Nothing Special   »   [go: up one dir, main page]

RU2432474C2 - Способ работы поршневого двигателя внутреннего сгорания - Google Patents

Способ работы поршневого двигателя внутреннего сгорания Download PDF

Info

Publication number
RU2432474C2
RU2432474C2 RU2010100505/06A RU2010100505A RU2432474C2 RU 2432474 C2 RU2432474 C2 RU 2432474C2 RU 2010100505/06 A RU2010100505/06 A RU 2010100505/06A RU 2010100505 A RU2010100505 A RU 2010100505A RU 2432474 C2 RU2432474 C2 RU 2432474C2
Authority
RU
Russia
Prior art keywords
air
working
compressor
compression
working cylinder
Prior art date
Application number
RU2010100505/06A
Other languages
English (en)
Other versions
RU2010100505A (ru
Inventor
Евгений Иванович Алексенцев (RU)
Евгений Иванович Алексенцев
Василий Александрович Кудинов (RU)
Василий Александрович Кудинов
Александр Афанасьевич Неклюдов (RU)
Александр Афанасьевич Неклюдов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет filed Critical Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет
Priority to RU2010100505/06A priority Critical patent/RU2432474C2/ru
Publication of RU2010100505A publication Critical patent/RU2010100505A/ru
Application granted granted Critical
Publication of RU2432474C2 publication Critical patent/RU2432474C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Изобретение относится к машиностроению, в частности к двигателестроению. Техническим результатом является повышение коэффициента полезного действия (КПД) двигателя за счет: снижения работы сжатия воздуха, повышения работы расширения рабочих газов, применения бесшатунного преобразователя возвратно-поступательных движений поршня во вращение выходного вала и регенерации тепла выхлопных газов. Сущность изобретения заключается в том, что осуществляют ступенчатое сжатие воздуха с одновременным понижением (отводом) его температуры и ступенчатое расширение рабочих газов за счет дополнительного впрыска топлива. Тепло выхлопных газов используют для нагрева сжатого воздуха. Ступенчатое сжатие воздуха и ступенчатое расширение рабочих газов приближает выполнение тактов работы двигателя к изотермическому процессу и тем самым приводит к повышению КПД и снижению расхода топлива. 6 з.п. ф-лы, 3 ил.

Description

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано при разработке двигателей для различных транспортных средств и стационарных установок.
Известен способ работы двигателя по патенту RU №2022136, по которому во время расширения в рабочем цилиндре продуктов сгорания в компрессорный цилиндр повторно подается воздух, который во время выпуска отработавших газов направляется в рабочий цилиндр. При этом впрыск топлива осуществляется двумя порциями, причем вторая порция подается после достижения максимальной доли первой порции и до окончания ее впрыска. Дополнительная подача топлива в рабочий цилиндр приводит к повышению температуры газов, что приводит к увеличению работы расширения. Кроме того, очень сложно позиционировать время подачи второй порции топлива, что вместо увеличения времени расширения рабочего тела может вызвать только временной всплеск температуры горения топливной смеси, что не обеспечит повышение работы расширения - механической работы двигателя.
Ввиду отсутствия процесса по охлаждению воздуха при его сжатии ступенчатая (порционная) подача топлива не дает положительного эффекта. А подогрев газов при их расширении за счет смешения с выхлопными, без использования регенераторов, также вызывает большие сомнения.
Поэтому дополнительная подача воздуха в рабочий цилиндр через компрессорный и повторный впрыск топлива для его сжигания кроме увеличения расхода топливной смеси ничего не дает.
Тем не менее, этот способ взят за прототип разработанному способу работы двигателя.
Технический результат разработанного способа заключается в следующем. Работа поршневого двигателя внутреннего сгорания осуществляется путем выполнения тактов цикла работы двигателя в компрессорном и рабочем цилиндрах, сжатия воздуха в компрессоре, впрыска топлива в рабочий цилиндр с последующим горением, расширения продуктов сгорания - рабочий ход поршня и выпуска отработавших газов, при этом сжатие воздуха в компрессорном цилиндре производят ступенчато, при двух и более ступенях, с промежуточным охлаждением воздуха и подачей его в ресивер и регенератор через рабочий цилиндр, а процесс расширения газа выполняется ступенчато, при двух и более ступенях, с промежуточным дополнительным впрыском топлива и подводом теплоты, отбираемой у выхлопных газов воздуху, направляемому в рабочий цилиндр, при этом четырехтактной цикл работы двигателя осуществляют раздельно - такты всасывания и сжатия воздуха в отдельном компрессоре, а такты - рабочий ход и выхлоп отработавших газов - непосредственно в рабочем цилиндре, причем рабочий цилиндр может работать в режиме двойного рабочего действия, обеспечивая, тем самым, выполнение двух рабочих тактов за один оборот выходного вала, подготовку топливной смеси осуществляют в предкамере путем подачи из ресивера сжатого и подогретого в регенераторе воздуха и впрыска топлива при достижении поршнем верхней мертвой точки после окончания процесса выхлопа газов. В результате чего, цикл работы четырехтактного двигателя осуществляется в двух цилиндрах: компрессорном - такты всасывания и сжатия воздуха, и рабочем - такты расширения газов и выхлопа отработавших газов.
При этом сжатие воздуха выполняют ступенчато с промежуточным его охлаждением на каждой ступени и с последующей подачей в ресивер. Ступенчатое сжатие воздуха с охлаждением приближает процесс к изотермическому, что снижает до минимума работу сжатия.
А процесс расширения газов - рабочий ход поршня - тоже осуществляют ступенчато, при этом на каждой ступени дополнительно впрыскивают топливо в камеру сгорания, что приближает процесс к изотермическому и приводит к увеличению работы расширения газов и, тем самым, механической работы на выходном валу двигателя.
Кроме того, перед подачей сжатого воздуха в рабочий цилиндр его нагревают теплом выхлопных газов в теплообменнике (регенераторе).
В итоге выполнения предложенного способа работы двигателя реализуются:
- снижение работы на получение сжатого воздуха;
- повышение работы расширения рабочих газов;
- понижение расхода топлива за счет регенерации тепла выхлопных газов.
Описанный способ организации работы двигателя приводит к циклу, состоящему из двух изотерм (сжатие воздуха и расширение газа) и двух изохор (охлаждение газов и нагрев воздуха в регенераторе). Такой цикл, как известно, является обобщенным термодинамическим циклом Карно, КПД которого в заданном интервале температур равен КПД классического цикла Карно, состоящего из двух изотерм и двух адиабат.
Двигатель по предложенному способу работает по четырехтактному циклу.
На фиг.1 цикл работы ДВС с изотермическими сжатием и расширением и регенерацией теплоты, схематично показаны все этапы процессов изотермического сжатия и расширения рабочего тела, а также регенерации теплоты выхлопных газов.
Нумерация процессов на фиг.1 обозначает
- Линия 0-1 представляет линию всасывания воздуха из атмосферы в цилиндр первой ступени компрессора.
- Линия 1-2 представляет политропное сжатие воздуха в первой ступени компрессора.
- Линия 2-а представляет процесс нагнетания воздуха в промежуточный охладитель.
- Линия а-3 является линией всасывания воздуха во вторую ступень компрессора.
- Линия 2-3 представляет процесс изобарного охлаждения воздуха в промежуточном охладителе с передачей в окружающую среду теплоты в количестве
Figure 00000001
. Как видно из диаграммы, в процессе охлаждения сжатого воздуха происходит уменьшение его объема на величину ΔV1=V2-V3, причем без изменения его весового количества.
- Линии 3-4, 4-b, b-5 - соответственно представляют политропное сжатие воздуха во второй ступени компрессора, нагнетание воздуха в промежуточный охладитель и всасывание воздуха в третий цилиндр компрессора.
- Линия 4-5 представляет процесс изобарного охлаждения воздуха в промежуточном охладителе с передачей в окружающую среду теплоты в количестве
Figure 00000002
. При этом объем газа уменьшается на величину ΔV2=V4-V5.
- Линия 5-6 является процессом политропного сжатия воздуха в третьей ступени компрессора.
- Линия 6-с представляет нагнетание воздуха в емкость (ресивер).
- Линия с-6 является линией всасывания воздуха в регенеративный подогреватель (теплообменник).
- В процессе 6-7 проходит передача теплоты qрег от выхлопных газов воздуху в регенеративном подогревателе (теплообменнике).
- С параметрами в точке 7 (Р7 и T7) воздух находится в камере сгорания.
- В процессе 7-8 через форсунку впрыскивается топливо в камеру сгорания и происходит его воспламенение, в результате чего к рабочему телу подводится теплота q1. В точке 8 газ находится при максимальных параметрах (P8, T8).
После воспламенения топлива в результате повышения давления газа открывается сопловой клапан и поршень начинает совершать первую часть рабочего хода.
На фиг.1 и 2 этот процесс изображается линией 8-9 и является адиабатным расширением рабочего тела.
В изобарном процессе 9-10 к рабочему телу дополнительно подводится теплота в количестве
Figure 00000003
путем подачи в камеру сгорания дополнительной порции топлива через форсунку. В процессе 10-11 происходит дальнейшее адиабатное расширение газа. В процессе 11-12 к рабочему телу впрыскивается еще одна дополнительная порция топлива. В результате чего при его сгорании к рабочему телу подводится дополнительная теплота в количестве
Figure 00000004
.
Величины подводимых теплот
Figure 00000005
и
Figure 00000006
должны быть такими, чтобы температура в точках 10 и 12 была равна температуре в точке 8. В результате такого ступенчатого (или непрерывного) процесса подачи топлива процесс расширения газа в цилиндре в целом будет приближаться к изотермическому, при котором, как известно, вся теплота, подводимая к рабочему телу, превращается в работу.
В процессе 12-13 происходит адиабатное расширение газа на заключительном этапе движения поршня от верхней мертвой точки к нижней. В изохорном процессе 13-14 в регенераторе (теплообменнике) происходит отвод теплоты qрег от выхлопных газов к воздуху, поступаемому в камеру сгорания. При этом температура и давление газа понижаются от параметров в точке 13 до параметров в точке 14, а температура и давление воздуха после регенератора (теплообменника) возрастают от параметров в точке 6 до параметров в точке 7. В процессе 14-1 происходит охлаждение выхлопных газов в атмосфере с передачей в окружающую среду теплоты в количестве q2.
При соответствующем подборе поверхностей теплообменников температура воздуха в точках 3 и 5 будет равна температуре в точке 1, что обеспечивает выполнение процесса сжатия воздуха в целом при температуре, близкой к изотермическому процессу.
Известно, что изотермический процесс сжатия по величине затрачиваемой на это работы является самым выгодным по сравнению с другими процессами сжатия.
В итоге при организации всех мероприятий, связанных с многоступенчатым сжатием и многоступенчатым расширением (сгоранием) при условии передачи теплоты (процесс 13-14) к воздуху (процесс 6-7) в регенеративных подогревателях, рассматриваемый цикл будет максимально приближаться к обобщенному термодинамическому циклу Карно (см. фиг.3). Такой цикл, как известно, состоит из двух изотерм и двух эквидистантных кривых (изохор или изобар, в нашем случае - изохор).
Важнейшим его преимуществом является высокий КПД, который в одном и том же интервале температур (например, T1 и T8;) равен КПД обычного цикла Карно, состоящего из двух изотерм и двух адиабат.
Обобщенный термодинамический цикл Карно, состоящий из двух изотерм и двух изохор, показан на фиг.3. КПД обобщенного цикла Карно определяется по формуле
Figure 00000007
.
Если принять температуру в камере сгорания равной 1000°C, а температуру окружающей среды 0°c, то
Figure 00000008
.
Если учесть, что лучшие современные двигатели имеют КПД не более 35-38%, то можно заключить, что в них используется менее половины работоспособности используемой теплоты, т.е. более половины вырабатываемой в таких двигателях теплоты выбрасывается в окружающую среду. Следовательно, для повышения КПД современных двигателей имеются значительные резервы. Из представленного на фиг.1, 2 и 3 цикла видно, что есть возможность создания более эффективных двигателей внутреннего сгорания. Предложенный способ повышения эффективности работы двигателей внутреннего сгорания полностью это подтверждает.

Claims (7)

1. Способ работы поршневого двигателя внутреннего сгорания (ДВС) путем выполнения тактов цикла работы двигателя в компрессорном и рабочем цилиндрах, сжатия в них воздуха, дополнительного сжатия воздуха в рабочем цилиндре, впрыска топлива в него с последующим горением, расширения продуктов горения - рабочий ход поршня и выпуска отработавших газов, отличающийся тем, что сжатие воздуха в компрессорном цилиндре производят ступенчато, при двух и более ступенях, с промежуточным охлаждением воздуха и подачей его через ресивер в рабочий цилиндр, процесс расширения газа выполняют ступенчато, при двух и более ступенях, с промежуточным дополнительным впрыском топлива и подводом теплоты, отбираемой у выхлопных газов, воздуху, направляемому в рабочий цилиндр.
2. Способ по п.1, отличающийся тем, что ступенчатое сжатие воздуха осуществляют в отдельном многоступенчатом компрессоре с промежуточным охлаждением воздуха.
3. Способ по п.1 отличающийся тем, что сжатый в компрессоре воздух перед подачей в камеру сгорания нагревают в регенераторе теплом выхлопных газов.
4. Способ по п.1, отличающийся тем, что ступенчатое расширение газа сопровождают дополнительным впрыском топлива с целью приближения процесса к изотермическому.
5. Способ по п.1, отличающийся тем, что четырехтактный цикл работы двигателя выполняют раздельно - такты всасывания и сжатия воздуха в отдельном компрессоре за пределами рабочего цилиндра, и такты - рабочий ход и выхлоп отработавших газов - непосредственно в рабочем цилиндре.
6. Способ по п.1, отличающийся тем, что рабочий цилиндр может работать в режимах двойного рабочего действия, что обеспечивает им выполнение двух рабочих тактов за один оборот выходного вала.
7. Способ по п.1, отличающийся тем, что топливную смесь подготавливают в предкамере путем подачи из ресивера сжатого и подогретого в регенераторе воздуха и впрыска топлива при достижении поршнем верхней мертвой точки после окончания процесса выхлопа газов.
RU2010100505/06A 2010-01-11 2010-01-11 Способ работы поршневого двигателя внутреннего сгорания RU2432474C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010100505/06A RU2432474C2 (ru) 2010-01-11 2010-01-11 Способ работы поршневого двигателя внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010100505/06A RU2432474C2 (ru) 2010-01-11 2010-01-11 Способ работы поршневого двигателя внутреннего сгорания

Publications (2)

Publication Number Publication Date
RU2010100505A RU2010100505A (ru) 2011-07-20
RU2432474C2 true RU2432474C2 (ru) 2011-10-27

Family

ID=44752096

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010100505/06A RU2432474C2 (ru) 2010-01-11 2010-01-11 Способ работы поршневого двигателя внутреннего сгорания

Country Status (1)

Country Link
RU (1) RU2432474C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062548B2 (en) 2010-03-01 2015-06-23 Bright Energy Storage Technologies, Llp Rotary compressor-expander systems and associated methods of use and manufacture, including integral heat exchanger systems
US9551292B2 (en) 2011-06-28 2017-01-24 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
RU2657011C1 (ru) * 2014-05-15 2018-06-08 Ниссан Мотор Ко., Лтд. Устройство управления впрыском топлива и способ управления впрыском топлива для двигателя внутреннего сгорания

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062548B2 (en) 2010-03-01 2015-06-23 Bright Energy Storage Technologies, Llp Rotary compressor-expander systems and associated methods of use and manufacture, including integral heat exchanger systems
US9551292B2 (en) 2011-06-28 2017-01-24 Bright Energy Storage Technologies, Llp Semi-isothermal compression engines with separate combustors and expanders, and associated systems and methods
RU2657011C1 (ru) * 2014-05-15 2018-06-08 Ниссан Мотор Ко., Лтд. Устройство управления впрыском топлива и способ управления впрыском топлива для двигателя внутреннего сгорания

Also Published As

Publication number Publication date
RU2010100505A (ru) 2011-07-20

Similar Documents

Publication Publication Date Title
RU2434149C2 (ru) Система и способ рекуперации сбросной теплоты для двигателя с расщепленным циклом
CN106304838A (zh) 带有预冷压缩的四冲程内燃机
RU2645888C1 (ru) "двухтактный" двигатель внутреннего сгорания с предварительно охлаждаемой компрессией
RU2432474C2 (ru) Способ работы поршневого двигателя внутреннего сгорания
US6434939B1 (en) Rotary piston charger
WO2016000400A1 (zh) 一种高效热能动力设备及其做功方法
WO2016114683A1 (ru) Двигатель внутреннего сгорания и способ работы
CN103470399A (zh) 容积式热机
RU2214525C2 (ru) Способ работы силовой установки с поршневым двигателем внутреннего сгорания (его варианты) и силовая установка для осуществления способов
WO2012159637A2 (es) Motor de ciclo dividido
GB2481980A (en) I.c. engine in which water is recovered from the exhaust and re-used
JPH04209933A (ja) ピストン型エンジン
RU2449138C2 (ru) Двигатель внутреннего сгорания
CN110388265A (zh) 多燃料内燃式热机
RU2246625C2 (ru) Способ работы двигателя внутреннего сгорания и устройство для его осуществления
CN101482056A (zh) 吸热回能式内燃机
Chouder et al. Dynamic Modeling of a Free Liquid Piston Ericsson Engine (FLPEE)
US20100269502A1 (en) External combustion engine
RU2636642C2 (ru) Унифицированный поршневой двигатель без системы охлаждения
RU2477375C2 (ru) Способ осуществления цикла поршневого двигателя и поршневой двигатель
CN204082377U (zh) 一种高效热能动力设备
RU2663369C1 (ru) Двигатель внутреннего сгорания двустороннего действия с регенерацией теплоты
US6799563B1 (en) Two stroke internal combustion engine
SU746126A1 (ru) Двигатель внутреннего сгорани
RU2641180C2 (ru) Способ работы двигателя внутреннего сгорания с регенерацией тепла в цикле и двигатель для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140112