Nothing Special   »   [go: up one dir, main page]

KR20240103671A - Cell protection composition containing phloroglucinol and exhibiting antioxidant activity - Google Patents

Cell protection composition containing phloroglucinol and exhibiting antioxidant activity Download PDF

Info

Publication number
KR20240103671A
KR20240103671A KR1020220186041A KR20220186041A KR20240103671A KR 20240103671 A KR20240103671 A KR 20240103671A KR 1020220186041 A KR1020220186041 A KR 1020220186041A KR 20220186041 A KR20220186041 A KR 20220186041A KR 20240103671 A KR20240103671 A KR 20240103671A
Authority
KR
South Korea
Prior art keywords
phloroglucinol
composition
cell
cells
extract
Prior art date
Application number
KR1020220186041A
Other languages
Korean (ko)
Inventor
최영현
박철
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Priority to KR1020220186041A priority Critical patent/KR20240103671A/en
Publication of KR20240103671A publication Critical patent/KR20240103671A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/302Foods, ingredients or supplements having a functional effect on health having a modulating effect on age
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/2132Other phenolic compounds, polyphenols

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 플로로글루시놀(phloroglucinol)을 유효성분으로 포함하여 항산화 활성을 나타내는 세포 보호용 조성물에 관한 것으로, 플로로글루시놀(phloroglucinol) 추출물을 포함하여 산화 스트레스에 의한 DNA 손상, 미토콘드리아 기능 손상, 세포 사멸 등을 완화함으로써 세포 보호 활성을 나타낼 수 있어 기능성이 우수할 뿐 아니라 기호도 또한 우수하여 식품 조성물 또는 약학 조성물로 제공할 수 있다.The present invention relates to a cell protection composition that contains phloroglucinol as an active ingredient and exhibits antioxidant activity. It contains a phloroglucinol extract to prevent DNA damage caused by oxidative stress, damage to mitochondrial function, and cells. It can exhibit cell protective activity by alleviating death, etc., so it not only has excellent functionality but also has excellent taste, so it can be provided as a food composition or pharmaceutical composition.

Description

플로로글루시놀을 포함하고 항산화 활성을 나타내는 세포 보호용 조성물{CELL PROTECTION COMPOSITION CONTAINING PHLOROGLUCINOL AND EXHIBITING ANTIOXIDANT ACTIVITY}Cell protection composition containing phloroglucinol and exhibiting antioxidant activity {CELL PROTECTION COMPOSITION CONTAINING PHLOROGLUCINOL AND EXHIBITING ANTIOXIDANT ACTIVITY}

본 발명은 페놀 화합물인 플로로글루시놀을 포함하는 세포 보호용 조성물에 관한 것으로, 보다 구체적으로는 플로로글루시놀을 포함함으로써 항산화 활성이 우수하여 산화 스트레스에 의한 산화적 손상으로부터 세포 보호 활성이 나타날 수 있는 조성물에 관한 것이다.The present invention relates to a cell protection composition containing phloroglucinol, a phenolic compound. More specifically, by containing phloroglucinol, it has excellent antioxidant activity and can exhibit cell protective activity against oxidative damage caused by oxidative stress. It relates to a composition.

망막은 시각 지각 형성에 과도한 에너지를 소비하며, 산화 스트레스에 매우 민감하다. 동시에 망막은 시력 상실의 주요 원인인 연령 관련 황반 변성(AMD)을 비롯한 여러 주요 망막 질환과 관련된 활성 산소종(ROS)의 강력한 생성기 역할을 한다. AMD 유도의 병인과 메커니즘은 불분명하지만 망막 색소 상피(RPE)에 대한 산화 스트레스 관련 손상은 AMD 유사 병리학에서 초기 사건으로 인식된다. 미토콘드리아 ROS(mtROS)를 포함한 적절한 수준의 세포내 ROS는 세포 신호 전달 경로의 조절자로서 중요한 생리학적 역할을 한다. 그러나 지속적인 산화 스트레스에 의한 ROS의 과도한 축적은 세포 손상 및 사망으로 이어질 수 있으며 눈을 포함한 다양한 장기에 병리학적 손상의 시작에 기여할 수 있다. 또한 과도한 ROS 생산으로 인한 RPE 세포의 세포사멸 및 자가포식은 미토콘드리아 및 DNA 손상을 동반하여 궁극적으로 망막 기능 장애에 기여한다. 또한, RPE 변성에서 미토콘드리아 손상은 mitophagy로 알려진 세포 방어 메커니즘을 유도할 수 있기 때문에 mitophagy는 AMD와 같은 망막 퇴행성 질환에서 추정되는 치료 표적이 될 수 있다. 따라서 눈의 정상적인 기능을 보호하기 위해서는 과도한 ROS 생성을 억제해야 한다. The retina expends excessive energy in forming visual perception and is highly sensitive to oxidative stress. At the same time, the retina acts as a powerful generator of reactive oxygen species (ROS), which are associated with several major retinal diseases, including age-related macular degeneration (AMD), a leading cause of vision loss. Although the pathogenesis and mechanisms of AMD induction are unclear, oxidative stress-related damage to the retinal pigment epithelium (RPE) is recognized as an early event in AMD-like pathology. Appropriate levels of intracellular ROS, including mitochondrial ROS (mtROS), play important physiological roles as regulators of cell signaling pathways. However, excessive accumulation of ROS due to persistent oxidative stress can lead to cell damage and death and contribute to the onset of pathological damage in various organs, including the eyes. Additionally, apoptosis and autophagy of RPE cells caused by excessive ROS production are accompanied by mitochondrial and DNA damage, ultimately contributing to retinal dysfunction. Additionally, because mitochondrial damage in RPE degeneration can induce a cellular defense mechanism known as mitophagy, mitophagy may be a putative therapeutic target in retinal degenerative diseases such as AMD. Therefore, to protect the normal function of the eye, excessive ROS production must be suppressed.

한편, 천연물은 오랫동안 약물 개발의 원천으로 큰 관심을 받아왔다. 그 중에서도 항산화 활성이 뛰어난 천연물 유래의 페놀 화합물이 주목을 받고 있다. 그들의 항산화 활동은 주로 ROS의 소거와 세포 내 항산화 신호 전달 경로의 활성화를 포함한다. 방향족 페닐 고리와 3개의 하이드록실 그룹을 가진 폴리페놀 트리하이드록시벤젠인 플로로글루시놀은 식물, 조류 및 박테리아를 포함한 다양한 유기체에 존재하는 자연 발생 2차 대사산물이다. 이 페놀 화합물은 항균, 항경련, 항알레르기, 항혈전, 항염증 및 암 화학 예방 활성과 같은 다양한 약리학적 가능성을 갖는 것으로 알려져 있다. 최근 플로로글루시놀의 항산화 가능성은 여러 시험관 내 및 생체 내 모델에서 검증되었다. 예를 들어, Drygalsk는 플로로글루시놀은 항산화 방어를 강화하고 세포 거대분자에 대한 산화/질소 손상을 줄임으로써 간 지방증 및 염증 반응을 개선할 수 있다고 보고하였으며, 플로로글루시놀은 망막상피, 해마신경, 신장상피세포, 폐섬유아세포에서 항산화 및 해독 효소의 활성을 조절하여 과산화수소(H2O2) 처리 및 선 조사에 의한 산화적 손상을 차단할 수 있음이 확인되었다. 또한, ROS 스캐빈저인 플로로글루시놀은 시냅스 가소성을 조절하여 알츠하이머병 및 파킨슨병과 같은 신경퇴행성 질환의 병리 현상을 약화시킬 수 있다. 이전 연구는 플로로글루시놀(phloroglucinol)이 H2O2에 노출된 HaCaT 인간 케라티노사이트에서 DNA 손상과 세포사멸을 억제할 수 있음을 보여주었다. 유사한 결과가 자외선(UV) B-조사된 케라티노사이트 및 모든-트랜스-망막-노출된 일차 래트 RPE 및 마우스 광수용체 세포에서 확인되었다. 최근 Kuo et al.는 플로로글루시놀이 ROS 생성을 억제함으로써 인간 RPE ARPE-19 세포에서 AMD 유도제인 브롬산칼륨에 의해 유도된 산화적 세포독성을 차단할 수 있다고 보고하였다. Meanwhile, natural products have long received great attention as a source for drug development. Among them, phenolic compounds derived from natural products with excellent antioxidant activity are attracting attention. Their antioxidant activities mainly involve scavenging of ROS and activation of intracellular antioxidant signaling pathways. Phloroglucinol, a polyphenol trihydroxybenzene with an aromatic phenyl ring and three hydroxyl groups, is a naturally occurring secondary metabolite present in a variety of organisms, including plants, algae, and bacteria. These phenolic compounds are known to have diverse pharmacological potential, such as antibacterial, antispasmodic, antiallergic, antithrombotic, anti-inflammatory, and cancer chemopreventive activities. Recently, the antioxidant potential of phloroglucinol has been verified in several in vitro and in vivo models. For example, Drygalsk reported that phloroglucinol can improve hepatic steatosis and inflammatory responses by enhancing antioxidant defenses and reducing oxidative/nitric damage to cellular macromolecules, and phloroglucinol can improve hepatic steatosis and inflammatory responses in the retinal epithelium, hippocampus, etc. It was confirmed that oxidative damage caused by hydrogen peroxide (H 2 O 2 ) treatment and radiation could be blocked by controlling the activity of antioxidant and detoxification enzymes in nerves, renal epithelial cells, and lung fibroblasts. Additionally, phloroglucinol, a ROS scavenger, can attenuate the pathology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by regulating synaptic plasticity. Previous studies have shown that phloroglucinol can inhibit DNA damage and apoptosis in HaCaT human keratinocytes exposed to H 2 O 2 . Similar results were seen in ultraviolet (UV) B-irradiated keratinocytes and all-trans-retinal-exposed primary rat RPE and mouse photoreceptor cells. Recently, Kuo et al. reported that phloroglucinol can block oxidative cytotoxicity induced by potassium bromate, an AMD inducer, in human RPE ARPE-19 cells by inhibiting ROS production.

그러나, ARPE-19(인간 망막 색소 상피)세포에서 산화 스트레스에 의해 유발된 세포 손상에 대한 플로로글루시놀의 보호 역할에 대한 연구는 부족함에 따라, 본원발명에서는 플로로글루시놀을 유효성분으로 포함하여 산화 스트레스에 의한 산화적 손상으로부터 세포 보호 활성을 나타낼 수 있는 조성물을 제공하기 위해 이 발명을 완성하였다.However, as there is a lack of research on the protective role of phloroglucinol against cell damage caused by oxidative stress in ARPE-19 (human retinal pigment epithelium) cells, the present invention includes phloroglucinol as an active ingredient. Thus, this invention was completed to provide a composition that can exhibit cell protective activity against oxidative damage caused by oxidative stress.

KRKR 10-2019-0035474 10-2019-0035474 AA KRKR 10-2050506 10-2050506 B1B1

본 발명의 목적은 항산화활성을 나타내며 플로로글루시놀(Phloroglucinol)을 유효성분으로 포함하는 세포 보호용 조성물을 제공하는 것이다.The purpose of the present invention is to provide a cell protection composition that exhibits antioxidant activity and contains phloroglucinol as an active ingredient.

또한, 본 발명의 또 다른 목적은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함하는 세포 보호용 식품 조성물 또는 약학 조성물을 제공하는 것이다.In addition, another object of the present invention is to provide a food composition or pharmaceutical composition for cell protection, including a cell protection composition containing phloroglucinol as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 세포 보호용 조성물은 항산화 활성을 나타내고 플로로글루시놀(Phloroglucinol)을 유효성분으로 포함하는 것이다.In order to achieve the above object, a cell protection composition according to an embodiment of the present invention exhibits antioxidant activity and contains phloroglucinol as an active ingredient.

상기 세포 보호는 산화 스트레스(oxidative stress)에 의한 DNA 손상, 미토콘드리아 기능 손상, 세포 사멸을 완화함으로써 나타내는 것이다.The cell protection is achieved by alleviating DNA damage, mitochondrial function damage, and cell death caused by oxidative stress.

상기 산화 스트레스(oxidative stress)란 활성산소(ROS, reactive oxygen species)에 의한 세포의 손상인 것이다.The oxidative stress refers to cell damage caused by reactive oxygen species (ROS).

상기 활성산소(ROS, reactive oxygen species)는 슈퍼옥사이드 라디칼(super oxide radical, O2 -), 과산화수소(hydrogen peroxide, H2O2), 하이드록시 라디칼(hydroxy radical, OH-)을 포함하는 것이다.The reactive oxygen species (ROS) includes super oxide radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), and hydroxy radical (OH - ).

상기 조성물은 mtROS 생산 감소를 통해 미토콘드리아 매개 자가포식 (autophagy) 과정을 억제함으로써 세포 보호 활성을 나타내는 것이다.The composition exhibits cytoprotective activity by inhibiting the mitochondria-mediated autophagy process by reducing mtROS production.

본 발명의 다른 일 실시예에 따른 세포 보호용 식품 조성물은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함하는 것이다.A food composition for cell protection according to another embodiment of the present invention includes a composition for cell protection containing phloroglucinol as an active ingredient.

본 발명의 또 다른 일 실시예에 따른 세포 손상 치료, 개선 또는 예방용 약학 조성물은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함하는 것이다.A pharmaceutical composition for treating, improving or preventing cell damage according to another embodiment of the present invention includes a cell protection composition containing phloroglucinol as an active ingredient.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서 '예방'은 본 발명의 조성물의 투여로 상기 용어가 적용되는 질환 또는 질병, 또는 상기 질환 또는 질병의 하나 이상의 증상을 억제시키거나 진행을 지연시키는 모든 행위를 의미한다.In the present invention, 'prevention' refers to any action that suppresses or delays the progression of the disease or disease to which the term applies, or one or more symptoms of the disease or disease, by administering the composition of the present invention.

본 발명에서 '개선'은 본 발명의 조성물의 투여로 상기 용어가 적용되는 질환 또는 질병, 또는 상기 질환 또는 질병의 하나 이상의 증상이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.In the present invention, 'improvement' means any action in which the disease or disease to which the term applies, or one or more symptoms of the disease or disease, is improved or beneficially changed by administration of the composition of the present invention.

본 발명에서 '치료'는 달리 언급되지 않는 한, 상기 용어가 적용되는 질환 또는 질병, 또는 상기 질환 또는 질병의 하나 이상의 증상을 역전시키거나, 완화시키거나, 그 진행을 억제하거나, 또는 예방하는 것을 의미하며, 본원에서 사용된 상기 '치료' 용어는 '치료하는'이 상기와 같이 정의될 때 치료하는 행위를 말한다.In the present invention, unless otherwise stated, 'treatment' refers to reversing, alleviating, inhibiting the progression of, or preventing the disease or disease to which the term applies, or one or more symptoms of the disease or disease. The term 'treatment' used herein refers to the act of treating when 'treating' is defined as above.

본 명세서에 사용된 용어 '유효성분'이란 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.As used herein, the term 'active ingredient' refers to an ingredient that can exhibit the desired activity alone or in combination with a carrier that is not active on its own.

본 명세서에서 사용되는 용어 '추출물'은 상술한 바와 같이 당업계에서 조추출물(crude extract)로 통용되는 의미를 갖지만, 광의적으로는 추출물을 추가적으로 분획(fractionation)한 분획물도 포함한다. 즉, 식물 추출물은 상술한 추출용매를 이용하여 얻은 것뿐만 아니라, 여기에 정제과정을 추가적으로 적용하여 얻은 것도 포함한다. 예컨대, 상기 추출물을 일정한 분자량 컷-오프 값을 갖는 한외 여과막을 통과시켜 얻은 분획, 다양한 크로마토그래피(크기, 전하, 소수성 또는 친화성에 따른 분리를 위해 제작된 것)에 의한 분리 등, 추가적으로 실시된 다양한 정제 방법을 통해 얻어진 분획도 본 발명의 식물 추출물에 포함되는 것이다.The term 'extract' used in this specification has the meaning commonly used in the art as a crude extract, as described above, but in a broad sense also includes fractions obtained by additional fractionation of the extract. In other words, plant extracts include not only those obtained using the above-described extraction solvent, but also those obtained by additionally applying a purification process. For example, fractions obtained by passing the extract through an ultrafiltration membrane with a certain molecular weight cut-off value, separation by various chromatographs (designed for separation according to size, charge, hydrophobicity, or affinity), etc. Fractions obtained through purification methods are also included in the plant extract of the present invention.

본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 따라서 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprise)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for describing embodiments and is therefore not intended to limit the invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context. As used in the specification, 'comprise' and/or 'comprising' refers to the presence of one or more other components, steps, operations and/or elements. or does not rule out addition.

본 발명의 일 실시예에 따른 세포 보호용 조성물은 항산화 활성을 나타내고 플로로글루시놀(Phloroglucinol)을 유효성분으로 포함하는 것이다.The cell protection composition according to an embodiment of the present invention exhibits antioxidant activity and contains phloroglucinol as an active ingredient.

천연물 유래 페놀 화합물 중 하나인 플로로글루시놀은 방향족 페닐 고리와 3개의 하이드록실 그룹을 가진 폴리페놀 트리하이드록시벤젠에 해당한다. 이는 보통 식물, 조류 및 박테리아를 포함한 다양한 유기체에 존재하는 자연 발생 2차 대사산물로, 항균, 항경련, 항알레르기, 항혈전, 항염증 및 암 화학 예방 활성과 같은 다양한 약리학적 가능성을 갖는 것으로 알려져 있다.Phloroglucinol, one of the phenolic compounds derived from natural products, corresponds to the polyphenol trihydroxybenzene, which has an aromatic phenyl ring and three hydroxyl groups. It is a naturally occurring secondary metabolite commonly present in a variety of organisms, including plants, algae, and bacteria, and is known to have diverse pharmacological potential, such as antibacterial, antispasmodic, antiallergic, antithrombotic, anti-inflammatory, and cancer chemopreventive activities. there is.

본원발명 세포 보호용 조성물은 상기의 플로로글루시놀을 유효성분으로 포함함으로써 항산화 활성을 통해 세포 보호 활성을 나타낼 수 있다.The cell protection composition of the present invention can exhibit cell protection activity through antioxidant activity by containing the above-described phloroglucinol as an active ingredient.

보다 구체적으로, 본원발명 세포 보호용 조성물을 망막세포에 대한 세포 보호 활성을 나타내는 것일 수 있다.More specifically, the cell protective composition of the present invention may exhibit cytoprotective activity against retinal cells.

망막은 시각 지각 형성에 많은 에너지를 소비하고, 산화 스트레스에 매우 민감하며, 시력 상실의 주요 원인인 연령 관련 황반 변성(AMD)을 비롯한 여러 주요 망막 질환과 관련된 활성 산소종(ROS)의 강력한 생성기 역할을 한다. 망막 색소 상피(RPE)에 대한 산화 스트레스 관련 손상은 AMD 유사 병리학에서 초기에 발생하는 것으로 확인된다. 한편, 미토콘드리아 ROS(mtROS)를 포함한 적절한 수준의 세포내 ROS는 세포 신호 전달 경로의 조절자로서 중요한 생리학적 역할을 하나, 지속적인 산화 스트레스에 의한 ROS의 과도한 축적은 세포 손상 및 사망으로 이어질 수 있으며 눈을 포함한 다양한 장기에 병리학적 손상의 시작에 기여할 수 있다. The retina expends a lot of energy to form visual perception, is highly sensitive to oxidative stress, and acts as a powerful generator of reactive oxygen species (ROS), which are associated with several major retinal diseases, including age-related macular degeneration (AMD), a leading cause of vision loss. Do it. Oxidative stress-related damage to the retinal pigment epithelium (RPE) is found to occur early in AMD-like pathology. Meanwhile, an appropriate level of intracellular ROS, including mitochondrial ROS (mtROS), plays an important physiological role as a regulator of cell signaling pathways, but excessive accumulation of ROS due to persistent oxidative stress can lead to cell damage and death. It can contribute to the initiation of pathological damage to various organs, including

또한, 과도한 ROS 생산으로 인한 망막 색소 상피(RPE) 세포의 세포사멸 및 자가포식은 미토콘드리아 및 DNA 손상을 동반하여 궁극적으로 망막 기능 장애를 유발할 수 있으며, RPE 변성에서 미토콘드리아 손상은 mitophagy로 알려진 세포 방어 메커니즘을 유도할 수 있기 때문에 mitophagy는 AMD와 같은 망막 퇴행성 질환에서 추정되는 치료 표적이 될 수 있다. 따라서 눈의 정상적인 기능을 보호하기 위해서는 과도한 ROS 생성을 억제해야한다.Additionally, apoptosis and autophagy of retinal pigment epithelial (RPE) cells due to excessive ROS production can be accompanied by mitochondrial and DNA damage, ultimately leading to retinal dysfunction, and mitochondrial damage in RPE degeneration is a cellular defense mechanism known as mitophagy. Because it can induce mitophagy, it could be a putative therapeutic target in retinal degenerative diseases such as AMD. Therefore, excessive ROS production must be suppressed to protect the normal function of the eye.

즉, 본원발명의 조성물은 플로로글루시놀을 유효성분으로 포함하여 세포 보호 활성을 나타낼 수 있으며, 특히 활성산소로부터 망막 세포를 보호할 수 있다.That is, the composition of the present invention can exhibit cytoprotective activity by containing phloroglucinol as an active ingredient, and can especially protect retinal cells from active oxygen.

상기 세포 보호는 산화 스트레스(oxidative stress)에 의한 DNA 손상, 미토콘드리아 기능 손상, 세포 사멸을 완화함으로써 나타내는 것이다.The cell protection is achieved by alleviating DNA damage, mitochondrial function damage, and cell death caused by oxidative stress.

DNA는 세포의 핵 안에 존재하며 생명체의 유전정보를 저장하고, 세포는 분열과정을 통해 자신과 똑같은 DNA를 가진 딸세포를 만들거나, 생식세포는 감수분열을 통해 자신이 가진 DNA를 자식에게 물려주며 하나의 종을 유지하게 된다. 그러나, 유전정보를 조절하는 DNA는 화학물질, 방사선(UV), 세포 호흡에 의해 생성된 활성산소종(ROS)에 의한 손상을 받으며 이는 세포에 암이 형성되거나 DNA 복제과정에서 유전자 돌연변이가 생기기도 하며, 이는 세포의 정상적인 성장에 영향을 미치거나 세포의 사멸을 초래하기도 한다. DNA exists in the nucleus of a cell and stores the genetic information of a living organism. Through the process of division, cells create daughter cells with the same DNA as themselves, or reproductive cells pass on their own DNA to their children through meiosis. species will be maintained. However, DNA, which controls genetic information, is damaged by chemicals, radiation (UV), and reactive oxygen species (ROS) generated by cellular respiration, which can lead to the formation of cancer in cells or gene mutations during the DNA replication process. This may affect the normal growth of cells or cause cell death.

또한, 세포사멸(apoptosis)은 다양한 스트레스 상황에서 세포가 스스로 죽는 현상을 의미하며, 세포사멸은 세포 외부에 존재하는 인자로부터 시작되는 외인성 세포사멸과 세포 내부의 요인으로 시작되는 내인성 세포사멸로 나뉘어진다. 그 중, 산화 스트레스에 의해 활성산소가 과생성되는 경우 미토콘드리아 막을 탈분극시킴으로써 MMP가 손실되어 미토콘드리아에서 세포질로 시토크롬 c가 방출되고 이는 미토콘드리아 매개 내인성 세포사멸 경로에 필요한 caspase cascade를 활성화하여 세포 사멸이 유발하게 된다. 이때, 세포 주기 중 정상세포보다 DNA가 적은 상태로 세포사멸의 지표인자이며 세포주기 변화에서 sub-G1의 증가로 세포의 사멸을 확인할 수 있다. In addition, apoptosis refers to a phenomenon in which cells die on their own under various stress situations. Apoptosis is divided into extrinsic cell death, which starts from factors existing outside the cell, and intrinsic cell death, which starts from factors inside the cell. . Among them, when reactive oxygen species are overgenerated due to oxidative stress, MMPs are lost by depolarizing the mitochondrial membrane, and cytochrome c is released from the mitochondria to the cytoplasm, which activates the caspase cascade required for the mitochondria-mediated intrinsic apoptosis pathway, causing cell death. do. At this time, during the cell cycle, there is less DNA than in normal cells, which is an indicator of apoptosis, and cell death can be confirmed by an increase in sub-G1 in cell cycle changes.

한편, 미토콘드리아는 활성산소(ROS)에 의해 막의 탈분극이 일어날 수 있으며, 이는 미토콘드리아 매개 고유 세포사멸 경로의 활성화에 기여하여 미토콘드리아 기능 장애를 나타내는 MMP의 붕괴를 초래하고 결과적으로 시토크롬 c의 세포질 방출을 유도하게 된다. 상기의 시토크롬 c는 내인성 세포사멸 경로에 필요한 caspase cascade를 활성화함으로써 PARP와 같은 caspase 의존성 단백질의 분해를 일으켜 세포 사멸을 억제할 수 있는 성분임에 따라, 활성산소에 의해 막의 탈분극이 일어나 시토크롬 c의 세포질 방출을 억제하는 것이 미토콘드리아의 기능 저하를 방지할 수 있다.Meanwhile, mitochondria can undergo membrane depolarization by reactive oxygen species (ROS), which contributes to the activation of the mitochondria-mediated intrinsic apoptotic pathway, resulting in the collapse of MMPs, indicating mitochondrial dysfunction, and consequently leading to cytoplasmic release of cytochrome c. I do it. The above-mentioned cytochrome c is a component that can inhibit cell death by causing decomposition of caspase-dependent proteins such as PARP by activating the caspase cascade required for the endogenous cell death pathway. As a result, depolarization of the membrane occurs due to active oxygen, and cytoplasmic cytochrome c of cytochrome c occurs. Inhibiting release can prevent mitochondrial dysfunction.

이에, 본원발명의 플로로글루시놀을 포함하는 세포 보호용 조성물은 항산화 활성을 나타내고, DNA 손상 억제, 미토콘드리아 기능 손상 보호 및 세포 사멸 억제를 통해 세포 보호 활성을 나타낼 수 있다.Accordingly, the cell protective composition containing phloroglucinol of the present invention exhibits antioxidant activity and may exhibit cell protective activity through inhibition of DNA damage, protection from mitochondrial function damage, and inhibition of cell death.

한편, 상기 산화 스트레스(oxidative stress)란 활성산소(ROS, reactive oxygen species)에 의한 세포의 손상인 것이다.Meanwhile, oxidative stress refers to cell damage caused by reactive oxygen species (ROS).

상기 활성산소(ROS, reactive oxygen species)는 슈퍼옥사이드 라디칼(super oxide radical, O2 -), 과산화수소(hydrogen peroxide, H2O2), 하이드록시 라디칼(hydroxy radical, OH-)을 포함하는 것이다.The reactive oxygen species (ROS) includes super oxide radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), and hydroxy radical (OH - ).

활성산소(ROS, reactive oxygen species)란 몸의 기본단위인 세포의 세포막을 공격하여 원래 세포 기능을 상실하게 하며, 세포 내 유전자를 공격하여 해당 세포 재생을 방해한다. 이에 신호전달체계를 망가뜨리거나 면역력을 감소시켜 체내 질병 유발의 원인이 되는 것이다. 또한, 세포의 재생을 방해하여 노화 유발 또는 촉진의 원인이 되기도 한다. 이에, 상기와 같은 활성산소의 과다생성을 억제하는 것이 중요하다.Reactive oxygen species (ROS) attack the cell membrane of cells, the basic unit of the body, causing loss of original cell function, and attack genes within cells, interfering with cell regeneration. As a result, it destroys the signaling system or reduces immunity, causing disease in the body. Additionally, it may interfere with cell regeneration and cause or accelerate aging. Therefore, it is important to suppress excessive production of active oxygen as described above.

따라서, 본원발명 세포 보호용 조성물은 항산화 활성을 나타냄으로써 활성산소에 의한 세포의 손상을 방지하여 세포 보호 활성을 나타낼 수 있으며, 세포 손상에 따른 다양한 질병의 원인을 억제할 수 있게 된다.Therefore, the cell protection composition of the present invention exhibits antioxidant activity, thereby preventing damage to cells caused by free radicals, thereby exhibiting cytoprotective activity, and suppressing the causes of various diseases caused by cell damage.

상기 조성물은 mtROS 생산 감소를 통해 미토콘드리아 매개 자가포식 (autophagy) 과정을 억제함으로써 세포 보호 활성을 나타내는 것이다.The composition exhibits cytoprotective activity by inhibiting the mitochondria-mediated autophagy process by reducing mtROS production.

미토콘드리아는 ROS가 생성되는 소기관으로 알려져 있으나, 이를 중화하는 기능 또한 보유하고 있으며, 미토콘드리아는 활성산소종의 미세조절로 혈관세포 기능을 통제할 수 있다. 미토콘드리아의 기작 중 에너지가 생성되는 과정에서 발생되는 전자는 전자전달계를 거쳐 다섯번째 미토콘드리아 효소인 제5복합체에 도착하게 되며, 이 과정에서 환원되는 전자 중 1-3%는 산소분자와 불완전한 결합을 하게 되어 과산화물(superoxide)과 과산화수소(H2O2) 등을 생성하게 되는데 이를 미토콘드리아 ROS(mtROS)라고 한다. Mitochondria are known to be organelles that produce ROS, but they also have the function of neutralizing them, and mitochondria can control vascular cell function through fine regulation of reactive oxygen species. Among the mitochondrial mechanisms, electrons generated in the energy generation process pass through the electron transport chain and arrive at complex 5, the fifth mitochondrial enzyme. Among the electrons reduced in this process, 1-3% are incompletely combined with oxygen molecules. This produces superoxide and hydrogen peroxide (H 2 O 2 ), which are called mitochondrial ROS (mtROS).

생리학적 수준에 해당하는 적정량의 ROS는 세포 생존에 중요한 역할을 하나, 이를 초과하는 범위의 ROS가 생성되는 경우 미토콘드리아에서는 이를 중화시키기 위한 기전이 작동하게 되고 미토콘드리아의 기능이 유지될 수 있다.An appropriate amount of ROS corresponding to physiological levels plays an important role in cell survival, but when ROS exceeding this level is generated, a mechanism to neutralize it is activated in the mitochondria, and mitochondrial function can be maintained.

그러나, 산화 스트레스에 의해 활성산소(ROS)에 노출되게 되면 세포는 산화적 손상을 입게 되고, 이는 미토콘드리아의 단백질 발현 저하와 ATP 생산능력 감소를 유발함으로써 미토콘드리아의 기능 이상을 초래하여, 생리학적 기준을 초과한 mtROS 증가를 유발하게 된다.However, when exposed to reactive oxygen species (ROS) due to oxidative stress, cells suffer oxidative damage, which causes a decrease in mitochondrial protein expression and a decrease in ATP production capacity, resulting in mitochondrial dysfunction, thereby meeting physiological standards. This causes excessive mtROS increase.

이에, 산화 스트레스에 의해 손상된 세포는 ROS를 축적하고, 자가포식(autophagy), 미토파지(mitophagy), DNA 손상 등 미토콘드리아 손상에 따른 미토콘드리아 기능 이상이 나타날 수 있다.Accordingly, cells damaged by oxidative stress accumulate ROS and may exhibit mitochondrial dysfunction due to mitochondrial damage, such as autophagy, mitophagy, and DNA damage.

이에, 본원발명에서는 세포 보호용 조성물을 유효성분으로 포함함으로써 mtROS 생성 억제를 통해 미토콘드리아 기능을 보존함으로써 결과적으로 세포 보호 활성을 나타낼 수 있다.Accordingly, in the present invention, by including a cell protection composition as an active ingredient, mitochondrial function can be preserved through inhibition of mtROS production, resulting in cell protection activity.

바람직하게, 상기 본원발명의 세포 보호용 조성물은 플로로글루시놀에 천연 추출물을 추가로 더 포함함으로써 항산화, 세포 보호 활성이 보다 더 향상되는 것일 수 있다.Preferably, the cell protection composition of the present invention may further improve antioxidant and cell protection activities by further including natural extracts in addition to phloroglucinol.

상기 천연 추출물은 제주찔레 추출물, 자주잎제비꽃 추출물 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 제주찔레 추출물 및 자주잎제비꽃 추출물을 모두 포함하는 것일 수 있다.The natural extract may be any one selected from the group consisting of Jeju wild rose extract, purple leaf violet extract, and mixtures thereof, and may include both the Jeju wild rose extract and purple leaf violet extract.

상기 제주찔레(Rosa luciae)는 쌍떡잎식물 장미목 장미과의 낙엽 활엽 관목으로, 산기슭의 양지바른 곳이나 습한 하천지대에 자라며, 높이 1∼2m이다. 가지 끝이 아래로 처져서 덩굴 모양이 되며, 포기 전체에 가시가 있다. 잎은 어긋나고 깃꼴겹잎이다. 작은잎은 5∼9개이며 타원 모양이거나 달걀을 거꾸로 세워놓은 모양이고 길이 2∼3cm이다. 잎 양끝이 좁고 턱잎은 가장자리가 거의 밋밋하다. 꽃은 5∼6월에 흰색 또는 연분홍색으로 피는데, 새 가지 끝에 원추꽃차례로 달린다. 작은 꽃자루에는 털이 없거나 선모(腺毛)가 난다. 꽃받침조각은 바소꼴이며 뒤로 젖혀진다. 꽃잎은 달걀을 거꾸로 세워놓은 모양으로 끝이 오목하며 향기가 있다. 암술대에 털이 난다. 열매는 둥근 모양이며 9월에 붉게 익는다. 열매 속에는 지름 약 3mm의 수과가 여러 개 들어 있는데 흰빛이며 털이 난다. 어린 잎은 나물로 먹고 열매는 한방과 민간에서 부종, 관절염, 부스럼 등에 약재로 쓴다. 한국, 일본 등지에 분포한다.The Jeju starling (Rosa luciae) is a deciduous broad-leaved shrub of the dicotyledonous Rosaceae family. It grows in sunny areas at the foot of mountains or in moist river areas, and is 1 to 2 m tall. The ends of the branches droop downward, forming a vine shape, and there are thorns all over the plant. The leaves are alternate and pinnately compound. There are 5 to 9 small leaves, shaped like an oval or an upside-down egg, and are 2 to 3 cm long. Both ends of the leaves are narrow and the edges of the stipules are almost smooth. Flowers bloom in white or light pink from May to June and hang in panicles at the ends of new branches. The peduncle is hairless or has glandular hairs. The calyx pieces are lanceolate and bent backwards. The petals are shaped like an upside-down egg, have concave ends, and are fragrant. Hair grows on the style. The fruit is round in shape and ripens red in September. The fruit contains several achenes about 3 mm in diameter, which are white and hairy. The young leaves are eaten as a vegetable and the fruits are used as medicine for edema, arthritis, and boils in oriental and folk medicine. Distributed in Korea, Japan, etc.

상기 자주잎제비꽃(Viola violacea Makino.)은 쌍떡잎식물 측막태좌목 제비꽃과의 여러해살이풀로, 건조한 숲속에서 자란다. 전체에 털이 없거나 잎 표면에만 가는 털이 있는 것도 있다. 잎은 모두 뿌리에서 나오고 달걀 모양 또는 삼각형 달걀 모양이다. 잎 표면은 짙은 녹색이지만 때로 흰 무늬가 있고 뒷면은 홍자색이며 가장자리에 둔한 톱니가 있다. 꽃은 4∼5월에 피고 짙은 홍자색이며 꽃자루 끝에 1개씩 달린다. 꽃자루는 높이 5∼8cm이고 화관 옆갈래조각에 털이 없으며, 5개의 수술과 1개의 암술이 있는 포는 가운데 이하에 달린다. 열매는 삭과로서 길이 6∼7mm이며 털이 없다. 잎 뒷면이 자주색이므로 자주잎제비꽃이라 한다. 한국(진도, 한라산), 일본에 분포한다.The purple leaf violet (Viola violacea Makino.) is a perennial plant of the dicotyledonous plant Violaceae family, growing in dry forests. Some have no hair all over or have fine hair only on the surface of the leaf. The leaves all come from the roots and are egg-shaped or triangular egg-shaped. The surface of the leaf is dark green, but sometimes has white patterns, and the back is reddish-purple, with dull sawtooth edges. Flowers bloom from April to May, are dark red-purple, and hang one at a time at the end of the peduncle. The peduncle is 5 to 8 cm high, the side segments of the corolla are hairless, and the bracts with 5 stamens and 1 pistil are located below the center. The fruit is a capsule, 6 to 7 mm long, and has no hairs. Because the back of the leaf is purple, it is called purple leaf violet. Distributed in Korea (Jindo, Hallasan) and Japan.

상기 세포 보호용 조성물은 플로로글루시놀에 제주찔레 추출물 및 자주잎제비꽃 추출물을 더 포함함으로써 항산화 활성이 우수하여 산화 스트레스에 의한 세포 DNA 손상, 미토콘드리아 기능 손상, 세포 사멸을 완화함으로써 세포 보호 효과를 나타낼 수 있다.The cell protection composition has excellent antioxidant activity by further comprising phloroglucinol and Jeju wildflower extract and purple leaf violet extract, and can exhibit a cell protection effect by alleviating cell DNA damage, mitochondrial function damage, and cell death caused by oxidative stress. there is.

특히, 플로로글루시놀 100 중량부에 대하여 제주찔레 추출물 10 내지 30 중량부 및 자주잎제비꽃 추출물 10 내지 30 중량부 범위로 혼합하는 경우 그 효과가 가장 우수함을 확인할 수 있었다.In particular, it was confirmed that the effect was the best when mixing 10 to 30 parts by weight of Jeju starling extract and 10 to 30 parts by weight of purple leaf violet extract with respect to 100 parts by weight of phloroglucinol.

보다 더 바람직하게, 본원발명 조성물은 점나도나물 추출물, 쥐꼬리망초 추출물 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나를 추가로 더 포함하는 것일 수 있다. Even more preferably, the composition of the present invention may further include any one selected from the group consisting of a chinensis root extract, a cypress extract, or a mixture thereof.

상기 점나도나물(Cerastium holosteoides var. hallaisanense (Nakai) Mizush)은 쌍떡잎식물 중심자목 석죽과의 두해살이풀로 밭이나 들에서 흔히 자란다. 높이 15∼25cm로 가지가 갈라져서 비스듬히 자라고 검은 자줏빛이 돌며 윗부분에 선모가 있다. 잎은 마주나고 달걀 모양 또는 달걀 모양 바소꼴이며 가장자리가 밋밋하고 양끝이 좁으며 잔 털이 있다. 꽃은 5∼7월에 피고 흰색이며 취산꽃차례에 달리고 꽃이 진 다음 작은꽃줄기 끝이 밑으로 굽는다. 꽃받침조각은 5개이고 길이 4.5mm 정도이다. 꽃잎도 5개로서 꽃받침 길이와 비슷하며 끝이 깊게 2개로 갈라진다. 수술은 10개, 암술은 1개, 암술대는 5개이다. 열매는 연한 노란빛을 띤 갈색의 삭과로서 원통형이며 수평으로 달리고 길이 9mm 정도이다. 종자는 갈색이고 사마귀 같은 작은 돌기가 있다. 어린 순을 나물로 먹고 가축의 먹이로도 쓰인다. 한국, 일본, 중국 등지에 분포한다. The Cerastium holosteoides var. hallaisanense (Nakai) Mizush) is a biennial herb of the dicotyledonous plant Centrophyllaceae and is commonly grown in fields or fields. It is 15 to 25 cm tall, has branched branches, grows at an angle, is black and purple in color, and has glandular hairs on the upper part. The leaves are opposite each other, egg-shaped or egg-shaped, lanceolate, have smooth edges, are narrow at both ends, and have fine hairs. The flowers bloom from May to July and are white, hung on cyme inflorescences, and after the flowers fade, the ends of the florets bend downward. There are 5 calyx pieces and the length is about 4.5mm. There are also 5 petals, similar in length to the calyx, and split deeply into 2 at the end. There are 10 stamens, 1 pistil, and 5 styles. The fruit is a light yellowish brown capsule, cylindrical, runs horizontally, and is about 9mm long. The seeds are brown and have small wart-like protrusions. The young shoots are eaten as a vegetable and also used as feed for livestock. Distributed in Korea, Japan, China, etc.

상기 쥐꼬리망초(Justicia procumbens L.)는 쌍떡잎식물 통화식물목 쥐꼬리망초과의 한해살이풀로, 들에 흔하게 자라는 한해살이풀이다. 전체에 짧은 털이 난다. 줄기는 네모지며, 가지가 많이 갈라지고, 높이 10-40cm, 마디가 굵다. 잎은 마주나며, 난형 또는 긴 타원상 피침형, 길이 2-4cm, 폭 1-2cm, 가장자리가 밋밋하다. 잎자루는 2-15mm이다. 꽃은 7-9월에 줄기와 가지 끝에서 이삭꽃차례로 빽빽하게 달리며, 연한 보라색이다. 꽃받침은 5갈래로 깊게 갈라진다. 화관은 길이 7-8mm, 아랫입술이 3갈래로 얕게 갈라진다. 수술은 2개다. 열매는 삭과이며, 선상 긴 타원형이다. 우리나라 중부 이남에 흔하게 자생한다. 아시아 온대지역에 널리 분포한다.The above-mentioned Justicia procumbens L. is an annual herb of the Justicia procumbens family of the dicotyledonous plant order, and is an annual herb that commonly grows in the fields. Short hair grows all over. The stem is square, has many branches, is 10-40cm high, and has thick nodes. The leaves are opposite, ovate or long oval-lanceolate, 2-4 cm long, 1-2 cm wide, and have smooth edges. The petiole is 2-15mm. Flowers grow densely in spikes at the ends of stems and branches from July to September and are light purple in color. The calyx is deeply divided into 5 branches. The corolla is 7-8mm long, and the lower lip is shallowly divided into three segments. There are two surgeries. The fruit is a capsule and has a long oval shape. It commonly grows in the central and southern regions of Korea. Widely distributed in temperate regions of Asia.

상기 본원발명의 세포 보호용 조성물은 플로로글루시놀에 제주찔레 추출물, 자주잎제비꽃 추출물, 점나도나물 추출물 및 쥐꼬리망초 추출물을 더 포함함으로써 플로로글루시놀의 우수한 항산화 활성을 통한 세포 보호 효과가 보다 더 향상될 수 있으며 이를 포함하여 제조된 조성물의 기호도 또한 향상될 수 있다.The cell protection composition of the present invention further contains phloroglucinol as well as Jeju starling extract, purple leaf violet extract, seaweed extract, and rat's tail extract, thereby enhancing the cell protection effect through the excellent antioxidant activity of phloroglucinol. It can be improved and the palatability of compositions prepared including it can also be improved.

특히, 상기 플로로글루시놀 100 중량부에 대하여, 제주찔레 추출물 10 내지 30 중량부, 자주잎제비꽃 추출물 10 내지 30 중량부, 점나도나물 추출물 5 내지 15 중량부 및 쥐꼬리망초 추출물 5 내지 15 중량부로 포함하는 경우 상기 중량범위를 벗어나는 경우에 비해 그 활성이 보다 더 우수할 수 있다.In particular, based on 100 parts by weight of phloroglucinol, 10 to 30 parts by weight of Jeju starling extract, 10 to 30 parts by weight of purple leaf violet extract, 5 to 15 parts by weight of sorghum extract, and 5 to 15 parts by weight of rat's tail extract. When included, the activity may be superior compared to when it is outside the above weight range.

이는 특정 중량부 혼합에 따라 천연 추출물의 유효 성분의 혼합에 따라 효과가 향상된 것임을 알 수 있으며, 천연 추출물 고유의 향미에 의해 본원발명 조성물의 기호도가 향상되는 것임을 알 수 있다.It can be seen that the effect is improved according to the mixing of the active ingredients of the natural extract according to the specific weight part mixing, and the preference of the composition of the present invention is improved by the inherent flavor of the natural extract.

상기 추출물은 물, C1 내지 C6의 저급 알코올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 추출 용매를 이용하여 추출되는 것이다.The extract is extracted using an extraction solvent selected from the group consisting of water, C 1 to C 6 lower alcohols, and mixtures thereof.

상기 추출물을 제조하는 방법은 초음파 추출법, 침출법 및 환류 추출법 등 당업계의 통상적인 추출 방법일 수 있다. 구체적으로 세척 및 건조로 이물질이 제거된 천연물을 물, 탄소수 1 내지 6의 알코올 또는 이들의 혼합 용매로 추출한 추출물일 수 있으며, 상기 용매들을 순차적으로 시료에 적용하여 추출한 추출물일 수 있다.The method of preparing the extract may be a conventional extraction method in the art, such as ultrasonic extraction, leaching, and reflux extraction. Specifically, it may be an extract obtained by extracting a natural product from which foreign substances have been removed by washing and drying with water, alcohol having 1 to 6 carbon atoms, or a mixed solvent thereof, and may be an extract obtained by sequentially applying the solvents to the sample.

상기 초음파 추출법은 30 내지 50℃, 0.5 내지 2.5시간 동안 반응을 진행하며, 추출용매는 물 또는 50 내지 100%의 탄소수 1 내지 6의 알코올에 의한 것이다. 구체적으로는 40 내지 50℃, 1 내지 2.5시간 동안 추출하며, 추출용매로 물 또는 70 내지 80%의 탄소수 1 내지 6의 알코올에 의한 것이다.The ultrasonic extraction method proceeds at 30 to 50°C for 0.5 to 2.5 hours, and the extraction solvent is water or 50 to 100% alcohol with 1 to 6 carbon atoms. Specifically, extraction is performed at 40 to 50°C for 1 to 2.5 hours, and the extraction solvent is water or 70 to 80% alcohol with 1 to 6 carbon atoms.

상기 침출법은 15 내지 30℃, 24 내지 72시간 동안 진행하며, 추출 용매로 물 또는 50 내지 100%의 탄소수 1 내지 6의 알코올을 이용한다. 보다 구체적으로는 20 내지 25℃, 30 내지 54시간 동안 진행하며, 추출 용매는 물 또는 70 내지 80%의 탄소수 1 내지 6의 알코올에 의한 것이다.The leaching method is carried out at 15 to 30°C for 24 to 72 hours, and water or 50 to 100% alcohol with 1 to 6 carbon atoms is used as the extraction solvent. More specifically, it is carried out at 20 to 25°C for 30 to 54 hours, and the extraction solvent is water or 70 to 80% alcohol with 1 to 6 carbon atoms.

상기 환류 추출법은 물, 탄소수 1 내지 6의 알코올 100mL기준으로, 천연물의 분쇄물 10 내지 30g, 환류 시간 1 내지 3시간 및 50 내지 100%의 탄소수 1 내지 6의 알코올 또는 물에 의한다. 보다 구체적으로, 탄소수 1 내지 6의 알코올 100mL 또는 물 100mL 기준으로, 천연물의 분쇄물 10 내지 20g, 환류 시간 1 내지 2시간 및 70 내지 90%의 탄소수 1 내지 4의 알코올 또는 물에 의한 것이다.The reflux extraction method is based on 100 mL of water and alcohol with 1 to 6 carbon atoms, 10 to 30 g of pulverized natural product, reflux time of 1 to 3 hours, and 50 to 100% of alcohol or water with 1 to 6 carbon atoms. More specifically, based on 100 mL of alcohol with 1 to 6 carbon atoms or 100 mL of water, 10 to 20 g of pulverized natural product, 1 to 2 hours of reflux time, and 70 to 90% of alcohol or water with 1 to 4 carbon atoms.

상기 추출 용매는 시료의 중량 기준으로 2 내지 50배를 사용할 수 있으며, 보다 구체적으로는 2 내지 20배이다. 추출을 위해 시료는 추출 용매에서 침출을 위해 1 내지 72 시간 동안 방치될 수 있으며, 보다 구체적으로 24 내지 48 시간 동안 방치될 수 있다.The extraction solvent can be used in an amount of 2 to 50 times, more specifically, 2 to 20 times the weight of the sample. For extraction, the sample may be left for 1 to 72 hours, more specifically, 24 to 48 hours for leaching in the extraction solvent.

추출 후, 추출물은 새로운 분획 용매를 순차적으로 적용하여 분획할 수 있다. 분획시 사용하는 분획 용매는 상기 용매는 물, 헥산, 부탄올, 에틸아세트산, 에틸아세테이트, 메틸렌클로라이드 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상이며, 바람직하게는 에틸아세테이트 또는 메틸렌클로라이드이다.After extraction, the extract can be fractionated by sequentially applying a new fractionation solvent. The fractionating solvent used during fractionation is at least one selected from the group consisting of water, hexane, butanol, ethyl acetic acid, ethyl acetate, methylene chloride, and mixtures thereof, and is preferably ethyl acetate or methylene chloride.

추출물 또는 분획물을 얻은 후에는 농축 또는 동결건조 등의 방법을 추가적으로 사용할 수 있다.After obtaining the extract or fraction, additional methods such as concentration or freeze-drying can be used.

본 발명의 다른 일 실시예에 따른 세포 보호용 식품 조성물은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함하는 것이다.A food composition for cell protection according to another embodiment of the present invention includes a composition for cell protection containing phloroglucinol as an active ingredient.

이 때, 식품 또는 음료 중의 상기 조성물의 양은 전체 식품 중량의 약 0.01 내지 15 중량%로 가할 수 있으며, 건강음료 조성물은 100 ㎖를 기준으로 약 0.01 내지 10g의 비율로 가할 수 있으나, 이에 제한되지 않는다.At this time, the amount of the composition in the food or beverage can be about 0.01 to 15% by weight of the total weight of the food, and the health drink composition can be added at a rate of about 0.01 to 10g based on 100 ml, but is not limited thereto. .

본 발명의 식품 조성물이 음료 조성물인 경우, 지시된 비율로 필수 성분으로서 상기 추출물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제 (사카린, 아스파탐 등)를 사용할 수 있으나, 이에 제한되지 않을 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 ㎖ 당 일반적으로 약 1 내지 20g의 범위일 수 있으나, 이에 제한되지 않을 수 있다.When the food composition of the present invention is a beverage composition, other than containing the extract as an essential ingredient in the ratio indicated, there are no particular restrictions on other ingredients, and various flavoring agents or natural carbohydrates may be contained as additional ingredients like ordinary beverages. You can. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, such as common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (thaumatin, stevia extract (e.g., rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be used, but are not limited to these. The ratio of the natural carbohydrate may generally range from about 1 to 20 g per 100 ml of the composition of the present invention, but may not be limited thereto.

상기 외에 본 발명의 조성물은 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, Ph 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산 음료에 사용되는 탄산화제 등을 함유할 수 있으나, 이에 제한되지 않을 수 있다.In addition to the above, the composition of the present invention contains various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and thickening agents (cheese, chocolate, etc.), pectic acid and its salts, alginic acid and its It may contain salt, organic acid, protective colloidal thickener, Ph adjuster, stabilizer, preservative, glycerin, alcohol, carbonating agent used in carbonated beverages, etc., but may not be limited thereto.

그 밖에 본 발명의 조성물은 천연 과일 주스 및 과일 주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있고, 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 중요하지는 않지만 본 발명의 조성물 100 중량부 당 약 0.1 내지 약 20 중량부의 범위에서 선택될 수 있으나, 이에 제한되지 않는다.In addition, the composition of the present invention may contain natural fruit juice and pulp for the production of fruit juice drinks and vegetable drinks, and these ingredients can be used independently or in combination. The proportion of these additives is not critical, but may be selected in the range of about 0.1 to about 20 parts by weight per 100 parts by weight of the composition of the present invention, but is not limited thereto.

상기 세포 보호용 조성물을 포함하여 기능성 식품 조성물을 제공할 수 있으며 이를 포함함으로써 건강기능식품을 제공할 수 있는 것으로, 본 발명에서 말하는 "건강기능식품"은 건강보조의 목적으로 특정성분을 원료로 하거나 식품원료에 들어있는 특정성분을 추출, 농축, 정제, 혼합 등의 방법으로 제조, 가공한 식품으로 건강보조식품을 포함하며, 기타, 식품성분이 갖는 생체방어, 생체리듬의 조절, 질병의 방지와 회복 등 생체조절기능을 생체에 대하여 충분히 발휘할 수 있도록 설계되고 가공된 식품으로서, 질병의 예방 및 질병의 회복 등과 관련된 기능도 갖는 것을 모두 포함하는 것으로 한다.It is possible to provide a functional food composition including the cell protection composition, and by including it, a health functional food can be provided. In the present invention, a "health functional food" refers to a food made from a specific ingredient as a raw material or food for the purpose of health supplementation. It includes health supplements as foods manufactured and processed by methods such as extraction, concentration, purification, and mixing of specific ingredients contained in raw materials, and other food ingredients include biological defense, regulation of biological rhythm, and disease prevention and recovery. Foods designed and processed to fully exert bioregulatory functions on the living body, including those that also have functions related to disease prevention and disease recovery, etc.

본 발명의 또 다른 일 실시예에 따른 세포 손상 치료, 개선 또는 예방용 약학 조성물은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함하는 것이다.A pharmaceutical composition for treating, improving or preventing cell damage according to another embodiment of the present invention includes a cell protection composition containing phloroglucinol as an active ingredient.

구체적으로, 상기 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.Specifically, the pharmaceutical composition may be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, and aerosols, external preparations, suppositories, and sterile injection solutions, respectively, according to conventional methods. You can.

본 발명에서, 상기 약학적 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화 할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.In the present invention, carriers, excipients, and diluents that may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, and calcium phosphate. , calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. When formulated, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.

경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 추출물과 이의 분획물들에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘 카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는 데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다.Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc. These solid preparations include the extract and its fractions with at least one excipient such as starch, calcium carbonate, It is prepared by mixing sucrose, lactose, and gelatin. In addition to simple excipients, lubricants such as magnesium styrate and talc are also used. Liquid preparations for oral use include suspensions, oral solutions, emulsions, and syrups, and may contain various excipients such as wetting agents, sweeteners, fragrances, and preservatives in addition to the commonly used simple diluents such as water and liquid paraffin. there is.

비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories. Non-aqueous solvents and suspensions may include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate. As a base for suppositories, witepsol, macrogol, tween 61, cacao, laurin, glycerogenatin, etc. can be used.

상기 본 발명의 약학 조성물은 약제학적으로 유효한 양으로 투여될 수 있는데, 본 발명의 용어 "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학 조성물은 단독으로 투여하거나 공지된 면역치료제와 병용하여 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.The pharmaceutical composition of the present invention can be administered in a pharmaceutically effective amount, and the term "pharmaceutically effective amount" in the present invention refers to the amount used to treat or prevent a disease with a reasonable benefit/risk ratio applicable to medical treatment or prevention. It refers to a sufficient amount, and the effective dose level is determined by the severity of the disease, the activity of the drug, the patient's age, weight, health, gender, the patient's sensitivity to the drug, the administration time, route of administration, and excretion rate of the composition of the present invention used. Factors including the duration of time, drugs used in combination or concurrently with the compositions of the invention used, and other factors well known in the medical field. The pharmaceutical composition of the present invention can be administered alone or in combination with a known immunotherapeutic agent. It is important to consider all of the above factors and administer the amount that will achieve the maximum effect with the minimum amount without side effects.

본 발명은 항산화 활성을 나타내며 플로로글루시놀(Phloroglucinol)을 유효성분으로 포함하는 세포 보호용 조성물을 제공할 수 있다.The present invention can provide a cell protection composition that exhibits antioxidant activity and contains phloroglucinol as an active ingredient.

또한, 본 발명의 또 다른 목적은 플로로글루시놀을 유효성분으로 포함하는 세포 보호용 조성물을 포함함으로써 기능성이 우수하면서도 기호도 높은 세포 보호용 식품 조성물 또는 약학 조성물을 제공할 수 있다.In addition, another object of the present invention is to provide a food composition or pharmaceutical composition for cell protection that has excellent functionality and high preference by including a cell protection composition containing phloroglucinol as an active ingredient.

도 1은 플로로글루시놀의 ARPE-19 세포의 H2O2 유도 생존력 감소 및 세포독성을 억제 활성을 나타낸다.
도 2는 플로로글루시놀의 H2O2 처리된 ARPE-19 세포에서 세포사멸 억제 활성을 나타낸다.
도 3은 플로로글루시놀의 ARPE-19 세포에서 H2O2로 유도된 ROS 생성 억제 활성을 나타낸다.
도 4는 플로로글루시놀의 ARPE-19 세포에서 H2O2로 인한 DNA 손상 완화 활성을 나타낸다.
도 5는 플로로글루시놀의 ARPE-19 세포에서 H2O2 매개 mtROS 생성 제거 활성을 나타낸다.
도 6은 플로로글루시놀의 ARPE-19 세포에서 H2O2 유도 미토콘드리아 손상 및 시토크롬 c의 세포질 방출 보호활성을 나타낸다.
도 7은 플로로글루시놀은 ARPE-19 세포에서 H2O2 유도 autophagy 약화 활성을 나타낸다.
도 8은 인간 RPE ARPE-19 세포의 산화 손상에 대한 플로로글루시놀의 보호 효과를 나타낸다.
Figure 1 shows the activity of phloroglucinol in suppressing H 2 O 2 -induced viability reduction and cytotoxicity of ARPE-19 cells.
Figure 2 shows the anti-apoptotic activity of phloroglucinol in ARPE-19 cells treated with H 2 O 2 .
Figure 3 shows the inhibitory activity of phloroglucinol on ROS production induced by H 2 O 2 in ARPE-19 cells.
Figure 4 shows the activity of phloroglucinol in alleviating DNA damage caused by H 2 O 2 in ARPE-19 cells.
Figure 5 shows the H 2 O 2 -mediated mtROS production removal activity of phloroglucinol in ARPE-19 cells.
Figure 6 shows the protective activity of phloroglucinol against H 2 O 2 -induced mitochondrial damage and cytoplasmic release of cytochrome c in ARPE-19 cells.
Figure 7 shows the activity of phloroglucinol in attenuating H 2 O 2 induced autophagy in ARPE-19 cells.
Figure 8 shows the protective effect of phloroglucinol against oxidative damage in human RPE ARPE-19 cells.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement it. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.

[실험예 1: 플로로글루시놀의 항산화 및 세포 보호 활성][Experimental Example 1: Antioxidant and cell protective activity of phloroglucinol]

1. 재료 및 방법1. Materials and Methods

1-1. 세포 배양 및 치료1-1. Cell culture and treatment

인체 망막색소상피세포인 ARPE-19 세포(CRL-2302)는 American Type Culture Collection(Manassas, VA, USA)에서 구입하여 10% fetal bovine serum과 1% penicillin-streptomycin(WELGENE Inc., 대한민국 경산)이 보충된 Dulbecco's Modified Eagle Medium/F-12에서 배양하였다. 산화적 손상에 대한 플로로글루시놀의 유익한 효과를 조사하기 위해 세포를 원하는 농도의 플로로글루시놀 및 H2O2(Thermo Fisher Scientific, Inc., Waltham, MA, USA)를 함유하는 배지에서 24시간 동안 배양하거나 플로로글루시놀, N-아세틸-L-시스테인(NAC), (2-(2,2,6,6-테트라메틸피페리딘-1-옥실-4-일아미노)-2-옥소에틸) 트리페닐포스포늄 클로라이드(Mito-TEMPO) 및/또는 3-메틸아데닌(3-MA , Sigma-Aldrich Co., St. Louis, MO, USA)를 24시간 동안 H2O2로 처리하기 전에 1시간 동안 처리하였다. H2O2에 의해 유도된 ROS 생성에 대한 플로로글루시놀의 차단 효과를 조사하기 위해, 세포를 플로로글루시놀, NAC 및 Mito-TEMPO로 1시간 동안 전처리한 후 H2O2로 1시간 동안 처리하였다. ROS 생성, H2AX 발현 및 autophagic vacuoles의 형광 이미지를 얻기 위해 coverslips에서 배양된 세포를 phloroglucinol, NAC 및/또는 Mito-TEMPO의 존재 또는 부재에서 H2O2로 자극하였다. 처리 후, 세포를 인산염 완충 식염수로 세척하고 형광 염색하였다.ARPE-19 cells (CRL-2302), human retinal pigment epithelial cells, were purchased from American Type Culture Collection (Manassas, VA, USA) and incubated with 10% fetal bovine serum and 1% penicillin-streptomycin (WELGENE Inc., Gyeongsan, Korea). Cultured in supplemented Dulbecco's Modified Eagle Medium/F-12. To investigate the beneficial effects of phloroglucinol on oxidative damage, cells were incubated in medium containing desired concentrations of phloroglucinol and H 2 O 2 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) for 24 hours. by incubation for an hour or phloroglucinol, N-acetyl-L-cysteine (NAC), (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2- Oxoethyl) triphenylphosphonium chloride (Mito-TEMPO) and/or 3-methyladenine (3-MA, Sigma-Aldrich Co., St. Louis, MO, USA) treated with H 2 O 2 for 24 hours. It was treated for 1 hour beforehand. To investigate the blocking effect of phloroglucinol on ROS production induced by H 2 O 2 , cells were pretreated with phloroglucinol, NAC, and Mito-TEMPO for 1 h, followed by 1 h with H 2 O 2 processed for a while. To obtain fluorescence images of ROS production, H2AX expression, and autophagic vacuoles, cells cultured on coverslips were stimulated with H 2 O 2 in the presence or absence of phloroglucinol, NAC, and/or Mito-TEMPO. After treatment, cells were washed with phosphate-buffered saline and fluorescently stained.

1-2. 세포 생존율 분석1-2. Cell viability analysis

다양한 조건에서 배양된 ARPE-19 세포의 생존력을 알아보기 위해 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) 분석을 수행하였다. 구체적으로, 필요한 실험 처리 후 세포를 MTT 용액(Thermo Fisher Scientific, Inc.)과 함께 3시간 동안 배양하였다. 형성된 불용성 포르마잔 생성물을 디메틸 설폭사이드(DMSO, Thermo Fisher Scientific, Inc.)에 용해시키고 ELISA(enzyme-linked immunosorbent assay) 마이크로플레이트 판독기(Molecular Device Co., Sunnyvale, CA, 미국)를 사용하여 570nm에서 흡광도를 판독하였다. 세포 생존력은 처리되지 않은 대조군 세포의 백분율로 표현되었다.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) analysis was performed to determine the viability of ARPE-19 cells cultured under various conditions. Specifically, after the necessary experimental treatments, cells were incubated with MTT solution (Thermo Fisher Scientific, Inc.) for 3 hours. The insoluble formazan product formed was dissolved in dimethyl sulfoxide (DMSO, Thermo Fisher Scientific, Inc.) and analyzed at 570 nm using an enzyme-linked immunosorbent assay (ELISA) microplate reader (Molecular Device Co., Sunnyvale, CA, USA). The absorbance was read. Cell viability was expressed as a percentage of untreated control cells.

1-3. 세포 독성 분석1-3. Cytotoxicity assay

세포독성을 평가하기 위해 제조사의 지침에 따라 LDH 세포독성 분석 키트(Thermo Fisher Scientific, Inc.)를 사용하여 젖산 탈수소효소(LDH) 방출을 검출하였다. 구체적으로, 플로로글루시놀의 존재 또는 부재하에 H2O2로 처리된 조건으로부터 얻은 배양 배지를 96-웰 플레이트로 옮기고 방출된 LDH의 양을 ELISA 마이크로플레이트 판독기로 490 nm에서 측정하였다.To assess cytotoxicity, lactate dehydrogenase (LDH) release was detected using the LDH cytotoxicity assay kit (Thermo Fisher Scientific, Inc.) according to the manufacturer's instructions. Specifically, culture medium obtained from conditions treated with H 2 O 2 in the presence or absence of phloroglucinol was transferred to a 96-well plate, and the amount of released LDH was measured at 490 nm with an ELISA microplate reader.

1-4. Apoptosis의 정량적 평가1-4. Quantitative Assessment of Apoptosis

Annexin V-Fluorescein Isothiocyanate (FITC) Apoptosis Detection Kit는 Abcam Inc.(Cambridge, UK)에서 구입하여 플로로글루시놀 및/또는 H2O2 처리 시 세포사멸 유발 세포의 정량적 평가에 사용되었다. 처리 후, 제조자의 지시에 따라 수집된 세포를 아넥신 V-FITC 및 프로피디움 아이오다이드(PI)를 함유하는 아넥신 결합 완충액에 현탁시켰다. 그런 후, 10,000개 이벤트의 형광을 유세포 분석기(Becton Dickinson, San Jose, CA, USA)를 사용하여 획득하였다. Annexin V 양성 세포는 이전에 기술된 바와 같이 세포사멸 유도 세포로 간주되었다.Annexin V-Fluorescein Isothiocyanate (FITC) Apoptosis Detection Kit was purchased from Abcam Inc. (Cambridge, UK) and used for quantitative assessment of apoptosis-inducing cells upon treatment with phloroglucinol and/or H 2 O 2 . After treatment, the collected cells were suspended in annexin binding buffer containing Annexin V-FITC and propidium iodide (PI) according to the manufacturer's instructions. Then, the fluorescence of 10,000 events was acquired using a flow cytometer (Becton Dickinson, San Jose, CA, USA). Annexin V-positive cells were considered as apoptosis-inducing cells as previously described.

1-5. DNA 단편화 분석1-5. DNA fragmentation analysis

apoptosis marker인 fragmented DNA를 관찰하기 위해 cell pellet을 앞에서 설명한 lysis solution에 현탁시켰다. 상층액을 RNase A 및 proteinase K(Sigma-Aldrich Co.)와 함께 배양하였다. 이소프로필 알코올(Sigma-Aldrich Co.)로 DNA를 침전시켰다. 추출된 DNA는 1.0% agarose gel을 이용하여 분획한 후 ethidium bromide(EtBr, Thermo Fisher Scientific, Inc.)로 염색하여 세포사멸의 특징인 DNA 절편 패턴을 자외선 하에서 시각화하였다.To observe fragmented DNA, an apoptosis marker, the cell pellet was suspended in the lysis solution described previously. The supernatant was incubated with RNase A and proteinase K (Sigma-Aldrich Co.). DNA was precipitated with isopropyl alcohol (Sigma-Aldrich Co.). The extracted DNA was fractionated using a 1.0% agarose gel, stained with ethidium bromide (EtBr, Thermo Fisher Scientific, Inc.), and the DNA fragmentation pattern, a characteristic of apoptosis, was visualized under ultraviolet light.

1-6. 단백질 분리 및 Western Blotting1-6. Protein isolation and Western Blotting

웨스턴 블롯 분석에 사용되는 총 단백질은 앞서 기술한 바와 같이 추출하였다. 세포질 및 미토콘드리아 단백질은 제조업체의 지침에 따라 Mitochondrial Fractionation Kit(Thermo Fisher Scientific, Inc.)를 사용하여 분리되었다. 구체적으로, 단백질은 소듐 도데실 설페이트-폴리아크릴아미드 겔 전기영동으로 분리되어 Immobilon ®-P PVDF 막(Merck Millipore, Bedford, MA, USA) 으로 옮겨졌다. 그런 다음 이 멤브레인을 특정 1차 항체와 함께 밤새 배양한 후, 실온에서 1시간 동안 horseradish 과산화효소가 접합된 2차 항체(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)와 반응하였다. 면역 복합체는 제조업체의 지침에 따라 향상된 화학발광 시약(Thermo Fisher Scientific, Inc.)으로 가시화되었다. 데이터의 밀도 측정 분석은 ImageJ® 소프트웨어(v1.48, NIH, Bethesda, MD, USA)를 사용하여 수행되었다. 1차 항체는 Santa Cruz Biotechnology, Inc. 및 Cell Signaling Technology(Beverly, MA, USA)에서 구입하였다.Total proteins used for Western blot analysis were extracted as previously described. Cytosolic and mitochondrial proteins were isolated using the Mitochondrial Fractionation Kit (Thermo Fisher Scientific, Inc.) according to the manufacturer's instructions. Specifically, proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to Immobilon ®-P PVDF membrane (Merck Millipore, Bedford, MA, USA). The membrane was then incubated with specific primary antibodies overnight and then reacted with horseradish peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) for 1 hour at room temperature. Immune complexes were visualized with enhanced chemiluminescence reagents (Thermo Fisher Scientific, Inc.) according to the manufacturer's instructions. Densitometric analysis of the data was performed using ImageJ® software (v1.48, NIH, Bethesda, MD, USA). Primary antibodies were from Santa Cruz Biotechnology, Inc. and Cell Signaling Technology (Beverly, MA, USA).

1-7. Caspase-3 활동 분석1-7. Caspase-3 activity analysis

Caspase 3 활성은 Caspase-3 Colorimetric Assay Kit(Abcam, Inc.)를 사용하여 정량화되었다. 즉, 세포질 추출물의 분취량을 키트에 제공된 완충액에서 caspase-3, acetyl-Asp-Glu-Val-Asp-chromophore-p-nitroanilide(Ac-DVAD-pNa)의 형광 기질과 혼합하였다. ELISA 마이크로플레이트 판독기를 사용하여 405nm에서 pNa의 효소 촉매 방출을 모니터링 하였다. caspase-3의 활성은 대조군과 비교하여 제시되었다.Caspase 3 activity was quantified using the Caspase-3 Colorimetric Assay Kit (Abcam, Inc.). That is, an aliquot of the cytoplasmic extract was mixed with the fluorescent substrate of caspase-3 and acetyl-Asp-Glu-Val-Asp-chromophore-p-nitroanilide (Ac-DVAD-pNa) in the buffer provided in the kit. Enzyme-catalyzed release of pNa was monitored at 405 nm using an ELISA microplate reader. The activity of caspase-3 was presented compared to the control group.

1-8. ROS 생성 평가1-8. Evaluation of ROS generation

세포 내 ROS 및 mtROS 생성 수준은 각각 형광 프로브 2',7'-dichlorofluorescein diacetate(DCF-DA) 및 MitoSOX(Sigma-Aldrich Co.)를 사용하여 검출되었다. 플로로글루시놀, NAC 및/또는 Mito-TEMPO가 있거나 없이 H2O2에 노출된 후 세포를 DCF-DA 및 MitoSOX와 반응시켜 유동 세포 계측법을 사용하여 각각 세포 내 및 미토콘드리아 과산화물 수준을 평가하였다. 병행하여 커버슬립에서 배양된 DCF-DA- 및 MitoSOX-염색 세포의 형광 이미지를 동의대학교(부산, 부산) 조직재생을 위한 핵심 시설 센터에서 형광 현미경(Carl Zeiss, Oberkochen, Germany)으로 관찰하였다.The levels of intracellular ROS and mtROS production were detected using the fluorescent probes 2′,7′-dichlorofluorescein diacetate (DCF-DA) and MitoSOX (Sigma-Aldrich Co.), respectively. After exposure to H 2 O 2 with or without phloroglucinol, NAC, and/or Mito-TEMPO, cells were reacted with DCF-DA and MitoSOX to assess intracellular and mitochondrial superoxide levels, respectively, using flow cytometry. In parallel, fluorescence images of DCF-DA- and MitoSOX-stained cells cultured on coverslips were observed with a fluorescence microscope (Carl Zeiss, Oberkochen, Germany) at the Core Facility Center for Tissue Regeneration at Dong-eui University (Busan, Korea).

1-9. Comet assay1-9. Comet assay

적절한 처리 후 H2O2로 유도된 DNA 손상에 대한 플로로글루시놀의 억제 효과는 comet assay(단세포 겔 전기영동)를 사용하여 결정되었다. 구체적으로, 수집된 세포를 1% 저융점 아가로스에 현탁한 다음 상업적으로 이용 가능한 Comet Assay Kit(Trevigen, Inc., Gaithersburg, MD, USA)의 제조업체 프로토콜에 따라 comet 슬라이드에 펼쳤습니다. DNA 변성 후 전기영동을 실시하고 슬라이드를 비대칭 시아닌 염료로 염색하였다. 결과 이미지는 형광 현미경으로 획득되었다.After appropriate treatment, the inhibitory effect of phloroglucinol on H 2 O 2 -induced DNA damage was determined using comet assay (single cell gel electrophoresis). Specifically, collected cells were suspended in 1% low melting point agarose and then spread on comet slides according to the manufacturer's protocol of the commercially available Comet Assay Kit (Trevigen, Inc., Gaithersburg, MD, USA). After DNA denaturation, electrophoresis was performed, and the slides were stained with an asymmetric cyanine dye. The resulting images were acquired with a fluorescence microscope.

1-10. γH2AX 면역형광 분석1-10. γH2AX immunofluorescence analysis

H2O2를 첨가하기 전에 플로로글루시놀 또는 NAC를 처리하거나 처리하지 않은 세포에서 인산화된 히스톤 H2AX(p-γH2AX)의 발현을 분석하기 위해 Immunofluorescence assay를 적용하였다. 처리 후 세포를 포름알데히드로 고정하고 Triton X-100 용액(Thermo Fisher Scientific, Inc.)으로 투과성화한 다음 소 혈청 알부민 용액(Sigma-Aldrich Co.)으로 차단하였다. 그 후 항-p-γH2AX 항체(Cell Signaling Technology, Inc.)로 세포를 탐침한 다음 Alexa Fluor 555가 결합된 2차 항체(Thermo Fisher Scientific, Inc.)와 반응시켰다. 핵 대조염색을 위해 세포를 4',6-diamidino-2-phenylindol(DAPI) 용액(Sigma-Aldrich Co.)에 담갔다. 이후, 다음 형광 현미경을 사용하여 p-γH2AX 및 DAPI 형광 이미지를 캡처하였다.Immunofluorescence assay was applied to analyze the expression of phosphorylated histone H2AX (p-γH2AX) in cells treated or not with phloroglucinol or NAC before adding H 2 O 2 . After treatment, cells were fixed with formaldehyde, permeabilized with Triton X-100 solution (Thermo Fisher Scientific, Inc.), and blocked with bovine serum albumin solution (Sigma-Aldrich Co.). Afterwards, cells were probed with anti-p-γH2AX antibody (Cell Signaling Technology, Inc.) and then reacted with Alexa Fluor 555-conjugated secondary antibody (Thermo Fisher Scientific, Inc.). For nuclear counterstaining, cells were immersed in 4',6-diamidino-2-phenylindol (DAPI) solution (Sigma-Aldrich Co.). Afterwards, p-γH2AX and DAPI fluorescence images were captured using a fluorescence microscope.

1-11. 8-Hydroxy-2'-Deoxyguanosine(8-OHdG) 측정1-11. 8-Hydroxy-2'-Deoxyguanosine (8-OHdG) measurement

8-OHdG를 측정하기 위해 8-oxoGuanine의 deoxyriboside 형태인 OxiSelect Oxidative DNA Damage ELISA Kit(Cell Biolabs, San Diego, USA)를 사용하였다. 즉, 상기와 동일한 조건에서 배양된 세포로부터 DNA를 추출하였다. 이후, 각 분리된 샘플의 DNA를 DNase I(Sigma-Aldrich Co.)로 절단하였다. 그런 다음 ELISA 반응의 흡광도를 키트에 제시된 프로토콜에 따라 450nm에서 측정하였다.To measure 8-OHdG, the OxiSelect Oxidative DNA Damage ELISA Kit (Cell Biolabs, San Diego, USA), a deoxyriboside form of 8-oxoGuanine, was used. That is, DNA was extracted from cells cultured under the same conditions as above. Afterwards, the DNA of each isolated sample was digested with DNase I (Sigma-Aldrich Co.). Then, the absorbance of the ELISA reaction was measured at 450 nm according to the protocol provided in the kit.

1-12. 미토콘드리아 막 전위(MMP) 측정1-12. Mitochondrial membrane potential (MMP) measurements

MMP 수준은 형광 카르보시아닌 프로브인 5,5',6,6'-테트라클로로-1,1'3,3'-테트라에틸-이미다카르보시아누 요오다이드(JC-1)로 염색하여 모니터링하였다. 이 분석을 위해 플로로글루시놀 또는 Mito-TEMPO의 존재 또는 부재 하에 H2O2로 처리된 세포를 JC-1 용액(Thermo Fisher Scientific, Inc.)으로 염색하였다. JC-1 단량체의 백분율을 유세포 분석기로 분석하여 MMP를 잃은 세포를 표시하였다.MMP levels were monitored by staining with the fluorescent carbocyanine probe 5,5',6,6'-tetrachloro-1,1'3,3'-tetraethyl-imidacarbocyano iodide (JC-1). did. For this analysis, cells treated with H 2 O 2 in the presence or absence of phloroglucinol or Mito-TEMPO were stained with JC-1 solution (Thermo Fisher Scientific, Inc.). The percentage of JC-1 monomers was analyzed by flow cytometry to indicate cells that had lost MMP.

1-13. 자가포식(autophagy) 감지1-13. Autophagy detection

자가포식소체의 형성은 Enzo Life Sciences, Inc.(Farmingdale, NY, USA)에서 구입한 CYTO-ID® Autophagy Detection Kit를 사용하여 평가하였다. 먼저, autophagy 유도의 정량 분석을 위해 세포를 수집하였다. 이후, 제조업체의 지침에 따라 Cyto-ID 염색 절차를 수행하였다. 구체적으로, 다양한 조건에서 배양된 세포를 키트에 포함된 분석 버퍼로 세척하고 파라포름알데히드로 고정하였다. 이 후, 형광 표지된 세포를 유동 세포측정법으로 분석하였다. 다음으로, 자가포식소체 및 핵의 국소화를 모니터링하기 위해 세포를 CYTO-ID 염색 후 DAPI 염색에 적용하였다. autophagosomes 및 핵의 위치를 모니터링하기 위해 세포를 CYTO-ID 염색 후 DAPI 염색에 추가로 적용하였다. autophagic 신호(녹색)와 핵 신호(파란색)는 형광 현미경으로 수집되었다.Formation of autophagosomes was assessed using the CYTO-ID® Autophagy Detection Kit purchased from Enzo Life Sciences, Inc. (Farmingdale, NY, USA). First, cells were collected for quantitative analysis of autophagy induction. Afterwards, the Cyto-ID staining procedure was performed according to the manufacturer's instructions. Specifically, cells cultured under various conditions were washed with the analysis buffer included in the kit and fixed with paraformaldehyde. Afterwards, the fluorescently labeled cells were analyzed by flow cytometry. Next, cells were subjected to CYTO-ID staining followed by DAPI staining to monitor autophagosome and nuclear localization. To monitor the location of autophagosomes and nuclei, cells were further subjected to CYTO-ID staining followed by DAPI staining. Autophagic signals (green) and nuclear signals (blue) were collected by fluorescence microscopy.

1-14. 통계 분석1-14. statistical analysis

모든 통계 분석은 GraphPad Prism(Graphpad Inc., San Diego, CA, USA)을 사용하여 수행되었다. 통계적 차이는 Tukey 검정을 사용한 일원 분산 분석에 의해 결정되었다. p값이 0.05 미만일 때 통계적 유의성을 고려하였다. 모든 데이터는 평균 ± 표준 편차(SD)로 표현된다(*p 0.05, **p 0.01 및 ***p 0.001 vs. 무자극 대조군; ##p 0.01 및 ###p 0.001 vs. H2O2 단독 치료, &p 0.05 및 &&&p 0.001 vs. 플로로글루시놀 + Mito-TEMPO 그룹).All statistical analyzes were performed using GraphPad Prism (Graphpad Inc., San Diego, CA, USA). Statistical differences were determined by one-way analysis of variance using the Tukey test. Statistical significance was considered when the p value was less than 0.05. All data are expressed as mean ± standard deviation (SD) ( * p 0.05, ** p 0.01 and *** p 0.001 vs. unstimulated control; ## p 0.01 and ### p 0.001 vs. H 2 O 2 treatment alone, &&& p 0.05 vs. phloroglucinol + Mito-TEMPO group).

2. 실험 결과2. Experimental results

2-1. 플로로글루시놀의 H2O2로 인한 세포 생존력 감소 및 세포 독성 증가 회복2-1. Recovers decreased cell viability and increased cytotoxicity caused by H 2 O 2 of phloroglucinol

ARPE-19 세포에서 산화 손상을 유발할 수 있는 H2O2의 농도를 선택하기 위해 MTT 분석을 수행하였다. 예상대로 H2O2 처리는 용량 의존적으로 세포 생존력을 상당히 억제하였다(도 1A). 0.5mM 농도에서 H2O2는 세포 생존율을 대조군(미처리 세포)의 약 60%로 감소시켰다. 따라서, 과산화수소의 세포독성 유발농도는 0.5mM로 설정하였다. 또한, H2O2에 의한 세포독성 억제 효과를 평가하기 위한 플로로글루시놀의 적절한 농도 범위를 결정하기 위한 실험에서 플로로글루시놀은 20μg/ml 농도까지 세포 생존에 유의한 영향을 미치지 않는 것으로 나타났다(도 1B). 따라서, 플로로글루시놀의 최고 최적 농도는 20 μg/ml로 결정되었다. 그 후, H2O2에 의해 유발된 세포 독성에 대한 플로로글루시놀의 억제 효과를 평가했고 플로로글루시놀은 H2O2에 의해 유발된 세포 생존력의 감소를 유의하게 회복시켰음을 발견하였다(도 1C). 동시에, 양성 대조군으로 사용된 ROS 제거제인 NAC로 전처리한 경우 H2O2에 대한 반응으로 세포 생존력의 하향 조절을 완전히 억제하여 H2O2에 의해 유발된 산화 스트레스가 H2O2로 유도된 세포 생존력 감소를 매개할 수 있음을 입증하였다. LDH 누출 분석을 사용한 플로로글루시놀의 보호 효과에 대한 추가 분석은 플로로글루시놀과 NAC가 세포 배양 배지로의 H2O2 유발 LDH 방출을 상당히 감소시켰음을 보여주었다(도 1D).MTT analysis was performed to select the concentration of H 2 O 2 that can cause oxidative damage in ARPE-19 cells. As expected, H 2 O 2 treatment significantly inhibited cell viability in a dose-dependent manner (Figure 1A). H 2 O 2 at a concentration of 0.5mM reduced cell viability to about 60% of the control (untreated cells). Therefore, the cytotoxic concentration of hydrogen peroxide was set at 0.5mM. In addition, in an experiment to determine the appropriate concentration range of phloroglucinol to evaluate the cytotoxicity inhibitory effect of H 2 O 2, phloroglucinol was found to have no significant effect on cell survival up to a concentration of 20 μg/ml. appeared (Figure 1B). Therefore, the highest optimal concentration of phloroglucinol was determined to be 20 μg/ml. Afterwards, the inhibitory effect of phloroglucinol on cytotoxicity induced by H 2 O 2 was evaluated and it was found that phloroglucinol significantly restored the decrease in cell viability induced by H 2 O 2 (Figure 1C). At the same time, pretreatment with NAC, a ROS scavenger used as a positive control , completely inhibited the downregulation of cell viability in response to H 2 O 2 , thereby reducing the oxidative stress induced by H 2 O 2 It has been proven that it can mediate a decrease in cell viability. Further analysis of the protective effect of phloroglucinol using the LDH leakage assay showed that phloroglucinol and NAC significantly reduced H 2 O 2 -induced LDH release into the cell culture medium (Figure 1D).

2-2. 플로로글루시놀(Phloroglucinol)의 H2O2 유도 세포사멸 억제2-2. Inhibition of H 2 O 2 induced apoptosis by Phloroglucinol

H2O2에 노출된 ARPE-19 세포에서 세포 생존의 손실과 세포 독성의 유도가 세포 사멸의 유도와 관련이 있는지 조사하였다. 도 2A 및 B에서 확인할 수 있는 것과 같이, annexin V/PI 염색 후 유세포 분석 결과는 처리되지 않은 대조군 세포보다 H2O2 처리된 세포에서 훨씬 더 많은 세포사멸이 유도되었음을 보여주었다. 그러나, H2O2에 의한 세포사멸 유도는 플로로글루시놀을 처리한 세포에서 현저하게 약화되었다. 그 후, 플로로글루시놀(phloroglucinol)이 과산화수소(H2O2)에 의한 세포사멸을 방지하는지 확인하기 위해 DNA fragmentation assay를 수행하였다. 도 2C에서와 같이, H2O2 처리된 세포는 DNA 래더링 및 올리고뉴클레오솜 크기의 DNA 조각을 나타냈다. 이러한 패턴은 처리되지 않은 대조군 세포에서는 관찰되지 않았다. 그러나 이러한 패턴은 플로로글루시놀로 사전 배양된 세포에서 현저하게 약화되었다. H2O2 처리는 또한 caspase-3의 활성화 및 활성화된 caspase-3의 대표적인 기질 단백질인 PARP(poly(ADP-ribose) polymerase)의 절단과 관련이 있는 것으로 알려진 Bcl-2/Bax 비율을 억제하였다. 그러나, 이러한 변화는 플로로글루시놀로 전처리된 세포에서 크게 개선되었다(도 2D, 도 2E). 이러한 결과는 플로로글루시놀(phloroglucinol)이 세포사멸 조절인자를 조절함으로써 H2O2-유도 ARPE-19 세포 사멸을 효과적으로 감소시킬 수 있음을 시사한다.We investigated whether the loss of cell survival and induction of cytotoxicity were related to the induction of cell death in ARPE-19 cells exposed to H 2 O 2 . As can be seen in Figures 2A and B, flow cytometry results after annexin V/PI staining showed that significantly more apoptosis was induced in H 2 O 2 treated cells than in untreated control cells. However, induction of apoptosis by H 2 O 2 was significantly weakened in cells treated with phloroglucinol. Afterwards, DNA fragmentation assay was performed to confirm whether phloroglucinol prevents cell death caused by hydrogen peroxide (H 2 O 2 ). As shown in Figure 2C, H 2 O 2 treated cells exhibited DNA laddering and oligonucleosome-sized DNA fragments. This pattern was not observed in untreated control cells. However, this pattern was significantly attenuated in cells preincubated with phloroglucinol. H 2 O 2 treatment also inhibited the Bcl-2/Bax ratio, which is known to be related to the activation of caspase-3 and the cleavage of PARP (poly(ADP-ribose) polymerase), a representative substrate protein of activated caspase-3. . However, these changes were greatly ameliorated in cells pretreated with phloroglucinol (Figure 2D, Figure 2E). These results suggest that phloroglucinol can effectively reduce H2O2-induced ARPE-19 cell death by regulating apoptosis regulators.

2-3. 플로로글루시놀(Phloroglucinol)의 H2O2 유도된 ROS 생성 제거2-3. Elimination of H 2 O 2 induced ROS generation by Phloroglucinol

플로로글루시놀의 항산화 특성을 확인하기 위해, DCFH-DA 프로브를 사용하여 세포 내 ROS 생성을 측정하였다. 도 3A 및 B에 나타낸 바와 같이, 유세포 분석 결과 H2O2로 처리된 세포에서 세포내 과산화물 생성이 처리되지 않은 대조군 세포에 비해 크게 증가한 반면, 플로로글루시놀로 전처리한 경우에는 현저하게 억제되었다. 또한, 플로로글루시놀 단독 처리 세포에서는 ROS가 거의 발생하지 않았다. H2O2 처리는 NAC의 존재 하에서도 플로로글루시놀로 처리된 세포에서 ROS 수준을 증가시킬 수 없었으며, 이는 플로로글루시놀이 ROS 스캐빈저로 작용할 수 있음을 나타낸다. 이러한 결과는 DCF-DA로 염색된 세포의 형광현미경 관찰을 통해 확인하였다. 플로로글루시놀을 사용한 전처리가 H2O2 유도 DCF 형광 강도를 상당히 제거한 것으로 나타났다(도 3C).To confirm the antioxidant properties of phloroglucinol, intracellular ROS production was measured using the DCFH-DA probe. As shown in Figures 3A and B, flow cytometry results showed that intracellular superoxide production in cells treated with H 2 O 2 was significantly increased compared to untreated control cells, whereas it was significantly inhibited when pretreated with phloroglucinol. . In addition, almost no ROS was generated in cells treated with phloroglucinol alone. H 2 O 2 treatment was unable to increase ROS levels in cells treated with phloroglucinol even in the presence of NAC, indicating that phloroglucinol may act as a ROS scavenger. These results were confirmed through fluorescence microscopy of cells stained with DCF-DA. Pretreatment with phloroglucinol was shown to significantly eliminate H 2 O 2 -induced DCF fluorescence intensity (Figure 3C).

2-4. 플로로글루시놀(Phloroglucinol)의 H2O2로 인한 DNA 손상 제거2-4. Removal of DNA damage caused by H 2 O 2 of Phloroglucinol

플로로글루시놀이 ARPE-19 세포에서 H2O2로 유도된 DNA 손상을 예방할 수 있는지 여부를 평가하였다. H2O2 처리에 의해 유도된 DNA 손상에 대한 플로로글루시놀의 차단 효과는 comet 분석을 사용하여 처음 조사되었다. 예상대로, comet 꼬리 모멘트(comet tail moment)의 증가는 H2O2 처리된 세포에서 명확하게 관찰되었으며, 이는 H2O2 처리에 의해 DNA 손상이 유도되었음을 나타낸다(도 4A). 이 결과를 확인하기 위해 γH2AX의 발현을 분석하였다. Immunofluorescence 결과는 H2O2 처리된 세포의 핵에서 γH2AX의 형광 강도가 처리되지 않은 세포의 핵에 비해 분명히 증가했음을 보여주었다. 핵산에 대한 산화적 손상을 정량화하기 위한 추가 테스트에서도 H2O2에 노출 시 8-OHdG 수준이 크게 증가한 것으로 나타났다(도 4C). 그러나 H2O2 처리로 인한 DNA 이동, γH2AX 발현, 8-OHdG/8-oxoGuanine 비율의 증가는 NAC와 플로로글루시놀의 존재 하에서 현저하게 약화되어 플로로글루시놀은 H2O2에 의한 산화적 DNA 손상을 약화시킬 수 있음을 시사한다.We evaluated whether phloroglucinol could prevent DNA damage induced by H 2 O 2 in ARPE-19 cells. The blocking effect of phloroglucinol on DNA damage induced by H 2 O 2 treatment was first investigated using the comet assay. As expected, an increase in comet tail moment was clearly observed in H 2 O 2 treated cells, indicating that DNA damage was induced by H 2 O 2 treatment (Figure 4A). To confirm this result, the expression of γH2AX was analyzed. Immunofluorescence results showed that the fluorescence intensity of γH2AX in the nuclei of H 2 O 2 treated cells clearly increased compared to the nuclei of untreated cells. Additional tests to quantify oxidative damage to nucleic acids also showed a significant increase in 8-OHdG levels upon exposure to H 2 O 2 (Figure 4C). However, the increase in DNA migration, γH2AX expression, and 8-OHdG/8-oxoGuanine ratio caused by H 2 O 2 treatment was significantly attenuated in the presence of NAC and phloroglucinol, suggesting that phloroglucinol is resistant to oxidation by H 2 O 2 This suggests that it can attenuate enemy DNA damage.

2-5. 플로로글루시놀(Phloroglucinol)의 H2O2 유도 mtROS 생성 감소 활성2-5. Phloroglucinol's H 2 O 2 -induced mtROS production reduction activity

미토콘드리아가 H2O2로 유도된 ROS의 주요 공급원인지에 대한 여부, 플로로글루시놀을 억제할 수 있는지 여부를 확인하기 위해 미토콘드리아 슈퍼옥사이드 특정 염료인 MitoSOX-red를 사용하였다. 도 5A에 도시된 바와 같이, 강한 적색 형광 강도는 H2O2 처리된 ARPE-19 세포에서 명백했지만, 처리되지 않은 대조군 세포 또는 플로로글루시놀 단독으로 처리된 세포에서는 그렇지 않았다. 그러나, H2O2에 의해 유도된 형광 강도는 플로로글루시놀의 존재 하에서 억제되었다. 플로로글루시놀과 미토콘드리아 표적 항산화제인 Mito-TEMPO로 전처리한 세포에서 더 제거되었다. 이러한 결과는 MitoSOX-적색 양성 세포의 빈도를 직접 측정한 유세포 분석 결과와 일치하였다(도 5B, 도 5C). 또한, 플로로글루시놀은 미토콘드리아의 주요 자가포식 단백질로 알려진 PINK1 및 PARKIN의 H2O2 유도 축적을 억제하였다. 이러한 결과는 phloroglucinol이 ARPE-19 세포에서 H2O2로 유도된 mtROS의 스캐빈저로서의 역할을 통해 미토파지(mitophagy) 억제에 기여할 수 있음을 시사한다.MitoSOX-red, a mitochondrial superoxide-specific dye, was used to determine whether mitochondria are a major source of ROS induced by H 2 O 2 and whether phloroglucinol can be inhibited. As shown in Figure 5A, strong red fluorescence intensity was evident in ARPE-19 cells treated with H 2 O 2 but not in untreated control cells or cells treated with phloroglucinol alone. However, the fluorescence intensity induced by H 2 O 2 was suppressed in the presence of phloroglucinol. It was further removed in cells pretreated with phloroglucinol and Mito-TEMPO, a mitochondria-targeting antioxidant. These results were consistent with the results of flow cytometry, which directly measured the frequency of MitoSOX-red positive cells (Figure 5B, Figure 5C). In addition, phloroglucinol inhibited H 2 O 2 -induced accumulation of PINK1 and PARKIN, known as major autophagy proteins in mitochondria. These results suggest that phloroglucinol may contribute to the inhibition of mitophagy through its role as a scavenger of mtROS induced by H 2 O 2 in ARPE-19 cells.

2-6. 플로로글루시놀(Phloroglucinol)의 H-2O2로 인한 미토콘드리아 장애 보호활성2-6. Phloroglucinol's protective activity against mitochondrial dysfunction caused by H- 2 O 2

phloroglucinol이 H-2O2 유발 미토콘드리아 손상을 예방할 수 있는지 여부를 확인하기 위해 JC-1 염색 후 MMP를 추정하였다. 유세포 분석 결과(도 6A, 도 6B)는 JC-1 단량체의 빈도가 크게 증가한 반면 JC-1 응집체의 빈도는 H-2O2 처리된 세포에서 감소하여 H-2O2가 MMP의 붕괴를 유도했음을 나타낸다. 그러나, 이러한 변화는 플로로글루시놀 전처리에 의해 상당히 약화되었다. 또한, 전처리에 플로로글루시놀과 Mito-TEMPO를 함께 사용했을 때 H-2O2에 의해 유도된 MMP의 손실이 대조군 수준으로 거의 완전히 감소하였다. 또한, H-2O2 처리 후 시토크롬 c의 발현량은 세포질에서는 증가하였으나 미토콘드리아에서는 감소하였다. 플로로글루시놀 전처리는 이러한 변화를 복원할 수 있었다(도 6C). 이러한 결과는 플로로글루시놀에 의한 H-2O2 유도 mtROS 생성의 차단이 미토콘드리아 기능을 보존할 수 있음을 보여준다.To determine whether phloroglucinol can prevent H -2O2 - induced mitochondrial damage, MMPs were estimated after JC-1 staining. Flow cytometry results (FIG. 6A, FIG. 6B) showed that the frequency of JC-1 monomers was significantly increased, while the frequency of JC-1 aggregates was decreased in H- 2O2 - treated cells, indicating that H- 2O2 induces the breakdown of MMPs . It indicates that it was done. However, these changes were significantly attenuated by phloroglucinol pretreatment. In addition, when phloroglucinol and Mito-TEMPO were used together in pretreatment, the loss of MMPs induced by H- 2 O 2 was almost completely reduced to the control level. Additionally, after H- 2 O 2 treatment, the expression level of cytochrome c increased in the cytoplasm but decreased in the mitochondria. Phloroglucinol pretreatment was able to restore these changes (Figure 6C). These results show that blocking H- 2 O 2 -induced mtROS production by phloroglucinol can preserve mitochondrial function.

2-7. 플로로글루시놀(Phloroglucinol)의 H2O2 유도 자가포식(autophagy) 억제 효과2-7. Inhibitory effect of H 2 O 2 induced autophagy of Phloroglucinol

ARPE-19 세포에서 H2O2 유도 autophagy에 대한 phloroglucinol의 효과를 평가하였다. 도 7A와 B에서 볼 수 있듯이, autophagic 액포를 모니터링할 수 있는 Cyto-ID 추적 염료를 사용한 유세포 분석 결과 H2O2가 autophagy를 눈에띄게 유도한 것으로 나타났다. 그러나, 선택적 autophagic 억제제인 phloroglucinol 또는 3-MA로 전처리하면 세포에서 H2O2 유도 autophagy가 급격히 감소한다. 이러한 결과와 일치하게, Cyto-ID puncta의 형성은 H2O2에 대한 반응으로 강화된 반면, 플로로글루시놀 전처리 후에는 거의 완전히 감소되었다(도 7C). 이후, microtubule-associated protein-1 light chain-3 (LC3), Beclin-1 및 p62와 같은 autophagy biomarker를 immunoblotting으로 검출하여 H2O2 유도 autophagy를 확인하였다. 도 7D에 나타낸 바와 같이, H2O2는 C3-I의 LC3-II로의 전환을 향상시키고 Beclin-1 발현을 유도하였지만, p62의 발현을 하향 조절하였다. 그러나, H2O2에 의해 유발된 이러한 변화는 플로로글루시놀에 의해 모두 제거되었으며, 이는 H2O2 매개 autophagy가 플로로글루시놀에 의해 보호될 수 있다는 유세포 분석 결과를 뒷받침하는 것임을 확인할 수 있다.The effect of phloroglucinol on H 2 O 2 induced autophagy was evaluated in ARPE-19 cells. As shown in Figures 7A and B, flow cytometry using Cyto-ID tracking dye, which can monitor autophagic vacuoles, showed that H 2 O 2 significantly induced autophagy. However, pretreatment with phloroglucinol or 3-MA, a selective autophagic inhibitor, drastically reduces H 2 O 2 -induced autophagy in cells. Consistent with these results, the formation of Cyto-ID puncta was enhanced in response to H 2 O 2 , whereas it was almost completely reduced after phloroglucinol pretreatment (Figure 7C). Afterwards, H 2 O 2 -induced autophagy was confirmed by detecting autophagy biomarkers such as microtubule-associated protein-1 light chain-3 (LC3), Beclin-1, and p62 by immunoblotting. As shown in Figure 7D, H 2 O 2 enhanced the conversion of C3-I to LC3-II and induced Beclin-1 expression, but downregulated the expression of p62. However, these changes induced by H 2 O 2 were all eliminated by phloroglucinol, which supports the results of flow cytometry analysis that H 2 O 2 -mediated autophagy can be protected by phloroglucinol. there is.

실험 결과를 통해, 플로로글루시놀(Phloroglucinol)은 RPE 세포를 H2O2에 의해 유도된 산화적 손상으로부터 보호할 수 있음을 알 수 있으며, 이로써 DNA 손상, 미토콘드리아 손상 및 세포 사멸을 줄이고, 세포 생존을 향상시킬 수 있음을 확인하였다. 또한, 플로로글루시놀의 세포 보호 효과는 mtROS 생산 차단을 통해 미토콘드리아 매개 자가포식을 조절함으로써 달성할 수 있음을 확인하였다(도 8).Experimental results show that phloroglucinol can protect RPE cells from oxidative damage induced by H 2 O 2 , thereby reducing DNA damage, mitochondrial damage, and cell death, and It was confirmed that survival can be improved. In addition, it was confirmed that the cytoprotective effect of phloroglucinol can be achieved by controlling mitochondria-mediated autophagy through blocking mtROS production (Figure 8).

[제조예 2 : 복합 추출물을 포함하는 세포 보호용 조성물][Preparation Example 2: Cell protection composition containing complex extract]

1. 조성물의 제조1. Preparation of composition

제주찔레 추출물의 제조Preparation of Jeju wild rose extract

제주찔레를 물에 세척한 후, 동결 건조시켰다. 이후, 동결 건조된 A를 믹서기로 분쇄한 뒤, 80% 에탄올을 사용하여 상온에서 48시간 동안 침출시킨 후 시료를 여과(filter) 하여 제주찔레 추출물(RE)을 제조하였다.Jeju starlings were washed in water and then freeze-dried. Afterwards, the freeze-dried A was pulverized with a blender, leached at room temperature for 48 hours using 80% ethanol, and the sample was filtered to prepare Jeju wild rose extract (RE).

기타 천연 추출물의 제조Preparation of other natural extracts

상기 제주찔레 추출물(RE)과 동일한 방법으로 천연물만을 자주잎제비꽃, 점나도나물, 쥐꼬리망초로 교체하여 자주잎제비꽃 추출물(VE), 점나도나물 추출물(CE) 및 쥐꼬리망초 추출물(JE)을 제조하였다.In the same manner as the Jeju wild rose extract (RE), only natural products were replaced with purple leaf violet, purple leaf violet, and rat's tail, to produce purple leaf violet extract (VE), black and white violet extract (CE), and rat's tail extract (JE). did.

복합 추출물의 제조Preparation of complex extract

실험예 1에서 사용된 바위수염 추출물(MEMC)에 상기 제주찔레 추출물(RE), 자주잎제비꽃 추출물(VE), 점나도나물 추출물(CE) 및 쥐꼬리망초 추출물(JE)을 하기 표 1의 중량부 범위 내로 혼합하여 복합 추출물(MX 1 내지 MX13)으로 제조하였다.In addition to the rock mulberry extract (MEMC) used in Experimental Example 1, the Jeju wild rose extract (RE), purple leaf violet extract (VE), cypress root extract (CE), and rat's tail extract (JE) were added in parts by weight as shown in Table 1 below. Complex extracts (MX 1 to MX13) were prepared by mixing within the range.

MX1MX1 MX2MX2 MX3MX3 MX4MX4 MX5MX5 MX6MX6 MX7MX7 MX8MX8 MX9MX9 MX10MX10 MX11MX11 MX12MX12 MX13MX13 phloroglucinolphloroglucinol 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 RER.E. -- 2020 -- 1One 1010 2020 3030 4040 2020 2020 2020 2020 2020 VEVE -- -- 2020 1One 1010 2020 3030 4040 2020 2020 2020 2020 2020 CEC.E. -- -- -- -- -- -- -- -- 1One 55 1010 1515 2020 JEJ.E. -- -- -- -- -- -- -- -- 1One 55 1010 1515 2020

(단위 : 중량부)(Unit: parts by weight)

[실험예 2: 복합 추출물의 항산화 효과 및 세포 보호 활성][Experimental Example 2: Antioxidant effect and cell protective activity of complex extract]

본원발명 조성물의 세포 보호 효과를 나타내기 위해 상기 실험예 1과 동일한 실험을 진행하였으며, 추출물 만을 상기 본원발명 조성물로 교체하였다.In order to show the cell protection effect of the composition of the present invention, the same experiment as Experimental Example 1 was performed, and only the extract was replaced with the composition of the present invention.

또한, 상기 결과는 플로로글루시놀(phloroglucinol)을 지수 3으로 고정하여 이에 대한 비교 결과 값을 나타내었으며, 지수는 1 내지 10 사이의 숫자로 평가하도록 하였다. 그 숫자는 높을수록 항산화 활성 및 세포보호 활성이 우수한 것이며, 그 결과는 하기 표 2 에 종합적으로 나타내었다.In addition, the above results showed the comparative results by fixing phloroglucinol at an index of 3, and the index was evaluated as a number between 1 and 10. The higher the number, the better the antioxidant activity and cell protection activity, and the results are comprehensively shown in Table 2 below.

MX1MX1 MX2MX2 MX3MX3 MX4MX4 MX5MX5 MX6MX6 MX7MX7 MX8MX8 MX9MX9 MX10MX10 MX11MX11 MX12MX12 MX13MX13 H2O2에 의한 세포 생존력 감소 및 독성 증가 회복Recovery of decreased cell viability and increased toxicity caused by H2O2 33 3.53.5 3.33.3 6.06.0 6.56.5 7.57.5 7.47.4 6.36.3 8.08.0 8.58.5 9.09.0 8.88.8 8.38.3 H2O2에 의한 세포사멸 감소 활성Apoptosis reduction activity by H2O2 33 3.53.5 3.43.4 6.26.2 7.07.0 7.47.4 7.37.3 6.66.6 8.18.1 8.68.6 8.98.9 8.58.5 8.08.0 H2O2에 의한 ROS 생성 제거Elimination of ROS production by H2O2 33 3.33.3 3.53.5 5.95.9 6.36.3 7.47.4 7.27.2 6.06.0 8.38.3 8.68.6 8.88.8 8.58.5 7.87.8 H2O2에 의한 DNA 손상 제거Removal of DNA damage by H2O2 33 3.23.2 3.33.3 6.06.0 6.56.5 7.07.0 7.07.0 6.26.2 8.08.0 8.58.5 9.09.0 8.88.8 7.77.7 H2O2에 의한 mtROS 생성 감소Reduced mtROS production by H2O2 33 3.33.3 3.43.4 5.85.8 6.46.4 7.27.2 6.96.9 6.06.0 7.97.9 8.38.3 9.09.0 8.88.8 7.67.6 H2O2로 인한 미토콘드리아 장애 보호 효과Protective effect against mitochondrial dysfunction caused by H2O2 33 3.53.5 3.63.6 5.65.6 6.66.6 7.27.2 7.07.0 6.26.2 8.28.2 8.58.5 9.09.0 8.88.8 7.77.7 H2O2로 인한 자가포식(autophagy) 억제 효과Autophagy inhibition effect due to H2O2 33 3.23.2 3.53.5 5.95.9 6.36.3 7.17.1 6.76.7 6.06.0 8.08.0 8.38.3 9.19.1 8.98.9 7.87.8

(단위 : 지수)(Unit: index)

상기 표 2를 참조하면, 플로로글루시놀만을 포함하는 경우에 비해 이외에 제주찔레 추출물(RE), 자주잎제비꽃 추출물(VE)을 각각 더 포함하는 MX2 및 3의 경우 플로로글루시놀만을 포함하는 경우에 비해 소폭 향상된 세포 생존력, 독성 증가 활성, 세포 사멸 감소 활성, ROS 생성 제거 활성, DNA 손상 억제 활성, mtROS 생성 억제 활성 및 미토콘드리아 장애 보호 효과를 나타내며 자가포식 억제 효과를 통해 항산화 및 세포 보호 활성을 나타냄을 확인할 수 있다.Referring to Table 2 above, compared to the case containing only phloroglucinol, in the case of MX2 and 3, which further contain Jeju wild rose extract (RE) and purple leaf violet extract (VE), respectively, the case containing only phloroglucinol Compared to this, it shows slightly improved cell viability, toxicity increasing activity, apoptosis reducing activity, ROS generation removal activity, DNA damage inhibition activity, mtROS generation inhibition activity, and mitochondrial disorder protection effect, and shows antioxidant and cytoprotective activity through autophagy inhibition effect. can confirm.

또한, 상기 플로로글루시놀에 더해 천연 추출물인 제주찔레 추출물 및 자주잎제비꽃 추출물을 특정 함량범위로 함유하고 있는 MX5 내지 7의 경우 상기 중량부 범위를 벗어나는 경우에 비해 그 효과가 보다 더 향상됨을 확인할 수 있다.In addition, it was confirmed that in the case of MX5 to 7, which contain natural extracts such as Jeju wild rose extract and purple leaf violet extract in a specific content range in addition to the phloroglucinol, the effect is further improved compared to cases outside the above weight part range. You can.

나아가, 상기 플로로글루시놀에 제주찔레 추출물 및 자주잎제비꽃 추출물 뿐 아니라 점나도나물 추출물(CE) 및 쥐꼬리망초 추출물(JE)을 더 포함하는 MX9 내지 13의 경우, 소폭 더 향상된 활성을 나타냄을 확인할 수 있었으며 이 경우에도 특정 증량부로 함유하고 있는 MX10 내지 12의 경우 보다 더 향상된 활성을 나타냄을 알 수 있다.Furthermore, it was confirmed that in the case of MX9 to 13, which further contains the phloroglucinol, as well as the Jeju starling extract and the purple violet extract, as well as the phloroglucinol extract (CE) and the rat's tail extract (JE), slightly improved activity was observed. It was found that even in this case, the activity was more improved than in the case of MX10 to 12 contained in a specific extender.

즉, 플로로글루시놀 100 중량부에 대하여, 제주찔레 추출물 10 내지 30 중량부, 자주잎제비꽃 10 내지 30 중량부를 포함하는 조성물, 나아가, 플로로글루시놀 100 중량부에 대하여, 제주찔레 추출물 10 내지 30 중량부, 자주잎제비꽃 10 내지 30 중량부, 점나도나물 추출물 5 내지 15 중량부 및 쥐꼬리망초 추출물 5 내지 15 중량부로 포함하는 경우 천연 추출물 혼합에 따라 해당 천연물의 유효성분 혼합에 의해 항산화 및 세포보호 활성이 우수하게 향상됨을 확인할 수 있으며, 따라서 본원발명은 플로로글루시놀의 항산화 및 세포보호 활성이 우수함을 확인하였고, 추가로 상기의 천연 추출물을 더 포함함으로써 보다 더 향상된 활성을 나타낼 수 있음을 실험을 통해 확인하였다.That is, with respect to 100 parts by weight of phloroglucinol, a composition comprising 10 to 30 parts by weight of Jeju starling extract and 10 to 30 parts by weight of purple leaf violet, and further, with respect to 100 parts by weight of phloroglucinol, 10 to 30 parts by weight of Jeju starling extract. If it contains 30 parts by weight, 10 to 30 parts by weight of purple leaf violet, 5 to 15 parts by weight of dandelion root extract, and 5 to 15 parts by weight of rat's tail columbine extract, antioxidant and cell It can be confirmed that the protective activity is significantly improved, and therefore, the present invention confirms that the antioxidant and cytoprotective activity of phloroglucinol is excellent, and further improved activity can be exhibited by further including the above-mentioned natural extract. This was confirmed through experiment.

[실험예 3 : 본원발명 조성물의 기호도 개선 효과][Experimental Example 3: Effect of improving preference of the composition of the present invention]

상기 복합 조성물(MX1 내지 MX13)을 각각 포함하는 차 음료를 제조하여, 이를 20 내지 50대 성인남녀 40인의 시험자에게 시음하게 한 뒤 향과 맛을 평가하게 하여 1 내지 10의 지수로 기호도를 평가하도록 하였다. 상대적인 평가를 위해 물에 침지시켜 추출된 본원발명 MX1(ME)를 지수 3으로 고정하여 상대적인 지수 값으로 평가하도록 하였으며, 그 결과를 종합하여 평균한 뒤 소수 둘째자리에서 반올림하여 하기의 표 3에 종합적으로 나타내었다.Tea drinks containing each of the above complex compositions (MX1 to MX13) were prepared, and 40 adult men and women in their 20s to 50s were tasted and then evaluated for flavor and taste to evaluate preference with an index of 1 to 10. did. For relative evaluation, the MX1(ME) of the present invention extracted by immersion in water was fixed to an index of 3 to evaluate it as a relative index value. The results were synthesized and averaged, and then rounded to two decimal places to obtain a comprehensive result in Table 3 below. It is expressed as

MX1MX1 MX2MX2 MX3MX3 MX4MX4 MX5MX5 MX6MX6 MX7MX7 MX8MX8 MX9MX9 MX10MX10 MX11MX11 MX12MX12 MX13MX13 taste 3.03.0 4.04.0 4.54.5 5.05.0 6.06.0 6.06.0 6.56.5 5.55.5 7.07.0 8.58.5 9.09.0 9.09.0 8.08.0 incense 3.03.0 4.04.0 4.04.0 5.25.2 6.36.3 6.56.5 6.66.6 5.15.1 7.57.5 8.58.5 9.09.0 9.09.0 7.57.5 종합
기호도
Synthesis
preference
3.03.0 4.04.0 4.34.3 5.15.1 6.26.2 6.36.3 6.66.6 5.35.3 7.37.3 8.58.5 9.09.0 9.09.0 7.87.8

(단위 : 지수)(Unit: index)

상기 표 3을 참조하면, 본원발명 플로로글루시놀만을 포함하는 MX1에 비해 제주찔레 추출물(RE), 자주잎제비꽃 추출물(VE)을 각각 추가로 포함하는 MX2 및 MX3의 경우 기호도가 상승됨을 확인할 수 있다.Referring to Table 3, it can be seen that preference increases in the case of MX2 and MX3, which additionally contain Jeju wild rose extract (RE) and purple leaf violet extract (VE), respectively, compared to MX1, which contains only phloroglucinol of the present invention. there is.

단일 추출물로 포함하는 것이 아닌 복합 추출물의 형태로 포함하는 MX4 내지 MX8의 경우 그 효과는 보다 더 향상되었으며 이는 천연 추출물을 혼합 사용함에 따라 단일 천연물의 고유 향이 완화되어 맛 및 향의 조화를 통해 보다 더 우수한 기호도를 나타낼 수 있음을 의미한다.In the case of MX4 to MX8, which are included in the form of a complex extract rather than as a single extract, the effect is further improved. This is because the unique scent of a single natural product is alleviated by using a mixture of natural extracts, making it more effective through harmony of taste and aroma. This means that it can show excellent preference.

또한, 점나도나물 추출물(CE) 및 쥐꼬리망초 추출물(JE)을 추가로 더 포함하는 MX9 내지 MX13의 경우, 기호도가 보다 더 향상되었으며 이는 천연 추출물의 혼합 사용에 따른 바위수염 추출물 고유 향에 대한 완화 효과에 의한 것임을 알 수 있다. In addition, in the case of MX9 to MX13, which additionally contain snail herb extract (CE) and cypress extract (JE), preference was further improved, which was achieved by alleviating the unique scent of the rock beard extract due to the mixed use of natural extracts. It can be seen that this is due to an effect.

특히, 바람직한 중량부인 플로로글루시놀 100 중량부에 대하여 제주찔레 추출물(RE) 10 내지 30 중량부, 자주잎제비꽃 추출물(VE) 10 내지 30 중량부, 점나도나물 추출물(CE) 5 내지 15 중량부 및 쥐꼬리망초 추출물(JE) 5 내지 15 중량부로 혼합하는 경우 맛 및 향에 대한 종합 기호도가 가장 우수하여 기호도 높은 조성물을 제공할 수 있음을 알 수 있다.In particular, for 100 parts by weight of phloroglucinol, which is a preferred weight part, 10 to 30 parts by weight of Jeju wild rose extract (RE), 10 to 30 parts by weight of violet leaf violet extract (VE), and 5 to 15 parts by weight of eucalyptus extract (CE). It can be seen that when mixing 5 to 15 parts by weight of JE and JE, the overall preference for taste and aroma is the best, making it possible to provide a composition with high preference.

따라서, 상기 혼합 조성을 포함하는 조성물은 세포 보호 효과 및 항산화 활성을 나타내면서도 맛 및 향에 대한 평가가 우수하여 기능성 및 기호도 높은 식품 조성물 또는 약학 조성물로의 제공이 가능함을 확인하였다.Therefore, it was confirmed that the composition containing the above mixed composition exhibits cell protection effect and antioxidant activity while being excellent in taste and aroma evaluation, making it possible to provide it as a food composition or pharmaceutical composition with high functionality and preference.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also possible. falls within the scope of rights.

Claims (7)

플로로글루시놀(phloroglucinol)을 유효성분으로 포함하고
항산화 활성을 나타내는
세포 보호용 조성물.
Contains phloroglucinol as an active ingredient
showing antioxidant activity
Composition for cell protection.
제 1항에 있어서,
세포 보호는 산화 스트레스(oxidative stress)에 의한 DNA 손상, 미토콘드리아 기능 손상, 세포 사멸을 완화함으로써 나타내는 것인
세포 보호용 조성물.
According to clause 1,
Cell protection is achieved by alleviating DNA damage, mitochondrial function damage, and cell death caused by oxidative stress.
Composition for cell protection.
제 1항에 있어서,
상기 산화 스트레스(oxidative stress)란 활성산소(ROS, reactive oxygen species)에 의한 세포의 손상인
세포 보호용 조성물.
According to clause 1,
The oxidative stress is cell damage caused by reactive oxygen species (ROS).
Composition for cell protection.
제 1항에 있어서,
상기 활성산소(ROS, reactive oxygen species)는 슈퍼옥사이드 라디칼(super oxide radical, O2 -), 과산화수소(hydrogen peroxide, H2O2), 하이드록시 라디칼(hydroxy radical, OH-)을 포함하는
세포 보호용 조성물.
According to clause 1,
The reactive oxygen species (ROS) includes super oxide radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), and hydroxy radical (OH - ).
Composition for cell protection.
제 1항에 있어서,
상기 조성물은 mtROS 생산 감소를 통해 미토콘드리아 매개 자가포식 (autophagy) 과정을 억제함으로써 세포 보호 활성을 나타내는
세포 보호용 조성물.
According to clause 1,
The composition exhibits cytoprotective activity by inhibiting the mitochondria-mediated autophagy process through reducing mtROS production.
Composition for cell protection.
제 1항 내지 제 5항 중 어느 한 항에 따른 조성물을 포함하는
세포 보호용 식품 조성물.
Comprising the composition according to any one of claims 1 to 5.
Food composition for cell protection.
제 1항 내지 제 5항 중 어느 한 항에 따른 조성물을 포함하는
세포 손상 치료, 개선 또는 예방용 약학 조성물.
Comprising the composition according to any one of claims 1 to 5.
Pharmaceutical composition for treating, improving or preventing cell damage.
KR1020220186041A 2022-12-27 2022-12-27 Cell protection composition containing phloroglucinol and exhibiting antioxidant activity KR20240103671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220186041A KR20240103671A (en) 2022-12-27 2022-12-27 Cell protection composition containing phloroglucinol and exhibiting antioxidant activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220186041A KR20240103671A (en) 2022-12-27 2022-12-27 Cell protection composition containing phloroglucinol and exhibiting antioxidant activity

Publications (1)

Publication Number Publication Date
KR20240103671A true KR20240103671A (en) 2024-07-04

Family

ID=91913462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220186041A KR20240103671A (en) 2022-12-27 2022-12-27 Cell protection composition containing phloroglucinol and exhibiting antioxidant activity

Country Status (1)

Country Link
KR (1) KR20240103671A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035474A (en) 2017-09-25 2019-04-03 (주)아모레퍼시픽 Composition for protecting cell from oxidation stress comprising tea extraction which has modified amount of ingredients
KR102050506B1 (en) 2017-06-20 2019-11-29 한국식품연구원 Composition for preventing, improving, alleviating or treating macular disease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050506B1 (en) 2017-06-20 2019-11-29 한국식품연구원 Composition for preventing, improving, alleviating or treating macular disease
KR20190035474A (en) 2017-09-25 2019-04-03 (주)아모레퍼시픽 Composition for protecting cell from oxidation stress comprising tea extraction which has modified amount of ingredients

Similar Documents

Publication Publication Date Title
AU2007217003A1 (en) Parthenolide free bioactive ingredients from feverfew (Tanacetum parthenium) and processes for their production
KR101734896B1 (en) Composition for preventing, improving or treating cornea damages containing extracts of diospyros kaki
KR102196952B1 (en) Composition for Promoting Skin Regeneration Containing Extract of Nandina domestica Leaf
CN108025029B (en) Composition for treating cornea disease or conjunctival disease
KR102121915B1 (en) Composition for protecting neuronal cells comprising naphthopyrone derivatives derived from the sprout of Cassia obtusifolia L.
KR101762797B1 (en) Compositions for preventing or treating dry eye syndrome comprising extract of maple leaves or fraction thereof
KR101391308B1 (en) Composition comprising the extracts and fractions of Gymnaster koraiensis for prevention or treatment of retinal diseases
KR101715342B1 (en) Pharmaceutical and food composition including Eragrostis genus extracts having antioxidant activity
KR102209663B1 (en) Composition for preventing or treating skin disease comprising extract of Spiraea prunifolia simpliciflora
KR20240103671A (en) Cell protection composition containing phloroglucinol and exhibiting antioxidant activity
KR20180065933A (en) Composition for preventing or treating of inflammatory eye disease comprising extract of maple leaf or fractions thereof
KR101503792B1 (en) Neuroprotective composition comprising extract or fractions of Vaccinium uliginosum as an active ingredient
KR20170003153A (en) A composition for the prevention and treatment of respiratory organ disease comprising the fractions of Asparagus cochinchinensis as an active ingredien
KR102212158B1 (en) A composition for preventing and treating retina diseases containing glycyrrhiza uralensis extracts
KR102459271B1 (en) Composition for the prevention of skin cancer of inhibition of skin cancer metastasis containing angelica dahurica radix extract
KR102432990B1 (en) Composition for the prevention of skin cancer of inhibition of skin cancer metastasis containing citrus unshiu peel extract
KR20240103674A (en) A composition for protecting cells exhibiting antioxidant activity, including a myelophycus caespitosus extracts as an active ingredient
TW201500049A (en) Chinese herbal medicine composition with function of protecting eyes and manufacturing method thereof
KR102138860B1 (en) Composition for lowering intraocular pressure regulating comprising extract of maple leaves
KR102079742B1 (en) Pharmaceutical composition and health-functional food for preventing or treating macular degeneration
KR101404036B1 (en) Extract of Crepidiastrum denticulatum for prevention or treatment of retinal diseases
KR20210142445A (en) Retinal disease prevention and treatment composition comprising turmeric extract
KR101986008B1 (en) Pharmaceutical composition for preventing or treating atopic dermatitis comprising extract of resveratrol-enriched rice or resveratrol enriched rice callus as an active ingredient
KR101784319B1 (en) Composition comprising the extracts of Guadua angustifolia for prevention or treatment of retinal diseases
KR20170036352A (en) A composition for treating macular degeneration comprising a extract of Vaccinium Uliginosum as an active ingredient