RU2326268C2 - Устройство для аксиального нагнетания жидкостей - Google Patents
Устройство для аксиального нагнетания жидкостей Download PDFInfo
- Publication number
- RU2326268C2 RU2326268C2 RU2003124638/06A RU2003124638A RU2326268C2 RU 2326268 C2 RU2326268 C2 RU 2326268C2 RU 2003124638/06 A RU2003124638/06 A RU 2003124638/06A RU 2003124638 A RU2003124638 A RU 2003124638A RU 2326268 C2 RU2326268 C2 RU 2326268C2
- Authority
- RU
- Russia
- Prior art keywords
- support ring
- suspension
- radial
- rotor
- axial
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/047—Bearings hydrostatic; hydrodynamic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
- A61M60/237—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/403—Details relating to driving for non-positive displacement blood pumps
- A61M60/422—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/81—Pump housings
- A61M60/812—Vanes or blades, e.g. static flow guides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/818—Bearings
- A61M60/82—Magnetic bearings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/802—Constructional details other than related to driving of non-positive displacement blood pumps
- A61M60/818—Bearings
- A61M60/824—Hydrodynamic or fluid film bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0633—Details of the bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/048—Bearings magnetic; electromagnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D3/00—Axial-flow pumps
- F04D3/02—Axial-flow pumps of screw type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Mechanical Engineering (AREA)
- Cardiology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetism (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- External Artificial Organs (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Устройство для осевого нагнетания жидкостей, в частности крови, в котором нагнетающая часть размещена полностью в магнитной подвеске и дополнена радиальной подвеской, обеспечивающей достаточную жесткость и демпфирование, за счет чего решены проблемы критических скоростей потока и отрицательные последствия гидродинамической и механической разбалансировки ротора. Магнитная подвеска дополнена гидродинамической подвеской, которая выполнена в виде закрепленного на нагнетающем элементе, по меньшей мере, одного цилиндрического поддерживающего кольца с симметрией вращения, причем поддерживающие кольца размещены в начале и/или в конце ротора или между этими положениями. 6 ил.
Description
Изобретение касается устройства для аксиального нагнетания жидкостей в соответствии с ограничительной частью пункта 1 формулы изобретения.
В частности, недостаточно стабильные многофазные жидкости, подвергающиеся воздействию внешних сил, зачастую претерпевают необратимые изменения, как, например, в случае эмульсий и дисперсий, и могут утратить требуемые стабильные свойства при прохождении через соответствующие устройства, такие как насосы.
Кровь является особенно чувствительной жидкой системой. Эта красная непрозрачная жидкость в теле позвоночных циркулирует в замкнутой системе сосудов, с помощью которой ритмические сокращения сердца нагнетают кровь в различные области организма. При этом кровь переносит дыхательные газы - кислород и двуокись углерода, а также питательные вещества, продукты обмена веществ и активные эндогенные компоненты. Система кровообращения, включающая сердце, герметично изолирована от окружающей среды таким образом, что в здоровом организме кровь не подвергается никаким изменениям, за исключением обмена веществами с соматическими клетками в процессе циркуляции, которая обеспечивается за счет сердца.
Известно, что кровь при контакте с неэндогенными материалами или в результате воздействия внешних сил имеет тенденцию к гемолизу и образованию сгустков. Образование сгустков может оказаться фатальным для организма, потому что может привести к закупорке сосуда в разветвленной системе кровообращения. Гемолизом называется такое состояние, когда эритроциты в организме необратимо повреждены.
Гемолиз может быть вызван механическим воздействием или нарушением обмена веществ. Обширный гемолиз вызывает повреждение большого числа жизненно важных органов и может привести к смерти человека.
С другой стороны, очевидно, что в принципе является вполне возможным при наличии некоторых конструктивных решений поддерживать нагнетающую способность сердца или даже заменять естественное сердце искусственным. Однако продолжительность функционирования имплантированных кардиостимулирующих систем или искусственных сердец в настоящее время имеет некоторые ограничения, поскольку взаимодействие этих искусственных устройств с кровью и с организмом в целом всегда все-таки вызывает нежелательные изменения крови и организма.
Из уровня техники известны аксиальные насосы для крови, которые, главным образом, состоят из цилиндрической трубы, заключающей в себя нагнетающий вращательный элемент, выполненный в виде ротора, сочетающегося с внешним статором мотора. Ротор, снабженный комплектом так называемых "лопастей", при вращении перемещает жидкость в осевом направлении. Серьезной проблемой является используемая в таких насосах подвеска ротора. Чисто механическая подвеска является нежелательной из-за того, что она вызывает повреждение крови и имеет относительно высокий коэффициент трения. Магнитные подвески, известные к настоящему времени, не дали удовлетворительных результатов работы в аксиальных насосах.
В международной публикации WO 00/64030 описано устройство для "деликатного" перекачивания однофазных и многофазных жидкостей только на основе магнитных подвесок. Для этой цели элементы подвески на основе постоянных магнитов, используемые для фиксации опоры, и элементы на основе постоянных магнитов, используемые в качестве ротора электродвигателя, предпочтительно встроены в нагнетательный элемент. Использование магнитной подвески в описанном решении дает возможность отказаться от размещения элементов подвески непосредственно в потоке перекачиваемой жидкости, как это делается обычно, но такое решение приводит к появлению стоячих зон и завихрений перекачиваемой жидкости, что оказывает негативное влияние на поток.
Магнитная подвеска в этом случае использует как аксиальные, так и радиальные силы. Осевая локализация нагнетающей части осуществляется активными методами, а радиальная подвеска нагнетающей части осуществляется исключительно пассивными методами, а именно за счет наличия постоянных магнитов. Тем не менее данная конструкция имеет ряд недостатков.
Пассивная часть магнитной подвески - радиальная - характеризуется относительно низкой жесткостью и амортизационной способностью, в связи с чем в процессе нагнетания возникают проблемы на определенных критических скоростях ротора и/или подвески. Возможность возникновения гидродинамической и механической разбалансировки серьезно влияет на функционирование насоса, особенно когда он используется для нагнетания крови.
Настоящее изобретение решает задачу создания такого устройства для аксиального нагнетания жидкостей, в котором нагнетающий элемент имеет чисто магнитную подвеску и в котором радиальная подвеска имеет достаточную жесткость и эффективную амортизацию с тем, чтобы устранить как проблемы прохождения через критические скорости, так и отрицательное влияние гидродинамической и механической разбалансировки.
Поставленная задача решается тем, что в устройстве для осевого нагнетания жидкостей, содержащем полый цилиндрический корпус, в котором соосно расположен нагнетающий элемент, снабженный магнитной подвеской и приводимый во вращение статором двигателя, расположенным снаружи полого корпуса, причем этот снабженный магнитной подвеской нагнетающий элемент имеет роторные лопасти, а дополнительно к магнитной подвеске используется гидродинамическая радиальная подвеска, согласно изобретению магнитная подвеска нагнетающего элемента включает активно стабилизированную магнитную осевую подвеску и пассивную магнитную радиальную подвеску.
Радиальная гидродинамическая подвеска может быть выполнена в виде закрепленного на нагнетающем элементе цилиндрического поддерживающего кольца с симметрией вращения.
Нагнетающий элемент может быть снабжен по меньшей мере одним поддерживающим кольцом.
Поддерживающие кольца на роторе двигателя размещены предпочтительно в начале и/или в конце ротора или между этими положениями.
Предпочтительно, чтобы осевой размер поддерживающего кольца максимально совпадал с осевым размером нагнетающего элемента.
Также предпочтительно, чтобы радиальный размер поддерживающего кольца совпадал с радиальным размером лопастей ротора.
Поддерживающее кольцо может быть скреплено с лопастями ротора.
Согласно одному из вариантов осуществления изобретения, радиальный размер (толщина) поддерживающего кольца позволяет придать ему радиальный профиль, способствующий сглаживанию входящего потока, поступающего к лопастям нагнетающего элемента.
При этом поддерживающее кольцо может иметь такой осевой размер, что лопасти по всей своей длине ограничены в радиальном направлении поддерживающим кольцом.
Согласно одному из вариантов осуществления изобретения, рабочая поверхность поддерживающего кольца, обращенная к внутренней стороне полого цилиндрического корпуса, имеет покрытие с аварийными антизадирными свойствами, которое является биологически совместимым.
Внутренняя поверхность поддерживающего кольца предпочтительно является профилированной.
Рабочая поверхность поддерживающего кольца предпочтительно снабжена рабочим ребром.
Жесткость и демпфирующие свойства нагнетающей части в радиальном направлении обеспечиваются, в основном, за счет сочетания магнитной и гидродинамической подвесок. Гидродинамическая подвеска выполнена в виде, по крайней мере, одного полого цилиндрического корпуса, обладающего симметрией вращения поддерживающего кольца, жестко скрепленного с нагнетающей частью. При соответствующем выполнении поддерживающего кольца ротор приобретает значительную радиальную устойчивость. Преимущественно, такой эффект наблюдается при значительных продольных размерах поддерживающего кольца или при оснащении ротора, по крайней мере, двумя поддерживающими кольцами.
При больших продольных размерах поддерживающего кольца и/или при значительном или полном перекрытии лопастей посредством такого кольца удается устранить разрушительные явления в области, примыкающей к краям лопастей.
Изобретение более подробно поясняется чертежами, а именно:
фиг.1 - продольное сечение осевого насоса с поддерживающим кольцом;
фиг.2 - схема размещения поддерживающего кольца на роторе;
фиг.3 - схема размещения двух поддерживающих колец на роторе;
фиг.4 - схема размещения поддерживающего кольца с профилируемой внутренней поверхностью;
фиг.5 - схема с поддерживающим кольцом по всей длине ротора, и
фиг.6 - схема с поддерживающим кольцом, снабженным рабочим ребром на рабочей поверхности.
В качестве примера на фиг.1 приведено продольное сечение относящегося к данной категории аксиального насоса с подвеской нагнетающего элемента 4 в соответствии с настоящим изобретением. Этот аксиальный насос состоит, в основном, из трубчатого, полого корпуса 1 и кожуха 3 насоса, в котором размещены статор 7 мотора и осевые стабилизаторы 6. Кожух 3 насоса непосредственно примыкает и охватывает полый цилиндрический корпус 1. Внутри полого цилиндрического корпуса 1 предусмотрено наличие устройства 5 для впуска жидкости и устройства 5' для выпуска жидкости, между которыми расположен нагнетающий элемент 4, приводимый во вращение статором 7 мотора. Нагнетающий элемент 4 снабжен магнитной подвеской, состоящей из постоянных магнитов 9 и 9', установленных на роторе 8 мотора, и постоянных магнитов 10 и 10', размещенных на впускных устройствах 5 и выпускных устройствах 5'. На роторе 8 нагнетающего элемента 4 предусмотрено размещение лопастей 11, на которых закреплено поддерживающее кольцо 11. Размещенный в магнитной подвеске нагнетательный элемент 4 приводится во вращение статором 7, при этом нагнетательный элемент 4 поддерживается в плавающем состоянии с помощью расположенных один напротив другого постоянных магнитов 9, 9' и 10, 10', являющихся элементами магнитной подвески, в сочетании с осевыми стабилизаторами 6, а поддерживающее кольцо 11 обеспечивает дополнительную гидродинамическую подвеску вращающегося нагнетательного элемента 4.
На фиг.2 показан ротор 8 мотора с комплектом лопастей 11 в полом цилиндрическом корпусе 1. В соответствии с изобретением поддерживающее кольцо в данном случае расположено в оконечной зоне статора 8. Перекачиваемая жидкость проходит между внутренней поверхностью 16 поддерживающего кольца 13 и ротором 8. Рабочая поверхность 14 поддерживающего кольца 13 скользит с минимальным зазором по внутренней стенке 2 полого цилиндрического корпуса 1.
Фиг 3. иллюстрирует расположение двух поддерживающих колец 13 и 13' на концах ротора 8. Полый цилиндрический корпус 1 на этом чертеже не изображен.
На фиг.4 показан дальнейший вариант конструкции поддерживающего кольца 13 согласно изобретению. На внутренней поверхности 16 поддерживающего кольца 13 виден профиль 15. Как можно заметить на продольном разрезе поддерживающего кольца 13, профиль 15 выполнен здесь в форме несущей поверхности. На этой схеме изображение полого цилиндрического корпуса 1 тоже не приводится.
В еще одном варианте реализации изобретения, приведенном на фиг.5, полый цилиндрический корпус 1 тоже не показан, а поддерживающее кольцо 13 закрывает полностью осевую длину ротора 8 с его комплектом лопастей 11. Перекачивание жидкости в этом случае также происходит между внутренней поверхностью 16 поддерживающего кольца 13 и ротором 8.
В следующем варианте реализации изобретения, проиллюстрированном на фиг.6, поддерживающее кольцо 13 имеет рабочую поверхность 14, снабженную выпуклым рабочим ребром 17, которое облегчает поддержание минимального зазора между рабочей поверхностью 14 и внутренней стенкой 2 полого цилиндрического корпуса 1 при одновременном снижении трения между ними.
Claims (9)
1. Устройство для осевого нагнетания жидкостей, содержащее полый цилиндрический корпус, в котором соосно расположен нагнетающий элемент, снабженный магнитной подвеской и приводимый во вращение статором двигателя, расположенным снаружи полого корпуса, причем снабженный магнитной подвеской нагнетающий элемент имеет роторные лопасти, а дополнительно к магнитной подвеске используется гидродинамическая радиальная подвеска, отличающееся тем, что магнитная подвеска нагнетающего элемента включает активно стабилизированную магнитную осевую подвеску и пассивную радиальную магнитную подвеску, радиальная гидродинамическая подвеска выполнена в виде закрепленного на нагнетающем элементе, по меньшей мере, одного цилиндрического поддерживающего кольца с симметрией вращения, причем поддерживающие кольца размещены в начале и/или в конце ротора или между этими положениями.
2. Устройство по п.1, отличающееся тем, что осевой размер поддерживающего кольца максимально совпадает с осевым размером нагнетающего элемента.
3. Устройство по п.1 или 2, отличающееся тем, что радиальный размер поддерживающего кольца совпадает с радиальным размером лопастей ротора.
4. Устройство по любому из пп.1-3, отличающееся тем, что поддерживающее кольцо скреплено с лопастями ротора.
5. Устройство по любому из пп.1-4, отличающееся тем, что радиальный размер (толщина) поддерживающего кольца позволяет придать ему радиальный профиль, способствующий сглаживанию входящего потока, поступающего к лопастям нагнетающего элемента.
6. Устройство по любому из пп.1-5, отличающееся тем, что поддерживающее кольцо имеет такой осевой размер, что лопасти по всей своей длине ограничены в радиальном направлении поддерживающим кольцом.
7. Устройство по любому из пп.1-6, отличающееся тем, что рабочая поверхность поддерживающего кольца, обращенная к внутренней стороне полого цилиндрического корпуса, имеет покрытие с аварийными антизадирными свойствами, которое является биологически совместимым.
8. Устройство по любому из пп.1-7, отличающееся тем, что внутренняя поверхность поддерживающего кольца является профилированной.
9. Устройство по любому из пп.1-8, отличающееся тем, что рабочая поверхность поддерживающего кольца снабжена рабочим ребром.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10108810A DE10108810A1 (de) | 2001-02-16 | 2001-02-16 | Vorrichtung zur axialen Förderung von Flüssigkeiten |
DE10108810.8 | 2001-02-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003124638A RU2003124638A (ru) | 2005-02-27 |
RU2326268C2 true RU2326268C2 (ru) | 2008-06-10 |
Family
ID=7675280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003124638/06A RU2326268C2 (ru) | 2001-02-16 | 2002-02-18 | Устройство для аксиального нагнетания жидкостей |
Country Status (10)
Country | Link |
---|---|
US (2) | US7467929B2 (ru) |
EP (1) | EP1360416B1 (ru) |
JP (1) | JP4200006B2 (ru) |
CN (1) | CN1293310C (ru) |
AT (1) | ATE307295T1 (ru) |
AU (1) | AU2002233346B2 (ru) |
CA (1) | CA2438679C (ru) |
DE (2) | DE10108810A1 (ru) |
RU (1) | RU2326268C2 (ru) |
WO (1) | WO2002066837A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2630733C2 (ru) * | 2013-04-10 | 2017-09-12 | Пикосан Ой | Способ и устройство для защиты внутренних поверхностей насоса посредством атомно-слоевого покрытия |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0103034B1 (pt) * | 2001-07-16 | 2009-05-05 | bomba. | |
US7048518B2 (en) * | 2001-07-16 | 2006-05-23 | Eberle Equipamentos E Processos S.A. | Pump |
US7052253B2 (en) * | 2003-05-19 | 2006-05-30 | Advanced Bionics, Inc. | Seal and bearing-free fluid pump incorporating a passively suspended self-positioning impeller |
US20040241019A1 (en) | 2003-05-28 | 2004-12-02 | Michael Goldowsky | Passive non-contacting smart bearing suspension for turbo blood-pumps |
DE102004019718A1 (de) * | 2004-03-18 | 2005-10-06 | Medos Medizintechnik Ag | Pumpe |
DE102004019721A1 (de) * | 2004-03-18 | 2005-10-06 | Medos Medizintechnik Ag | Pumpe |
EP1738783A1 (de) * | 2005-07-01 | 2007-01-03 | Universitätsspital Basel | Axialpumpe mit spiralförmiger Schaufel |
DE102005039446B4 (de) | 2005-08-18 | 2009-06-25 | Ilias-Medical Gmbh | Vorrichtung zur An- und Abreicherung von Stoffen in einer Flüssigkeit |
TW200726058A (en) * | 2005-12-28 | 2007-07-01 | Ming-Haw Liu | Motor unit using magnetic power to drive a rotor |
JP5726070B2 (ja) | 2008-06-06 | 2015-05-27 | バイエル メディカル ケア インコーポレーテッド | 流体注入ボーラスの患者へ送達及び有害流体を取り扱う装置及び方法 |
JP5171953B2 (ja) | 2008-06-23 | 2013-03-27 | テルモ株式会社 | 血液ポンプ装置 |
EP2194278A1 (de) | 2008-12-05 | 2010-06-09 | ECP Entwicklungsgesellschaft mbH | Fluidpumpe mit einem rotor |
CN102239334B (zh) | 2008-12-08 | 2015-03-04 | 胸腔科技有限公司 | 离心式泵装置 |
EP2216059A1 (de) | 2009-02-04 | 2010-08-11 | ECP Entwicklungsgesellschaft mbH | Kathetereinrichtung mit einem Katheter und einer Betätigungseinrichtung |
JP5378010B2 (ja) | 2009-03-05 | 2013-12-25 | ソラテック コーポレーション | 遠心式ポンプ装置 |
US8770945B2 (en) | 2009-03-06 | 2014-07-08 | Thoratec Corporation | Centrifugal pump apparatus |
EP2229965A1 (de) | 2009-03-18 | 2010-09-22 | ECP Entwicklungsgesellschaft mbH | Fluidpumpe mit besonderer Gestaltung eines Rotorblattes |
EP2246078A1 (de) | 2009-04-29 | 2010-11-03 | ECP Entwicklungsgesellschaft mbH | Wellenanordnung mit einer Welle, die innerhalb einer fluidgefüllten Hülle verläuft |
EP2248544A1 (de) | 2009-05-05 | 2010-11-10 | ECP Entwicklungsgesellschaft mbH | Im Durchmesser veränderbare Fluidpumpe, insbesondere für die medizinische Verwendung |
EP2266640A1 (de) | 2009-06-25 | 2010-12-29 | ECP Entwicklungsgesellschaft mbH | Komprimierbares und expandierbares Schaufelblatt für eine Fluidpumpe |
EP2282070B1 (de) | 2009-08-06 | 2012-10-17 | ECP Entwicklungsgesellschaft mbH | Kathetereinrichtung mit einer Ankopplungseinrichtung für eine Antriebseinrichtung |
EP2298372A1 (de) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Rotor für eine Axialpumpe zur Förderung eines Fluids |
EP2299119B1 (de) | 2009-09-22 | 2018-11-07 | ECP Entwicklungsgesellschaft mbH | Aufblasbarer Rotor für eine Fluidpumpe |
EP2298371A1 (de) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Funktionselement, insbesondere Fluidpumpe, mit einem Gehäuse und einem Förderelement |
EP2298373A1 (de) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Fluidpumpe mit wenigstens einem Schaufelblatt und einer Stützeinrichtung |
US8579789B1 (en) | 2009-09-23 | 2013-11-12 | Leviticus Cardio Ltd. | Endovascular ventricular assist device, using the mathematical objective and principle of superposition |
EP2314330A1 (de) | 2009-10-23 | 2011-04-27 | ECP Entwicklungsgesellschaft mbH | Flexible Wellenanordnung |
EP2314331B1 (de) | 2009-10-23 | 2013-12-11 | ECP Entwicklungsgesellschaft mbH | Katheterpumpenanordnung und flexible Wellenanordnung mit einer Seele |
US8690749B1 (en) | 2009-11-02 | 2014-04-08 | Anthony Nunez | Wireless compressible heart pump |
EP2319552B1 (de) | 2009-11-06 | 2014-01-08 | Berlin Heart GmbH | Blutpumpe |
EP2333514A1 (de) * | 2009-11-30 | 2011-06-15 | Berlin Heart GmbH | Einrichtung und Verfahren zur Messung von strömungsmechanisch wirksamen Materialparametern eines Fluids |
EP2338539A1 (de) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Pumpeneinrichtung mit einer Detektionseinrichtung |
EP2338541A1 (de) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Radial komprimierbarer und expandierbarer Rotor für eine Fluidpumpe |
EP2338540A1 (de) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Förderschaufel für einen komprimierbaren Rotor |
EP2347778A1 (de) | 2010-01-25 | 2011-07-27 | ECP Entwicklungsgesellschaft mbH | Fluidpumpe mit einem radial komprimierbaren Rotor |
JP5443197B2 (ja) | 2010-02-16 | 2014-03-19 | ソラテック コーポレーション | 遠心式ポンプ装置 |
US9662431B2 (en) | 2010-02-17 | 2017-05-30 | Flow Forward Medical, Inc. | Blood pump systems and methods |
JP2013519497A (ja) | 2010-02-17 | 2013-05-30 | ノビタ セラピューティクス エルエルシー | 静脈の全体直径を増大させるシステムと方法 |
US9555174B2 (en) | 2010-02-17 | 2017-01-31 | Flow Forward Medical, Inc. | Blood pump systems and methods |
EP2363157A1 (de) | 2010-03-05 | 2011-09-07 | ECP Entwicklungsgesellschaft mbH | Vorrichtung zur mechanischen Einwirkung auf ein Medium, insbesondere Fluidpumpe |
JP5572832B2 (ja) | 2010-03-26 | 2014-08-20 | ソーラテック コーポレイション | 遠心式血液ポンプ装置 |
EP2388029A1 (de) | 2010-05-17 | 2011-11-23 | ECP Entwicklungsgesellschaft mbH | Pumpenanordnung |
EP2399639A1 (de) | 2010-06-25 | 2011-12-28 | ECP Entwicklungsgesellschaft mbH | System zum einführen einer pumpe |
JP5681403B2 (ja) | 2010-07-12 | 2015-03-11 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
EP2407185A1 (de) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Radial komprimierbarer und expandierbarer Rotor für eine Pumpe mit einem Schaufelblatt |
EP2407187A3 (de) | 2010-07-15 | 2012-06-20 | ECP Entwicklungsgesellschaft mbH | Blutpumpe für die invasive Anwendung innerhalb eines Körpers eines Patienten |
EP2407186A1 (de) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Rotor für eine Pumpe, hergestellt mit einem ersten, elastischen Werkstoff |
US9909588B2 (en) * | 2010-07-30 | 2018-03-06 | The Board Of Regents Of The University Of Texas System | Axial-flow pumps and related methods |
EP2422735A1 (de) | 2010-08-27 | 2012-02-29 | ECP Entwicklungsgesellschaft mbH | Implantierbare Blutfördereinrichtung, Manipulationseinrichtung sowie Koppeleinrichtung |
JP5577506B2 (ja) | 2010-09-14 | 2014-08-27 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
EP2497521A1 (de) | 2011-03-10 | 2012-09-12 | ECP Entwicklungsgesellschaft mbH | Schubvorrichtung zum axialen Einschieben eines strangförmigen, flexiblen Körpers |
JP5969979B2 (ja) | 2011-03-28 | 2016-08-17 | ソーラテック コーポレイション | 回転駆動装置およびそれを用いた遠心式ポンプ装置 |
EP2704761B1 (en) * | 2011-05-05 | 2015-09-09 | Berlin Heart GmbH | Blood pump |
EP2520317B1 (de) | 2011-05-05 | 2014-07-09 | Berlin Heart GmbH | Blutpumpe |
BR112014003425B1 (pt) | 2011-08-17 | 2020-12-15 | Flow Forward Medical, Inc | Sistema de bomba centrífuga de sangue |
CA2845253C (en) | 2011-08-17 | 2022-03-01 | Novita Therapeutics, Llc | System and method to increase the overall diameter of veins and arteries |
US9343224B2 (en) | 2011-08-19 | 2016-05-17 | Leviticus Cardio Ltd. | Coplanar energy transfer |
US9642958B2 (en) | 2011-08-19 | 2017-05-09 | Leviticus Cardio Ltd. | Coplanar wireless energy transfer |
US9793579B2 (en) | 2013-11-08 | 2017-10-17 | Leviticus Cardio Ltd. | Batteries for use in implantable medical devices |
US10543303B2 (en) | 2013-11-08 | 2020-01-28 | Leviticus Cardio Ltd. | Batteries for use in implantable medical devices |
US8979728B2 (en) | 2011-08-22 | 2015-03-17 | Leviticus Cardio Ltd. | Safe energy transfer |
EP2564771A1 (de) | 2011-09-05 | 2013-03-06 | ECP Entwicklungsgesellschaft mbH | Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten |
US8926492B2 (en) | 2011-10-11 | 2015-01-06 | Ecp Entwicklungsgesellschaft Mbh | Housing for a functional element |
JP6083929B2 (ja) | 2012-01-18 | 2017-02-22 | ソーラテック コーポレイション | 遠心式ポンプ装置 |
US9889288B2 (en) | 2012-06-07 | 2018-02-13 | Bayer Healthcare Llc | Tubing connectors |
US9393441B2 (en) | 2012-06-07 | 2016-07-19 | Bayer Healthcare Llc | Radiopharmaceutical delivery and tube management system |
US9125976B2 (en) | 2012-06-07 | 2015-09-08 | Bayer Medical Care Inc. | Shield adapters |
US10258730B2 (en) | 2012-08-17 | 2019-04-16 | Flow Forward Medical, Inc. | Blood pump systems and methods |
US8845510B2 (en) | 2012-12-11 | 2014-09-30 | Leviticus Cardio Ltd. | Flexible galvanic primary and non galvanic secondary coils for wireless coplanar energy transfer (CET) |
US9371826B2 (en) | 2013-01-24 | 2016-06-21 | Thoratec Corporation | Impeller position compensation using field oriented control |
US9556873B2 (en) | 2013-02-27 | 2017-01-31 | Tc1 Llc | Startup sequence for centrifugal pump with levitated impeller |
US9713663B2 (en) | 2013-04-30 | 2017-07-25 | Tc1 Llc | Cardiac pump with speed adapted for ventricle unloading |
US10052420B2 (en) | 2013-04-30 | 2018-08-21 | Tc1 Llc | Heart beat identification and pump speed synchronization |
DE102013211845A1 (de) * | 2013-06-21 | 2014-12-24 | Heraeus Precious Metals Gmbh & Co. Kg | Pumpengehäuse mit harter Innenschicht und verschweißbarer Außenschicht |
DE102013211844A1 (de) * | 2013-06-21 | 2014-12-24 | Heraeus Precious Metals Gmbh & Co. Kg | Pumpengehäuse aus einem magnetischen und einem nichtmagnetischen Material |
DE102013211848A1 (de) * | 2013-06-21 | 2014-12-24 | Heraeus Precious Metals Gmbh & Co. Kg | Pumpengehäuse aus mindestens zwei unterschiedlichen versinterbaren Materialien |
CN104436338B (zh) * | 2013-09-17 | 2020-06-19 | 上海微创医疗器械(集团)有限公司 | 植入式自悬浮轴流血泵 |
DE102014004121A1 (de) | 2014-03-24 | 2015-09-24 | Heraeus Deutschland GmbH & Co. KG | Pumpengehäuse aus mindestens drei unterschiedlichen versinterbaren Materialien |
EP2962710A1 (de) | 2014-07-03 | 2016-01-06 | Berlin Heart GmbH | Verfahren und Herzunterstützungssystem zur Bestimmung eines Auslassdrucks |
US9623161B2 (en) | 2014-08-26 | 2017-04-18 | Tc1 Llc | Blood pump and method of suction detection |
EP3256183A4 (en) | 2015-02-11 | 2018-09-19 | Tc1 Llc | Heart beat identification and pump speed synchronization |
EP3256185B1 (en) | 2015-02-12 | 2019-10-30 | Tc1 Llc | System and method for controlling the position of a levitated rotor |
US10371152B2 (en) | 2015-02-12 | 2019-08-06 | Tc1 Llc | Alternating pump gaps |
WO2016130989A1 (en) | 2015-02-13 | 2016-08-18 | Thoratec Corporation | Impeller suspension mechanism for heart pump |
US10177627B2 (en) | 2015-08-06 | 2019-01-08 | Massachusetts Institute Of Technology | Homopolar, flux-biased hysteresis bearingless motor |
EP3141271A1 (de) | 2015-09-11 | 2017-03-15 | Berlin Heart GmbH | Blutpumpe, vorzugsweise zur unterstützung eines herzens |
EP3141270A1 (de) * | 2015-09-11 | 2017-03-15 | Berlin Heart GmbH | Blutpumpe, vorzugsweise zur unterstützung eines herzens |
EP3157145A1 (de) * | 2015-10-13 | 2017-04-19 | Berlin Heart GmbH | Rotor für eine pumpe sowie pumpe und verfahren zur montage |
US10117983B2 (en) | 2015-11-16 | 2018-11-06 | Tc1 Llc | Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device |
CN105688298B (zh) * | 2016-01-13 | 2018-02-27 | 山东大学 | 新式内叶轮轴流式血泵 |
TW202233270A (zh) | 2016-04-29 | 2022-09-01 | 美商亞提歐醫藥公司 | 用於運輸血液至血泵系統之導管及血泵系統 |
WO2017196271A1 (en) | 2016-05-13 | 2017-11-16 | Koc Universitesi | Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing |
WO2018213666A1 (en) | 2017-05-19 | 2018-11-22 | Heartware, Inc. | Center rod magnet |
CN107546440A (zh) * | 2017-09-25 | 2018-01-05 | 青岛金立磁性材料有限公司 | 一种用于电动大巴电池组冷却的塑磁转子组 |
WO2019125718A1 (en) | 2017-12-22 | 2019-06-27 | Massachusetts Institute Of Technology | Homopolar bearingless slice motors |
DE102018201030A1 (de) | 2018-01-24 | 2019-07-25 | Kardion Gmbh | Magnetkuppelelement mit magnetischer Lagerungsfunktion |
DE102018207575A1 (de) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Magnetische Stirndreh-Kupplung zur Übertragung von Drehmomenten |
DE102018207611A1 (de) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Rotorlagerungssystem |
DE102018208541A1 (de) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Axialpumpe für ein Herzunterstützungssystem und Verfahren zum Herstellen einer Axialpumpe für ein Herzunterstützungssystem |
DE102018208550A1 (de) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Leitungsvorrichtung zum Leiten eines Blutstroms für ein Herzunterstützungssystem, Herzunterstützungssystem und Verfahren zum Herstellen einer Leitungsvorrichtung |
DE102018208538A1 (de) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Intravasale Blutpumpe und Verfahren zur Herstellung von elektrischen Leiterbahnen |
DE102018210076A1 (de) | 2018-06-21 | 2019-12-24 | Kardion Gmbh | Verfahren und Vorrichtung zum Erkennen eines Verschleißzustands eines Herzunterstützungssystems, Verfahren und Vorrichtung zum Betreiben eines Herzunterstützungssystems und Herzunterstützungssystem |
DE102018211327A1 (de) | 2018-07-10 | 2020-01-16 | Kardion Gmbh | Laufrad für ein implantierbares, vaskuläres Unterstützungssystem |
DE102018212153A1 (de) | 2018-07-20 | 2020-01-23 | Kardion Gmbh | Zulaufleitung für eine Pumpeneinheit eines Herzunterstützungssystems, Herzunterstützungssystem und Verfahren zum Herstellen einer Zulaufleitung für eine Pumpeneinheit eines Herzunterstützungssystems |
DE102020102474A1 (de) | 2020-01-31 | 2021-08-05 | Kardion Gmbh | Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe |
CN113217257B (zh) * | 2021-06-10 | 2022-10-11 | 华能澜沧江水电股份有限公司 | 一种检测水轮机水力不平衡故障的方法 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3139832A (en) | 1963-07-24 | 1964-07-07 | Alan P Saunders | Centrifugal enclosed inert pump |
US3608088A (en) | 1969-04-17 | 1971-09-28 | Univ Minnesota | Implantable blood pump |
US5078741A (en) | 1986-10-12 | 1992-01-07 | Life Extenders Corporation | Magnetically suspended and rotated rotor |
US4944748A (en) | 1986-10-12 | 1990-07-31 | Bramm Gunter W | Magnetically suspended and rotated rotor |
DE3343186A1 (de) * | 1983-11-29 | 1985-06-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München | Magnetische rotorlagerung |
US4779614A (en) | 1987-04-09 | 1988-10-25 | Nimbus Medical, Inc. | Magnetically suspended rotor axial flow blood pump |
DE3808331A1 (de) | 1988-03-12 | 1989-09-28 | Kernforschungsanlage Juelich | Magnetische lagerung mit permanentmagneten zur aufnahme der radialen lagerkraefte |
US4898518A (en) | 1988-08-31 | 1990-02-06 | Minnesota Mining & Manufacturing Company | Shaft driven disposable centrifugal pump |
US4957504A (en) * | 1988-12-02 | 1990-09-18 | Chardack William M | Implantable blood pump |
US5049134A (en) | 1989-05-08 | 1991-09-17 | The Cleveland Clinic Foundation | Sealless heart pump |
US5324177A (en) | 1989-05-08 | 1994-06-28 | The Cleveland Clinic Foundation | Sealless rotodynamic pump with radially offset rotor |
DE3935502C2 (de) | 1989-10-25 | 1995-04-13 | Heimes Horst Peter Dr Ing | Gekapselte Flüssigkeitspumpe |
JP2534928B2 (ja) | 1990-04-02 | 1996-09-18 | テルモ株式会社 | 遠心ポンプ |
EP0452827B1 (en) | 1990-04-16 | 1995-08-02 | Nikkiso Co., Ltd. | Blood pump and extracorporeal blood circulating apparatus |
US5112200A (en) | 1990-05-29 | 1992-05-12 | Nu-Tech Industries, Inc. | Hydrodynamically suspended rotor axial flow blood pump |
US5211546A (en) * | 1990-05-29 | 1993-05-18 | Nu-Tech Industries, Inc. | Axial flow blood pump with hydrodynamically suspended rotor |
US5470208A (en) | 1990-10-05 | 1995-11-28 | Kletschka; Harold D. | Fluid pump with magnetically levitated impeller |
US5195877A (en) | 1990-10-05 | 1993-03-23 | Kletschka Harold D | Fluid pump with magnetically levitated impeller |
US5316440A (en) | 1991-05-10 | 1994-05-31 | Terumo Kabushiki Kaisha | Blood pump apparatus |
JPH0571492A (ja) * | 1991-09-12 | 1993-03-23 | Power Reactor & Nuclear Fuel Dev Corp | ハイブリツドポンプ |
WO1994003731A1 (en) | 1992-07-30 | 1994-02-17 | Spin Corporation | Centrifugal blood pump |
JPH0669492B2 (ja) | 1992-08-20 | 1994-09-07 | 日機装株式会社 | 血液ポンプ |
US5399074A (en) | 1992-09-04 | 1995-03-21 | Kyocera Corporation | Motor driven sealless blood pump |
US5405251A (en) | 1992-09-11 | 1995-04-11 | Sipin; Anatole J. | Oscillating centrifugal pump |
CA2145857C (en) | 1992-10-19 | 1999-04-27 | Leonard A.R. Golding | Sealless rotodynamic pump |
DE4301076A1 (de) | 1993-01-16 | 1994-07-21 | Forschungszentrum Juelich Gmbh | Magnetlagerzelle mit Rotor und Stator |
US5393207A (en) | 1993-01-21 | 1995-02-28 | Nimbus, Inc. | Blood pump with disposable rotor assembly |
JPH06218043A (ja) | 1993-01-27 | 1994-08-09 | Nikkiso Co Ltd | 血液ポンプ |
JP3085835B2 (ja) | 1993-04-28 | 2000-09-11 | 京セラ株式会社 | 血液ポンプ |
DE4321260C1 (de) | 1993-06-25 | 1995-03-09 | Westphal Dieter Dipl Ing Dipl | Blutpumpe als Zentrifugalpumpe |
US5957672A (en) * | 1993-11-10 | 1999-09-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Blood pump bearing system |
FR2715201B1 (fr) | 1994-01-19 | 1996-02-09 | Inst Nat Polytech Grenoble | Palier magnétique et ensemble comportant une partie statorique et une partie rotorique suspendue par un tel palier. |
US5507629A (en) | 1994-06-17 | 1996-04-16 | Jarvik; Robert | Artificial hearts with permanent magnet bearings |
US5725357A (en) | 1995-04-03 | 1998-03-10 | Ntn Corporation | Magnetically suspended type pump |
EP0819330B1 (de) | 1995-04-03 | 2001-06-06 | Levitronix LLC | Rotationsmaschine mit elektromagnetischem drehantrieb |
US5588812A (en) | 1995-04-19 | 1996-12-31 | Nimbus, Inc. | Implantable electric axial-flow blood pump |
US5707218A (en) | 1995-04-19 | 1998-01-13 | Nimbus, Inc. | Implantable electric axial-flow blood pump with blood cooled bearing |
US5575630A (en) | 1995-08-08 | 1996-11-19 | Kyocera Corporation | Blood pump having magnetic attraction |
US5947703A (en) | 1996-01-31 | 1999-09-07 | Ntn Corporation | Centrifugal blood pump assembly |
US5840070A (en) | 1996-02-20 | 1998-11-24 | Kriton Medical, Inc. | Sealless rotary blood pump |
US5695471A (en) | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
US6074180A (en) | 1996-05-03 | 2000-06-13 | Medquest Products, Inc. | Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method |
US6015272A (en) | 1996-06-26 | 2000-01-18 | University Of Pittsburgh | Magnetically suspended miniature fluid pump and method of designing the same |
EP0860046B1 (de) * | 1996-09-10 | 2003-02-26 | Levitronix LLC | Rotationspumpe |
CA2369955C (en) * | 1999-04-20 | 2005-10-18 | Berlin Heart Ag | Device for delivering single-phase or multiphase fluids without altering the properties thereof |
EP1171944B1 (de) * | 1999-04-20 | 2004-02-04 | Forschungszentrum Jülich Gmbh | Rotoreinrichtung |
US6234772B1 (en) * | 1999-04-28 | 2001-05-22 | Kriton Medical, Inc. | Rotary blood pump |
-
2001
- 2001-02-16 DE DE10108810A patent/DE10108810A1/de not_active Ceased
-
2002
- 2002-02-18 US US10/468,328 patent/US7467929B2/en not_active Expired - Fee Related
- 2002-02-18 JP JP2002566125A patent/JP4200006B2/ja not_active Expired - Fee Related
- 2002-02-18 AU AU2002233346A patent/AU2002233346B2/en not_active Ceased
- 2002-02-18 DE DE50204600T patent/DE50204600D1/de not_active Expired - Lifetime
- 2002-02-18 WO PCT/EP2002/001740 patent/WO2002066837A1/de active IP Right Grant
- 2002-02-18 EP EP02700253A patent/EP1360416B1/de not_active Expired - Lifetime
- 2002-02-18 CN CNB028045610A patent/CN1293310C/zh not_active Expired - Fee Related
- 2002-02-18 RU RU2003124638/06A patent/RU2326268C2/ru not_active IP Right Cessation
- 2002-02-18 CA CA002438679A patent/CA2438679C/en not_active Expired - Fee Related
- 2002-02-18 AT AT02700253T patent/ATE307295T1/de active
-
2007
- 2007-10-31 US US11/931,053 patent/US7934909B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2630733C2 (ru) * | 2013-04-10 | 2017-09-12 | Пикосан Ой | Способ и устройство для защиты внутренних поверхностей насоса посредством атомно-слоевого покрытия |
US9869020B2 (en) | 2013-04-10 | 2018-01-16 | Picosun Oy | Protecting a target pump interior with an ALD coating |
Also Published As
Publication number | Publication date |
---|---|
CN1491323A (zh) | 2004-04-21 |
EP1360416A1 (de) | 2003-11-12 |
DE10108810A1 (de) | 2002-08-29 |
JP2004522894A (ja) | 2004-07-29 |
AU2002233346B2 (en) | 2005-07-14 |
US7934909B2 (en) | 2011-05-03 |
DE50204600D1 (de) | 2006-03-02 |
CA2438679A1 (en) | 2002-08-29 |
WO2002066837A1 (de) | 2002-08-29 |
CN1293310C (zh) | 2007-01-03 |
EP1360416B1 (de) | 2005-10-19 |
US20080091265A1 (en) | 2008-04-17 |
ATE307295T1 (de) | 2005-11-15 |
CA2438679C (en) | 2007-10-30 |
RU2003124638A (ru) | 2005-02-27 |
US20040115038A1 (en) | 2004-06-17 |
JP4200006B2 (ja) | 2008-12-24 |
US7467929B2 (en) | 2008-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2326268C2 (ru) | Устройство для аксиального нагнетания жидкостей | |
JP3570726B2 (ja) | 血管内血液ポンプ | |
ES2901005T3 (es) | Dispositivo de catéter | |
JP5155186B2 (ja) | 回転式血液ポンプ | |
JP4889492B2 (ja) | インペラ | |
JP5442598B2 (ja) | 遠心回転血液ポンプ | |
US7699586B2 (en) | Wide blade, axial flow pump | |
KR100351336B1 (ko) | 수동자기방사베어링및혈액침지축베어링을갖춘무밀봉회전식혈액펌프 | |
US8672611B2 (en) | Stabilizing drive for contactless rotary blood pump impeller | |
US6234998B1 (en) | Sealless rotary blood pump | |
JP2001518161A (ja) | 非円形流体式軸受ジャーナルを備えたロートダイナミックポンプ | |
AU768864B2 (en) | Sealless blood pump with means for avoiding thrombus formation | |
AU2012261669A1 (en) | Rotary blood pump | |
Wampler et al. | A sealless centrifugal blood pump with passive magnetic and hydrodynamic bearings | |
AU734310B2 (en) | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings | |
JPH05212111A (ja) | 血液ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA93 | Acknowledgement of application withdrawn (no request for examination) |
Effective date: 20050411 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180219 |