RU2108445C1 - Способ восстановления герметичности заколонного пространства - Google Patents
Способ восстановления герметичности заколонного пространства Download PDFInfo
- Publication number
- RU2108445C1 RU2108445C1 RU95120664A RU95120664A RU2108445C1 RU 2108445 C1 RU2108445 C1 RU 2108445C1 RU 95120664 A RU95120664 A RU 95120664A RU 95120664 A RU95120664 A RU 95120664A RU 2108445 C1 RU2108445 C1 RU 2108445C1
- Authority
- RU
- Russia
- Prior art keywords
- column
- diameter
- casing
- mixture
- pressure
- Prior art date
Links
Images
Landscapes
- Earth Drilling (AREA)
Abstract
Использование: при ремонтно-изоляционных работах. Обеспечивает повышение эффективноси способа. Сущность изобретения: по способу осуществляют увеличение диаметра колонны в интервале изоляции. Диаметр колонны увеличивают за счет увеличивающейся в объеме при твердении невзрывчатой разрушающей смеси (НРС). Ее закачивают в колонну и создают мост в интервале изоляции. 1 з.п. ф-лы, 1 табл.
Description
Изобретение относится к ремонтно-изоляционным работам (РИР), а именно к способам восстановления герметичности заколонного пространства.
Известен способ восстановления герметичности заколонного пространства путем создания избыточного давления внутри обсадной колонны по отношению к заколонному пространству (нагнетание жидкости или взрыванием заряда). Происходит надувание обсадной колонны и ликвидации зазора между колонной и цементным камнем [1].
Недостатки аналога заключаются в том, что, во-первых, создание избыточного давления путем нагнетания жидкости вызывает разрушение колонны не только в интервале, в котором в кольцевом пространстве имеется цемент, но и в интервалах, где цемента нет. Это опасно для целостности обсадной колонны. Во-вторых, взрывание заряда процесс малоконтролируемый, что может привести к нарушению колонны и цементного камня.
Наиболее близким к изобретению по технической сущности является способ устранения заколонных перетоков путем увеличения диаметра колонны за пределы упругих деформаций в интервале изоляции [2]. Увеличение диаметра колонны производят путем гидравлического воздействия на колонну на участке изоляции.
Недостаток известного способа заключается в большой трудоемкости работ за счет необходимости применения паркетного оборудования, которое, как правило, не отличается высокой надежностью.
Задача заключается в повышении эффективности ремонтно-изоляционных работ и в снижении трудозатрат.
Поставленная задача достигается тем, что в способе восстановления герметичности заколонного пространства путем увеличения диаметра колонны в интервале изоляции диаметр колонны увеличивают за счет увеличивающейся в объеме при твердении невзрывчатой разрушающей смеси (НРС) [3], которую закачивают в колонну и создают мост в интервале изоляции. При этом в качестве НРС используют смесь известковую для горных и буровых работ (СИГБ).
Успешность ремонтно-изоляционных работ по исправлению негерметичности цементного кольца не превышает 50%. Это объясняется тем, что применяемые изоляционные материалы (в основном цементный раствор и растворы смол) обладают общим недостатком - усадочностью.
В процессе эксплуатации скважины герметичность заколонного пространства снижается. Это происходит под воздействием нагрузок на обсадную колонну и цементный камень. Например, установлено, что при снижении давления в скважине прочность сцепления цементного камня с колонной уменьшается. Все виды перфорации также приводят к ухудшению состояния цементного кольца. В то же время, замечено, что непосредственно в интервалах перфорации сцепление /контакт/ цементного камня с колонной улучшается. Последний факт объясняют увеличением силы прижатия колонны к цементу в результате ее деформации. После опрессовки обсадной колонны также, как правило, наблюдается нарушение ее контакта с цементом. При этом наибольшие нарушения контакта отмечены в интервалах пластов с высокой проницаемостью и кавернам. В пластах с подвешенной водой нарушения контакта после опрессовки чаще всего отмечаются в зоне водонефтяного контакта /ВНК/[1].
Оценим расчетами пропускную способность для подошвенной воды кольцевого микрозазора между обсадной колонной и цементным камнем. Формулу Дарси-Вейсбаха можно написать следующим образом [4].
где - D-внутренний диаметр цементного кольца, м;
d-внешний диаметр обсадной колонны, м;
p-переппад давления, Па;
λ -коэффициент гидравлических сопротивлений;
H-длина микрозазора, м;
Q-расход воды, м3/сут
Введем обозначения D-d= δ ; P/H = grad P,
где δ - зазор между колонной и цементным камнем, м;
grad P -градиент давления, Па/м.
Тогда формула /1/ будет иметь вид:
Для определения коэффициента гидравлических сопротивлений необходимо вычислить критерий Рейнольдса
где ν - кинематическая вязкость воды / при 70oC. ν = 0,5•10-6 v2/c).
Для определения коэффициента гидравлических сопротивлений необходимо вычислить критерий Рейнольдса
где ν - кинематическая вязкость воды / при 70oC. ν = 0,5•10-6 v2/c).
При турбулентном режиме коэффициент сопротивления определяют по формуле:
Зададимся числовыми значениями: ν = 0,5•10-6м2/с; d = 0,168 м; δ = 0,1 мм = 10-4 м; grad P = 4•106 Па/м.
Зададимся числовыми значениями: ν = 0,5•10-6м2/с; d = 0,168 м; δ = 0,1 мм = 10-4 м; grad P = 4•106 Па/м.
Система уравнений /2-4/ решается методом подбора.
Таким образом, через зазор 0,1 м при градиенте давления 4 МПа/м к интервалу перфорации может поступать около 22 м3 воды в сутки.
Повышение давления в обсадной колонне приводит к увеличению ее диаметра. Расчеты показывают на сколько нужно повысить давление в колонне, чтобы ее внешний радиус увеличился на 0,1 мм для перекрытия микрозазора.
Формула для радиальных перемещений наружной стенки трубы по задаче Ляме имеет вид /5/
μ -коэффициент Пуассона, μ = 0,25;
E -модуль упругости для стали, E = 2.1.105МПа;
P1 -внутреннее давление, МПа;
P2 -внешнее давление, МПа;
r1 -внутренний радиус трубы, м;
r2 -внешний радиус трубы, м, r2=d/r.
μ -коэффициент Пуассона, μ = 0,25;
E -модуль упругости для стали, E = 2.1.105МПа;
P1 -внутреннее давление, МПа;
P2 -внешнее давление, МПа;
r1 -внутренний радиус трубы, м;
r2 -внешний радиус трубы, м, r2=d/r.
Пусть P1 = P2+Pизб или P1-P2=Pизб.
где
Pизб = избыточное давление в колонне по сравнению с наружным давлением.
Pизб = избыточное давление в колонне по сравнению с наружным давлением.
Расчеты показывают, что если между обсадной колонной и цементным кольцом существует зазор величиной 0,1 мм, то достаточно в колонне создать давление 33,7 МПа и зазор будет перекрыт за счет увеличения внешнего диаметра колонны. Такое давление и даже большее можно создать путем размещения в колонне моста из невзрывчатой разрушающей смеси /НРС/ и в частности смеси известковой для горных и боровых работ /СИГБ/ [6].
НРС применяют, главным образом при разрушении прочных хрупких материалов (скальные породы), бетонных и железобетонных изделий, каменных кладок, для добычи природного камня.
НРС чаще всего представляют собой порошкообразные негорючие и невзрывоопасные материалы, дающие с водой щелочную реакцию (pH=12). При смешивании порошка НРС с водой образуется суспензия (рабочая смесь), которая, будучи залитая в шпур, сделанный в объекте, подлежащем разрушению, с течением времени схватывается, твердеет, одновременно увеличиваясь в объеме. Увеличение объема - следствие гидратации компонентов, входящих в состав НРС, приводит к развитию в шпуре гидратационного давления (более 40 МПа). Под действием гидратационного давления в теле объекта развиваются напряжения, приводящие к его разрушению [7].
Предлагаемый способ изоляции заколонного пространства осуществляют следующим образом.
В скважину спускают колонну НКТ с таким расчетом, чтобы нижний конец находился на 10-20 м ниже интервала перфорации продуктивного пласта. Возбуждают циркуляцию и промывают скважину водой, охлажденной до 0-10oC.
Затворяют НРС на воде с температурой 0-10oC.
При открытом затрубном пространстве в НКТ закачивают суспензию НРС в объеме, необходимом для заполнения обсадной колонны в интервале 10-20 м.
Продавливают суспензию НРС до выравнивания ее уровней в НКТ в затрубном пространстве.
Приподнимают НКТ до глубины расположения нижних перфорационных отверстий и при необходимости промывают скважину, вымывая избыточный объем НРС.
Поднимают НКТ выше интервала перфорации, герметизируют затрубное пространство на время, необходимое для расширения и отверждения НРС.
Осваивают скважину.
Преимуществом предлагаемого способа является то, что перекрытие каналов для поступления воды к интервалу перфорации происходит не за счет гидравлического воздействия на колонну, а за счет создания в обсадной колонне моста из расширяющегося материала. Это, во-первых, снимает необходимость установки пакера; во-вторых, уменьшает временные затраты на проведение РИР.
Claims (2)
1. Способ восстановления герметичности заколонного пространства путем увеличения диаметра колонны в интервале изоляции, отличающийся тем, что диаметр колонны увеличивают за счет увеличивающейся в обойме при твердении невзрывчатой разрушающей смеси (НРС), которую закачивают в колонну, и создают мост в интервале изоляции.
2. Способ по п. 1, отличающийся тем, что в качестве НРС используют смесь известковую для горных и буровых работ (СИГБ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95120664A RU2108445C1 (ru) | 1995-12-01 | 1995-12-01 | Способ восстановления герметичности заколонного пространства |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU95120664A RU2108445C1 (ru) | 1995-12-01 | 1995-12-01 | Способ восстановления герметичности заколонного пространства |
Publications (2)
Publication Number | Publication Date |
---|---|
RU95120664A RU95120664A (ru) | 1998-02-20 |
RU2108445C1 true RU2108445C1 (ru) | 1998-04-10 |
Family
ID=20174464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU95120664A RU2108445C1 (ru) | 1995-12-01 | 1995-12-01 | Способ восстановления герметичности заколонного пространства |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2108445C1 (ru) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6328113B1 (en) | 1998-11-16 | 2001-12-11 | Shell Oil Company | Isolation of subterranean zones |
US6470966B2 (en) | 1998-12-07 | 2002-10-29 | Robert Lance Cook | Apparatus for forming wellbore casing |
US6557640B1 (en) | 1998-12-07 | 2003-05-06 | Shell Oil Company | Lubrication and self-cleaning system for expansion mandrel |
US6568471B1 (en) | 1999-02-26 | 2003-05-27 | Shell Oil Company | Liner hanger |
US6575250B1 (en) | 1999-11-15 | 2003-06-10 | Shell Oil Company | Expanding a tubular element in a wellbore |
US6575240B1 (en) | 1998-12-07 | 2003-06-10 | Shell Oil Company | System and method for driving pipe |
US6604763B1 (en) | 1998-12-07 | 2003-08-12 | Shell Oil Company | Expandable connector |
US6634431B2 (en) | 1998-11-16 | 2003-10-21 | Robert Lance Cook | Isolation of subterranean zones |
US6640903B1 (en) | 1998-12-07 | 2003-11-04 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6712154B2 (en) | 1998-11-16 | 2004-03-30 | Enventure Global Technology | Isolation of subterranean zones |
US6725919B2 (en) | 1998-12-07 | 2004-04-27 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6745845B2 (en) | 1998-11-16 | 2004-06-08 | Shell Oil Company | Isolation of subterranean zones |
US6823937B1 (en) | 1998-12-07 | 2004-11-30 | Shell Oil Company | Wellhead |
US7665532B2 (en) | 1998-12-07 | 2010-02-23 | Shell Oil Company | Pipeline |
US7712522B2 (en) | 2003-09-05 | 2010-05-11 | Enventure Global Technology, Llc | Expansion cone and system |
US7739917B2 (en) | 2002-09-20 | 2010-06-22 | Enventure Global Technology, Llc | Pipe formability evaluation for expandable tubulars |
US7740076B2 (en) | 2002-04-12 | 2010-06-22 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7775290B2 (en) | 2003-04-17 | 2010-08-17 | Enventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7793721B2 (en) | 2003-03-11 | 2010-09-14 | Eventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7819185B2 (en) | 2004-08-13 | 2010-10-26 | Enventure Global Technology, Llc | Expandable tubular |
US7886831B2 (en) | 2003-01-22 | 2011-02-15 | Enventure Global Technology, L.L.C. | Apparatus for radially expanding and plastically deforming a tubular member |
US7918284B2 (en) | 2002-04-15 | 2011-04-05 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
-
1995
- 1995-12-01 RU RU95120664A patent/RU2108445C1/ru active
Non-Patent Citations (1)
Title |
---|
Блажевич В.А. и др. Ремонтно-изоляционные работы при эксплуатации нефтяных месторождений. - М.: Недра, 1981, с. 37. Амиров А.Д. и др. капитальный ремонт нефтяных и газовых скважин. - М.: Недра, 1975, с. 261 - 263. ТУ 21-31-56-87. Невзрывчатое разрушающее средство. 1987. Блажевич В.А. и др. Справочник мастера по капитальному ремонту скважин. - М.: Недра, 1985, с. 208. Федосьев В.И. Сопротивление материалов. - М.: Наука, 1972, с. 280. Инструкция по применению смест известковой для горных и буровых работ (СИГБ). - М.: АО "Стойматериалы", 1987. Николаев М.М. Рациональные методы применения невзрывчатых разрушающих средств. Строительные материалы. N 10, 1987. - М.: Изд. литературы по строительству, с. 23 - 24. * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6634431B2 (en) | 1998-11-16 | 2003-10-21 | Robert Lance Cook | Isolation of subterranean zones |
US6328113B1 (en) | 1998-11-16 | 2001-12-11 | Shell Oil Company | Isolation of subterranean zones |
US6745845B2 (en) | 1998-11-16 | 2004-06-08 | Shell Oil Company | Isolation of subterranean zones |
US6712154B2 (en) | 1998-11-16 | 2004-03-30 | Enventure Global Technology | Isolation of subterranean zones |
US6823937B1 (en) | 1998-12-07 | 2004-11-30 | Shell Oil Company | Wellhead |
US6725919B2 (en) | 1998-12-07 | 2004-04-27 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US7665532B2 (en) | 1998-12-07 | 2010-02-23 | Shell Oil Company | Pipeline |
US6575240B1 (en) | 1998-12-07 | 2003-06-10 | Shell Oil Company | System and method for driving pipe |
US6604763B1 (en) | 1998-12-07 | 2003-08-12 | Shell Oil Company | Expandable connector |
US6631760B2 (en) | 1998-12-07 | 2003-10-14 | Shell Oil Company | Tie back liner for a well system |
US6470966B2 (en) | 1998-12-07 | 2002-10-29 | Robert Lance Cook | Apparatus for forming wellbore casing |
US6758278B2 (en) | 1998-12-07 | 2004-07-06 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6561227B2 (en) | 1998-12-07 | 2003-05-13 | Shell Oil Company | Wellbore casing |
US6640903B1 (en) | 1998-12-07 | 2003-11-04 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6497289B1 (en) | 1998-12-07 | 2002-12-24 | Robert Lance Cook | Method of creating a casing in a borehole |
US6739392B2 (en) | 1998-12-07 | 2004-05-25 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6557640B1 (en) | 1998-12-07 | 2003-05-06 | Shell Oil Company | Lubrication and self-cleaning system for expansion mandrel |
US6631769B2 (en) | 1999-02-26 | 2003-10-14 | Shell Oil Company | Method of operating an apparatus for radially expanding a tubular member |
US6684947B2 (en) | 1999-02-26 | 2004-02-03 | Shell Oil Company | Apparatus for radially expanding a tubular member |
US6568471B1 (en) | 1999-02-26 | 2003-05-27 | Shell Oil Company | Liner hanger |
US6631759B2 (en) | 1999-02-26 | 2003-10-14 | Shell Oil Company | Apparatus for radially expanding a tubular member |
US6705395B2 (en) | 1999-02-26 | 2004-03-16 | Shell Oil Company | Wellbore casing |
US6575250B1 (en) | 1999-11-15 | 2003-06-10 | Shell Oil Company | Expanding a tubular element in a wellbore |
US7740076B2 (en) | 2002-04-12 | 2010-06-22 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7918284B2 (en) | 2002-04-15 | 2011-04-05 | Enventure Global Technology, L.L.C. | Protective sleeve for threaded connections for expandable liner hanger |
US7739917B2 (en) | 2002-09-20 | 2010-06-22 | Enventure Global Technology, Llc | Pipe formability evaluation for expandable tubulars |
US7886831B2 (en) | 2003-01-22 | 2011-02-15 | Enventure Global Technology, L.L.C. | Apparatus for radially expanding and plastically deforming a tubular member |
US7793721B2 (en) | 2003-03-11 | 2010-09-14 | Eventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7775290B2 (en) | 2003-04-17 | 2010-08-17 | Enventure Global Technology, Llc | Apparatus for radially expanding and plastically deforming a tubular member |
US7712522B2 (en) | 2003-09-05 | 2010-05-11 | Enventure Global Technology, Llc | Expansion cone and system |
US7819185B2 (en) | 2004-08-13 | 2010-10-26 | Enventure Global Technology, Llc | Expandable tubular |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2108445C1 (ru) | Способ восстановления герметичности заколонного пространства | |
Vrålstad et al. | Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency | |
US8235116B1 (en) | Well remediation using surfaced mixed epoxy | |
AU660370B2 (en) | Cementing systems for oil wells | |
RU2105128C1 (ru) | Способ восстановления герметичности обсадных колонн | |
Khalifeh et al. | Techniques and materials for North Sea plug and abandonment operations | |
NO318614B1 (no) | Fremgangsmate omfattende bruk av en tilsatsherdende, romtemperaturvulkaniserbar silikonsammensetning ved bronnkonstruksjon, -reparasjon og/eller -stenging. | |
CA2970650C (en) | Establishing control of oil and gas producing well bore through application of self-degrading particulates | |
RU2324811C1 (ru) | Способ повышения продуктивности скважин (варианты) | |
Asadimehr | Examining Drilling Problems and Practical Solutions Regarding them | |
Wolterbeek et al. | Restoration of annular zonal isolation using localized casing expansion (LCE) technology: A proof of concept based on laboratory studies and field trial results | |
EP1373681B1 (en) | A method for pressure- and flow-preventive fixing of pipes in a well | |
Wu et al. | Sealant technologies for remediating cement-related oil and gas well leakage | |
RU2378493C1 (ru) | Способ расконсервации нефтегазовой скважины с негерметичной эксплуатационной колонной в условиях наличия в разрезе многолетнемерзлых пород | |
RU2320849C2 (ru) | Способ строительства и эксплуатации скважин | |
RU2273722C2 (ru) | Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины | |
RU2154150C2 (ru) | Способ изоляции перекрытого эксплуатационной колонной продуктивного пласта | |
Khandka | Leakage behind casing | |
WO2021066642A1 (en) | Method for plugging wellbores in the earth | |
WO2014172715A1 (en) | Epoxy-activator packer inflating system, methods of inflating packer with epoxy-activator system, inflatable packer with epoxy-activator in bladder | |
Henriksen | Plug and abandonment on the Norwegian continental shelf | |
US20130048306A1 (en) | Apparatus and method for penetrating cement surrounding a tubular | |
TEODORIU et al. | Can Geothermal Wells Go Cementless? | |
SU1710699A1 (ru) | Способ тампонажа буровой скважины | |
RU2161239C1 (ru) | Способ строительства скважины многопластового нефтяного месторождения |