. атмосфера на стороне избытка кислорода), он аккумулирует имеющийся в выхлопном газе кислород, а когда соотношение топливовоздушной смеси в выхлопном газе является богатым (т.е. атмосфера на стороне избытка топлива), он высвобождает аккумулированный кислород. Это обеспечивает стабильные характеристики каталитического нейтрализатора, даже когда концентрация кислорода в выхлопном газе варьируется, и поэтому улучшает характеристики очистки каталитического нейтрализатора. В примере типичной структуры каталитического нейтрализатора, в которой используется кислородаккумулирующий материал, композиция, в которой оксид алюминия и кислородаккумулирующий материал смешиваются в заданных пропорциях, наносится на поверхность подложки, а на нее наносится благороднометальный катализатор (Pt, Pd, Rh и т.д.).
[0004] Для того чтобы получить дополнительное улучшение характеристик очистки, в последние несколько лет были предложены каталитические нейтрализаторы выхлопных газов, в которых слой каталитического покрытия выполняется как двухслойная структура, и Rh наносится отдельно от Pt или Pd. Здесь весь благороднометальный катализатор не наносится в единственном слое носителя, а скорее слой каталитического покрытия формуется как слоистая структура, которая имеет по меньшей мере два слоя, т.е. верхний слой и нижний слой, и Pt или Pd наносится в один слой, а Rh наносится отдельно в другой слой. Это оказывает эффект ингибирования снижения каталитической активности, вызванного сплавлением родия (Rh) с платиной (Pt) или палладием (Pd). Например, опубликованные Японские заявки на патент №№ 2009-648 (JP 2009-648A), 2010-115591 (JP 2010-115591А) и 2010-119994 (JP 2010-119994A) описывают каталитические нейтрализаторы выхлопных газов, которые имеют двухслойную структуру, сформированную из нижнего слоя и верхнего слоя, где Pt или Pd наносится в нижнем слое на носитель, который содержит сложный оксид Ce-Zr (также называемый ниже «сложным оксидом CZ»), который является кислородаккумулирующим материалом, а Rh наносится в верхнем слое на носитель, который содержит, например, сложный оксид CZ.
[0005] С другой стороны, как отмечено выше, смесь оксида церия (обычно СеО2), который обладает КАС, и оксида алюминия (Al2O3) широко используется в качестве носителя благороднометального катализатора. Однако оксид церия имеет более низкую термостойкость, чем оксид алюминия, и при использовании при высоких температурах изменяется его кристаллическая структура и/или развивается рост кристаллов, приводя к снижению удельной площади поверхности. Как результат, когда трехкомпонентный каталитический нейтрализатор, который содержит благороднометальный катализатор и оксид церия, используется в высокотемпературной области в интервале 800°C или выше, КАС каталитического нейтрализатора будет после этого существенно снижаться. Это сопровождается снижением характеристик низкотемпературной очистки каталитического нейтрализатора после испытания на долговечность.
[0006] Как следствие, с целью ингибирования роста кристаллов у оксида церия, в качестве кислородаккумулирующих материалов широко используются сложные оксиды CZ или твердые растворы, приготовленные добавлением оксида циркония в дополнение к оксиду церия (смотри, например, JP 2009-648A). Однако низкотемпературная каталитическая активность каталитического нейтрализатора после испытания на долговечность все еще не является удовлетворительной даже при использовании сложного оксида CZ.
[0007] Поэтому опубликованная Японская заявка на патент № 10-202102 (JP 10-202102А) впервые рассматривает технологию, которая использует кислородаккумулирующий материал в виде сложного оксида алюминия (Al) - церия (Се) - циркония (Zr), полученного из алкоголята металла. Согласно JP 10-202102А указанный сложный оксид Al-Ce-Zr образован из небольших первичных частиц, приготовленных посредством смешения Ce и Zr с Al с однородностью на атомном или молекулярном уровне, и катализатор с Pt и Rh, нанесенными на носитель, который содержит сложный оксид Al-Ce-Zr, показывает большее ингибирование падения КАС после испытания на долговечность, чем катализатор с Pt и Rh, нанесенными на носитель, где оксид алюминия просто смешан со сложным оксидом CZ.
[0008] Для указанных каталитических нейтрализаторов выхлопных газов желательны дальнейшие улучшения характеристик очистки. В частности, после испытания на долговечность воздействием высокотемпературного выхлопного газа указанные каталитические нейтрализаторы показывают значительное падение каталитической активности от ее начального уровня. Для содержащего оксид церия носителя, нагруженного благороднометальным катализатором, одной причиной такого значительного падения каталитической активности считается то, что КАС каталитического нейтрализатора после использования в высокотемпературном испытании на долговечность показывает значительное снижение от КАС при первоначальном использовании. Как отмечено выше, одной причиной падения КАС после испытания на долговечность является развитие роста кристаллов у оксида церия в высокотемпературных областях.
[0009] Кроме того, отвечая ужесточению требований к экономии топлива в последние годы, температуры выхлопных газов не только дизельных двигателей, но и бензиновых двигателей имеют тенденцию к снижению. Например, бензиновый двигатель в гибридном транспортном средстве подвергается очень частой работе в низкотемпературных условиях. Соответственно, становится критически важным, чтобы каталитическая активность также не снижалась при низких температурах. Однако ранее описанные каталитические нейтрализаторы выхлопных газов не имели удовлетворительной низкотемпературной активности после испытания на долговечность.
Сущность изобретения
[0010] Настоящее изобретение предусматривает каталитический нейтрализатор выхлопных газов, который проявляет превосходные характеристики очистки и который сохраняет свои характеристики очистки даже при воздействии высокотемпературного выхлопного газа.
[0011] Каталитический нейтрализатор выхлопных газов согласно аспекту изобретения снабжен подложкой, слоем каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки, и благороднометальным катализатором, который нанесен на пористый носитель слоя каталитического покрытия. Указанный слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой относительно дальше от поверхности подложки и нижний слой относительно ближе к поверхности подложки. Кроме того, в верхнем слое в качестве вышеуказанного благороднометального катализатора нанесены частицы Rh, а в нижнем слое в качестве вышеуказанного благороднометального катализатора нанесены частицы Pd. В рассмотренном здесь каталитическом нейтрализаторе выхлопных газов пористый носитель нижнего слоя, который несет вышеуказанные частицы Pd, образован сложным оксидом из оксида алюминия (Al2O3), оксида церия (СеО2) и оксида циркония (ZrO2) (данный сложный оксид также называется ниже «сложным оксидом ACZ»).
[0012] В каталитическом нейтрализаторе выхлопных газов с описанной структурой пористый носитель нижнего слоя (также называемого ниже как «слой Pd-катализатора») слоя каталитического покрытия со слоистой структурой образован вышеуказанным сложным оксидом ACZ (данный пористый носитель также называется ниже «ACZ-носителем»). Это дает в результате ингибирование роста кристаллов (спекания) в носителе катализатора (здесь - носителе для Pd) в ходе воздействия высокотемпературных выхлопных газов и в то же самое время может предотвратить снижение КАС. Соответственно, каталитический нейтрализатор выхлопных газов с описанной структурой может обеспечить улучшенную долговечность (в частности, термостойкость) и может сохранять стабильную каталитическую активность. Кроме того, каталитическая активность в относительно низкотемпературной области (например, 300-600°C), т.е. низкотемпературная активность, может быть улучшена размещением ACZ-носителя.
[0013] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту атомное соотношение Ce/Zr в сложном оксиде ACZ в нижнем слое может быть не более 0,6.
[0014] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту атомное соотношение Ce/Zr в сложном оксиде ACZ в нижнем слое может быть от по меньшей мере 0,15 до не более 0,55.
[0015] Долговечность (термостойкость) ACZ-носителя может быть увеличена даже больше при наличии указанного атомного соотношения Ce/Zr не более 0,6 (например, от по меньшей мере 0,1 до не более 0,6, а более предпочтительно от по меньшей мере 0,15 до не более 0,55). Высокая долговечность может присутствовать в сочетании с высоким значением КАС, когда указанное атомное соотношение Ce/Zr составляет примерно 0,4-0,55 (например, от по меньшей мере 0,4 до не более 0,55), и такое атомное соотношение Ce/Zr является поэтому особенно предпочтительным.
[0016] Содержание компонента оксида алюминия (Al2O3) в сложном оксиде ACZ в каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту может составлять от 40 до 70 мас.%. Даже лучшая реализация улучшенной термостойкости и высокого значения КАС для ACZ-носителя и высокой низкотемпературной активности может быть достигнута при доведении содержания компонента оксида алюминия до указанного интервала.
[0017] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту первичные частицы в сложном оксиде ACZ могут иметь средний диаметр частиц не более 10 нм и удельную площадь поверхности по меньшей мере 30 м2/г.
[0018] Пористый носитель в нижнем слое в каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту может дополнительно содержать, в дополнение к вышеуказанному сложному оксиду ACZ, по меньшей мере один оксид редкоземельного элемента, выбранный из La2O3, Y2O3 и Pr6O11.
[0019] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту пористый носитель (также называемый ниже «Al2O3-CZ-носителем») верхнего слоя (также называемого ниже «слоем Rh-катализатора»), который несет вышеуказанные частицы Rh, образован смесью (также называемой ниже как «смесью Al2O3-CZ») оксида алюминия и сложного оксида CZ из оксида церия и оксида циркония. Высокая каталитическая активность на части слоя Rh-катализатора может быть обусловлена размещением этого верхнего слоя (слоя Rh-катализатора) в сочетании с описанным ранее слоем Pd-катализатора.
[0020] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту атомное соотношение Ce/Zr в сложном оксиде CZ в вышеуказанном верхнем слое может быть по меньшей мере 0,5.
[0021] В каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту атомное соотношение Ce/Zr в сложном оксиде CZ в вышеуказанном верхнем слое может быть от по меньшей мере 0,7 до не более 0,8.
[0022] Высокая КАС может быть реализована для слоя Rh-катализатора при наличии атомного соотношения Ce/Zr в сложном оксиде CZ в вышеуказанном Al2O3-CZ-носителе, составляющего по меньшей мере 0,5 (например, от по меньшей мере 0,5 до не более 0,8 и, в частности, по меньшей мере 0,7, например, от по меньшей мере 0,7 до не более 0,8).
[0023] Пористый носитель в вышеуказанном верхнем слое в каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту может дополнительно содержать по меньшей мере один оксид редкоземельного элемента, выбранный из La2O3, Y2O3 и Pr6O11.
[0024] Сложный оксид ACZ в каталитическом нейтрализаторе выхлопных газов согласно вышеописанному аспекту может быть получен алкоголятным способом, и термообработка в алкоголятном способе предпочтительно осуществляется при температуре от по меньшей мере 500°C до не выше 900°C.
Краткое описание чертежей
[0025] Признаки, преимущества и техническое и промышленное значение примерных вариантов осуществления изобретения будут описаны ниже со ссылкой на прилагающиеся чертежи, на которых подобные номера обозначают подобные элементы и на которых:
на фигуре 1 схематически показан каталитический нейтрализатор выхлопных газов согласно варианту осуществления изобретения;
на фигуре 2 схематически показана структура элемента ребра в каталитическом нейтрализаторе выхлопных газов с фигуры 1;
на фигуре 3 представлен график, показывающий соотношение для варианта осуществления изобретения между атомным соотношением церий:цирконий (Ce/Zr) в носителе нижнего слоя и КАС каталитического нейтрализатора до и после испытания на долговечность;
на фигуре 4 представлен график, который показывает температуру 50%-ной очистки после испытания на долговечность для каталитических нейтрализаторов в некоторых сравнительных примерах и примерах согласно вариантам осуществления изобретения; и
на фигуре 5 представлен график, который показывает соотношение между содержанием оксида алюминия в носителе нижнего слоя и температурой 50%-ной очистки для каталитического нейтрализатора после испытания на долговечность согласно варианту изобретения.
Подробное описание вариантов осуществления изобретения
[0026] Варианты осуществления изобретения описываются ниже со ссылкой на чертежи. Каталитический нейтрализатор выхлопных газов по изобретению не ограничивается вариантами, которые следуют и которые могут быть реализованы - в объеме, который не отклоняется от существенных признаков изобретения - в различных формах, как обеспечивается осуществлением различных модификаций, улучшений и т.д., что может быть выполнено отдельным специалистом в данной области техники. Как уже описано выше, раскрытый здесь каталитический нейтрализатор выхлопных газов содержит подложку, слой каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки, и благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия. Кроме того, слой каталитического покрытия сформирован как слоистая структура.
[0027] Различные материалы и конфигурации, обычно используемые в применениях данного типа, могут быть использованы для подложки, которая является компонентом раскрытого здесь каталитического нейтрализатора выхлопных газов. Может быть подходящим образом использована, например, сотовая подложка, снабженная сотовой структурой, образованной из сплава (например, нержавеющей стали) или керамики, такой как кордиерит или карбид кремния (SiC). Примером является сотовая подложка, имеющая цилиндрическую внешнюю форму и снабженная сквозными отверстиями (ячейками), которые формируют каналы для выхлопного газа вдоль оси цилиндра, в которых выхлопной газ может приходить в контакт с перегородками (ребрами), которые образуют отдельные ячейки. Помимо сотовой формы подложка может иметь, например, конфигурацию пены или конфигурацию в виде гранул. Вместо цилиндрической формы, например, в качестве внешней формы подложки в целом могут использоваться эллиптический цилиндр или многогранник. На фигуре 1 представлена схематическая диаграмма типичного примера каталитического нейтрализатора выхлопных газов. Здесь каталитический нейтрализатор 10 выхлопных газов по данному варианту осуществления снабжен сотовой подложкой 12, которая имеет множество регулярно расположенных ячеек 20 и ребер 30, которые формируют ячейки 20. На фигуре 2 представлен пояснительный чертеж, который схематически показывает структуру участка поверхности ребра 30 в сотовой подложке 12 с фигуры 1. Таким образом, ребро 30 снабжено подложкой 32 и слоем 40 каталитического покрытия, имеющим двухслойную структуру и сформированным на поверхности подложки 32. Более конкретно, этот слой 40 каталитического покрытия двухслойной структуры сформирован из нижнего слоя 34 (также называемого ниже «нижним слоем 34 каталитического покрытия» или «слоем 34 Pd-катализатора»), который находится ближе к подложке 32 и несет Pd в качестве благороднометального катализатора, и верхнего слоя 36 (также называемого ниже «верхним слоем 36 каталитического покрытия» или «слоем 36 Rh-катализатора»), который находится дальше от подложки 32 и несет Rh в качестве благороднометального катализатора. Слоистая структура слоя 40 каталитического покрытия, который является компонентом раскрытого здесь каталитического нейтрализатора 10 выхлопных газов, получается сначала формованием нижнего слоя 34 каталитического покрытия на поверхности подложки 32 и затем формованием верхнего слоя 36 каталитического покрытия на поверхности нижнего слоя 34 каталитического покрытия.
[0028] Описанный ранее сложный оксид ACZ присутствует в носителе в нижнем слое (слое Pd-катализатора) 34, который является компонентом раскрытого здесь каталитического нейтрализатора 10 выхлопных газов. Сложный оксид ACZ может быть получен, например, алкоголятным способом или способом соосаждения. В качестве исходных материалов в алкоголятном способе Al, Ce и Zr все превращаются в алкоголят металла или же по меньшей мере один из Al, Ce и Zr превращается в алкоголят металла, тогда как соль металла, например нитратная соль, используется для компонентов, иных, чем алкоголят(ы) металла(ов). Их растворяют в подходящем растворителе и смешивают и проводят реакции гидролиза и поликонденсации, после которых сложный оксид ACZ получается термообработкой. В способе соосаждения гидроксидные предшественники соосаждаются при введении основания в смешанный водный раствор водорастворимой соли алюминия, водорастворимой соли церия и водорастворимой соли циркония, и сложный оксид ACZ получается прокаливанием этого соосадка. Сложный оксид ACZ, полученный алкоголятным способом, является предпочтительным, поскольку Al, Ce и Zr становятся почти однородно смешанными на атомном или молекулярном (оксид) уровне, и такой сложный оксид ACZ показывает высокую термостойкость и высокую КАС.
[0029] Атомное соотношение Ce/Zr в сложном оксиде ACZ, используемом в носителе в нижнем слое 34, подходяще составляет приблизительно 1±0,1 или менее, хотя предпочтительным является не более 0,6, например от по меньшей мере 0,1 до не более 0,6 (более предпочтительно от по меньшей мере 0,15 до не более 0,55). При наличии атомного соотношения Ce/Zr в указанном интервале для слоя 34 Pd-катализатора может быть реализована высокая каталитическая активность и высокая КАС.
[0030] Термообработка в способе получения сложного оксида ACZ алкоголятным способом, предпочтительно, осуществляется при температуре от по меньшей мере 500°C до не выше 900°C. Проведение термообработки при указанной температуре делает возможным достижение даже лучшего ингибирования падения КАС после испытания на долговечность. Когда температура термообработки ниже 500°C, имеется небольшое ингибирование вызываемого ростом кристаллов снижения КАС после испытания на долговечность, а также требуется увеличенный период времени для термообработки. Когда температура термообработки превышает 900°C, рост кристаллов ACZ прекращается, и КАС снижается. Раскрытый здесь сложный оксид ACZ, предпочтительно, имеет очень небольшой диаметр первичных частиц; например, желательно используется порошок сложного оксида ACZ, который имеет средний диаметр первичных частиц (здесь и ниже это - среднее значение на основе наблюдения с использованием сканирующего электронного микроскопа (СЭМ) или просвечивающего электронного микроскопа (ПЭМ)) не более 10 нм и удельную площадь поверхности по БЭТ (Брунауэр-Эммет-Теллер) (удельная площадь поверхности, измеренная по методу БЭТ) по меньшей мере 30 м2/г. Когда диаметр первичных частиц (средний диаметр частиц) намного больше 10 нм, а удельная площадь поверхности по БЭТ намного меньше 30 м2/г, КАС получаемого ACZ-носителя довольно склонна к снижению, и тогда каталитическая активность снижается, делая такие значения нежелательными.
[0031] Помимо сложного оксида ACZ носитель в нижнем слое (слое Pd-катализатора) 34 может содержать оксид редкоземельного элемента, такой как La2O3, Y2O3 или Pr6O11. Термостойкость сложного оксида ACZ дополнительно улучшается присутствием этих оксидов редкоземельных элементов. Например, получается сильное ингибирование спекания. Оксид редкоземельного элемента может быть физически смешан в виде простого оксида с порошком носителя или может быть сделан компонентом сложного оксида. В таких случаях количество добавки оксида редкоземельного элемента по отношению к массе носителя в целом предпочтительно составляет от по меньшей мере 2 мас.% до не более 6 мас.%. Имеется небольшой эффект ингибирования спекания, когда количество добавки оксида редкоземельного элемента меньше 2 мас.%. При превышении 6 мас.% доля сложного оксида ACZ в составе претерпевает относительное снижение, и как следствие, снижаются термостойкость и КАС носителя. Отсутствуют специальные ограничения на количество Pd, наносимого на пористый носитель в нижнем слое 34, но подходящий интервал составляет 0,05-2 мас.% (например, 0,5-1 мас.%) по отношению к общей массе носителя в нижнем слое 34. При меньшем чем это количестве не получается удовлетворительная каталитическая активность. При нанесении большего количества эффект насыщается, что является невыгодным с точки зрения стоимости. Для формования нижнего слоя 34 каталитического покрытия поверхность подложки 32 может быть обмазана суспензией, содержащей порошок сложного оксида ACZ, и на нее может быть нанесен Pd или же поверхность подложки 32 может быть обмазана суспензией, которая содержит порошок, полученный предварительным нанесением Pd на порошок сложного оксида ACZ.
[0032] Пористый носитель в верхнем слое (слое Rh-катализатора) 36, который является компонентом раскрытого здесь каталитического нейтрализатора 10 выхлопных газов, может содержать вещества, обычно используемые для носителей данного типа, например, оксид алюминия (Al2O3), оксид церия (СеО2), оксид циркония (ZrO2) и их твердые растворы и сложные оксиды. Высокая термостойкость и высокая каталитическая активность получаются, когда используется смесь оксида алюминия и сложного оксида CZ (смесь Al2O3-CZ), и использование такой смеси является, таким образом, предпочтительным.
[0033] Атомное соотношение Се/Zr в сложном оксиде CZ, используемом в носителе в верхнем слое 36, подходяще составляет приблизительно 1 ± 0,1 или менее, хотя предпочтительным является по меньшей мере 0,5 (например, от по меньшей мере 0,5 до не более 0,8 и, в частности, по меньшей мере 0,7, например, от по меньшей мере 0,7 до не более 0,8). Высокая каталитическая активность и высокая КАС могут быть реализованы для слоя 36 Rh-катализатора при наличии Се/Zr в указанном интервале.
[0034] С целью ингибирования спекания в носитель верхнего слоя 36 может быть примешан оксид редкоземельного элемента, такой как La2O3, Y2O3 или Pr6O11. Этот оксид редкоземельного элемента может быть физически смешан в виде простого оксида с порошком носителя или же может быть сделан компонентом сложного оксида. Количество добавки оксида редкоземельного элемента по отношению к массе носителя в целом предпочтительно составляет от по меньшей мере 2 мас.% до не более 6 мас.%. Имеется небольшой эффект ингибирования спекания, когда количество добавки оксида редкоземельного элемента меньше 2 мас.%. При превышении 6 мас.% количество Al2O3 и СеО2 в носителе претерпевает относительное снижение, и как следствие, снижаются термостойкость и КАС. Отсутствует специальные ограничения на количества Rh, наносимого на пористый носитель в верхнем слое 36, но подходящий интервал составляет 0,01-1 мас.% (например, 0,05-0,5 мас.%) по отношению к общей массе носителя в верхнем слое 36. При меньшем количестве не получается удовлетворительная каталитическая активность. При нанесении большего количества эффект насыщается, что является невыгодным с точки зрения стоимости. Для формования верхнего слоя 36 каталитического покрытия поверхность нижнего слоя 34 каталитического покрытия может быть обмазана суспензией, содержащей порошок носителя, и на нее может быть нанесен Rh или же поверхность нижнего слоя 34 каталитического покрытия может быть обмазана суспензией, которая содержит порошок катализатора, полученный предварительным нанесением Rh на порошок носителя.
[0035] Суспензия в способе формования слоя 40 каталитического покрытия обмазыванием предпочтительно содержит связующее для того, чтобы обеспечить подходящую адгезию суспензии к поверхности подложки 32 или к поверхности носителя нижнего слоя 34. Указанной суспензией является, предпочтительно, например, золь оксида алюминия или золь диоксида кремния. Вязкость суспензии должна быть такой вязкостью, которая позволяет суспензии легко затекать в ячейки 20 подложки (например, сотовой подложки 12). Для того чтобы повысить термостойкость носителя, в суспензию может быть введен стабилизированный лантаном (La-стабилизированный) Al2O3. Когда это делается, количество добавки La-стабилизированного Al2O3 предпочтительно составляет 15-50 г на 1 л объема суспензии. Улучшение термостойкости благодаря добавке La является неадекватным, когда количество добавки La-стабилизированного Al2O3 составляет менее 15 г на 1 л объема суспензии. При более чем 50 г пропорции смешения других компонентов, например, сложного оксида ACZ или сложного оксида CZ, относительно снижаются, и в результате снижается КАС.
[0036] Условия сушки суспензии, намазанной на поверхность подложки 32, зависят от формы и размеров подложки или носителя, но обычно составляют примерно 1-10 часов при температуре примерно 80-120°C (например, 100-110°C). Условия прокаливания составляют примерно 2-4 часа при температуре примерно 400-1000°C (например, 500-700°C). Нет специальных ограничений на отливаемое количество слоя 40 каталитического покрытия, и, например, общее количество нижнего слоя 34 каталитического покрытия и верхнего слоя 36 каталитического покрытия предпочтительно составляет от примерно 5 до 500 г на 1 л объема сотовой подложки 12. Когда количество слоя 40 каталитического покрытия на 1 л объема сотовой подложки 12 составляет менее 5 г, действие в качестве слоя каталитического покрытия проявляется лишь слабо, и может иметь место рост зерен нанесенных частиц благородного металла. Количество слоя 40 каталитического покрытия более 500 г вызывает увеличение потери давления, когда выхлопной газ проходит через ячейки 20 в сотовой подложке 12. Для слоистой структуры слоя 40 каталитического покрытия достаточно иметь описанный ранее слой Rh-катализатора в качестве верхнего слоя 36 и описанный ранее слой Pd-катализатора в качестве нижнего слоя 34, но указанная слоистая структура может также иметь три или более слоев, среди которых присутствует по меньшей мере другой слой (например, отдельный слой, смежный с подложкой) в дополнение к двум слоям, указанным выше.
[0037] Ниже описаны несколько примеров, относящихся к изобретению, но то, что показано в этих отдельных примерах, не предназначено ограничивать изобретение.
Примеры получения: Примеры 1-6
[0038] Сначала получали порошок сложного оксида ACZ для использования в качестве носителя для нижнего слоя 34 каталитического покрытия (слоя Pd-катализатора 34). Для получения сложного оксида ACZ в качестве исходных материалов использовали гексагидрат нитрата церия(III) (Ce(NO3)2∙6H2O), дигидрат оксинитрата циркония (ZrO(NO3)2∙2H2O) и изопропилат алюминия (Al[OCH(CH3)2]3) и растворяли их в воде или в спиртовом растворителе, и смешивали и перемешивали в течение 48 часов при 80°C. Получаемый осадок промывали водой, сушили и прокаливали в течение 2 часов при 500°C с получением порошка сложного оксида ACZ. Полученный порошок сложного оксида ACZ имел средний диаметр первичных частиц 4-5 нм на основе ПЭМ-анализа и имел удельную площадь поверхности по БЭТ 180 м2/г.
[0039] Вышеописанным способом получения получали всего шесть сложных оксидов ACZ, имеющих различные пропорции компонентов Al, Ce и Zr (примеры 1-6). Пропорции компонентов каждого из Al, Ce и Zr показаны в таблице 1. Принимая полученный сложный оксид ACZ за 100 мас.%, пропорции индивидуальных компонентов в таблице 1 были переведены в содержание Al2O3 (мас.%), содержание СеО2 (мас.%), содержание ZrO2 (мас.%) и содержание (мас.%) любого оксида редкоземельного элемента, введенного в качестве добавки. Атомные соотношения церий : цирконий (Се/Zr) в сложных оксидах ACZ в этих случаях составляли 0,19 (пример 1), 0,52 (пример 2), 0,74 (пример 3), 1,03 (пример 4), 0,89 (пример 5) и 0,97 (пример 6).
Таблица 1 | ||||||||
Носитель нижнего слоя | Пропорции индивидуальных компонентов в носителе нижнего слоя (мас.%) | Ce/Zr (атомное соотношение) | ||||||
Al2O3 | CeO2 | ZrO2 | La2O3 | Y2O3 | Pr6O11 | |||
Пример 1 | ACZ | 50,47 | 10,09 | 35,38 | 2,03 | 2,03 | 0 | 0,19 |
Пример 2 | ACZ | 50,69 | 19,97 | 25,50 | 1,92 | 1,92 | 0 | 0,52 |
Пример 3 | ACZ | 44,00 | 28,00 | 25,00 | 0 | 0 | 3,00 | 0,74 |
Пример 4 | ACZ | 49,79 | 28,27 | 17,99 | 2,01 | 1,94 | 0 | 1,03 |
Пример 5 | ACZ | 33,70 | 35,20 | 26,10 | 1,70 | 1,90 | 0 | 0,89 |
Пример 6 | ACZ | 66,50 | 16,50 | 11,20 | 2,90 | 1,20 | 0 | 0,97 |
Сравнительный пример 1 | AZ | 50,65 | 0 | 45,31 | 2,04 | 2,00 | 0 | 0 |
Сравнительный пример 2 | CZ | 0 | 30 | 60 | 5 | 5 | 0 | 0,3 |
Сравнительный пример 3 | Al2O3 + CZ | 50 | 15 | 30 | 2,5 | 2,5 | 0 | 0,3 |
[0040] Затем на порошок сложного оксида ACZ наносили Pd с использованием раствора нитрата палладия (Pd(NO3)2) с последующим прокаливанием в течение 3 часов при 300°C в атмосфере с получением порошка сложного оксида ACZ с нанесенным Pd. Нанесенный Pd составлял 0,58 мас.%, принимая полученный порошок сложного оксида ACZ с нанесенным Pd за 100 мас.%. Суспензию нижнего слоя приготовили примешением порошка La-стабилизированного Al2O3, связующего Al2O3 и дистиллированной воды в полученный порошок сложного оксида ACZ с нанесенным Pd. Масса на единицу объема индивидуальных компонентов в указанной суспензии приводится в таблице 2.
Таблица 2 | ||
Верхний слой (г/л) | Нижний слой (г/л) | |
Порошок носителя | 60 | 120 |
La-стабилизированный Al2O3 | 25 | 40 |
Связующее Al2O3 | 5 | 13 |
Благороднометальный катализатор | Rh/0,1 | Pd/0,7 |
[0041] Затем приготовили сложный оксид CZ способом соосаждения для использования в качестве носителя для верхнего слоя каталитического покрытия (слоя Rh-катализатора) 36. Таким образом, в качестве исходных материалов использовали гексагидрат нитрата церия(III) (Ce(NO3)2∙6H2O) и дигидрат оксинитрата циркония (ZrO(NO3)2∙2H2O) и растворяли их в дистиллированной воде с получением водного раствора, который затем перемешивали. Гидроксидный осадок получали введением данного раствора в водный раствор NH4OH, содержавший NH3 при 1,2-разовом эквиваленте нейтрализации. Полученный осадок отделяли центрифугированием и надосадочную жидкость удаляли. После этого осадок промывали чистой водой 3 раза и проводили термообработку при 800°C в течение 5 часов с получением сложного оксида CZ.
[0042] Полученный сложный оксид CZ смешивали с предписанным количеством Al2O3 c использованием ступки с получением смеси сложный оксид CZ + Al2O3 (смесь Al2O3-CZ) для использования в качестве носителя верхнего слоя. Принимая смесь Al2O3-CZ за 100 мас.%, пропорции Al, Ce и Zr в смеси Al2O3-CZ были доведены до 44 мас.% для содержания Al2O3, 28 мас.% для содержания CeO2, 25 мас.% для содержания ZrO2 и 3 мас.% для содержания Pr6O11, введенного в качестве добавки. Атомное соотношение церий:цирконий (Се/Zr) в сложном оксиде CZ в данном случае составляло 0,74 (таблица 3).
Таблица 3 | |||||
Носитель верхнего слоя | Пропорции индивидуальных компонентов в носителе верхнего слоя (мас.%) | Ce/Zr (атомное соотношение) | |||
Al2O3 | CeO2 | ZrO2 | Pr6O11 | ||
Al2O3+CZ | 44,0 | 28,0 | 25,0 | 3,00 | 0,74 |
[0043] На смесь Al2O3-CZ наносили Rh с использованием раствора нитрата родия (Rh(NO3)2) предписанной концентрации с последующим прокаливанием в течение 3 часов при 500°C в атмосфере. Нанесенный Rh составлял 0,17 мас.%, принимая смесь Al2O3-CZ с нанесенным Rh за 100 мас.%. Суспензию верхнего слоя приготовили смешением полученной смеси Al2O3-CZ с нанесенным Rh, La-стабилизированного Al2O3, связующего Al2O3 и дистиллированной воды. Масса на единицу объема индивидуальных компонентов в этой суспензии приводится в таблице 2. Все суспензии верхнего слоя для примеров 1-6 приготовили с использованием описанных выше способа получения и состава.
[0044] Для формирования слоистой структуры слоя каталитического покрытия суспензию нижнего слоя намазывали на поверхность кордиеритной сотовой подложки и избыточную суспензию сдували с последующими сушкой и прокаливанием с образованием нижнего слоя каталитического покрытия. Затем намазывали суспензию верхнего слоя и избыточную суспензию сдували с последующими сушкой и прокаливанием с образованием верхнего слоя каталитического покрытия, и, таким образом, получили каталитические нейтрализаторы выхлопных газов согласно примерам 1-6.
Примеры получения: Сравнительные примеры 1-3
[0045] Для сравнительного примера 1 каталитический нейтрализатор приготовили с использованием сложного оксида Al-Zr (сложного оксида AZ) из Al2O3 и ZrO2 для нижнего слоя каталитического покрытия (слоя Pd-катализатора) 34, а не сложного оксида ACZ. Сложный оксид AZ приготовили тем же самым способом получения, что и описанный ранее способ получения сложных оксидов ACZ примеров 1-6, но в данном случае без включения нитрата церия в исходные материалы. Принимая сложный оксид AZ за 100 мас. %, пропорции компонентов Al и Zr в сложном оксиде AZ были доведены до 50,65 мас.% для содержания Al2O3 и 45,31 мас.% для содержания ZrO2. Атомное соотношение церий:цирконий (Се/Zr) в носителе нижнего слоя в данном случае составляло, конечно же, 0 (таблица 1).
[0046] Для сравнительного примера 2 каталитический нейтрализатор приготовили с использованием сложного оксида CZ в качестве носителя для нижнего слоя каталитического покрытия (слоя Pd-катализатора) 34 вместо сложного оксида ACZ. Этот сложный оксид CZ приготовили тем же самым способом получения, что и описанный ранее способ получения сложного оксида CZ для носителя верхнего слоя (слоя Rh-катализатора) в примерах 1-6. Принимая сложный оксид CZ за 100 мас.%, пропорции компонентов Се и Zr в сложном оксиде CZ были доведены до 30 мас.% для содержания СеО2 и 60 мас.% для содержания ZrO2. Атомное соотношение церий:цирконий (Се/Zr) в носителе нижнего слоя в данном случае составляло 0,3 (таблица 1).
[0047] Для сравнительного примера 3 каталитический нейтрализатор приготовили с использованием смеси сложного оксида CZ + Al2O3 (смесь Al2O3-CZ) в качестве носителя для нижнего слоя 34 каталитического покрытия вместо сложного оксида ACZ. Эту смесь Al2O3-CZ получают тем же самым способом получения, как описанный ранее способ получения смеси Al2O3-CZ для носителя верхнего слоя (слоя Rh-катализатора) в примерах 1-6. Принимая эту смесь Al2O3-CZ за 100 мас.%, пропорции компонентов Al, Се и Zr в смеси Al2O3-CZ были доведены до 50 мас.% для содержания Al2O3, 15 мас.% для содержания СеО2 и 30 мас.% для содержания ZrO2. Атомное соотношение церий:цирконий (Се/Zr) в носителе нижнего слоя в данном случае составляло 0,3 (таблица 1).
[0048] На каждый из указанных порошков носителя нижнего слоя наносили Pd с использованием раствора нитрата палладия (Pd(NO3)2) с последующим прокаливанием в течение 3 часов при 300°C в атмосфере с получением порошка носителя нижнего слоя с нанесенным Pd. Нанесенный Pd составлял 0,58 мас.%, принимая полученный порошок носителя нижнего слоя с нанесенным Pd за 100 мас.%. Суспензию нижнего слоя приготовили примешиванием порошка La-стабилизированного Al2O3, связующего Al2O3 и дистиллированной воды в полученный порошок носителя нижнего слоя с нанесенным Pd. Масса на единицу объема индивидуальных компонентов в указанной суспензии приводится в таблице 2.
[0049] Суспензии верхнего слоя для сравнительных примеров 1-3 приготовили с использованием таких же способа получения и пропорций компонентов, как описано выше для верхнего слоя в примерах 1-6. Каталитические нейтрализаторы выхлопных газов согласно сравнительным примерам 1-3 приготовили формированием слоистой структуры слоя каталитического покрытия в сравнительных примерах 1-3 с использованием такого же способа получения, как описано выше для слоистой структуры в примерах 1-6.
Испытание измерением КАС
[0050] Каталитические нейтрализаторы выхлопных газов согласно примерам 1-6 и сравнительным примерам 1-3 подвергали измерению КАС до и после испытания на долговечность. Испытание на долговечность проводили, установив каждый из нейтрализаторов согласно примерам 1-6 и сравнительным примерам 1-3 в систему выпуска двигателя V8 (3UZ-FE) и выдерживая температуру каталитического слоя на 1000°C в течение 25 часов. КАС измеряли с использованием термогравиметрического анализатора следующим образом: образец подвергали повторному окислению и восстановлению при чередовании проточных потоков водорода и кислорода и измеряли изменение массы в ходе этого с определением КАС. Результаты показаны на фигуре 3.
[0051] Как видно из результатов, показанных на фигуре 3, при определении КАС до и после испытания на долговечность почти отсутствует изменение в примерах 1 и 2. В данных случаях процентное снижение КАС до и после испытания на долговечность (полученное делением абсолютного значения разности между значениями КАС до и после испытания на долговечность на значение КАС до испытания на долговечность) составляло в примерах 1 и 2 не более 10%. С другой стороны, в сравнительном примере 2 (носитель нижнего слоя: сложный оксид CZ) и в сравнительном примере 3 (носитель нижнего слоя: смесь Al2O3-CZ) КАС после испытания на долговечность показывает значительное снижение по сравнению с КАС до испытания на долговечность. В частности, большое снижение КАС произошло в сравнительном примере 2, где процентное снижение КАС составило 47%. Процентное снижение КАС составляло 30% в примере 3 и 36% в примере 4. Приведенные данные показывают, что снижение КАС после испытания на долговечность больше ингибировано в случае примеров 1-4, в которых в качестве носителя нижнего слоя используется сложный оксид ACZ, чем когда в качестве носителя нижнего слоя используется сложный оксид CZ (сравнительный пример 2). Кроме того, снижение КАС после испытания на долговечность является значительно ингибировано при соотношении Ce/Zr в сложном оксиде ACZ, присутствующем в носителе нижнего слоя, в интервале менее или равно 0,6.
Испытание измерением температуры 50%-ой очистки
[0052] Затем, после испытания на долговечность, каждый из каталитических нейтрализаторов выхлопных газов в примерах 2 и 4 и в сравнительных примерах 2 и 3 (всего 4) подвергали измерению температуры 50%-ной очистки при непрерывном определении степеней очистки по HC, CO и NOx в ходе линейного повышения температуры от 200 до 450°C (скорость повышения температуры = 10°C/мин) в стехиометрической атмосфере. Указанная температура 50%-ной очистки представляет собой ту температуру газа на входе каталитического нейтрализатора, когда степени очистки по HC, CO и NOx достигли 50%. Результаты показаны на фигуре 4. Как видно из результатов, показанных на фигуре 4, примеры 2 и 4 оказались имеющими более низкую температуру 50%-ной очистки после испытания на долговечность, чем сравнительный пример 2 (носитель нижнего слоя: сложный оксид CZ) и сравнительный пример 3 (носитель нижнего слоя: смесь Al2O3-CZ). Таким образом, было показано, что использование сложного оксида ACZ в качестве носителя нижнего слоя улучшает низкотемпературную каталитическую активность после испытания на долговечность по сравнению с использованием сложного оксида CZ в качестве носителя нижнего слоя.
[0053] Температуру 50%-ной очистки также измеряли на каталитических нейтрализаторах выхлопных газов примеров 4-6, в которых использованы сложный оксид ACZ в качестве носителя нижнего слоя и которые имели атомное соотношение церий:цирконий (Се/Zr) в сложном оксиде ACZ, равное 1, но которые приготовлены с использованием различных содержаний Al2O3. В частности, принимая ACZ-носитель за 100 мас.%, содержание Al2O3 составляло 33,70 мас.% (пример 5), 49,79 мас.% (пример 4) и 66,50 мас.% (пример 6). Результаты показаны на фигуре 5. Как видно из результатов, показанных на фигуре 5, температура 50%-ной очистки оказалась падающей по мере увеличения содержания Al2O3 в носителе нижнего слоя (ACZ-носителе), и пример 6 оказался имеющим наиболее низкую температуру 50%-ной очистки и, таким образом, наиболее улучшенную низкотемпературную активность. Другими словами, когда сложный оксид ACZ использовали в качестве носителя нижнего слоя, характеристики низкотемпературной очистки были превосходными при содержании Al2O3 в сложном оксиде ACZ в интервале от по меньшей мере 40 мас.% до 70 мас.% включительно.
Claims (10)
1. Каталитический нейтрализатор выхлопных газов, содержащий:
подложку;
слой каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки; и
благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия,
причем
слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой относительно дальше от поверхности подложки и нижний слой относительно ближе к поверхности подложки;
в верхнем слое в качестве благороднометального катализатора нанесены частицы Rh;
в нижнем слое в качестве благороднометального катализатора нанесены частицы Pd;
пористый носитель нижнего слоя, который несет частицы Pd, образован сложным оксидом ACZ из оксида алюминия (Αl2O3), оксида церия (CeO2) и оксида циркония (ZrO2);
сложный оксид ACZ получен алкоголятным способом;
исходными материалами в этом алкоголятном способе являются алкоголят металла и соль металла;
Al, Се и Zr все превращаются в алкоголят металла или же по меньшей мере один из Al, Се и Zr превращается в алкоголят металла;
соль металла используется для компонентов, иных, чем алкоголят металла;
исходные материалы растворяются в растворителе и смешиваются и проводятся реакции гидролиза и поликонденсации, после которых сложный оксид ACZ получается термообработкой; и
сложный оксид ACZ, полученный алкоголятным способом, представляет собой сложный оксид, в котором Al, Се и Zr становятся почти однородно смешанными на атомном или молекулярном уровне оксида; и
атомное соотношение Ce/Zr в сложном оксиде ACZ составляет не более 0,6.
подложку;
слой каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки; и
благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия,
причем
слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой относительно дальше от поверхности подложки и нижний слой относительно ближе к поверхности подложки;
в верхнем слое в качестве благороднометального катализатора нанесены частицы Rh;
в нижнем слое в качестве благороднометального катализатора нанесены частицы Pd;
пористый носитель нижнего слоя, который несет частицы Pd, образован сложным оксидом ACZ из оксида алюминия (Αl2O3), оксида церия (CeO2) и оксида циркония (ZrO2);
сложный оксид ACZ получен алкоголятным способом;
исходными материалами в этом алкоголятном способе являются алкоголят металла и соль металла;
Al, Се и Zr все превращаются в алкоголят металла или же по меньшей мере один из Al, Се и Zr превращается в алкоголят металла;
соль металла используется для компонентов, иных, чем алкоголят металла;
исходные материалы растворяются в растворителе и смешиваются и проводятся реакции гидролиза и поликонденсации, после которых сложный оксид ACZ получается термообработкой; и
сложный оксид ACZ, полученный алкоголятным способом, представляет собой сложный оксид, в котором Al, Се и Zr становятся почти однородно смешанными на атомном или молекулярном уровне оксида; и
атомное соотношение Ce/Zr в сложном оксиде ACZ составляет не более 0,6.
2. Каталитический нейтрализатор выхлопных газов по п. 1, в котором атомное соотношение Ce/Zr в сложном оксиде ACZ составляет от по меньшей мере 0,15 до не более 0,55.
3. Каталитический нейтрализатор выхлопных газов по п. 1, в котором содержание компонента оксида алюминия в сложном оксиде ACZ составляет от 40 до 70 мас.%.
4. Каталитический нейтрализатор выхлопных газов по любому из пп. 1-3, в котором первичные частицы в сложном оксиде ACZ имеют средний диаметр частиц не более 10 нм и удельную площадь поверхности по меньшей мере 30 м2/г.
5. Каталитический нейтрализатор выхлопных газов по любому из пп. 1-3, в котором пористый носитель в нижнем слое дополнительно содержит, в дополнение к сложному оксиду ACZ, по меньшей мере один оксид редкоземельного элемента, выбранный из La2O3, Y2O3 и Pr6O11.
6. Каталитический нейтрализатор выхлопных газов по любому из пп. 1-3, при этом термообработка в алкоголятном способе осуществляется при температуре от по меньшей мере 500°С до не более 900°С.
7. Каталитический нейтрализатор выхлопных газов, содержащий:
подложку;
слой каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки; и
благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия,
причем
слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой относительно дальше от поверхности подложки и нижний слой относительно ближе к поверхности подложки;
в верхнем слое в качестве благороднометального катализатора нанесены частицы Rh;
в нижнем слое в качестве благороднометального катализатора нанесены частицы Pd;
пористый носитель нижнего слоя, который несет частицы Pd, образован сложным оксидом ACZ из оксида алюминия (Al2O3), оксида церия (CeO2) и оксида циркония (ZrO2);
сложный оксид ACZ получен алкоголятным способом;
исходными материалами в этом алкоголятном способе являются алкоголят металла и соль металла;
Al, Се и Zr все превращаются в алкоголят металла или же по меньшей мере один из Al, Се и Zr превращается в алкоголят металла;
соль металла используется для компонентов, иных, чем алкоголят металла;
исходные материалы растворяются в растворителе и смешиваются и проводятся реакции гидролиза и поликонденсации, после которых сложный оксид ACZ получается термообработкой; и
сложный оксид ACZ, полученный алкоголятным способом, представляет собой сложный оксид, в котором Al, Се и Zr становятся почти однородно смешанными на атомном или молекулярном уровне оксида;
пористый носитель верхнего слоя, который несет частицы Rh, образован смесью оксида алюминия и сложного оксида CZ из оксида церия и оксида циркония; и
атомное соотношение Ce/Zr в сложном оксиде CZ составляет по меньшей мере 0,5.
подложку;
слой каталитического покрытия, который сформирован из пористого носителя и сформирован на поверхности подложки; и
благороднометальный катализатор, который нанесен на пористый носитель слоя каталитического покрытия,
причем
слой каталитического покрытия сформирован как слоистая структура, имеющая верхний слой относительно дальше от поверхности подложки и нижний слой относительно ближе к поверхности подложки;
в верхнем слое в качестве благороднометального катализатора нанесены частицы Rh;
в нижнем слое в качестве благороднометального катализатора нанесены частицы Pd;
пористый носитель нижнего слоя, который несет частицы Pd, образован сложным оксидом ACZ из оксида алюминия (Al2O3), оксида церия (CeO2) и оксида циркония (ZrO2);
сложный оксид ACZ получен алкоголятным способом;
исходными материалами в этом алкоголятном способе являются алкоголят металла и соль металла;
Al, Се и Zr все превращаются в алкоголят металла или же по меньшей мере один из Al, Се и Zr превращается в алкоголят металла;
соль металла используется для компонентов, иных, чем алкоголят металла;
исходные материалы растворяются в растворителе и смешиваются и проводятся реакции гидролиза и поликонденсации, после которых сложный оксид ACZ получается термообработкой; и
сложный оксид ACZ, полученный алкоголятным способом, представляет собой сложный оксид, в котором Al, Се и Zr становятся почти однородно смешанными на атомном или молекулярном уровне оксида;
пористый носитель верхнего слоя, который несет частицы Rh, образован смесью оксида алюминия и сложного оксида CZ из оксида церия и оксида циркония; и
атомное соотношение Ce/Zr в сложном оксиде CZ составляет по меньшей мере 0,5.
8. Каталитический нейтрализатор выхлопных газов по п. 7, в котором атомное соотношение Ce/Zr в сложном оксиде CZ составляет от по меньшей мере 0,7 до не более 0,8.
9. Каталитический нейтрализатор выхлопных газов по п. 7, в котором пористый носитель в верхнем слое дополнительно содержит по меньшей мере один оксид редкоземельного элемента, выбранный из La2O3, Y2O3 и Pr6O11.
10. Каталитический нейтрализатор выхлопных газов по любому из пп. 7-9, при этом термообработка в алкоголятном способе осуществляется при температуре от по меньшей мере 500°С до не более 900°С.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011053404A JP5376261B2 (ja) | 2011-03-10 | 2011-03-10 | 排ガス浄化用触媒 |
JP2011-053404 | 2011-03-10 | ||
PCT/IB2012/000386 WO2012120349A1 (en) | 2011-03-10 | 2012-03-02 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013141443A RU2013141443A (ru) | 2015-04-20 |
RU2549402C1 true RU2549402C1 (ru) | 2015-04-27 |
Family
ID=45878977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013141443/05A RU2549402C1 (ru) | 2011-03-10 | 2012-03-02 | Каталитический нейтрализатор выхлопных газов |
Country Status (6)
Country | Link |
---|---|
US (1) | US8796172B2 (ru) |
EP (1) | EP2683467B1 (ru) |
JP (1) | JP5376261B2 (ru) |
CN (1) | CN103458997B (ru) |
RU (1) | RU2549402C1 (ru) |
WO (1) | WO2012120349A1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2731562C1 (ru) * | 2016-10-12 | 2020-09-04 | Басф Корпорейшн | Каталитические изделия |
RU2753835C2 (ru) * | 2016-07-28 | 2021-08-23 | Басф Корпорейшн | Катализатор, содержащий биметаллические наночастицы металлов платиновой группы |
RU2789587C2 (ru) * | 2018-07-27 | 2023-02-06 | Джонсон Мэттей Паблик Лимитед Компани | Улучшенные катализаторы twc, содержащие высокоэффективную подложку с допирующей добавкой |
US11794170B2 (en) | 2018-07-27 | 2023-10-24 | Johnson Matthey Public Limited Company | TWC catalysts containing high dopant support |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5376261B2 (ja) * | 2011-03-10 | 2013-12-25 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP2013184125A (ja) * | 2012-03-08 | 2013-09-19 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP2014097459A (ja) * | 2012-11-14 | 2014-05-29 | Cataler Corp | 排気ガス浄化用触媒 |
CN105473229B (zh) * | 2013-09-11 | 2017-05-17 | 三井金属矿业株式会社 | 废气净化催化剂 |
JP5883425B2 (ja) * | 2013-10-04 | 2016-03-15 | 株式会社豊田中央研究所 | セリア−ジルコニア系複合酸化物及びその製造方法、並びにそのセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒 |
EP3034167A4 (en) * | 2013-12-09 | 2017-05-03 | Cataler Corporation | Exhaust gas purifying catalyst |
CN103752338B (zh) * | 2014-02-08 | 2015-08-19 | 无锡威孚力达催化净化器有限责任公司 | 用于净化柴油机尾气的氧化催化剂的制备方法 |
JP6460817B2 (ja) * | 2015-02-04 | 2019-01-30 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP6676394B2 (ja) * | 2015-03-12 | 2020-04-08 | 株式会社豊田中央研究所 | コアシェル担体及びその製造方法、そのコアシェル担体を用いた排ガス浄化用触媒及びその製造方法、並びに、その排ガス浄化用触媒を用いた排ガス浄化方法 |
JP6130424B2 (ja) * | 2015-03-27 | 2017-05-17 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
EP3281697A4 (en) * | 2015-04-07 | 2018-03-21 | Umicore Shokubai Japan Co., Ltd. | Purification catalyst for internal combustion engine exhaust gases and exhaust gas purification method using said catalyst |
CN106140157A (zh) * | 2015-05-13 | 2016-11-23 | 丰田自动车株式会社 | 排气净化催化剂及其制造方法 |
JP6384499B2 (ja) * | 2015-05-13 | 2018-09-05 | トヨタ自動車株式会社 | 排ガス浄化触媒とその製造方法 |
WO2017146175A1 (ja) * | 2016-02-25 | 2017-08-31 | 株式会社キャタラー | 排ガス浄化触媒及びその製造方法 |
WO2017154685A1 (ja) | 2016-03-09 | 2017-09-14 | 株式会社キャタラー | 排ガス浄化床下触媒及び触媒システム |
WO2017163985A1 (ja) * | 2016-03-22 | 2017-09-28 | 株式会社キャタラー | 排ガス浄化用触媒 |
US10960389B2 (en) * | 2016-05-24 | 2021-03-30 | Cataler Corporation | Exhaust gas purification catalyst |
CN106166484B (zh) * | 2016-07-21 | 2019-01-18 | 厦门大学 | 一种烟气h2-scr脱硝催化剂及其制备方法 |
GB2553339A (en) | 2016-09-02 | 2018-03-07 | Johnson Matthey Plc | Improved NOx trap |
CN107824185B (zh) * | 2016-09-15 | 2021-03-26 | 丰田自动车株式会社 | 排气净化催化剂及其制造方法 |
EP3581268A4 (en) * | 2017-02-13 | 2021-01-06 | N.E. Chemcat Corporation | EMISSION CONTROL CATALYST COMPOSITION, METHOD OF MANUFACTURING THEREOF, AND EMISSION CONTROL CATALYST FOR AUTOMOBILES |
JP6753811B2 (ja) * | 2017-04-19 | 2020-09-09 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP6684257B2 (ja) * | 2017-09-27 | 2020-04-22 | イビデン株式会社 | 排ガス浄化用ハニカム触媒 |
JP2019058875A (ja) * | 2017-09-27 | 2019-04-18 | イビデン株式会社 | ハニカム触媒 |
JP2019058876A (ja) | 2017-09-27 | 2019-04-18 | イビデン株式会社 | ハニカム触媒 |
JP6698602B2 (ja) * | 2017-09-27 | 2020-05-27 | イビデン株式会社 | 排ガス浄化用ハニカム触媒 |
JP6954796B2 (ja) * | 2017-10-06 | 2021-10-27 | トヨタ自動車株式会社 | 自動車用排ガス浄化用触媒 |
WO2019160124A1 (en) * | 2018-02-15 | 2019-08-22 | Sumitomo Chemical Company, Limited | Inorganic oxide |
CN108837830B (zh) * | 2018-05-23 | 2021-03-16 | 江苏浩日朗环保科技有限公司 | 脱硝脱二噁英复合催化剂和制备方法 |
JP2020179348A (ja) * | 2019-04-25 | 2020-11-05 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
CN111135827A (zh) * | 2020-01-08 | 2020-05-12 | 中自环保科技股份有限公司 | 一种用于当量燃烧天然气发动机尾气的氨氧化催化剂及其制备方法 |
WO2021157479A1 (ja) * | 2020-02-04 | 2021-08-12 | 日本碍子株式会社 | 多孔質複合体 |
US20230078076A1 (en) * | 2020-02-21 | 2023-03-16 | Cataler Corporation | Exhaust Gas Purification Catalyst |
CN111957319A (zh) * | 2020-04-29 | 2020-11-20 | 吉林化工学院 | 一种负载型臭氧催化剂的制备方法 |
JP7355775B2 (ja) | 2021-03-05 | 2023-10-03 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP2023008520A (ja) * | 2021-07-06 | 2023-01-19 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP2024000368A (ja) | 2022-06-20 | 2024-01-05 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
CN115382540A (zh) * | 2022-07-29 | 2022-11-25 | 凯龙蓝烽新材料科技有限公司 | 一种用于稀燃cng的改性氧化铝载体负载贵金属催化剂的制备方法 |
WO2024150640A1 (ja) * | 2023-01-13 | 2024-07-18 | 三井金属鉱業株式会社 | 排ガス浄化用触媒 |
WO2024204075A1 (ja) * | 2023-03-29 | 2024-10-03 | 三井金属鉱業株式会社 | 排ガス浄化用触媒 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10202102A (ja) * | 1997-01-17 | 1998-08-04 | Toyota Motor Corp | 排ガス浄化用触媒 |
WO2006070201A2 (en) * | 2004-12-30 | 2006-07-06 | Magnesium Elektron Limited | Composite oxides or hydroxides comprising alumina, zirconia and optionally ceria and/or rare earth oxides for automotive catalyst applications and method of manufacturing |
EP1900416A2 (en) * | 2006-09-06 | 2008-03-19 | Mazda Motor Corporation | Exhaust gas catalytic conversion system |
EP1985354A1 (en) * | 2007-04-27 | 2008-10-29 | Mazda Motor Corporation | Exhaust gas purification catalyst and manufacturing method thereof |
EP2047904A1 (en) * | 2006-07-25 | 2009-04-15 | Toyota Jidosha Kabushiki Kaisha | Catalyst for exhaust gas purification |
RU2354449C1 (ru) * | 2005-03-23 | 2009-05-10 | Тойота Дзидося Кабусики Кайся | Порошкообразный носитель катализатора и катализатор очистки выхлопных газов |
JP2010115591A (ja) * | 2008-11-13 | 2010-05-27 | Toyota Motor Corp | 排ガス浄化用触媒 |
RU2009102771A (ru) * | 2006-06-29 | 2010-08-10 | Умикоре Аг Унд Ко. Кг (De) | Трехкомпонентный каталитический нейтрализатор отработанных газов |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3503101B2 (ja) * | 1996-12-19 | 2004-03-02 | 株式会社豊田中央研究所 | 排ガス浄化用触媒 |
JP4045002B2 (ja) * | 1998-02-02 | 2008-02-13 | 三井金属鉱業株式会社 | 複合酸化物及びそれを用いた排ガス浄化用触媒 |
US6335305B1 (en) * | 1999-01-18 | 2002-01-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Catalyst for purifying exhaust gas |
EP1066874B1 (en) * | 1999-07-09 | 2009-09-23 | Nissan Motor Company, Limited | Exhaust gas purifying catalyst and method of producing same |
JP3858625B2 (ja) * | 2000-07-27 | 2006-12-20 | 株式会社豊田中央研究所 | 複合酸化物とその製造方法及び排ガス浄化用触媒とその製造方法 |
US6864214B2 (en) * | 2000-09-26 | 2005-03-08 | Daihatsu Motor Co., Ltd. | Exhaust gas purifying catalyst |
JP2002361090A (ja) * | 2001-06-12 | 2002-12-17 | Toyota Motor Corp | 排ガス浄化用触媒 |
JP3845274B2 (ja) * | 2001-06-26 | 2006-11-15 | ダイハツ工業株式会社 | 排ガス浄化用触媒 |
KR100527943B1 (ko) * | 2003-06-04 | 2005-11-09 | 현대자동차주식회사 | 2중층 코팅구조의 팔라듐 삼원촉매 제조방법 |
JP4329432B2 (ja) * | 2003-07-15 | 2009-09-09 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
US7875250B2 (en) * | 2003-12-11 | 2011-01-25 | Umicore Ag & Co. Kg | Exhaust treatment device, and methods of making the same |
US7374729B2 (en) * | 2004-03-30 | 2008-05-20 | Basf Catalysts Llc | Exhaust gas treatment catalyst |
US7795172B2 (en) * | 2004-06-22 | 2010-09-14 | Basf Corporation | Layered exhaust treatment catalyst |
US20060217263A1 (en) * | 2005-03-24 | 2006-09-28 | Tokyo Roki Co., Ltd | Exhaust gas purification catalyst |
JP4999331B2 (ja) * | 2005-03-24 | 2012-08-15 | 東京濾器株式会社 | 排気ガス浄化用触媒 |
JP4826207B2 (ja) * | 2005-10-28 | 2011-11-30 | 日産自動車株式会社 | 排ガス浄化触媒及び排ガス浄化触媒の製造方法 |
EP1806432A1 (de) * | 2006-01-09 | 2007-07-11 | Siemens Aktiengesellschaft | Schichtsystem mit zwei Pyrochlorphasen |
US7576031B2 (en) * | 2006-06-09 | 2009-08-18 | Basf Catalysts Llc | Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function |
US7816300B2 (en) * | 2006-06-14 | 2010-10-19 | Cataler Corporation | Catalyst for purifying exhaust gas |
US7749472B2 (en) * | 2006-08-14 | 2010-07-06 | Basf Corporation | Phosgard, a new way to improve poison resistance in three-way catalyst applications |
US7517510B2 (en) * | 2006-08-21 | 2009-04-14 | Basf Catalysts Llc | Layered catalyst composite |
US7550124B2 (en) * | 2006-08-21 | 2009-06-23 | Basf Catalysts Llc | Layered catalyst composite |
US7758834B2 (en) * | 2006-08-21 | 2010-07-20 | Basf Corporation | Layered catalyst composite |
JP5100085B2 (ja) * | 2006-10-31 | 2012-12-19 | 株式会社キャタラー | 排ガス浄化用触媒 |
JP4853291B2 (ja) * | 2007-01-10 | 2012-01-11 | 日産自動車株式会社 | 排気ガス浄化触媒及びその製造方法 |
US8202819B2 (en) * | 2007-02-01 | 2012-06-19 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Catalyst system to be used in automobile exhaust gas purification apparatus, exhaust gas purification apparatus using the same and exhaust gas purification method |
US8067330B2 (en) * | 2007-02-15 | 2011-11-29 | Mazda Motor Corporation | Catalytic material and catalyst for purifying exhaust gas component |
US7977276B2 (en) * | 2007-04-12 | 2011-07-12 | Nissan Motor Co., Ltd. | Exhaust gas purifying catalyst and method of producing the same |
JP2009000648A (ja) | 2007-06-22 | 2009-01-08 | Toyota Motor Corp | 排ガス浄化用触媒 |
US8007750B2 (en) * | 2007-07-19 | 2011-08-30 | Basf Corporation | Multilayered catalyst compositions |
JP4751916B2 (ja) * | 2008-06-30 | 2011-08-17 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
JP5176727B2 (ja) | 2008-07-02 | 2013-04-03 | マツダ株式会社 | 排気ガス浄化用触媒材の製造方法、及び排気ガス浄化用触媒 |
JP5391664B2 (ja) | 2008-11-21 | 2014-01-15 | マツダ株式会社 | 排気ガス浄化用触媒 |
EP2357038A4 (en) * | 2008-12-03 | 2014-11-05 | Daiichi Kigenso Kagaku Kogyo | EMISSION CONTROL CATALYST, EMISSION CONTROL DEVICE THEREFOR AND EMISSION CONTROL |
US8211392B2 (en) * | 2009-01-16 | 2012-07-03 | Basf Corporation | Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion |
US8568675B2 (en) * | 2009-02-20 | 2013-10-29 | Basf Corporation | Palladium-supported catalyst composites |
JP2011101839A (ja) | 2009-11-10 | 2011-05-26 | Mazda Motor Corp | 排気ガス浄化用触媒 |
JP5515939B2 (ja) * | 2010-03-26 | 2014-06-11 | マツダ株式会社 | 排気ガス浄化用触媒 |
US8557204B2 (en) * | 2010-11-22 | 2013-10-15 | Umicore Ag & Co. Kg | Three-way catalyst having an upstream single-layer catalyst |
US8323599B2 (en) * | 2010-11-22 | 2012-12-04 | Umicore Ag & Co. Kg | Three-way catalyst having an upstream multi-layer catalyst |
JP5376261B2 (ja) * | 2011-03-10 | 2013-12-25 | トヨタ自動車株式会社 | 排ガス浄化用触媒 |
-
2011
- 2011-03-10 JP JP2011053404A patent/JP5376261B2/ja active Active
-
2012
- 2012-03-02 WO PCT/IB2012/000386 patent/WO2012120349A1/en active Application Filing
- 2012-03-02 RU RU2013141443/05A patent/RU2549402C1/ru active
- 2012-03-02 US US14/003,537 patent/US8796172B2/en active Active
- 2012-03-02 CN CN201280012195.0A patent/CN103458997B/zh active Active
- 2012-03-02 EP EP12710547.6A patent/EP2683467B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10202102A (ja) * | 1997-01-17 | 1998-08-04 | Toyota Motor Corp | 排ガス浄化用触媒 |
WO2006070201A2 (en) * | 2004-12-30 | 2006-07-06 | Magnesium Elektron Limited | Composite oxides or hydroxides comprising alumina, zirconia and optionally ceria and/or rare earth oxides for automotive catalyst applications and method of manufacturing |
RU2354449C1 (ru) * | 2005-03-23 | 2009-05-10 | Тойота Дзидося Кабусики Кайся | Порошкообразный носитель катализатора и катализатор очистки выхлопных газов |
RU2009102771A (ru) * | 2006-06-29 | 2010-08-10 | Умикоре Аг Унд Ко. Кг (De) | Трехкомпонентный каталитический нейтрализатор отработанных газов |
EP2047904A1 (en) * | 2006-07-25 | 2009-04-15 | Toyota Jidosha Kabushiki Kaisha | Catalyst for exhaust gas purification |
EP1900416A2 (en) * | 2006-09-06 | 2008-03-19 | Mazda Motor Corporation | Exhaust gas catalytic conversion system |
EP1985354A1 (en) * | 2007-04-27 | 2008-10-29 | Mazda Motor Corporation | Exhaust gas purification catalyst and manufacturing method thereof |
JP2010115591A (ja) * | 2008-11-13 | 2010-05-27 | Toyota Motor Corp | 排ガス浄化用触媒 |
Non-Patent Citations (1)
Title |
---|
Современные нанокомпозитные материалы " органо-неорганические гибридные гели. Учебное пособие, МИТХТ им. М.В. Ломоносова, 2006 г, с. 6-12 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2753835C2 (ru) * | 2016-07-28 | 2021-08-23 | Басф Корпорейшн | Катализатор, содержащий биметаллические наночастицы металлов платиновой группы |
RU2731562C1 (ru) * | 2016-10-12 | 2020-09-04 | Басф Корпорейшн | Каталитические изделия |
RU2789587C2 (ru) * | 2018-07-27 | 2023-02-06 | Джонсон Мэттей Паблик Лимитед Компани | Улучшенные катализаторы twc, содержащие высокоэффективную подложку с допирующей добавкой |
US11794170B2 (en) | 2018-07-27 | 2023-10-24 | Johnson Matthey Public Limited Company | TWC catalysts containing high dopant support |
Also Published As
Publication number | Publication date |
---|---|
JP2012187518A (ja) | 2012-10-04 |
EP2683467A1 (en) | 2014-01-15 |
WO2012120349A1 (en) | 2012-09-13 |
US20130345049A1 (en) | 2013-12-26 |
US8796172B2 (en) | 2014-08-05 |
RU2013141443A (ru) | 2015-04-20 |
CN103458997B (zh) | 2016-02-24 |
EP2683467B1 (en) | 2020-10-28 |
CN103458997A (zh) | 2013-12-18 |
JP5376261B2 (ja) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2549402C1 (ru) | Каталитический нейтрализатор выхлопных газов | |
EP2104567B2 (en) | Method of making a NOx storage material | |
KR101830449B1 (ko) | 일산화탄소 변환 촉매 | |
JP5910833B2 (ja) | 排ガス浄化触媒 | |
CN113260454A (zh) | 层状三元转化(twc)催化剂和制造所述催化剂的方法 | |
KR20170093899A (ko) | 배기 시스템용 아산화질소 제거 촉매 | |
JP2001310129A (ja) | 単層高性能触媒及びその製造方法 | |
JPWO2007119658A1 (ja) | 排ガス浄化触媒及びその製造方法 | |
CA2562556C (en) | Process for producing metal oxide particle and exhaust gas purifying catalyst | |
EP3281697A1 (en) | Purification catalyst for internal combustion engine exhaust gases and exhaust gas purification method using said catalyst | |
KR20150131017A (ko) | 분리된 워시코트를 갖는 촉매 물품 및 이의 제조 방법 | |
US20120295787A1 (en) | Exhaust gas purifying catalyst | |
JP5900395B2 (ja) | 複合酸化物粒子及びこれを用いた排ガス浄化用触媒 | |
RU2549880C1 (ru) | Катализатор для ограничения выброса отработанных газов | |
EP2611536A1 (en) | Catalyst for gasoline lean burn engines with improved nh3-formation activity | |
JP2006334490A (ja) | 排気ガス浄化用触媒 | |
JP2016168586A (ja) | コアシェル担体及びその製造方法、そのコアシェル担体を用いた排ガス浄化用触媒及びその製造方法、並びに、その排ガス浄化用触媒を用いた排ガス浄化方法 | |
US8796171B2 (en) | Denitration catalyst composition and method of denitration using same | |
US20070161508A1 (en) | Exhaust gas purifying catalyst | |
JP4507717B2 (ja) | 排気ガス浄化用触媒 | |
JP4569436B2 (ja) | 排気ガス浄化用触媒及び排気ガス浄化用触媒材の製造方法 | |
WO2019167515A1 (ja) | 排ガス浄化用三元触媒及びその製造方法、並びに一体構造型排ガス浄化用触媒 | |
EP4414067A1 (en) | Transition metal incorporated alumina for improved three way catalysts | |
JP2014000516A (ja) | 触媒担持用担体、排気ガス浄化用担持触媒、及び排気ガス浄化用フィルター | |
EP4431181A1 (en) | Catalyst for exhaust gas purification and exhaust gas purification method using same |