RU2548127C1 - Способ дистанционного определения уровня морской поверхности - Google Patents
Способ дистанционного определения уровня морской поверхности Download PDFInfo
- Publication number
- RU2548127C1 RU2548127C1 RU2014151936/93A RU2014151936A RU2548127C1 RU 2548127 C1 RU2548127 C1 RU 2548127C1 RU 2014151936/93 A RU2014151936/93 A RU 2014151936/93A RU 2014151936 A RU2014151936 A RU 2014151936A RU 2548127 C1 RU2548127 C1 RU 2548127C1
- Authority
- RU
- Russia
- Prior art keywords
- sea surface
- level
- asymmetry
- distance
- radiation source
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Изобретение относится к области океанографических измерений и преимущественно предназначено для определения уровня морской поверхности вдоль трассы космического аппарата.
Технический результат - повышение точности определения уровня морской поверхности за счет увеличения числа определяемых параметров, характеризующих состояние водной поверхности.
Сущность: на расположенном на космическом аппарате радиолокаторе формируют короткие радиоимпульсы постоянной длительности, облучают морскую поверхность в надир и регистрируют отраженный радиоимпульс. По наклону переднего фронта отраженного радиоимпульса определяют значимую высоту волн и расчетным путем определяют расстояние от источника облучения до уровня невозмущенной морской поверхности. Дополнительно морскую поверхность зондируют при ненулевых углах падения, регистрируют отраженный сигнал и определяют скорость приводного ветра. С помощью волновой модели определяют длину и фазовую скорость доминантных волн. Определяют асимметрию и эксцесс распределения возвышений морской поверхности. С учетом значимой высоты волн, асимметрии и эксцесса корректируют полученное значение расстояния от источника облучения до уровня невозмущенной морской поверхности. 1 ил.
Description
Изобретение относится к области океанографических измерений и преимущественно предназначено для определения уровня морской поверхности вдоль трассы космического аппарата.
Известен способ [1] определения уровня морской поверхности с помощью радиолокационного альтиметра, установленного на борту космического аппарата, согласно которому осуществляют зондирование поверхности моря короткими импульсами длительностью порядка нескольких наносекунд. Сходными с признаками заявленного решения являются такие признаки аналога: формирование коротких радиоимпульсов постоянной длительности, облучение морской поверхности и регистрирование отраженного радиоимпульса. То обстоятельство, что в процессе измерений не учитывается влияние состояния морской поверхности на форму отраженного радиоимпульса, обусловливает недостаточную точность измерений.
Наиболее близким к изобретению по совокупности признаков, и поэтому выбранным в качестве прототипа, является дистанционный способ [2] определения уровня морской поверхности, основанный на использовании характеристик радиосигнала, получаемого при зондировании поверхности моря в надир с помощью установленного на борту космического аппарата (TOPEX/Poseidon, запущенного в 1992 году) радиолокационного альтиметра, работающего на частоте 5.3 ГГц. По международной классификации эта частота соответствует С-диапазону радиоволн (сантиметровые длины волн).
Следующие признаки прототипа совпадают с существенными признаками заявленного изобретения: формирование коротких радиоимпульсов постоянной длительности, облучение морской поверхности в надир, регистрация отражённого радиоимпульса и определение значимой высоты волн, с учетом которой расчетным путем определяют расстояние от источника облучения до уровня невозмущенной морской поверхности.
Недостаток прототипа заключается в невысокой точности определения уровня моря. Ошибки определения уровня морской поверхности, обусловленные изменением состояния моря, лежат в пределах от нескольких сантиметров до нескольких дециметров [3]. Чтобы иметь возможность эффективно использовать данные альтиметрических измерений, их погрешность должна составлять несколько сантиметров [4]
В основу изобретения поставлена задача создания способа дистанционного определения уровня морской поверхности, в котором за счет увеличения числа определяемых параметров, характеризующих состояние водной поверхности, достигается технический результат - повышение точности определения уровня морской поверхности.
Точность дистанционного определения характеристик морской поверхности, в том числе её рельефа, ограничена неоднозначностью связи между регистрируемым сигналом установленного на космическом аппарате радиолокатора и определяемыми характеристиками. Это означает, что решение таких проблем, как улучшение технических характеристик радиолокатора, уменьшение погрешности, связанной с прохождением радиоволн через атмосферу, внедрение оптимальных алгоритмов получения мгновенных оценок высоты и их сглаживания, в принципе не позволяет поднять точность выше некоторого предела. Необходимо расширять круг определяемых параметров морской поверхности.
Сущность заявленного технического решения поясняется следующим. Для размещённых на космических аппаратах альтиметров форма отраженного от плоской поверхности импульса имеет вид
где А - амплитуда; с - скорость света; γ - ширина луча антенны; h - высота космического аппарата относительно уровня невозмущенной морской поверхности; ξ - абсолютное значение угла падения; I0 - модифицированная функция Бесселя первого рода; H(t) - единичная функция Хевисайда.
Форму зондирующего импульса обычно задают как гауссову
где параметр Dr определяет ширину радиоимпульса.
При вертикальном зондировании (ξ = θ) форму отраженного от взволнованной морской поверхности радиоимпульса можно описать как [5],
где D=Dη+Dr; θ - ширина луча антенны, определенная по уровню половинной мощности; Dη, Aη и Еη - соответственно дисперсия, асимметрия и эксцесс возвышений морской поверхности; Нn - полиномы Чебышева-Эрмита, порядок которых указан индексом n.
Нелинейные эффекты в поле поверхностных волн приводят к отклонению асимметрии и эксцесса распределения возвышений морской поверхности от нулевых значений. Это, как показано на иллюстрации, в свою очередь приводит к изменению формы переднего фронта отражённого импульса. Здесь сплошная кривая соответствует- форме отраженного радиоимпульса, рассчитанной при Aη=-0.05, Еη=-0.2 и пунктирная кривая рассчитана при Aη= 0.4, Еη=-0.2 и
Видно, что изменение асимметрии распределения возвышений морской поверхности приводит к смещению средней точки переднего фронта отраженного радиоимпульса, по которой рассчитывается время его возврата й соответственно расстояние от космического аппарата до морской поверхности. Форма отраженного радиоимпульса также меняется при изменении эксцесса Еη.
Таким образом, точность определения уровня морской поверхности будет повышена, если известны асимметрия и эксцесс возвышений взволнованной поверхности, и значения этих параметров будут учтены при определении времени регистрации отражённого импульса.
Альтиметрические измерения не позволяют непосредственно измерить асимметрию Aη и эксцесс Еη. Их можно оценить, зная параметры, определяющие нелинейность волнового поля. Таким параметром является стадия развития волнового поля, которую принято характеризовать обратным возрастом волн
где W10 - скорость приводного ветра на высоте 10 м; С0 - фазовая скорость доминантных (энергонесущих) волн.
Или нелинейность волнового поля характеризуют средним уклоном
где λ0 - длина доминантных волн.
Фазовая скорость и длина доминантных волн по данным альтиметрических измерений не определяются. Их можно оценить с помощью моделей поля поверхностных волн, входными данными для которых является поле ветра. Альтиметр позволяет определять скорость ветра вдоль трассы космического аппарата только в узкой полосе, ширина которой не превышает 20 км. Он не позволяет определять направление ветра. Данных, получаемых с альтиметра, недостаточно, чтобы с помощью модели построить поле поверхностных волн. Поэтому необходимо дополнительно использовать данные скаттерометрических измерений. Ширина полосы, в которой определяются скорость и направление ветра, составляет несколько сотен километров.
Для реализации предложенного способа может быть использован комплекс аппаратуры, устанавливаемой на океанографических спутниках.
Первым океанографическим космическим аппаратом (КА), оснащенным одновременно радиоальтиметром и скаттерометром, стал KA "Seasat" [6], запущенный на орбиту ИСЗ 26 июня 1978 г. и проработавший на ней до 10 октября 1978 г. На борту КА был установлен многофункциональный радиолокационный комплекс аппаратуры дистанционного зондирования Земли, в том числе импульсный РЛ-альтиметр и микроволновый скаттерометр.
Одночастотный импульсный альтиметр КА "Seasat" зондировал морскую поверхность в надир и работал в частотном диапазоне 13,5 ГГц (Ku-диапазон, длина волны ~2,2 см), длительность излучаемого импульса - 3,1 мкс, длительность сжатого при обработке импульса - 3,3 не, пространственное разрешение по спокойной поверхности моря (ширина следа зондирующего импульса) ~1,7 км, ширина следа диаграммы направленности антенны на морской поверхности ~ 22 км.
Четырехлучевой скаттерометр КА "Seasat" работал в частотном диапазоне 14,6 ГГц (Ku-диапазон, длина волны ~ 2 см) и обеспечивал обзор морской поверхности в двух полосах, расположенных справа и слева симметрично относительно трассы полета КА, имеющих ширину ~ 500 км каждая, и разнесенных на расстояние ~ 400 км (ближняя граница правой и левой полос обзора отстоит от трассы КА на ~ 200 км). Пространственная разрешающая способность скаттерометра ~ 50 км.
Позднее радиолокационные комплексы, включающие альтиметр и скаттеро-метр, были установлены на KA "ERS-1" запущенном на орбиту в 1991 г, а также на KA "ERS-2", запущенном на орбиту в 1995 г. [6].
Способ осуществляют следующим образом.
На расположенном на космическом аппарате радиолокаторе формируют короткие радиоимпульсы постоянной длительности (длительность порядка одной наносекунды), облучают морскую поверхность в надир и регистрируют отражённый радиоимпульс. По наклону переднего фронта отражённого радиоимпульса определяют значимую высоту волн и расчетным путем определяют расстояние от источника облучения до уровня невозмущенной морской поверхности. Дополнительно морскую поверхность зондируют при ненулевых углах падения, регистрируют отражённый сигнал и определяют скорость приводного ветра. С помощью волновой модели определяют длину и фазовую скорость доминантных волн. Определяют асимметрию и эксцесс распределения возвышений морской поверхности. С учетом значимой высоты волн, а также асимметрии и эксцесса корректируют полученное значение расстояния от источника облучения до уровня невозмущенной морской поверхности.
Использованные источники:
1. Barrick, D E., Lipa B.J. Analysis and interpretation of altimeter sea echo // Satellite Oceanic Remote Sensing, Adv. in Geophys. 1985 Vol. 27, P. 61-100.
2. Quartly G. Achieving accurate altimetry across storms: Improved wind and wave estimates from С band // J. Atmos. Oceanic Technol., 1997, Vol. 14, P. 705-715.
3. Gaspar P., Labroue S., Ogor F., Lafitte G., Marchai L., Rafanel M. Improving non-parametric estimates of the sea state bias in radar altimeter measurements of sea level // J. Atmos. Oceanic Technol., 2002, Vol. 19, P. 1690-1707.
4. Tran N., Vandemark D., Chapron В., Labroue S., Feng H., Beckley В., Vincent P. New models for satellite altimeter sea state bias correction developed using global wave model data // J. of Geophysical Research 2006 Vol. 111:C09009, doi: 10.1029/2005JC003406.
5. Hayne G.S. Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering // IEEE Transactions on Antennas and Propagation. -1980. - Vol. AP-28. - P. 687-692.
6. Evans D.L., Alpers W., Cazenave Α., Elachi C, Farr T., Glackind D., Holt В., Jones L., Liua W.T., McCandless W., Menardg Y., Moore R., Njokua E. Seasat - A 25-year legacy of success [Электронный ресурс]. http://http.7/trs-new.jpl.nasa.gov/dsρace/bitstream/2014/40868/l/03-3010.pdf.
Claims (1)
- Способ дистанционного определения уровня морской поверхности, заключающийся в том, что формируют короткие радиоимпульсы постоянной длительности, облучают морскую поверхность в надир, регистрируют отраженный радиоимпульс и определяют значимую высоту волн, с учетом которой расчетным путем определяют расстояние от источника облучения до уровня невозмущенной морской поверхности, отличающийся тем, что морскую поверхность дополнительно облучают при ненулевых углах падения и определяют скорость приводного ветра, по которой рассчитывают длину и фазовую скорость доминантных волн, по которым определяют асимметрию и эксцесс распределения возвышений морской поверхности, которые учитывают при определении расстояния от источника облучения до уровня невозмущенной морской поверхности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014151936/93A RU2548127C1 (ru) | 2014-12-18 | 2014-12-18 | Способ дистанционного определения уровня морской поверхности |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014151936/93A RU2548127C1 (ru) | 2014-12-18 | 2014-12-18 | Способ дистанционного определения уровня морской поверхности |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2548127C1 true RU2548127C1 (ru) | 2015-04-10 |
Family
ID=53296642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014151936/93A RU2548127C1 (ru) | 2014-12-18 | 2014-12-18 | Способ дистанционного определения уровня морской поверхности |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2548127C1 (ru) |
-
2014
- 2014-12-18 RU RU2014151936/93A patent/RU2548127C1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2367598T3 (es) | Método y sistema de altimetría. | |
RU2343502C2 (ru) | Способ и система определения положения наблюдаемого объекта по глубине в водной среде | |
Sheiko | Study of the method for assessing atmospheric turbulence by the envelope of sodar signals | |
Titchenko et al. | Peculiarities of the Acoustic Pulse Formation Reflected by the Water Surface: a Numerical Experiments and the Results of Long-term Measurements Using the" Kalmar" Sonar | |
RU2466425C1 (ru) | Способ измерения характеристик взволнованной водной поверхности | |
Sletten et al. | Radar investigations of breaking water waves at low grazing angles with simultaneous high-speed optical imagery | |
RU2518009C1 (ru) | Корреляционный способ повышения разрешения по скорости и дальности для импульсных доплеровских систем с внутриимпульсной когерентной обработкой | |
RU2311662C1 (ru) | Способ измерения расстояния до контролируемого объекта | |
CN103729485A (zh) | 一种基于dem数据的宽带雷达相干杂波仿真方法 | |
RU2548127C1 (ru) | Способ дистанционного определения уровня морской поверхности | |
Titchenko et al. | The method of determining the sea-wave parameters by using a modified acoustic wave gauge | |
JP6978049B2 (ja) | 潮位推定装置および潮位推定方法 | |
RU2623830C1 (ru) | Способ дистанционного определения рельефа и осадки подводной части айсберга | |
Tashlykov et al. | Ground clutter deducting technique for Irkutsk incoherent scatter radar | |
RU2529886C1 (ru) | Способ обнаружения нефтяных пленок на водной поверхности | |
RU2353954C1 (ru) | Способ дистанционного определения характеристик среды открытого водоема | |
RU2631267C2 (ru) | Способ дистанционного определения солености морской воды | |
RU2414723C1 (ru) | Способ измерения ослабления радарного излучения облаками и осадками | |
RU2548129C1 (ru) | Способ дистанционного определения характеристик морской поверхности | |
RU2548120C1 (ru) | Способ дистанционного определения скорости приводного ветра | |
RU2545065C2 (ru) | Способ измерения скорости звука в воде | |
Karaev et al. | Experiment at the International Space Station: a microwave radar with scanning fan beam antenna at nadir probing | |
RU2404434C2 (ru) | Способ дистанционного определения скорости приводного ветра | |
Kozintsev et al. | Laser correlation method with adaptive choice of measuring base for on-the-fly measurements of wind velocity | |
RU2452979C1 (ru) | Способ измерения расстояния до контролируемого объекта |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190726 |