RU2178898C1 - Сейсмоприемное устройство - Google Patents
Сейсмоприемное устройство Download PDFInfo
- Publication number
- RU2178898C1 RU2178898C1 RU2000130629/28A RU2000130629A RU2178898C1 RU 2178898 C1 RU2178898 C1 RU 2178898C1 RU 2000130629/28 A RU2000130629/28 A RU 2000130629/28A RU 2000130629 A RU2000130629 A RU 2000130629A RU 2178898 C1 RU2178898 C1 RU 2178898C1
- Authority
- RU
- Russia
- Prior art keywords
- inertial mass
- optical
- coupler
- multiplexer
- fiber
- Prior art date
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретение относится к сейсморазведке, а также может быть использовано в вибродиагностической аппаратуре для измерения перемещения. Технический результат: повышение точности измерений перемещений инерционной массы в трех координатах путем использования дифференциальных фазовых волоконно-оптических измерительных систем относительно одной инерционной массы и гидродинамического торможения, а также уменьшение габаритов. Устройство содержит корпус, инерционную массу (сейсмомассу) в виде куба. Вершины инерционной массы связаны с корпусом посредством восьми пружин, расположенных в плоскостях диаметральных сечений инерционной массы. На гранях инерционной массы расположены зеркала, а напротив них - торцы световодов с полупрозрачными зеркалами. Световоды соединены через оптические соединители-разветвители с источником оптического когерентного излучения и оптическим мультиплексором. Мультиплексор соединен через фотоприемник с устройством определения фазы, подключенным к регистратору. 1 ил.
Description
Изобретение относится к сейсморазведке и может быть использовано в поисковой сейсморазведке в транзитных зонах, на предельном мелководье, в донных станциях, в сейсмологии, а такие в вибрационно-диагностической аппаратуре.
Известно устройство для регистрации трех компонент сейсмических колебаний (Авт. свид. 1157389, кл. G 01 V 1/16), в котором используется пьезоэлементы, расположенные между корпусом и инерционной массой, работающие на сжатие.
Недостатком этого устройства является небольшой динамический диапазон в связи с имеющимися значительными электромагнитными помехами в измерительной системе.
Известен трехкомпонентный пьезоэлектрический сейсмоакустический приемник (Авт. свид, 1719173, кл. G 01 V 1/16), содержащий корпус, инерционный элемент, три пары пьезоэлектрических пакетов, связанных армирующими шпильками с инерционной массой. Пьезоэлектрические пакеты выполнены в виде консольной балки.
Недостаток этого приемника - небольшой динамический диапазон в связи с имеющимися электромагнитными помехами, кроме того, измерение перемещения выполняется в косвенных значениях (по второй производной перемещения инерционной массы - ускорению).
Наиболее близким техническим решением к предлагаемому устройству является сейсмоприемное устройство (Патент РФ 2137156, кл. G 01 V 1/16), содержащее корпус, закрепленную в нем на упругом подвесе инерционную массу, зеркала, установленные на поверхности инерционной массы, световоды, один из которых снабжен на торце полупрозрачным зеркалом и подключен к входу-выходу оптического соединителя-разветвителя, второй вход которого соединен с источником оптического когерентного излучения, оптический мультиплексор, фотоприемник, устройство определения фазы, соединенное с регистратором. Устройство содержит также систему электродинамического торможения, для чего сейсмомасса выполнена в виде магнита, а на внутренней поверхности корпуса расположены короткозамкнутые витки.
Данное устройство измеряет одну компоненту перемещения инерционной массы. Для измерения трех компонент сейсмического поля используют три таких устройства, закрепленных под 90 градусов друг к другу и измеряющих х, y и z компоненты сейсмического поля. При этом демпфирование инерционной массы происходит за счет электродинамического и механического торможения, что сложно для настройки идентичности колебательных контуров и идентичности шкал измерения перемещения инерционных масс. Кроме того, габариты трехкомпонентного устройства велики.
Задачей изобретения является создание компактного сейсмоприемного устройства, обладающего высокой точностью измерений по трем координатам.
Решение данной задачи с достижением указанного технического результата обеспечивается за счет использования дифференциальных фазовых волоконно-оптических измерительных систем при одной инерционной массе, а также за счет упрощения системы демпфирования инерционной массы.
Сейсмоприемное устройство согласно изобретению содержит корпус, закрепленную в нем на упругом подвесе инерционную массу, выполненную в виде куба, упругий подвес состоит из восьми пружин, соединяющих вершины инерционной массы с корпусом и расположенных в плоскостях диаметральных сечений инерционной массы, помещенной в светопроницаемую вязкую жидкость, в центральной части каждой грани инерционной массы установлено зеркало, напротив каждого зеркала расположен торец световода, снабженный полупрозрачным зеркалом, каждый световод подключен к входу-выходу соответствующего оптического соединителя-разветвителя, вторые входы соединителей-разветвителей подключены к источнику оптического когерентного излучения, вторые выходы всех оптических соединителей-разветвителей соединены с соответствующими входами оптического мультиплексора, выход которого через фотоприемник соединен с устройством определения фазы, подключенным к регистратору.
Изобретение поясняется чертежом, где схематично изображено сейсмоприемное устройство.
Устройство содержит корпус 1, кубическую инерционную массу (сейсмомассу) 2, закрепленную в центральной части корпуса на упругом подвесе, состоящем из восьми пружин 3, соединяющих вершины инерционной массы 2 массы с корпусом и расположенных в плоскостях ее диаметральных сечений. На всех гранях инерционной массы 2 в их центральных частях закреплены зеркала 4. Напротив зеркал 4 расположены торцы световодов 5, снабженные полупрозрачными зеркалами 6. Световоды 5 расположены попарно в двух перпендикулярных плоскостях, проходящих через центральную точку инерционной массы 2, и установлены в корпусе 1 с помощью сальников 7 и крышек 8. Внутрь корпуса 1 залита светопроницаемая вязкая (масляная) жидкость 9. Доступ внутрь датчика и заливка жидкости осуществляются с помощью крышки с уплотнителем 19. Источник оптического когерентного излучения (лазер) 10 соединен световодом 16 со вторыми входами соединителей-разветвителей 11, первые входы-выходы которых соединены со световодами 5. Вторые выходы оптических соединителей-разветвителей 11 соединены световодами 17 с входами оптического мультиплексора 12, выход которого световодом 18 соединен с фотоприемником 13. Выход фотоприемника 13 соединен через устройство определения фазы 14 с регистратором 15.
Устройство работает следующим образом.
Корпус 1 сейсмоприемного устройства устанавливается на измеряемом объекте. Если измерения проводятся на дне водоема, корпус выполняется с утяжеленным основанием, что необходимо для вертикальной ориентации устройства. Под действием сейсмических колебаний инерционная масса 2 получает колебательные движения относительно корпуса за счет пружин 3 в светопроницаемой вязкой жидкости 9. Генерируемые лазерным источником 10 по синусоидальному или косинусоидальному закону гармонические оптические волны подаются по световоду 16 через оптические соединители-разветвители типа 2Х2 на световоды 5. Через полупрозрачные зеркала 6 оптические лучи достигает зеркал 4, которые расположены на инерционной массе 2. Отраженные от зеркал 4 оптические лучи через полупрозрачные зеркала 6, световоды 5, оптические соединители-разветвители 11 и световоды 17 поступают на соответствующие входы оптического мультиплексора 12. Там они мультиплексируются /1/ с разделением по времени, частоте или другим признакам и по световоду 18 поступают на фотоприемник 13, где оптические данные преобразуется в электрические. Электрические данные поступают в устройство определения фазы 14, выполненное на базе микропроцессора. Здесь электрические данные оцифровываются и с использованием принципа решения квадратурных фазовых уравнений /1/ определяется трехкомпонентное дифференциальное смещение инерционной массы относительно исходного нейтрального или предыдущего положения. Длина перемещения выражается суммой количества полных фазовых циклов (длин волн) и фазы. Полученные трехкомпонентные данные запоминаются на цифровом регистраторе 15. Демпфирование колебаний инерционной массы 2 осуществляется за счет пружин 3 и светопроницаемой жидкости 9. Чувствительность и частотный диапазон датчика определяются жесткостью пружин и вязкостью светопроницаемой жидкости.
Литература
1. Multi-channel interferometric demodulator, JEFF BUSH and ALLEN CEKORICH, SPIE. vol. 3180, 02277-786 X/976, p. 19-30.
1. Multi-channel interferometric demodulator, JEFF BUSH and ALLEN CEKORICH, SPIE. vol. 3180, 02277-786 X/976, p. 19-30.
Claims (1)
- Сейсмоприемное устройство, содержащее корпус, закрепленную в нем на упругом подвесе инерционную массу, зеркала, установленные на поверхности инерционной массы, световод с торцом, снабженным полупрозрачным зеркалом, подключенный к первому входу-выходу оптического соединителя-разветвителя, второй вход которого соединен с источником оптического когерентного излучения, оптический мультиплексор, фотоприемник, устройство определения фазы, соединенное с регистратором, отличающееся тем, что инерционная масса выполнена в виде куба, упругий подвес состоит из восьми пружин, соединяющих вершины инерционной массы с корпусом и расположенных в плоскостях диаметральных сечений инерционной массы, помещенной в светопроницаемую вязкую жидкость, в центральной части каждой грани инерционной массы установлено зеркало, напротив каждого зеркала расположен торец световода, снабженный полупрозрачным зеркалом, каждый световод подключен к первому входу-выходу соответствующего оптического соединителя-разветвителя, вторые входы соединителей-разветвителей подключены к источнику оптического когерентного излучения, вторые выходы всех оптических соединителей-разветвителей соединены с соответствующими входами мультиплексора, выход которого через фотоприемник соединен с устройством определения фазы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2000130629/28A RU2178898C1 (ru) | 2000-12-07 | 2000-12-07 | Сейсмоприемное устройство |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2000130629/28A RU2178898C1 (ru) | 2000-12-07 | 2000-12-07 | Сейсмоприемное устройство |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2178898C1 true RU2178898C1 (ru) | 2002-01-27 |
Family
ID=20243080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2000130629/28A RU2178898C1 (ru) | 2000-12-07 | 2000-12-07 | Сейсмоприемное устройство |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2178898C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU179738U1 (ru) * | 2017-12-18 | 2018-05-23 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Военная академия Ракетных войск стратегического назначения имени Петра Великого МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ | Сейсмограф |
-
2000
- 2000-12-07 RU RU2000130629/28A patent/RU2178898C1/ru not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU179738U1 (ru) * | 2017-12-18 | 2018-05-23 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ВОЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ Военная академия Ракетных войск стратегического назначения имени Петра Великого МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ | Сейсмограф |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gardner et al. | A fiber-optic interferometric seismometer | |
CA2535057C (en) | Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer | |
US4893930A (en) | Multiple axis, fiber optic interferometric seismic sensor | |
EP1821107B1 (en) | Pressure compensated optical accelerometer, optical inclinometer and seismic sensor system | |
US4800267A (en) | Optical fiber microbend horizontal accelerometer | |
AU600732B2 (en) | Interferometric means and method for accurate determination of fiber-optic well logging cable length | |
Lopez-Hignera et al. | Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications | |
RU2253882C1 (ru) | Гравиметр | |
US5837998A (en) | Two-dimensional fiber optic acceleration and vibration sensor | |
RU2716867C1 (ru) | Система измерения трёхмерного линейного и углового ускорения и перемещения объекта в пространстве с использованием волоконных брэгговских решеток | |
Chen et al. | Michelson fiberoptic accelerometer | |
US4522495A (en) | Optical sensing devices | |
RU2178898C1 (ru) | Сейсмоприемное устройство | |
US5061069A (en) | Fiber-optic bender beam interferometer accelerometer | |
Annovazzi-Lodi et al. | Comparison of capacitive and feedback-interferometric measurements on MEMS | |
Gardner et al. | Fiber optic seismic sensor | |
US5044749A (en) | Fiber-optic bender beam interferometer rate sensor | |
Dinev | Two dimensional fiber‐optical accelerometer | |
Nawrocka et al. | Dynamic high-pressure calibration of the fiber-optic sensor based on birefringent side-hole fibers | |
Pineda et al. | Vibration measurement using laser interferometry | |
RU2010235C1 (ru) | Волоконно-оптический акселерометр | |
Vallet et al. | A low-frequency optical accelerometer | |
Zucco et al. | Progress on Laser Gauge Interferometer (LIG-A) for high resolution accelerometers | |
RU2159925C1 (ru) | Оптико-механический измеритель давления | |
RU2137158C1 (ru) | Сейсмоприемное устройство |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20041208 |
|
NF4A | Reinstatement of patent |
Effective date: 20080227 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20081208 |
|
TK4A | Correction to the publication in the bulletin (patent) |
Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 3-2002 FOR TAG: (73) |
|
NF4A | Reinstatement of patent |
Effective date: 20120210 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20121208 |