KR20240112309A - CoFeB target material and manufacturing method thereof - Google Patents
CoFeB target material and manufacturing method thereof Download PDFInfo
- Publication number
- KR20240112309A KR20240112309A KR1020247020177A KR20247020177A KR20240112309A KR 20240112309 A KR20240112309 A KR 20240112309A KR 1020247020177 A KR1020247020177 A KR 1020247020177A KR 20247020177 A KR20247020177 A KR 20247020177A KR 20240112309 A KR20240112309 A KR 20240112309A
- Authority
- KR
- South Korea
- Prior art keywords
- manufacturing
- cofeb
- target material
- melt
- secondary feed
- Prior art date
Links
- 239000013077 target material Substances 0.000 title claims abstract description 77
- 229910019236 CoFeB Inorganic materials 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 239000002994 raw material Substances 0.000 claims abstract description 33
- 238000002844 melting Methods 0.000 claims abstract description 32
- 230000008018 melting Effects 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000000155 melt Substances 0.000 claims abstract description 26
- 238000003756 stirring Methods 0.000 claims abstract description 24
- 238000005266 casting Methods 0.000 claims abstract description 16
- 238000003754 machining Methods 0.000 claims abstract description 9
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 53
- 239000000843 powder Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 37
- 239000000956 alloy Substances 0.000 claims description 37
- 229910052796 boron Inorganic materials 0.000 claims description 26
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 239000010949 copper Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 238000003801 milling Methods 0.000 claims description 8
- 230000035699 permeability Effects 0.000 claims description 8
- 238000000889 atomisation Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910000679 solder Inorganic materials 0.000 claims description 5
- 238000005476 soldering Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 4
- HZEIHKAVLOJHDG-UHFFFAOYSA-N boranylidynecobalt Chemical compound [Co]#B HZEIHKAVLOJHDG-UHFFFAOYSA-N 0.000 claims description 3
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 13
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 7
- 238000005336 cracking Methods 0.000 abstract description 7
- 239000001301 oxygen Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 7
- 238000003466 welding Methods 0.000 abstract description 4
- 238000005477 sputtering target Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 20
- 239000007789 gas Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 9
- NSRBDSZKIKAZHT-UHFFFAOYSA-N tellurium zinc Chemical compound [Zn].[Te] NSRBDSZKIKAZHT-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229910000521 B alloy Inorganic materials 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000000861 blow drying Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZDZZPLGHBXACDA-UHFFFAOYSA-N [B].[Fe].[Co] Chemical compound [B].[Fe].[Co] ZDZZPLGHBXACDA-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001036 glow-discharge mass spectrometry Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1094—Alloys containing non-metals comprising an after-treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
- C21C2007/0018—Boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 스퍼터링 타겟 재료 기술 분야에 관한 것이며, 특히 CoFeB 타겟 재료 및 그 제조방법에 관한 것이며, 제조방법은 (1) 원재료 블랭크 용융 단계; (2) 2차 피드 단계; (3) 교반 단계; (4) 용융물 주조 단계; (5) 타겟 재료의 제조 단계를 포함한다. 본 발명의 제조방법은 원재료 블랭크 용융, 2차 피드, 교반을 순차적으로 거친 후 용융물 주조를 수행하여 조직이 균일하고, 성능이 우수한 CoFeB 잉곳을 직접 얻고, 이후 슬라이싱, 기계 가공, 및 용접 등의 공정을 통해 CoFeB 타겟 재료를 제조하며, 얻어진 CoFeB 타겟 재료는 밀도가 높고, 조직이 균일하고, 산소 함량이 낮은(≤100 wtppm) 등의 장점을 가지며, 마그네트론 스퍼터링 요구를 만족시킬 수 있으며, 자기 헤드, 자기 저항 센서, 및 자기 저항 소자(MRAM) 등의 제조 분야에서 광범위하게 사용될 수 있다. 또한, 본 발명의 제조방법은 B 함량 증가로 인한 가소성이 열위하고, 쉽게 균열이 발생하는 문제를 효과적으로 해결할 수 있다.The present invention relates to the field of sputtering target material technology, and particularly to a CoFeB target material and a manufacturing method thereof, the manufacturing method comprising: (1) melting a raw material blank; (2) secondary feed stage; (3) stirring step; (4) melt casting step; (5) It includes a manufacturing step of the target material. The manufacturing method of the present invention involves sequentially melting the raw material blank, secondary feed, and stirring, followed by casting the melt to directly obtain a CoFeB ingot with a uniform structure and excellent performance, followed by processes such as slicing, machining, and welding. CoFeB target material is manufactured through, and the obtained CoFeB target material has advantages such as high density, uniform structure, and low oxygen content (≤100 wtppm), and can satisfy magnetron sputtering requirements, magnetic head, It can be widely used in the manufacturing field of magnetoresistive sensors, magnetoresistive elements (MRAM), etc. In addition, the manufacturing method of the present invention can effectively solve the problem of poor plasticity and easy cracking due to increased B content.
Description
본 출원은 2022년 12월 14일자로 제출된, 발명의 명칭이 "CoFeB 타겟 재료 및 그 제조방법"인 제202211610998.8호의 중국 특허출원의 우선권을 주장하며, 그 모든 개시 내용은 본 특허출원에 원용된다.This application claims priority of the Chinese patent application No. 202211610998.8, filed on December 14, 2022, titled “CoFeB target material and method for manufacturing the same,” the entire disclosure of which is incorporated into this patent application. .
본 발명은 스퍼터링 타겟 재료 기술 분야에 관한 것으로, 특히 CoFeB 타겟 재료 및 그 제조방법에 관한 것이다.The present invention relates to the field of sputtering target material technology, and particularly to CoFeB target material and its manufacturing method.
자기 저항 메모리(MRAM)는 비휘발성(Non-Volatile), 빠른 읽기/쓰기 속도 등의 장점을 갖고 있어, 향후 디램(DRAM)을 대체할 주류 메모리로 기대된다. MRAM의 기본 메모리 단위는 자기 터널 접합(Magnetic Tunnel Junction, MTJ)으로, 자유층, 터널 베리어, 고정층으로 구성된다. 현재, 통상적으로 물리 기상 증착, 특히 마그네트론 스퍼터링법을 사용하여 MTJ 박막 구조를 제조하며, 타겟 재료 뒷면에 강한 자기장을 설치하여, 아르곤 가스 이온화를 증가시켜 타겟 재료 원자에 지속적으로 충격을 가하여 도금 막을 증착한다. 사용된 원재료는 B를 함유하는 연자성 재료 타겟 재료이며, 예를 들면, Co, Fe, Ni 및 붕소 등의 원소로 구성된 합금이다. 현재, 가장 많이 사용되고, 가장 성숙된 합금 성분 시스템은 CoFeB 삼원 합금이다. CoFeB는 연자성 합금이기 때문에, 이의 자기장 투과 능력은 타겟 재료의 스퍼터링 성능에 현저한 영향을 미친다. 투자율이 <2%일 경우, 타겟 재료의 도금 막 증착 속도가 크게 감소하며, 심지어 스퍼터링 초기에 아크가 발생하지 않는 경우도 존재한다.Magnetoresistive memory (MRAM) has advantages such as non-volatility and fast read/write speed, and is expected to be a mainstream memory that will replace DRAM in the future. The basic memory unit of MRAM is a magnetic tunnel junction (MTJ), which consists of a free layer, tunnel barrier, and fixed layer. Currently, MTJ thin film structures are commonly manufactured using physical vapor deposition, especially magnetron sputtering, and a strong magnetic field is installed on the back of the target material to increase argon gas ionization to continuously bombard the target material atoms to deposit a plating film. do. The raw material used is a soft magnetic material target material containing B, for example, an alloy composed of elements such as Co, Fe, Ni, and boron. Currently, the most used and most mature alloy element system is the CoFeB ternary alloy. Because CoFeB is a soft magnetic alloy, its magnetic field transmission ability has a significant impact on the sputtering performance of the target material. When the permeability is <2%, the deposition rate of the plating film of the target material is greatly reduced, and there are even cases where arc does not occur at the beginning of sputtering.
CoFeB 합금의 붕소 함량이 높기 때문에, 특히, 붕소의 점유율이 30 at%를 초과할 경우, 통상적인 용융 및 주조 방법으로 제조하면 조대하고 경질 및 취성을 갖는 붕화물이 형성되기에, 잉곳이 냉각 과정에서 매우 쉽게 균열이 발생하여, 재료의 성형이 거의 실현될 수 없다. 통상적으로 잉곳의 냉각 속도를 감소시켜 균열의 발생을 방지하지만, B 원소의 첨가로 인해, 냉각 속도를 감소시킬 경우 조직 내 성분 편석이 심해지며, 편석은 합금 성분, 조직 및 자기 특성의 불균일한 분포를 초래하여, 타겟 재료의 스퍼터링 성능을 확보하기 어렵다.Because the boron content of CoFeB alloy is high, especially when the boron share exceeds 30 at%, coarse, hard and brittle borides are formed when manufactured by conventional melting and casting methods, so the ingot is subjected to a cooling process. Cracks occur very easily, so forming of the material can hardly be realized. Normally, the occurrence of cracks is prevented by reducing the cooling rate of the ingot, but due to the addition of element B, when the cooling rate is reduced, segregation of components within the structure becomes more severe, and segregation leads to uneven distribution of alloy components, structure, and magnetic properties. As a result, it is difficult to secure the sputtering performance of the target material.
CoFeB 합금 균열을 방지하기 위한 또 다른 방법은 분말 야금 소결 방법을 이용하는 것이며, 해당 방법은 균일한 조직, 성분을 확보하는 것을 기반으로 균열 및 편석 문제를 방지할 수 있으나, 분말의 표면적이 크기 때문에, 가스가 흡착되기 쉬워, 낮은 가스 불순물 원소 함량, 특히 낮은 산소 원소의 함량을 얻기 어려우며, 산소 함량은 일반적으로 150 wtppm 이상이다. 따라서, 분말 야금 방법으로 제조된 타겟 재료는 스퍼터링 과정에서 입자 등의 불량 반응이 쉽게 발생한다.Another method to prevent cracking of CoFeB alloy is to use powder metallurgy sintering method. This method can prevent cracking and segregation problems based on ensuring uniform structure and composition, but because the surface area of the powder is large, Because the gas is easy to be adsorbed, it is difficult to obtain low gaseous impurity element content, especially low oxygen element content, and the oxygen content is generally above 150 wtppm. Therefore, target materials manufactured by powder metallurgy methods easily generate defective reactions such as particles during the sputtering process.
본 발명은 종래 CoFeB 합금의 제조방법에 존재하는 균열 발생이 용이하고, 불순물 함량이 높은 등의 문제를 해결하기 위한 CoFeB 타겟 재료 및 그 제조방법을 제공한다.The present invention provides a CoFeB target material and a method of manufacturing the same to solve problems such as easy cracking and high impurity content in the conventional method of manufacturing CoFeB alloy.
본 발명의 제1 측면에 따르면, 본 발명은 다음과 같은 단계를 포함하는 CoFeB 타겟 재료의 제조방법을 제공한다:According to a first aspect of the present invention, the present invention provides a method for producing a CoFeB target material comprising the following steps:
(1) 원재료 블랭크 용융 단계: 코발트, 철, 붕소 함유 원재료 블랭크를 융해될 때까지 제련하여, 용융액을 얻으며; 여기서, 상기 원재료 블랭크의 융점≤1200℃;(1) Raw material blank melting step: The raw material blank containing cobalt, iron, and boron is smelted until melted to obtain a melt; Here, the melting point of the raw material blank ≤ 1200°C;
(2) 2차 피드 단계: T℃에서, 붕소 함유 2차 피드 분체를 단계 (1)에서 얻은 상기 용융액에 투입한 후, 보온 처리를 수행하여, 합금 용융물을 얻으며; 여기서, 상기 원재료 블랭크의 융점≤T℃<상기 2차 피드 분체의 융점;(2) Secondary feed step: At T°C, boron-containing secondary feed powder is added to the melt obtained in step (1), and then heat-retaining treatment is performed to obtain an alloy melt; Here, the melting point of the raw material blank ≤ T°C < the melting point of the secondary feed powder;
(3) 교반 단계: 단계 (2)에서 얻은 상기 합금 용융물을 상기 2차 피드 분체가 상기 용융액에 균일하게 분포될 때까지 교반하며;(3) Stirring step: stirring the alloy melt obtained in step (2) until the secondary feed powder is uniformly distributed in the melt;
(4) 용융물 주조 단계: 단계 (3)의 처리를 거친 후의 상기 합금 용융물을 주조 성형하여, CoFeB 잉곳을 얻으며;(4) Melt casting step: Casting the alloy melt after the treatment in step (3) to obtain a CoFeB ingot;
(5) 타겟 재료의 제조 단계: 단계 (4)에서 얻은 상기 CoFeB 잉곳을 사용하여 CoFeB 타겟 재료를 제조한다.(5) Manufacturing step of target material: CoFeB target material is manufactured using the CoFeB ingot obtained in step (4).
도 1은 Co-Fe-B 3원상 도면이고, 여기서, 점선 영역은 합금 성분 융점≤1200℃인 (Co, Fe)2B가 먼저 석출되는 상 영역이다. 통상적인 제련 방법으로 붕소 함량이 30at%를 초과하는 CoFeB 잉곳을 제조할 경우, 잉곳 조직의 상 조성은 먼저 석출된 1차 (Co, Fe)B 상, 및 (Co, Fe)B 상, (Co, Fe)2B 상으로 구성된 공정조직이며(도 1을 참조), 이 두 상은 모두 경질 및 취성을 갖는 상이기 때문에, 가소성이 열위하여, 잉곳이 냉각 과정에서 매우 쉽게 균열이 발생하며, 성형 난이도가 높다. 본 발명의 핵심 사상은 붕소 함량이 높은 잉곳 성분을 붕소 함량이 낮은 모상(parent phase) 성분(즉, 원재료 블랭크)과 2차 피드 분말 성분의 두 부분으로 나누며, 모상 성분을 (Co, Fe)2B가 먼저 석출되는 상 영역으로 조절하는 것이다(도 1의 점선 박스에 표시됨). 모상 성분을 해당 영역으로 조절하면 두 가지 장점이 있다: 1. 모상 성분이 해당 영역에 있을 경우, 융점≤1200℃이며, 모상 성분이 완전히 용융될 때, 융점이 높은 2차 피드 분체가 용융되지 않도록 확보할 수 있으며; 2. 모상 성분이 해당 영역에 있을 경우, 최종 형성된 공정조직은 가소성이 우수한 fcc-Fe 상 또는 bcc-Fe 상을 함유하여 냉각 과정에서의 응력 변형 거동을 조정함으로써, 합금의 가소성 성형 특성을 향상시킨다. 이와 동시에, 본 발명은 2차 피드에서 2차 피드 분체를 투입하는 방법을 통해 용융액에 먼저 석출되는 1차 상(primary phase)의 핵 생성 질점을 대량으로 도입하여, 먼저 석출되는 1차 상의 핵 생성 수를 증가시켜, 먼저 석출되는 1차 상의 형태, 수량 및 분포를 조절하는 역할을 하며, 조대하고 불균일하게 분포된 먼저 석출되는 1차 상을 미세하고 균일하며 확산되어 분포된 먼저 석출되는 1차 상으로 조절한다. 본 발명의 제조방법은 원재료 블랭크 용융, 2차 피드, 교반을 순차적으로 거친 후 용융물 주조를 수행하여 조직이 균일하고, 성능이 우수한 CoFeB 잉곳을 직접 얻고, 이후 슬라이싱, 기계 가공, 및 용접 등의 공정을 통해 CoFeB 타겟 재료를 제조하며, 얻어진 CoFeB 타겟 재료는 밀도가 높고, 조직이 균일하고, 산소 함량이 낮은(≤100 wtppm) 등의 장점을 가지며, 마그네트론 스퍼터링 요구를 만족시킬 수 있다. 본 발명의 제조방법은 B 함량 증가로 인한 가소성이 열위하고, 쉽게 균열이 발생하는 문제를 효과적으로 해결할 수 있다.Figure 1 is a diagram of the Co-Fe-B ternary phase, where the dotted line area is the phase area where (Co, Fe) 2 B, which has an alloy component melting point ≤ 1200°C, precipitates first. When manufacturing a CoFeB ingot with a boron content exceeding 30 at% by a conventional smelting method, the phase composition of the ingot structure consists of the primary (Co, Fe)B phase precipitated first, (Co, Fe)B phase, and (Co , Fe) It is a eutectic structure composed of 2 B phases (see Figure 1), and since both of these phases are hard and brittle, their plasticity is poor, and the ingot cracks very easily during the cooling process, making forming difficult. is high. The core idea of the present invention is to divide the ingot component with high boron content into two parts, a parent phase component with low boron content (i.e., raw material blank) and a secondary feed powder component, and the parent phase component is (Co, Fe) 2 It is adjusted to the phase region where B precipitates first (indicated in the dotted box in Figure 1). Adjusting the mother phase component to the corresponding region has two advantages: 1. When the mother phase component is in the corresponding region, the melting point is ≤1200℃, and when the mother phase component is completely melted, the secondary feed powder with a high melting point is prevented from melting. can be secured; 2. When the parent phase component is in the corresponding region, the final formed eutectic structure contains an fcc-Fe phase or bcc-Fe phase with excellent plasticity, adjusting the stress strain behavior during the cooling process, thereby improving the plastic forming characteristics of the alloy. . At the same time, the present invention introduces a large amount of nucleation particles of the primary phase that precipitates first into the melt through a method of introducing secondary feed powder from the secondary feed, thereby generating nuclei of the primary phase that precipitates first. By increasing the number, it plays a role in controlling the shape, quantity, and distribution of the primary phase that precipitates first, changing the coarse, unevenly distributed primary phase that precipitates first into a fine, uniform, diffusely distributed primary phase that precipitates first. Adjust it with The manufacturing method of the present invention involves sequentially melting the raw material blank, secondary feed, and stirring, followed by casting the melt to directly obtain a CoFeB ingot with a uniform structure and excellent performance, followed by processes such as slicing, machining, and welding. The CoFeB target material is manufactured through, and the obtained CoFeB target material has advantages such as high density, uniform structure, and low oxygen content (≤100 wtppm), and can satisfy magnetron sputtering requirements. The manufacturing method of the present invention can effectively solve the problems of poor plasticity and easy cracking due to increased B content.
한 가지 가능한 설계에 있어서, 상기 단계 (2)에서, 상기 2차 피드 분체 중 Fe와 B의 원자비는 (1-2) : 1 이다.In one possible design, in step (2), the atomic ratio of Fe to B in the secondary feed powder is (1-2):1.
선택적으로, 상기 2차 피드 분체 중 Fe와 B의 원자비는 1 : 1 또는 1 : 2 등 일 수 있다. Fe와 B의 원자비를 (1-2) : 1로 한정하면, 2차 피드 분체가 높은 융점을 갖도록 할 수 있고, 2차 피드 분체가 용융액에 용해되어 핵 생성 질점을 증가시키는 역할을 잃는 것을 효과적으로 방지할 수 있는 것으로 이해할 수 있다. 예를 들어, FeB 합금의 융점은 1398℃이고, Fe2B 합금의 융점은 1625℃이다.Optionally, the atomic ratio of Fe and B in the secondary feed powder may be 1:1 or 1:2. If the atomic ratio of Fe and B is limited to (1-2): 1, the secondary feed powder can be made to have a high melting point, and the secondary feed powder is dissolved in the melt and loses its role in increasing the nucleation point. It can be understood that it can be effectively prevented. For example, the melting point of FeB alloy is 1398°C, and the melting point of Fe 2 B alloy is 1625°C.
한 가지 가능한 설계에 있어서, 상기 단계 (1)에서, 상기 원재료 블랭크 중 붕소의 함량은 18 at% 내지 27.5 at% 이다.In one possible design, in step (1), the content of boron in the raw material blank is 18 at% to 27.5 at%.
단계 (1)에서 상기 원재료 블랭크 중 붕소의 함량을 18 at% 내지 27.5 at%로 한정함으로써 원재료 블랭크의 융점을 ≤1200℃로 효과적으로 확보할 수 있는 것으로 이해할 수 있다.It can be understood that by limiting the content of boron in the raw material blank to 18 at% to 27.5 at% in step (1), the melting point of the raw material blank can be effectively secured at ≤1200°C.
한 가지 가능한 설계에 있어서, 상기 2차 피드 분체는 철 붕소 화합물 또는 코발트 붕소 화합물 중 1종 또는 2종을 포함하고; 상기 단계 (2)에서, 상기 2차 피드 분체는 분무화 제분(powder atomization) 기술을 사용하여 제조된다.In one possible design, the secondary feed powder includes one or both of an iron boron compound or a cobalt boron compound; In step (2), the secondary feed powder is manufactured using powder atomization technology.
2차 피드 분체는 철 붕소 화합물 또는 코발트 붕소 화합물을 포함하고, 합금 최종 성분에 따라 선택할 수 있다. 분무화 제분 기술을 사용하여 제조된 2차 피드 분체는 더 균일하고 미세하여, 이후 용융액 내 균일한 분포에 더 유리한 것으로 이해할 수 있다.The secondary feed powder contains an iron boron compound or a cobalt boron compound and can be selected depending on the final alloy composition. It can be understood that secondary feed powder manufactured using atomization milling technology is more uniform and finer, which is more advantageous for uniform distribution in the subsequent melt.
한 가지 가능한 설계에 있어서, 상기 분무화 제분 과정에서 비활성 기체를 사용하여 보호한다.In one possible design, the atomization milling process is protected using an inert gas.
선택적으로, 비활성 기체는 헬륨 가스, 네온 가스, 아르곤 가스, 크립톤 가스 또는 크세논 가스 등일 수 있다. 붕화물의 융점이 높기 때문에, 산화를 방지하기 위해 분무화 제분 과정에서 비활성 기체를 사용하여 보호하여야 하는 것으로 이해할 수 있다.Optionally, the inert gas may be helium gas, neon gas, argon gas, krypton gas, or xenon gas, etc. Since the melting point of boride is high, it can be understood that it must be protected using an inert gas during the atomization milling process to prevent oxidation.
한 가지 가능한 설계에 있어서, 상기 단계 (2)에서 1200℃≤T℃≤1300이다. 바람직하게는, T℃는 1250℃이다.In one possible design, in step (2) above, 1200°C≤T°C≤1300. Preferably, T°C is 1250°C.
T℃를 1200℃와 1300℃ 사이로 제어함으로써, 원재료 블랭크가 완전히 용융될 때, 융점이 높은 2차 피드 분체가 용융되지 않도록 확보할 수 있어, 용융액에 먼저 석출되는 1차 상의 핵 생성 질점을 대량으로 도입할 수 있는 것으로 이해할 수 있다.By controlling the T℃ between 1200℃ and 1300℃, it is possible to ensure that the secondary feed powder with a high melting point does not melt when the raw material blank is completely melted, thereby eliminating a large number of nucleation particles of the primary phase that precipitate first in the melt. It can be understood that it can be introduced.
한 가지 가능한 설계에 있어서, 상기 단계 (3)에서, 상기 교반은 전자기 교반을 사용하며; 상기 전자기 교반의 온도는 1200℃ 내지 1300℃이며, 바람직하게는 1250℃이다. 구체적으로, 상기 전자기 교반 과정에서 교류 전류를 사용한다.In one possible design, in step (3), the agitation uses electromagnetic agitation; The temperature of the electromagnetic stirring is 1200°C to 1300°C, preferably 1250°C. Specifically, alternating current is used in the electromagnetic stirring process.
용융액 내 2차 피드 분체의 분포 균일성을 확보하기 위하여, 전자기 교반 기술을 사용하여, 금속 용융액에 전단력을 가함으로써, 금속 용융액에서 전단 흐름을 형성하여 핵 생성 질점의 균일한 분포를 실현하는 것으로 이해할 수 있다. 이와 동시에, 전자기 교반은 금속 용융액의 온도 균일성을 향상시킬 수 있고, 잉곳 표면 및 코어부의 온도 구배를 감소시킬 수 있으며, 응고 과정의 거시편석(macro segregation)을 감소시킬 수 있다. 더 나아가, 전자기 교반의 온도를 1200℃ 내지 1300℃로 한정함으로써, 원재료 블랭크가 완전히 용융될 때, 융점이 높은 2차 피드 분체가 용융되지 않도록 확보할 수 있다.In order to ensure uniform distribution of the secondary feed powder in the melt, electromagnetic stirring technology is used to apply a shear force to the metal melt, thereby forming a shear flow in the metal melt to realize uniform distribution of nucleated particles. You can. At the same time, electromagnetic stirring can improve the temperature uniformity of the metal melt, reduce the temperature gradient of the ingot surface and core portion, and reduce macro segregation during the solidification process. Furthermore, by limiting the temperature of electromagnetic stirring to 1200°C to 1300°C, it is possible to ensure that the secondary feed powder with a high melting point does not melt when the raw material blank is completely melted.
한 가지 가능한 설계에 있어서, 상기 단계 (4)는 상기 단계 (3)의 처리를 거친 후의 상기 합금 용융물을 금형 챔버 내에 주입하여 주조 성형하며; 바람직하게는, 상기 금형은 흑연 도가니이다.In one possible design, step (4) is performed by injecting the alloy melt after the treatment in step (3) into a mold chamber to form a casting; Preferably, the mold is a graphite crucible.
흑연 도가니를 사용할 경우, 과도한 냉각 속도로 인한 잉곳 표면 및 코어부의 과도한 온도 차이로 인해 잉곳에 응력 균열이 발생하는 것을 방지할 수 있는 것으로 이해할 수 있다.It can be understood that when using a graphite crucible, it is possible to prevent stress cracks from occurring in the ingot due to excessive temperature difference between the surface and core of the ingot due to excessive cooling rate.
한 가지 가능한 설계에 있어서, 상기 단계 (5)에서, 상기 CoFeB 잉곳을 얻은 것을 기반으로, 슬라이싱 및 기계 가공의 방식을 통해 CoFeB 타겟 블랭크를 얻은 후, 필요에 따라 백 플레이트를 용접하여야 하는지 여부를 판단하며; 백 플레이트를 용접하여야 하는 경우, In 솔더를 사용하여 납땜을 수행하며; 상기 백 플레이트의 소재는 무산소 구리, 구리 합금, 알루미늄 또는 알루미늄 합금에서 선택된다.In one possible design, in step (5), based on obtaining the CoFeB ingot, obtain a CoFeB target blank through slicing and machining, and then determine whether a back plate should be welded as necessary. and; If the back plate needs to be welded, soldering is performed using In solder; The material of the back plate is selected from oxygen-free copper, copper alloy, aluminum or aluminum alloy.
본 발명의 제2 측면에 따르면, 본 발명은 상기 제조방법을 사용하여 제조된 CoFeB 타겟 재료를 제공하며; 상기 CoFeB 타겟 재료의 투자율≥9 %이며; 상기 CoFeB 타겟 재료는 O 함량≤100 wtppm 이다.According to a second aspect of the present invention, the present invention provides a CoFeB target material produced using the above production method; The permeability of the CoFeB target material is ≥9%; The CoFeB target material has an O content≤100 wtppm.
본 발명의 CoFeB 타겟 재료는 미세조직 분포가 균일하고, 투자율이 높으며, 가스 불순물 원소 함량이 낮으며, 클라이언트의 마그네트론 스퍼터링 성능 요구를 만족시킬 수 있다.The CoFeB target material of the present invention has uniform microstructure distribution, high permeability, low gas impurity element content, and can satisfy the client's magnetron sputtering performance requirements.
한 가지 가능한 설계에 있어서, 상기 CoFeB 타겟 재료의 B 함량≥20 at%이며; 상기 CoFeB 타겟 재료는 Al 함량≤22 wtppm, Cu 함량≤11 wtppm, Si 함량≤58 wtppm, C 함량≤80 wtppm, O 함량≤ 81 wtppm, N 함량≤45 wtppm 이다.In one possible design, the B content of the CoFeB target material is >20 at%; The CoFeB target material has Al content ≤ 22 wtppm, Cu content ≤ 11 wtppm, Si content ≤ 58 wtppm, C content ≤ 80 wtppm, O content ≤ 81 wtppm, and N content ≤ 45 wtppm.
본 발명은 CoFeB 타겟 재료의 제조방법을 제공하며, 상기 제조방법은 원재료 블랭크 용융, 2차 피드, 교반을 순차적으로 거친 후 용융물 주조를 수행하여 조직이 균일하고, 성능이 우수한 CoFeB 잉곳을 직접 얻고, 이후 슬라이싱, 기계 가공, 및 용접 등의 공정을 통해 CoFeB 타겟 재료를 제조하며, 얻어진 CoFeB 타겟 재료는 밀도가 높고, 조직이 균일하고, 산소 함량이 낮은(≤100 wtppm) 등의 장점을 가지며, 마그네트론 스퍼터링 요구를 만족시킬 수 있으며, 자기 헤드, 자기 저항 센서, 및 자기 저항 소자(MRAM) 등의 제조 분야에서 광범위하게 사용될 수 있다. 또한, 본 발명의 제조방법은 B 함량 증가로 인한 가소성이 열위하고, 쉽게 균열이 발생하는 문제를 효과적으로 해결할 수 있으며, 우수한 성능을 갖는 고붕소(B≥30 at%) CoFeB 타겟 재료를 제조할 수 있다.The present invention provides a method for manufacturing a CoFeB target material, which involves sequentially melting the raw material blank, secondary feed, and stirring, followed by casting the melt to directly obtain a CoFeB ingot with a uniform structure and excellent performance, Afterwards, the CoFeB target material is manufactured through processes such as slicing, machining, and welding. The obtained CoFeB target material has advantages such as high density, uniform structure, and low oxygen content (≤100 wtppm), and is used in magnetrons. It can satisfy sputtering requirements and can be widely used in the manufacturing fields of magnetic heads, magnetoresistive sensors, and magnetoresistive elements (MRAM). In addition, the manufacturing method of the present invention can effectively solve the problem of poor plasticity and easy cracking due to increased B content, and can produce high boron (B≥30 at%) CoFeB target material with excellent performance. there is.
본 발명 또는 종래 기술의 기술방안을 보다 명확하게 설명하기 위해, 이하에서 실시예 또는 종래 기술의 설명에 필요한 도면에 대해 간략하게 설명할 것이며, 이하 설명되는 도면은 본 발명의 일부 실시예이며, 당업자에게 있어서, 창조적 노동을 거치지 않은 전제 하에, 이들 도면에 따라 기타 도면을 얻을 수 있음은 자명한 것이다.
도 1은 본 발명에서 제공한 Co-Fe-B 3원상 도면이다.
도 2는 본 발명에서 제공한 CoFeB 타겟 재료의 제조방법의 공정 흐름도이다.In order to more clearly explain the technical solution of the present invention or the prior art, the drawings necessary for description of the embodiments or the prior art will be briefly described below. The drawings described below are some embodiments of the present invention, and those skilled in the art It is obvious that other drawings can be obtained according to these drawings, provided that no creative labor is performed.
Figure 1 is a diagram of the Co-Fe-B ternary phase provided by the present invention.
Figure 2 is a process flow diagram of the method for manufacturing the CoFeB target material provided by the present invention.
본 발명의 목적, 기술방안 및 장점을 보다 명확하게 하기 위해, 이하에서 본 발명의 도면을 결합하여 본 발명의 기술방안을 명확하고, 완전하게 설명할 것이며, 설명되는 실시예는 본 발명의 모든 실시예가 아니라 일부 실시예인 것은 자명한 것이다. 본 발명의 실시예를 기반으로, 당업자가 창조적 노동을 거치지 않은 전제 하에 획득한 기타 모든 실시예는 모두 본 발명의 보호 범위에 속한다.In order to make the purpose, technical solution, and advantages of the present invention clearer, the following will clearly and completely explain the technical solution of the present invention by combining the drawings of the present invention, and the described embodiments are all implementations of the present invention. It is obvious that these are some embodiments rather than examples. Based on the embodiments of the present invention, all other embodiments obtained by a person skilled in the art without creative labor shall fall within the protection scope of the present invention.
이하 실시예 및 비교예에 있어서, 타겟 재료의 불순물 함량의 테스트 방법에서 금속 원소는 GDMS를 사용하여 검측하고, 가스 원소는 LECO를 사용하여 검측하였다.In the following examples and comparative examples, in the test method for the impurity content of the target material, metal elements were detected using GDMS, and gas elements were detected using LECO.
실시예 1:Example 1:
본 실시예는 합금 성분이 Co35Fe35B30인 고붕소 합금 타겟 재료의 제조를 목표로 하고, 제조방법의 흐름도는 도 2에 도시된 바와 같으며, 다음과 같은 단계를 포함한다:This embodiment aims at producing a high boron alloy target material whose alloying ingredient is Co 35 Fe 35 B 30 , and the flow chart of the manufacturing method is as shown in Figure 2 and includes the following steps:
단계 (1) 원재료 블랭크 용융: 철 시트 및 코발트 시트를 산세하고, 초음파 세척 및 블로우 건조(blow-dry)시키며, 코발트 시트 142.1 g, 철 시트 25.9 g, 붕소 블록 12 g을 칭량한 후, 내화 도가니에 넣어 진공 유도 제련을 수행하며, 해당 비율에 따른 CoFeB 모합금 성분(원자비)은 Co60.8Fe11.7B27.5 이고, 그 융점은 1200℃ 이하이며, 1200℃에서 완전히 융해될 때까지 진공 유도할 수 있다. 원재료 블랭크가 멜팅 다운(melting down) 후, 용융액 온도를 1250℃정도로 제어하였다.Step (1) Melting the raw material blank: pickling the iron sheet and cobalt sheet, ultrasonic cleaning and blow-drying, weighing 142.1 g of cobalt sheet, 25.9 g of iron sheet, and 12 g of boron block, then placing them in a refractory crucible. Vacuum induction smelting is performed, and the CoFeB master alloy component (atomic ratio) according to the corresponding ratio is Co 60.8 Fe 11.7 B 27.5 , and its melting point is below 1200 ℃, and can be vacuum induced until completely melted at 1200 ℃. there is. After the raw material blank melted down, the melt temperature was controlled to about 1250°C.
단계 (2) 2차 피드 분체의 제조: Fe : B 원자비 = 2 : 1의 비율에 따라, 가스 분무화 제분을 통해 2차 피드 분체를 얻고, 120 g을 칭량하였다. 2차 피드: 원재료 블랭크가 완전히 용융되도록 확보하고 용융액 온도가 ≤1300℃로 안정화된 전제 하에, 2차 피드 시스템을 통해 제조된 2차 피드 분체를 단계 (1)의 용융액에 투입한 후, 보온 처리를 20 min 동안 수행하여, 합금 용융물을 얻었다.Step (2) Preparation of secondary feed powder: Secondary feed powder was obtained through gas atomization milling according to the Fe:B atomic ratio = 2:1, and 120 g was weighed. Secondary feed: Under the premise that the raw material blank is completely melted and the melt temperature is stabilized at ≤1300°C, the secondary feed powder manufactured through the secondary feed system is added to the melt in step (1) and then subjected to thermal insulation treatment. was performed for 20 min to obtain an alloy melt.
단계 (3) 전자기 교반: 단계 (2)에서 얻은 합금 용융물을 1250℃의 보온로로 옮기고, 2차 피드 분체가 용융액에 균일하게 분포될 때까지 코일에 교류 전류를 공급하여 전자기 교반을 수행하였다.Step (3) Electromagnetic stirring: The alloy melt obtained in step (2) was transferred to a thermal insulation furnace at 1250°C, and electromagnetic stirring was performed by supplying alternating current to the coil until the secondary feed powder was uniformly distributed in the melt.
단계 (4) 용융물 주조: 단계 (3)의 처리를 거친 후의 합금 용융물을 흑연 금형 챔버 내에 주입하여, 조직이 균일하고, 균열이 없는 Co35Fe35B30 잉곳을 얻었다.Step (4) Melt casting: The alloy melt after the treatment in step (3) was injected into a graphite mold chamber to obtain a Co 35 Fe 35 B 30 ingot with a uniform structure and no cracks.
단계 (5) 타겟 재료의 제조: 슬라이싱과 기계 가공의 방식을 통해 CoFeB 타겟 블랭크를 얻고, 와이어 커팅을 사용하여 슬라이스하여 초기 CoFeB 타겟 블랭크를 얻은 후, 정밀 치수 가공을 수행하였다. 마지막으로 In 솔더, 무산소 구리 백 플레이트를 사용하여 납땜을 수행하여 스퍼터링 요구를 만족하는 고붕소 CoFeB 합금 타겟 재료를 얻었다.Step (5) Preparation of target material: A CoFeB target blank was obtained through the method of slicing and machining, and sliced using wire cutting to obtain an initial CoFeB target blank, and then precision dimensional processing was performed. Finally, soldering was performed using In solder and an oxygen-free copper backplate to obtain a high boron CoFeB alloy target material that satisfies the sputtering requirements.
표 1에 나타낸 바와 같이, 실시예 1에서 타겟 재료의 불순물 함량(wt)은 다음과 같다: Al - 22 ppm, Cu - 10 ppm, Si - 43 ppm, C - 80 ppm, O - 75 ppm, N - 30 ppm.As shown in Table 1, the impurity contents (wt) of the target materials in Example 1 are as follows: Al - 22 ppm, Cu - 10 ppm, Si - 43 ppm, C - 80 ppm, O - 75 ppm, N - 30 ppm.
실시예 2Example 2
본 실시예는 합금 성분이 Co25Fe40B35인 고붕소 합금 타겟 재료의 제조를 목표로 하고, 제조방법은 다음과 같은 단계를 포함한다:This example aims at producing a high boron alloy target material whose alloying element is Co 25 Fe 40 B 35 , and the production method includes the following steps:
단계 (1) 원재료 블랭크 용융: 철 시트 및 코발트 시트를 산세하고, 초음파 세척 및 블로우 건조(blow-dry)시키며, 코발트 시트 179.7 g, 철 시트 139.6 g, 붕소 블록 20.7 g을 칭량한 후, 내화 도가니에 넣어 진공 유도 제련을 수행하며, 해당 비율에 따른 CoFeB 모합금 성분(원자비)은 Co41Fe33.6B25.4 이고, 그 융점은 1200℃ 이하이며, 1200℃에서 완전히 융해될 때까지 진공 유도할 수 있다. 원재료 블랭크가 멜팅 다운 후, 용융액 온도를 1250℃ 이하로 제어하였다.Step (1) Melting the raw material blank: pickling the iron sheet and cobalt sheet, ultrasonic cleaning and blow-drying, weighing 179.7 g of cobalt sheet, 139.6 g of iron sheet, and 20.7 g of boron block, then placing them in a refractory crucible. Vacuum induction smelting is performed, and the CoFeB master alloy component (atomic ratio) according to the corresponding ratio is Co 41 Fe 33.6 B 25.4 , and its melting point is below 1200 ℃, and can be vacuum induced until completely melted at 1200 ℃. there is. After the raw material blank melted down, the melt temperature was controlled to below 1250°C.
단계 (2) 2차 피드 분체의 제조: Fe : B 원자비 = 1 : 1의 비율에 따라, 가스 분무화 제분을 통해 2차 피드 분체를 얻고, 160 g을 칭량하였다. 2차 피드: 원재료 블랭크가 완전히 용융되도록 확보하고 용융액 온도가 ≤1300℃로 안정화된 전제 하에, 2차 피드 시스템을 통해 제조된 2차 피드 분체를 단계 (1)의 용융액에 투입한 후, 보온 처리를 30 min 동안 수행하여, 합금 용융물을 얻었다.Step (2) Preparation of secondary feed powder: Secondary feed powder was obtained through gas atomization milling according to the Fe:B atomic ratio = 1:1, and 160 g was weighed. Secondary feed: Under the premise that the raw material blank is completely melted and the melt temperature is stabilized at ≤1300°C, the secondary feed powder manufactured through the secondary feed system is added to the melt in step (1) and then subjected to thermal insulation treatment. was performed for 30 min to obtain an alloy melt.
단계 (3) 전자기 교반: 단계 (2)에서 얻은 합금 용융물을 1250℃의 보온로로 옮기고, 2차 피드 분체가 용융액에 균일하게 분포될 때까지 코일에 교류 전류를 공급하여 전자기 교반을 수행하였다.Step (3) Electromagnetic stirring: The alloy melt obtained in step (2) was transferred to a thermal insulation furnace at 1250°C, and electromagnetic stirring was performed by supplying alternating current to the coil until the secondary feed powder was uniformly distributed in the melt.
단계 (4) 용융물 주조: 단계 (3)의 처리를 거친 후의 합금 용융물을 금형 챔버 내에 주입하여, 조직이 균일하고, 균열이 없는 Co25Fe40B35 잉곳을 얻었다.Step (4) Melt casting: The alloy melt after the treatment in step (3) was injected into the mold chamber to obtain a Co 25 Fe 40 B 35 ingot with a uniform structure and no cracks.
단계 (5) 타겟 재료의 제조: 슬라이싱과 기계 가공의 방식을 통해 CoFeB 타겟 블랭크를 얻고, 절단 방식은 와이어 커팅을 사용하여 슬라이스하여 초기 CoFeB 타겟 블랭크를 얻은 후, 정밀 치수 가공을 수행하였다. 마지막으로 In 솔더, 무산소 구리 백 플레이트를 사용하여 납땜을 수행하여 스퍼터링 요구를 만족하는 고붕소 CoFeB 합금 타겟 재료를 얻었다.Step (5) Preparation of target material: A CoFeB target blank was obtained through slicing and machining, and the initial CoFeB target blank was obtained by slicing using wire cutting, and then precision dimensional processing was performed. Finally, soldering was performed using In solder and an oxygen-free copper backplate to obtain a high boron CoFeB alloy target material that satisfies the sputtering requirements.
표 1에 나타낸 바와 같이, 실시예 2에서 타겟 재료의 불순물 함량(wt)은 다음과 같다: Al - 18 ppm, Cu - 8 ppm, Si - 58 ppm, C - 77 ppm, O - 81 ppm, N - 45 ppm.As shown in Table 1, the impurity contents (wt) of the target materials in Example 2 are as follows: Al - 18 ppm, Cu - 8 ppm, Si - 58 ppm, C - 77 ppm, O - 81 ppm, N - 45 ppm.
실시예 3Example 3
본 실시예는 합금 성분이 Co20Fe60B20인 합금 타겟 재료의 제조를 목표로 하고, 제조방법은 다음과 같은 단계를 포함한다:This example aims at producing an alloy target material whose alloying element is Co 20 Fe 60 B 20 , and the manufacturing method includes the following steps:
단계 (1) 원재료 블랭크 용융: 철 시트 및 코발트 시트를 산세하고, 초음파 세척 및 블로우 건조(blow-dry)시키며, 코발트 시트 123.8 g, 철 시트 303 g, 붕소 블록 18.2 g을 칭량한 후, 내화 도가니에 넣어 진공 유도 제련을 수행하며, 해당 비율에 따른 CoFeB 모합금 성분(원자비)은 Co23Fe59B18 이고, 그 융점은 1200℃ 이하이며, 1200℃에서 완전히 융해될 때까지 진공 유도할 수 있다. 원재료 블랭크가 멜팅 다운 후, 용융액 온도를 1250℃ 이하로 제어하였다.Step (1) Melting the raw material blank: pickling the iron sheet and cobalt sheet, ultrasonic cleaning and blow-drying, weighing 123.8 g of cobalt sheet, 303 g of iron sheet, and 18.2 g of boron block, then placing them in a refractory crucible. Vacuum induction smelting is performed, and the CoFeB master alloy component (atomic ratio) according to the corresponding ratio is Co 23 Fe 59 B 18 , and its melting point is below 1200 ℃, and can be vacuum induced until completely melted at 1200 ℃. there is. After the raw material blank melted down, the melt temperature was controlled to below 1250°C.
단계 (2) 2차 피드 분체의 제조: Fe : B 원자비 = 2 : 1의 비율에 따라, 가스 분무화 제분을 통해 2차 피드 분체를 얻고, 55 g을 칭량하였다. 2차 피드: 원재료 블랭크가 완전히 용융되도록 확보하고 용융액 온도가 ≤1300℃로 안정화된 전제 하에, 2차 피드 시스템을 통해 제조된 2차 피드 분체를 단계 (1)의 용융액에 투입한 후, 보온 처리를 15 min 동안 수행하여, 합금 용융물을 얻었다.Step (2) Preparation of secondary feed powder: Secondary feed powder was obtained through gas atomization milling according to the Fe:B atomic ratio = 2:1, and 55 g was weighed. Secondary feed: Under the premise that the raw material blank is completely melted and the melt temperature is stabilized at ≤1300°C, the secondary feed powder manufactured through the secondary feed system is added to the melt in step (1) and then subjected to thermal insulation treatment. was performed for 15 min to obtain an alloy melt.
단계 (3) 전자기 교반: 단계 (2)에서 얻은 합금 용융물을 1250℃의 보온로로 옮기고, 2차 피드 분체가 용융액에 균일하게 분포될 때까지 코일에 교류 전류를 공급하여 전자기 교반을 수행하였다.Step (3) Electromagnetic stirring: The alloy melt obtained in step (2) was transferred to a thermal insulation furnace at 1250°C, and electromagnetic stirring was performed by supplying alternating current to the coil until the secondary feed powder was uniformly distributed in the melt.
단계 (4) 용융물 주조: 단계 (3)의 처리를 거친 후의 합금 용융물을 흑연 금형 챔버 내에 주입하여, 조직이 균일하고, 균열이 없는 Co20Fe60B20 잉곳을 얻었다.Step (4) Melt casting: The alloy melt after the treatment in step (3) was injected into a graphite mold chamber to obtain a Co 20 Fe 60 B 20 ingot with a uniform structure and no cracks.
단계 (5) 타겟 재료의 제조: 슬라이싱과 기계 가공의 방식을 통해 CoFeB 타겟 블랭크를 얻고, 절단 방식은 와이어 커팅을 사용하여 슬라이스하여 초기 CoFeB 타겟 블랭크를 얻은 후, 정밀 치수 가공을 수행하였다. 마지막으로 In 솔더, 무산소 구리 백 플레이트를 사용하여 납땜을 수행하여 스퍼터링 요구를 만족하는 고붕소 CoFeB 합금 타겟 재료를 얻었다.Step (5) Preparation of target material: A CoFeB target blank was obtained through slicing and machining, and the initial CoFeB target blank was obtained by slicing using wire cutting, and then precision dimensional processing was performed. Finally, soldering was performed using In solder and an oxygen-free copper backplate to obtain a high boron CoFeB alloy target material that satisfies the sputtering requirements.
표 3에 나타낸 바와 같이, 실시예 3의 투자율은 9 % 로, 마그네트론 스퍼터링의 아크 발생 요구를 만족한다.As shown in Table 3, the permeability of Example 3 was 9%, which satisfies the arc generation requirements of magnetron sputtering.
비교예 1:Comparative Example 1:
Co35Fe35B30 합금 성분을 직접 가스 분무화 제분하여, 입경≤ 200 μm의 분말 300 g을 스크리닝하여, 1250℃에서 5 h 동안 보온하는 소결 처리를 수행하여 코발트 철 붕소 합금 타겟 블랭크를 얻었으며, 타겟 블랭크에 균열이 발생하지 않았다. 표 1에 나타낸 바와 같이, 비교예 1에서 얻은 타겟 재료의 불순물 함량(wt)은 다음과 같다: Al - 50 ppm, Cu - 33 ppm, Si - 64 ppm, C - 140 ppm, O - 120 ppm, N - 80 ppm. 이로부터 알 수 있는 바와 같이, 비교예 1의 타겟 재료의 순도는 실시예 1 보다 낮고, 가스 원소 함량이 현저히 증가되며, 이로 인해 타겟 재료는 마그네트론 스퍼터링 과정에서 많은 Particle이 발생하여, 박막 성능을 저하시킨다.Co 35 Fe 35 B 30 alloy components were directly milled by gas atomization, 300 g of powder with a particle size ≤ 200 μm was screened, and sintering treatment was performed at 1250 ° C. for 5 h to obtain a cobalt iron boron alloy target blank. , no cracks occurred in the target blank. As shown in Table 1, the impurity content (wt) of the target material obtained in Comparative Example 1 is as follows: Al - 50 ppm, Cu - 33 ppm, Si - 64 ppm, C - 140 ppm, O - 120 ppm, N - 80 ppm. As can be seen from this, the purity of the target material of Comparative Example 1 is lower than that of Example 1, and the gas element content is significantly increased. As a result, many particles are generated in the target material during the magnetron sputtering process, deteriorating thin film performance. I order it.
비교예 2:Comparative Example 2:
코발트, 철 분말, 붕소 블록을 사용하여 기계적 분쇄를 통해 제분하여, Co35Fe35B30 합금 성분으로 배합하며, 입경≤200 μm의 분말 300 g을 스크리닝하고, 1100℃, 3h의 소결 처리를 수행하여 코발트 철 붕소 합금 타겟 블랭크를 얻었으며, 타겟 블랭크에 균열이 발생하지 않았다. 표 1에 나타낸 바와 같이, 비교예 2에서 얻은 타겟 재료의 불순물 함량(wt)은 다음과 같다: Al - 44 ppm, Cu - 35 ppm, Si - 78 ppm, C - 162 ppm, O - 134 ppm, N - 99 ppm.Cobalt, iron powder, and boron blocks are milled through mechanical grinding, blended with Co 35 Fe 35 B 30 alloy components, 300 g of powder with a particle size ≤ 200 μm is screened, and sintering treatment is performed at 1100°C for 3 h. Thus, a cobalt iron boron alloy target blank was obtained, and no cracks occurred in the target blank. As shown in Table 1, the impurity content (wt) of the target material obtained in Comparative Example 2 is as follows: Al - 44 ppm, Cu - 35 ppm, Si - 78 ppm, C - 162 ppm, O - 134 ppm, N - 99 ppm.
단위: wtppm표 1에 나타낸 바와 같이, 실시예 1, 실시예 2와 비교예 1, 비교예 2의 비교를 통해, 본 발명의 제조방법을 사용하여 CoFeB 타겟 재료를 제조하는 것은 불순물 원소의 함량, 특히 산소, 질소 등의 가스 원소의 함량 제어에 유리하며, 타겟 재료의 스퍼터링 과정에서 나타나는 Particle 수를 효과적으로 감소시킬 수 있음을 알 수 있다.Unit: wtppm As shown in Table 1, through comparison of Examples 1 and 2 with Comparative Examples 1 and 2, manufacturing a CoFeB target material using the manufacturing method of the present invention has the following characteristics: the content of impurity elements, In particular, it is advantageous for controlling the content of gas elements such as oxygen and nitrogen, and it can effectively reduce the number of particles that appear during the sputtering process of the target material.
비교예 3:Comparative Example 3:
Co35Fe35B30 타겟 재료 성분으로 원재료를 배합한다: 코발트 시트 142.1 g, 철 시트 135.1 g, 붕소 블록 22.8 g을 직접 진공 유도 제련하여, 완전히 용융시킨 후, 흑연 금형에 주조하였으며, 로에서 꺼낼 때 타겟 재료에 균열이 발생하여 성형이 불가능한 것으로 확인되었다.Co 35 Fe 35 B 30 The raw materials are mixed with the target material ingredients: 142.1 g of cobalt sheet, 135.1 g of iron sheet, and 22.8 g of boron block are directly vacuum induction smelted, completely melted, and then cast into a graphite mold and taken out of the furnace. When cracks occurred in the target material, it was confirmed that molding was impossible.
비교예 4:Comparative Example 4:
Co25Fe40B35 타겟 재료 성분으로 원재료를 배합한다: 코발트 시트 179.7 g, 철 시트 273.3 g, 붕소 블록 47 g을 직접 진공 유도 제련하여, 완전히 용융시킨 후, 흑연 금형에 주조하였으며, 로에서 꺼낼 때 타겟 재료에 균열이 발생하여 성형이 불가능한 것으로 확인되었다.Co 25 Fe 40 B 35 The raw materials are mixed with the target material ingredients: 179.7 g of cobalt sheet, 273.3 g of iron sheet, and 47 g of boron block are directly vacuum induction smelted, completely melted, and then cast into a graphite mold and taken out of the furnace. When cracks occurred in the target material, it was confirmed that molding was impossible.
표 2에 나타낸 바와 같이, 실시예 1, 실시예 2와 비교예 3, 비교예 4의 비교를 통해, 본 발명의 제조방법은 고붕소 함량 CoFeB 합금의 성형 제조를 실현할 수 있고, 실수율을 크게 향상시킬 수 있고, 생산 효율을 향상시킬 수 있음을 알 수 있다.As shown in Table 2, through comparison of Examples 1 and 2 with Comparative Examples 3 and 4, the manufacturing method of the present invention can realize molding manufacturing of high boron content CoFeB alloy and greatly improve the actual yield. It can be seen that this can be done and production efficiency can be improved.
비교예 5:Comparative Example 5:
Co20Fe60B20 타겟 재료 성분으로 원재료를 배합한다: 코발트 시트 123.8 g, 철 시트 353.1 g, 붕소 블록 23.1 g을 직접 진공 유도 제련하여, 완전히 용융시킨 후, 직접 흑연 금형에 주조하였으며, 로에서 꺼낼 때 타겟 재료에서 균열 발생이 발견되지 않았으나, 투자율은 2 %에 불과하며, 마그네트론 스퍼터링시 타겟 재료의 아크 발생이 용이하지 않았다.Co 20 Fe 60 B 20 The raw materials were mixed with the target material ingredients: 123.8 g of cobalt sheet, 353.1 g of iron sheet, and 23.1 g of boron block were directly vacuum induction smelted, completely melted, and then directly cast into a graphite mold, and placed in a furnace. No cracks were found in the target material when taken out, but the permeability was only 2%, and it was not easy for the target material to generate arc during magnetron sputtering.
실시예 3과 비교예 5를 비교한 결과, 표 3에 나타낸 바와 같이, 본 발명에서 제공하는 CoFeB 타겟 재료의 제조방법은 조직 균일성을 효과적으로 개선할 수 있고, 타겟 재료의 자기 특성을 향상시킬 수 있으며, 제조된 타겟 재료는 우수한 마그네트론 스퍼터링 성능을 가지고 있음을 알 수 있다.As a result of comparing Example 3 and Comparative Example 5, as shown in Table 3, the method for manufacturing the CoFeB target material provided by the present invention can effectively improve the tissue uniformity and improve the magnetic properties of the target material. It can be seen that the manufactured target material has excellent magnetron sputtering performance.
산업상 이용가능성Industrial applicability
본 발명은 CoFeB 타겟 재료 및 그 제조방법을 제공하며, 제조방법은 (1) 원재료 블랭크 용융 단계; (2) 2차 피드 단계; (3) 교반 단계; (4) 용융물 주조 단계; (5) 타겟 재료의 제조 단계를 포함한다. 본 발명의 제조방법은 원재료 블랭크 용융, 2차 피드, 교반을 순차적으로 거친 후 용융물 주조를 수행하여 조직이 균일하고, 성능이 우수한 CoFeB 잉곳을 직접 얻고, 이후 슬라이싱, 기계 가공, 및 용접 등의 공정을 통해 CoFeB 타겟 재료를 제조하며, 얻어진 CoFeB 타겟 재료는 밀도가 높고, 조직이 균일하고, 산소 함량이 낮은(≤100 wtppm) 등의 장점을 가지며, 마그네트론 스퍼터링 요구를 만족시킬 수 있으며, 자기 헤드, 자기 저항 센서, 및 자기 저항 소자(MRAM) 등의 제조 분야에서 광범위하게 사용될 수 있다. 또한, 본 발명의 제조방법은 B 함량 증가로 인한 가소성이 열위하고, 쉽게 균열이 발생하는 문제를 효과적으로 해결할 수 있으며, 경제적 가치와 적용 전망이 우수하다.The present invention provides a CoFeB target material and a manufacturing method thereof, the manufacturing method comprising: (1) melting a raw material blank; (2) secondary feed stage; (3) stirring step; (4) melt casting step; (5) It includes a manufacturing step of the target material. The manufacturing method of the present invention involves sequentially melting the raw material blank, secondary feed, and stirring, followed by casting the melt to directly obtain a CoFeB ingot with a uniform structure and excellent performance, followed by processes such as slicing, machining, and welding. CoFeB target material is manufactured through, and the obtained CoFeB target material has advantages such as high density, uniform structure, and low oxygen content (≤100 wtppm), and can satisfy magnetron sputtering requirements, magnetic head, It can be widely used in the manufacturing field of magnetoresistive sensors, magnetoresistive elements (MRAM), etc. In addition, the manufacturing method of the present invention can effectively solve the problems of poor plasticity and easy cracking due to increased B content, and has excellent economic value and application prospects.
마지막으로, 상기 실시예는 본 발명의 기술방안을 설명하기 위한 것일 뿐, 이를 제한하는 것은 아니며; 전술한 실시예를 참조하여 본 발명을 상세하게 설명하였지만, 당업자는 여전히 전술한 실시예에 기재된 기술방안을 수정하거나, 일부 기술적 특징을 등가 대체할 수 있으며; 또한, 이러한 수정 또는 대체는 해당 기술방안의 본질이 본 발명의 각 실시예의 기술방안의 사상과 범위를 벗어나지 않는다는 것을 이해할 수 있을 것이다.Lastly, the above examples are only for illustrating the technical solution of the present invention and do not limit it; Although the present invention has been described in detail with reference to the foregoing embodiments, those skilled in the art may still modify the technical solutions described in the foregoing embodiments or replace some technical features equivalently; In addition, it will be understood that such modifications or substitutions do not depart from the spirit and scope of the technical solution of each embodiment of the present invention.
Claims (10)
(2) 2차 피드 단계: T℃에서, 붕소 함유 2차 피드 분체를 단계 (1)에서 얻은 상기 용융액에 투입한 후, 보온 처리를 수행하여, 합금 용융물을 얻으며; 여기서, 상기 원재료 블랭크의 융점 ≤T℃< 상기 2차 피드 분체의 융점;
(3) 교반 단계: 단계 (2)에서 얻은 상기 합금 용융물을 상기 2차 피드 분체가 상기 용융액에 균일하게 분포될 때까지 교반하며;
(4) 용융물 주조 단계: 단계 (3)의 처리를 거친 후의 상기 합금 용융물을 주조 성형하여, CoFeB 잉곳을 얻으며;
(5) 타겟 재료의 제조 단계: 단계 (4)에서 얻은 상기 CoFeB 잉곳을 사용하여 CoFeB 타겟 재료를 제조하는 단계를 포함하는 것을 특징으로 하는 CoFeB 타겟 재료의 제조방법.(1) Raw material blank melting step: The raw material blank containing cobalt, iron, and boron is smelted until melted to obtain a melt; Here, the melting point of the raw material blank ≤ 1200°C;
(2) Secondary feed step: At T°C, boron-containing secondary feed powder is added to the melt obtained in step (1), and then heat preservation treatment is performed to obtain an alloy melt; Here, the melting point of the raw material blank ≤T°C < the melting point of the secondary feed powder;
(3) Stirring step: stirring the alloy melt obtained in step (2) until the secondary feed powder is uniformly distributed in the melt;
(4) Melt casting step: Casting the alloy melt after the treatment in step (3) to obtain a CoFeB ingot;
(5) Manufacturing step of target material: A method of manufacturing a CoFeB target material, comprising the step of manufacturing a CoFeB target material using the CoFeB ingot obtained in step (4).
상기 CoFeB 타겟 재료의 투자율 ≥9 %이며; 상기 CoFeB 타겟 재료는 O 함량≤100 wtppm인 것을 특징으로 하는 CoFeB 타겟 재료.A CoFeB target material manufactured using the manufacturing method of any one of claims 1 to 8,
The permeability of the CoFeB target material is ≥9%; The CoFeB target material is characterized in that the CoFeB target material has an O content≤100 wtppm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211610998.8A CN116288196A (en) | 2022-12-14 | 2022-12-14 | A kind of CoFeB target material and preparation method thereof |
CN202211610998.8 | 2022-12-14 | ||
PCT/CN2022/141610 WO2024124617A1 (en) | 2022-12-14 | 2022-12-23 | Cofeb target material and preparation method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240112309A true KR20240112309A (en) | 2024-07-18 |
Family
ID=86787561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247020177A KR20240112309A (en) | 2022-12-14 | 2022-12-23 | CoFeB target material and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240112309A (en) |
CN (1) | CN116288196A (en) |
WO (1) | WO2024124617A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161082A (en) * | 2004-12-03 | 2006-06-22 | Ishifuku Metal Ind Co Ltd | Sputtering target manufacturing method |
JP4331182B2 (en) * | 2006-04-14 | 2009-09-16 | 山陽特殊製鋼株式会社 | Soft magnetic target material |
RU2717767C2 (en) * | 2015-05-14 | 2020-03-25 | Материон Корпорейшн | Atomised target |
CN105845314B (en) * | 2016-04-27 | 2017-09-05 | 天津大学 | CoFeB/SiO2/n-Si heterostructure with large magnetoresistance effect and preparation method |
CN110218981A (en) * | 2019-06-28 | 2019-09-10 | 先导薄膜材料(广东)有限公司 | A kind of copper gallium target and preparation method thereof |
CN111455223B (en) * | 2019-08-08 | 2021-10-01 | 湖南稀土金属材料研究院 | Aluminum-scandium alloy target material and preparation method thereof |
CN110983262B (en) * | 2019-11-19 | 2022-01-18 | 先导薄膜材料(广东)有限公司 | Preparation method of aluminum-scandium alloy target material |
CN111519141B (en) * | 2020-03-30 | 2022-05-27 | 维达力实业(深圳)有限公司 | Lithium alloy target material and preparation method and application thereof |
CN113265627B (en) * | 2021-04-25 | 2022-12-20 | 先导薄膜材料(广东)有限公司 | Preparation method of nickel-iron-copper-molybdenum alloy target material |
CN113235058B (en) * | 2021-05-07 | 2022-08-05 | 先导薄膜材料(广东)有限公司 | Preparation method of CoZrTa alloy target blank and target material |
CN113523218A (en) * | 2021-06-30 | 2021-10-22 | 北京科技大学 | A kind of melting and casting device and method for homogenizing superalloy structure |
-
2022
- 2022-12-14 CN CN202211610998.8A patent/CN116288196A/en active Pending
- 2022-12-23 KR KR1020247020177A patent/KR20240112309A/en unknown
- 2022-12-23 WO PCT/CN2022/141610 patent/WO2024124617A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2024124617A1 (en) | 2024-06-20 |
CN116288196A (en) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2511397B1 (en) | Magnetic material sputtering target | |
EP1652960B1 (en) | Sputtering target and method for production thereof | |
JP4388263B2 (en) | Iron silicide sputtering target and manufacturing method thereof | |
US11101118B2 (en) | Cobalt, iron, boron, and/or nickel alloy-containing articles and methods for making same | |
JP5877517B2 (en) | Sputtering target for rare earth magnet and manufacturing method thereof | |
US20220145433A1 (en) | Alloy Suitable for Sputtering Target Material | |
KR20240112309A (en) | CoFeB target material and manufacturing method thereof | |
JP7086514B2 (en) | Cobalt or cobalt-based alloy sputtering target and its manufacturing method | |
JP4472930B2 (en) | Nickel-titanium alloy sputter target and its manufacturing method | |
JP7492831B2 (en) | Sputtering target material | |
WO2023038081A1 (en) | Sputtering target material | |
JPS63115304A (en) | High-performance rare-earth cast magnet | |
JP2020183582A (en) | Cobalt or cobalt-based alloy sputtering target and its manufacturing method | |
JPS58174501A (en) | Manufacture of permanent magnet | |
JPH05109515A (en) | Rare earth permanent magnet and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20240617 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application |