RU161582U1 - MOBILE OBJECT SPEED CALCULATOR - Google Patents
MOBILE OBJECT SPEED CALCULATOR Download PDFInfo
- Publication number
- RU161582U1 RU161582U1 RU2015153040/08U RU2015153040U RU161582U1 RU 161582 U1 RU161582 U1 RU 161582U1 RU 2015153040/08 U RU2015153040/08 U RU 2015153040/08U RU 2015153040 U RU2015153040 U RU 2015153040U RU 161582 U1 RU161582 U1 RU 161582U1
- Authority
- RU
- Russia
- Prior art keywords
- unit
- block
- inputs
- additional
- outputs
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 35
- 238000005259 measurement Methods 0.000 claims abstract description 33
- 238000012935 Averaging Methods 0.000 claims abstract description 32
- 230000021615 conjugation Effects 0.000 claims abstract description 27
- 238000012937 correction Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000000844 transformation Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/64—Devices characterised by the determination of the time taken to traverse a fixed distance
- G01P3/80—Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/16—Systems for determining distance or velocity not using reflection or reradiation using difference in transit time between electrical and acoustic signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Вычислитель скорости подвижного объекта, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, блок коррекции пределов измерения, умножитель, ключ, первый блок памяти, блок управления, блок вычисления модуля, пороговый блок, второй блок памяти и синхрогенератор, при этом выходы блока задержки соединены с входами блока комплексного сопряжения, выходы которого соединены с первыми входами блока комплексного умножения, вторые входы которого объединены с входами блока задержки, выход первого блока памяти соединен с первым входом умножителя, выход которого соединен с входом ключа, выход порогового блока соединен с управляющим входом ключа, первый вход порогового блока соединен с выходом второго блока памяти, выход синхрогенератора соединен с синхровходами блока задержки, блока комплексного сопряжения, блока комплексного умножения, блока усреднения, блока вычисления фазы, умножителя, ключа, блока вычисления модуля, первого и второго блоков памяти, блока коррекции пределов измерения и порогового блока, отличающийся тем, что введены первый и второй двухканальные ключи, дополнительный блок усреднения, дополнительный блок задержки, дополнительный блок комплексного сопряжения и дополнительный блок комплексного умножения, при этом выходы блока комплексного умножения соединены с объединенными входами первого и второго двухканальных ключей, управляющие входы которых соединены соответственно с первым и вторым выходами блока управления, выходы первого двухканального ключа соединены с входами блока усреднения, выходы которого соединены с входами дополнитеA moving object speed calculator comprising a delay unit, a complex conjugation unit, a complex multiplication unit, an averaging unit, a phase calculation unit, a measurement range correction unit, a multiplier, a key, a first memory unit, a control unit, a module calculation unit, a threshold unit, a second memory unit and a sync generator, while the outputs of the delay unit are connected to the inputs of the complex conjugation unit, the outputs of which are connected to the first inputs of the complex multiplication unit, the second inputs of which are combined with the inputs of the back unit Arms, the output of the first memory block is connected to the first input of the multiplier, the output of which is connected to the key input, the output of the threshold block is connected to the control input of the key, the first input of the threshold block is connected to the output of the second memory block, the output of the clock generator is connected to the sync inputs of the delay block, complex pairing unit , a complex multiplication block, an averaging block, a phase calculation block, a multiplier, a key, a module calculation block, the first and second memory blocks, a correction unit for the measurement limits and a threshold block, exl characterized in that the first and second two-channel keys, an additional averaging block, an additional delay block, an additional complex conjugation block and an additional complex multiplication block are introduced, while the outputs of the complex multiplication block are connected to the combined inputs of the first and second two-channel keys, the control inputs of which are connected respectively with the first and second outputs of the control unit, the outputs of the first two-channel key are connected to the inputs of the averaging unit, the outputs of which are connected to the inputs ladies complete
Description
Устройство относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа скорости подвижного объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов.The device relates to computer technology and is intended for calculation based on the correlation principle of the speed of a moving object; can be used in automated air traffic control systems to detect and measure the speed of aircraft.
Известен многоканальный неследящий фильтровой измеритель [1], каждый канал которого содержит последовательно соединенные согласованный фильтр и детектор, выходы каналов объединены решающим устройством. Однако данное устройство обладает невысокой точностью измерения.Known multi-channel non-tracking filter meter [1], each channel of which contains a matched filter and detector connected in series, the outputs of the channels are combined by a resolver. However, this device has a low measurement accuracy.
Известно также устройство обработки сигнала движущейся цели [2], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой точностью и неоднозначностью измерения.A device for processing a signal of a moving target [2] is also known, which contains series-delayed blocks, a complex number multiplier, and a subtractor. However, this device has low accuracy and ambiguity of measurement.
Наиболее близким к заявляемому устройству является измеритель доплеровских сигналов [3], выбранный в качестве прототипа, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, умножитель, ключ, блок вычисления модуля, первый блок памяти, блок управления, пороговый блок, второй блок памяти и синхрогенератор. Однако данное устройство обладает неоднозначностью и невысокой точностью измерения за счет наличия большого числа функциональных преобразований.Closest to the claimed device is a Doppler signal meter [3], selected as a prototype, containing a delay unit, complex conjugation unit, complex multiplication unit, averaging unit, phase calculation unit, multiplier, key, module calculation unit, first memory unit, unit controls, a threshold block, a second memory block and a clock generator. However, this device has ambiguity and low measurement accuracy due to the presence of a large number of functional transformations.
Задачей, решаемой в заявляемом устройстве, является расширение диапазона однозначно измеряемой радиальной скорости и повышение точности измерения за счет меньшего числа функциональных преобразований.The problem to be solved in the claimed device is to expand the range of uniquely measured radial velocity and increase the accuracy of the measurement due to fewer functional transformations.
Для решения поставленной задачи в вычислитель скорости подвижного объекта, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, блок коррекции пределов измерения, умножитель, ключ, первый блок памяти, блок вычисления модуля, блок управления, пороговый блок, второй блок памяти и синхрогенератор, введены первый и второй двухканальные ключи, дополнительный блок усреднения, дополнительный блок задержки, дополнительный блок комплексного сопряжения и дополнительный блок комплексного умножения.To solve the problem in a speed calculator of a moving object, containing a delay unit, a complex conjugation unit, a complex multiplication unit, an averaging unit, a phase calculation unit, a measurement range correction unit, a multiplier, a key, a first memory unit, a module calculation unit, a control unit, a threshold unit, a second memory unit and a clock generator, the first and second two-channel keys, an additional averaging unit, an additional delay unit, an additional complex pairing unit and an additional unit are introduced complex multiplication.
Дополнительные блоки, введенные в предлагаемый вычислитель, являются известными. Так, соединенные вместе блок задержки, блок комплексного сопряжения и блок комплексного умножения позволяют выделить доплеровский набег фазы за интервал между соседними импульсами. Однако неизвестно совместное применение блока задержки, блока комплексного сопряжения, блока комплексного умножения, первого и второго двухканальных ключей, блока управления, дополнительного блока задержки, дополнительного блока комплексного сопряжения и дополнительного блока комплексного умножения. Новыми являются связи первого и второго двухканальных ключей с блоком комплексного умножения и блоком управления, блока усреднения с первым двухканальным ключом и дополнительным блоком задержки, дополнительного блока усреднения со вторым двухканальным ключом и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с дополнительным блоком задержки и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с блоком вычисления фазы, блоком коррекции пределов измерения и блоком вычисления модуля, что обеспечивает расширение диапазона однозначно измеряемой радиальной скорости и повышение точности измерения за счет меньшего числа функциональных преобразований при применении совместной обработки когерентно-импульсных радиосигналов. Связи между синхрогенератором и всеми блоками вычислителя скорости подвижного объекта обеспечивают согласованную обработку неэквидистантной последовательности когерентно-импульсных радиосигналов.Additional blocks entered in the proposed calculator are known. Thus, the delay unit, the complex conjugation unit, and the complex multiplication unit connected together allow one to isolate the Doppler phase incursion for the interval between adjacent pulses. However, the joint use of the delay unit, the complex conjugation unit, the complex multiplication unit, the first and second two-channel keys, the control unit, the additional delay unit, the additional complex conjugation unit and the additional complex multiplication unit is not known. The connections of the first and second two-channel keys with the complex multiplication unit and the control unit, the averaging unit with the first two-channel key and the additional delay unit, the additional averaging unit with the second two-channel key and the additional complex conjugation unit, the additional complex multiplication unit with the additional delay unit and the additional are new complex conjugation unit, an additional complex multiplication unit with a phase calculation unit, a limit correction unit, and measurement and a module calculation unit, which provides an extension of the range of unambiguously measured radial velocity and increased measurement accuracy due to fewer functional transformations when using co-processing of coherent-pulse radio signals. The connections between the sync generator and all the blocks of the calculator of the speed of the moving object provide a coordinated processing of an nonequivalent sequence of coherent-pulse radio signals.
Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является расширение диапазона однозначно измеряемых радиальных скоростей и повышение точности измерения.The technical result provided by the given set of features is to expand the range of unambiguously measured radial velocities and increase the measurement accuracy.
Заявляемое решение носит технический характер, осуществимо, воспроизводимо и, следовательно, является промышленно применимым.The claimed solution is technical in nature, feasible, reproducible and, therefore, is industrially applicable.
На фиг. 1 представлена структурная электрическая схема вычислителя скорости подвижного объекта; на фиг. 2 - блока задержки; на фиг. 3 - блока комплексного сопряжения; на фиг. 4 - блока комплексного умножения; на фиг. 5 - блока усреднения; на фиг. 6 - блока вычисления фазы; на фиг. 7 - блока коррекции пределов измерения; на фиг. 8 - блока присвоения знака; на фиг. 9 - блока вычисления модуля, на фиг. 10 - двухканального ключа; на фиг. 11 - блока управления.In FIG. 1 is a structural electrical diagram of a speed calculator of a moving object; in FIG. 2 - delay unit; in FIG. 3 - block complex conjugation; in FIG. 4 - block complex multiplication; in FIG. 5 - averaging unit; in FIG. 6 - phase calculation unit; in FIG. 7 - block correction limits of measurement; in FIG. 8 - character assignment unit; in FIG. 9 - module calculation unit, in FIG. 10 - two-channel key; in FIG. 11 - control unit.
Вычислитель скорости подвижного объекта (фиг. 1) содержит блок 1 задержки, блок 2 комплексного сопряжения, блок 3 комплексного умножения, блок 4 усреднения, блок 5 вычисления фазы, блок 6 коррекции пределов измерения, умножитель 7, ключ 8, первый блок 9 памяти, блок 10 управления, блок 11 вычисления модуля, пороговый блок 12, второй блок 13 памяти, синхрогенератор 14, первый двухканальный ключ 15, второй двухканальный ключ 16, дополнительный блок 17. усреднения, дополнительный блок 18 задержки, дополнительный блок 19 комплексного сопряжения и дополнительный блок 20 комплексного умножения, при этом выходы блока 1 задержки соединены с входами блока 2 комплексного сопряжения, выходы которого соединены с первыми входами блока 3 комплексного умножения, вторые входы которого объединены с входами блока 1 задержки, выход первого блока 9 памяти соединен с первым входом умножителя 7, выход которого соединен с входом ключа 8, выход порогового блока 12 соединен с управляющим входом ключа 8, первый вход порогового блока 12 соединен с выходом второго блока 13 памяти, выходы блока 3 комплексного умножения соединены с объединенными входами первого 15 и второго 16 двухканальных ключей, управляющие входы которых соединены соответственно с первым и вторым выходами блока 10 управления, выходы первого двухканального ключа 15 соединены с входами блока 4 усреднения, выходы которого соединены с входами дополнительного блока 18 задержки, выходы второго двухканального ключа 16 соединены с входами дополнительного блока 17 усреднения, выходы которого соединены с входами дополнительного блока 19 комплексного сопряжения, выходы дополнительного блока 18 задержки соединены с первыми входами дополнительного блока 20 комплексного умножения, вторые входы которого соединены с выходами дополнительного блока 19 комплексного сопряжения, выходы блока 20 комплексного умножения соединены с объединенными входами блока 5 вычисления фазы, вторым и третьим входами блока 6 коррекции пределов измерения и блока 11 вычисления модуля, выход блока 11 вычисления модуля соединен со вторым входом порогового блока 12, выход блока 6 коррекции пределов измерения соединен со вторым входом умножителя 7, выход синхрогенератора 14 соединен с синхровходами блока 1 задержки, блока 2 комплексного сопряжения, блока 3 комплексного умножения, блока 4 усреднения, блока 5 вычисления фазы, блока 6 коррекции пределов измерения, умножителя 7, ключа 8, первого блока 9 памяти, блока 11 вычисления модуля, порогового блока 12, второго блока 13 памяти, первого 15 и второго 16 двухканальных ключей, дополнительного блока 17 усреднения, дополнительного блока 18 задержки, дополнительного блока 19 комплексного сопряжения и дополнительного блока 20 комплексного умножения, причем входами вычислителя скорости подвижного объекта являются входы блока 1 задержки, а первым и вторым выходами - соответственно выход ключа 8 и выход порогового блока 12.The speed calculator of the moving object (Fig. 1) contains a
Блок 1 задержки и дополнительный блок 18 задержки (фиг. 2) содержат две цифровые линии задержки 21, входами блоков задержки являются входы цифровых линий задержки 21, выходы которых являются выходами блоков задержки.The
Блок 2 комплексного сопряжения и дополнительный блок 19 комплексного сопряжения (фиг. 3) содержат инвертор 22, первый вход блока комплексного сопряжения является его первым выходом, вторым входом является вход инвертора, выход которого является вторым выходом блока комплексного сопряжения.The
Блок 3 комплексного умножения и дополнительный блок 20 комплексного умножения (фиг. 4) содержат два канала (I, II), каждый из которых включает первый перемножитель 23, последовательно включенные второй перемножитель 24 и сумматор 25, выход первого перемножителя 23 одного канала соединен со вторым входом сумматора 25 другого канала, а первыми и вторыми входами блока комплексного умножения соответственно являются объединенные между собой первые входы первого и второго перемножителей 23, 24 каждого из каналов, объединенные вторые входы первых перемножителей 23 и объединенные вторые входы вторых перемножителей 24, а выходами блока комплексного умножения являются выходы сумматоров 25 каждого из каналов.The
Блок 4 усреднения и дополнительный блок 17 усреднения (фиг. 5) содержат два канала (I, II), каждый из которых состоит из (N-3)/2 последовательно включенных цифровых линий задержки 26 и (N-3)/2 последовательно включенных сумматоров 27, входами блока усреднения являются объединенные входы первой линии задержки 26 и первого сумматора 27 каждого канала (I, II), а выход k-й [k=1…(N-3)/2] линии задержки 26 соединен со вторым входом k-го [k=1…(N-3)/2)] сумматора 27 каждого канала (I, II), выходами блока усреднения служат выходы [(N-3)/2]-x сумматоров 27.
Блок 5 вычисления фазы (фиг. 6) содержит последовательно соединенные делитель 28 и функциональный преобразователь 29, входами блока вычисления фазы являются входы делителя 28, а выходом блока вычисления фазы является выход функционального преобразователя 29.The phase calculation unit 5 (Fig. 6) contains a
Блок 6 коррекции пределов измерения (фиг. 7) содержит последовательно включенные модульный блок 30, сумматор 31, блок 32 присвоения знака, первый ключ 33 и сумматор 34, при этом первый вход блока 6 коррекции пределов измерения через второй ключ 35 соединен со вторым входом сумматора 34, выход блока 36 памяти соединен со вторым входом сумматора 31, второй вход блока коррекции пределов измерения соединен с управляющими входами первого 33 и второго 35 ключей, второй вход блока 32 присвоения знака является третьим входом блока коррекции пределов измерения, выход сумматора 34 является его выходом.
Блок 32 присвоения знака (фиг. 8) содержит блоки 37, 40 умножения, блок 38 памяти и ограничитель 39, причем второй вход блока присвоения знака является первым входом блока 37 умножения, второй вход которого соединен с выходом блока 38 памяти, выход блока 37 умножения соединен с входом ограничителя 39, выход которого соединен с первым входом блока 40 умножения, второй вход которого является первым входом блока присвоения знака, выходом блока присвоения знака служит выход блока 40 умножения.The character assignment unit 32 (FIG. 8) contains multiplication units 37, 40, a
Блок 11 вычисления модуля (фиг. 9) содержат два блока 41 умножения, сумматор 42 и блок 43 извлечения, квадратного корня, входами блока вычисления модуля являются входы блоков 41 умножения, выходы которых соединены с первым и вторым входами сумматора 42, выход которого соединен с входом блока 43 извлечения квадратного корня, выход которого является выходом блока вычисления модуля.The module calculation unit 11 (Fig. 9) contains two
Первый 15 и второй 16 двухканальные ключи (фиг. 10) содержат два ключа 44, входами двухканальных ключей являются входы ключей 44, выходы которых являются выходами двухканальных ключей.The first 15 and second 16 two-channel keys (Fig. 10) contain two
Блок 10 управления (фиг. 11) содержит триггер 45 и элемент НЕ 46, входом блока управления является вход триггера 45, выход которого соединен с входом элемента НЕ 46, первым выходом блока 10 управления является выход триггера 45, а вторым выходом - выход элемента НЕ 46.The control unit 10 (Fig. 11) contains a
Вычислитель скорости подвижного объекта работает следующим образом.The speed calculator of a moving object works as follows.
В заявляемом вычислителе обрабатывается неэквидистантная когерентно-импульсная последовательность N радиосигналов с чередующимися периодами повторения T1 и Т2, причем T1-T2=ΔT. При отражении радиосигналов от движущейся цели их несущие частоты в соответствующих периодах приобретают доплеровские сдвиги фазыThe inventive calculator processes a non-equidistant coherent-pulse sequence of N radio signals with alternating repetition periods T 1 and T 2 , with T 1 -T 2 = ΔT. When radio signals are reflected from a moving target, their carrier frequencies in the corresponding periods acquire Doppler phase shifts
, , , , , ,
где - доплеровская частота, v r - радиальная скорость цели, - несущая частота радиосигналов, с - скорость распространения радиоволн.Where - Doppler frequency, v r - radial velocity of the target, - carrier frequency of radio signals, s - propagation velocity of radio waves.
Отраженные от цели радиосигналы поступают на вход приемника, в котором усиливаются, в квадратурных фазовых детекторах переносятся на видеочастоту, а затем подвергаются аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны). На вход вычислителя в одном элементе разрешения по дальности поступают цифровые отсчеты комплексной огибающейThe radio signals reflected from the target are fed to the input of the receiver, in which they are amplified, are transferred to the video frequency in quadrature phase detectors, and then undergo analog-to-digital conversion (the corresponding blocks in Fig. 1 are not shown). At the input of the calculator in one element of range resolution, digital readings of the complex envelope are received
, k=1…N, , k = 1 ... N,
где u1k, u2k - цифровые коды действительной и мнимой частей отсчетов Uk.where u 1k , u 2k are the digital codes of the real and imaginary parts of the samples U k .
Входные отсчеты Uk вычислителя (фиг. 1) в блоке 1 задержки (фиг. 2) под управлением синхронизирующих импульсов, вырабатываемых синхрогенератором 14, поочередно задерживаются на интервалы T1 и T2, что обеспечивает синхронность последующего комплексного умножения отсчетов по дальности. Синхрогенератор 14 управляется импульсами синхронизатора радиолокатора (на фиг. 1 не показан), следующими поочередно с интервалами T1 и Т2. В блоке 2 комплексного сопряжения (фиг. 3) осуществляется комплексное сопряжение задержанного отсчета . Далее в блоке 3 комплексного умножения (фиг. 4) реализуется попарное умножение отсчетов в соответствии с алгоритмомThe input samples U k of the calculator (Fig. 1) in the delay unit 1 (Fig. 2) under the control of the synchronizing pulses generated by the
, k=2…N. , k = 2 ... N.
Попарные произведения (корреляции) раздельно для каждого интервала T1 и Т2 соответственно через первый 15 и второй 16 двухканальные ключи раздельно поступают в блок 4 усреднения и в дополнительный блок 17 усреднения (фиг. 5). Поочередная коммутация первого 15 и второго 16 двухканального ключей осуществляется импульсами соответственно с первого и второго выходов блока 10 управления, синхронизируемого также импульсами синхронизатора радиолокатора.Pairwise products (correlations) separately for each interval T 1 and T 2, respectively, through the first 15 and second 16 two-channel keys are separately received in block averaging 4 and in an
В блоке 4 усреднения (фиг. 5) с помощью линий задержки 26 на интервал Т1+Т2 и сумматоров 27 в каждом элементе разрешения по дальности осуществляется скользящее вдоль азимута когерентное суммирование (накопление) соответствующих интервалу T1 попарных произведений (корреляций). В результате на выходе блока 4 усреднения при нечетном N образуется пропорциональная корреляционному моменту отсчетов, соответствующих интервалу T1, величинаIn
В дополнительном блоке 17 усреднения (фиг. 5) осуществляется аналогичное суммирование соответствующих интервалу Т2 попарных корреляций, что приводит к образованию на его выходе пропорциональной корреляционному моменту отсчетов, соответствующих интервалу Т2, величиныIn the additional averaging block 17 (Fig. 5), a similar summation of pairwise correlations corresponding to the T 2 interval is performed, which leads to the formation at its output proportional to the correlation moment of the samples corresponding to the T 2 interval,
. .
Величина Y1 на выходе блока 4 усреднения (фиг. 5) по времени предшествует величине Y2 на интервал Т2, что компенсируется соответствующей данному интервалу задержкой Y1 в дополнительном блоке 18 задержки (фиг. 2). В дополнительном блоке 19 комплексного сопряжения (фиг. 3) инвертируется знак мнимой части величины Y2.The value of Y 1 at the output of the averaging unit 4 (FIG. 5) in time precedes the value of Y 2 by the interval T 2 , which is compensated by the corresponding delay Y 1 in the additional delay unit 18 (FIG. 2). In the
Величины Y1 и одновременно поступают соответственно на первые и вторые входы дополнительного блока 20 комплексного умножения (фиг. 4), на выходе которого вычисляется величинаValues Y 1 and simultaneously arrive, respectively, at the first and second inputs of the additional complex multiplication unit 20 (Fig. 4), at the output of which the value is calculated
Величины v 1 и v2 поступают на соответствующие входы блока 5 вычисления фазы (фиг. 6), где на основе блока 28 деления и арктангенсного функционального преобразователя 29 вычисляется оценкаThe values of v 1 and v2 are supplied to the corresponding inputs of the phase calculation unit 5 (Fig. 6), where, based on the
Последующие преобразования оценки происходят в блоке 6 коррекции пределов измерения (фиг. 7) и зависят от знака v 1. При v 1>0 открыт второй ключ 35, и оценка через сумматор 34 непосредственно поступает на выход блока коррекции пределов измерения. При v 1<0 открыт первый ключ 33, а второй ключ 35 закрыт. При этом в модульном блоке 30 образуется |argV|, вычитаемый в блоке 31 из величины и, поступающей от блока 36 памяти. Полученной разности в блоке 32 присваивается знак величины v 2.Subsequent Assessment Conversions occur in
Блок 32 присвоения знака (фиг. 8) работает следующим образом. На второй вход блока присвоения знака поступает величина v 2 [соотношение (1)], где в блоке 37 умножения производится ее умножение на постоянный множитель из блока 38 памяти с целью масштабирования и дальнейшего ограничения в ограничителе 39 по уровню ±1. Таким образом, после ограничения величина на выходе ограничителя 39 имеет смысл знака величины v 2, который, поступая на первый вход блока 40 умножения, присваивается разности π-|argV|, поступающей с выхода блока 31 на первый вход блока 32 присвоения знака, т.е. на второй вход блока 40 умножения.
Рассмотренные операции позволяют в блоке 5 вычисления фазы сначала найти оценку доплеровского сдвига фазы, находящуюся в интервале [-π/2, π/2], а затем при помощи блока 6 коррекции пределов измерения расширить пределы ее однозначного измерения до интервала [-π, π] в соответствии с алгоритмомThe operations considered allow, in
Умножитель 7 (фиг. 1) осуществляет умножение найденной оценки сдвига фазы на весовой коэффициент а, хранящийся в первом блоке 9 памяти, что позволяет найти однозначную оценку радиальной скорости в соответствии с выражениемThe multiplier 7 (Fig. 1) multiplies the found phase shift estimate by the weight coefficient a stored in the
где - весовой коэффициент.Where - weight coefficient.
Для уменьшения вероятности работы вычислителя по шумам в нем исключается выдача полученной оценки на выход в отсутствие отраженного от цели сигнала. В блоке 11 вычисления модуля (фиг. 9) вычисляется величинаTo reduce the likelihood of the computer working by noise, it excludes the issuance of the obtained estimate for output in the absence of a signal reflected from the target. In
которая поступает на второй вход порогового блока 12, в котором сравнивается с пороговым уровнем z0, записанным во втором блоке 13 памяти. Если происходит превышение порогового уровня z0, то с выхода порогового блока 12 поступает сигнал разрешения на прохождение результата вычисления с выхода блока 7 умножения через ключ 8 на первый выход вычислителя скорости подвижного объекта. В противном случае ключ 8 разомкнут. Кроме того, сигнал с выхода порогового блока 12, являющегося вторым выходом вычислителя скорости подвижного объекта, может быть использован для отсчета других координат цели, например дальности.which is supplied to the second input of the
Синхронизация вычислителя скорости подвижного объекта осуществляется подачей на все блоки заявляемого вычислителя последовательности синхронизирующих импульсов, вырабатываемых синхронизатором 14 (фиг. 1) с периодом повторения tK, определяемым из условия требуемой разрешающей способности по дальности.The synchronization of the speed calculator of a moving object is carried out by applying to all the blocks of the inventive calculator a sequence of synchronizing pulses generated by the synchronizer 14 (Fig. 1) with a repetition period t K determined from the condition of the required range resolution.
Достижение технического результата объясняется следующим образом. В известном устройстве (прототипе) исходные доплеровские сдвиги фазы φ1 и φ2, по которым вычисляется величина Δφ=φ1-φ2, имеют интервал однозначного измерения [-π, π], что соответствует интервалу однозначного измерения доплеровской частоты [-1/2T1, 1/2T1] (по величине большего периода T1). В предложенном устройстве величина Δφ измеряется непосредственно, что соответствует интервалу однозначности доплеровских частот [-1/2ΔT, 1/2ΔT]. При этом интервал однозначного измерения доплеровской частоты и, следовательно, радиальной скорости расширяется в Т1/ΔT раз, что соответствует решению поставленной задачи полезной модели. Если в соответствии с условием и с учетом для максимально возможной скорости подвижного объекта v rmax выбрать интервал , то во всем диапазоне реальных скоростей подвижного объекта может быть осуществлено их однозначное измерение. При этом сохраняется однозначность измерения дальности, которая обеспечивается соответствующим выбором меньшего периода повторения импульсов Т2.The achievement of the technical result is explained as follows. In the known device (prototype), the initial Doppler phase shifts φ 1 and φ 2 , by which the value Δφ = φ 1 -φ 2 is calculated, have an unambiguous measurement interval [-π, π], which corresponds to an unambiguous measurement interval of the Doppler frequency [-1 / 2T 1 , 1 / 2T 1 ] (the largest period is T 1 ). In the proposed device, the value Δφ is measured directly, which corresponds to the interval of uniqueness of the Doppler frequencies [-1 / 2ΔT, 1 / 2ΔT]. In this case, the interval of unambiguous measurement of the Doppler frequency and, consequently, the radial velocity expands by T 1 / ΔT times, which corresponds to the solution of the problem of the utility model. If in accordance with the condition and given for the maximum possible speed of a moving object v rmax choose the interval , then in the entire range of real speeds of the moving object can be carried out their unambiguous measurement. This preserves the uniqueness of the range measurement, which is ensured by the appropriate choice of a smaller pulse repetition period T 2 .
Обусловленные функциональными преобразованиями погрешности раздельного вычисления величин φ1 и φ2 являются статистически независимыми. В результате погрешность (дисперсия) разности φ1-φ2=Δφ удваивается. В предложенном вычислителе при непосредственном вычислении величины Δφ такое удвоение отсутствует, что соответствует повышению точности измерения.The errors of the separate calculation of the quantities φ 1 and φ 2 caused by functional transformations are statistically independent. As a result, the error (dispersion) of the difference φ 1 -φ 2 = Δφ is doubled. In the proposed calculator, when directly calculating Δφ, such a doubling is absent, which corresponds to an increase in measurement accuracy.
Таким образом, вычислитель скорости подвижного объекта позволяет расширить диапазон однозначно измеряемой радиальной скорости и повысить точность измерения за счет меньшего числа функциональных преобразований при применении предлагаемой совместной обработки неэквидистантных когерентно-импульсных радиосигналов.Thus, the calculator of the speed of a moving object allows you to expand the range of unambiguously measured radial velocity and increase the accuracy of the measurement due to the smaller number of functional transformations when using the proposed joint processing of non-equidistant coherent-pulse radio signals.
БиблиографияBibliography
1. Ширман Я.Д. и Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. - М.: Радио и связь. - 1981. - С. 204. - Рис. 14.2.1. Shirman Y.D. and Manzhos V.N. The theory and technique of processing radar information against the background of interference. - M .: Radio and communication. - 1981. - S. 204. - Fig. 14.2.
2. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.2. Patent No. 63-49193 (Japan),
3. Патент №2017167 (Россия), МПК G01S 13/58. Обнаружитель-измеритель доплеровских сигналов / Д.И. Попов, С.В. Герасимов и Е.Н. Матаев. Опубл. 30.07.1994. - Изобретения. - 1994. - №14. - С. 121.3. Patent No. 2017167 (Russia),
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015153040/08U RU161582U1 (en) | 2015-12-09 | 2015-12-09 | MOBILE OBJECT SPEED CALCULATOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015153040/08U RU161582U1 (en) | 2015-12-09 | 2015-12-09 | MOBILE OBJECT SPEED CALCULATOR |
Publications (1)
Publication Number | Publication Date |
---|---|
RU161582U1 true RU161582U1 (en) | 2016-04-27 |
Family
ID=55859626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015153040/08U RU161582U1 (en) | 2015-12-09 | 2015-12-09 | MOBILE OBJECT SPEED CALCULATOR |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU161582U1 (en) |
-
2015
- 2015-12-09 RU RU2015153040/08U patent/RU161582U1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2507536C1 (en) | Coherent pulsed signal measuring detector | |
RU2642418C1 (en) | Interference reject filter | |
RU2560130C1 (en) | Pulsed radio signal detection and measurement device | |
RU2634190C1 (en) | Interference rejecting counter | |
RU2674468C1 (en) | Interference rejection filter | |
RU154313U1 (en) | MOVING OBJECT SPEED CALCULATOR | |
RU157108U1 (en) | PASSIVE INTERFERENCE PHASE COMPENSATION DEVICE | |
RU2582877C1 (en) | Adaptive compensator of passive interference phase | |
RU149732U1 (en) | PHASOMETER OF COHERENT RADIO PULSES | |
RU2629642C1 (en) | Doppler speed calculator of object movement | |
RU161582U1 (en) | MOBILE OBJECT SPEED CALCULATOR | |
RU161949U1 (en) | COMPUTER FOR AUTO COMPENSATION OF SHIFT PHASE SHIFTS | |
RU166743U1 (en) | OBJECT RADIAL SPEED COMPUTER | |
RU161877U1 (en) | COAGER RADIO SIGNAL DETECTOR-METER | |
RU2546988C1 (en) | Pulsed radio signal detector-measuring device | |
RU2613037C1 (en) | Calculator of range rate of moving object | |
RU2600111C1 (en) | Detecting and measuring device of coherent pulsed radio signals | |
RU146461U1 (en) | RADIO-PULSE SIGNAL PROCESSING DEVICE | |
RU2513656C2 (en) | Phase meter of coherent-pulse signals | |
RU150201U1 (en) | RADIAL SPEED MEASURER | |
RU2547159C1 (en) | Phase indicator of radio pulse signals | |
RU2629710C1 (en) | Phase meter of coherent non-equidistant pulses | |
RU160677U1 (en) | PHASOMETER OF COHERENT RADIO SIGNALS | |
RU2559750C1 (en) | Calculator of doppler phase of passive interference | |
RU146730U1 (en) | DEVICE FOR DETECTION-MEASUREMENT OF COGER-PULSE SIGNALS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Utility model has become invalid (non-payment of fees) |
Effective date: 20160617 |