Nothing Special   »   [go: up one dir, main page]

KR20240034968A - Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct - Google Patents

Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct Download PDF

Info

Publication number
KR20240034968A
KR20240034968A KR1020220113818A KR20220113818A KR20240034968A KR 20240034968 A KR20240034968 A KR 20240034968A KR 1020220113818 A KR1020220113818 A KR 1020220113818A KR 20220113818 A KR20220113818 A KR 20220113818A KR 20240034968 A KR20240034968 A KR 20240034968A
Authority
KR
South Korea
Prior art keywords
bioink
cell
cma
stem cells
oil
Prior art date
Application number
KR1020220113818A
Other languages
Korean (ko)
Inventor
김근형
김원진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020220113818A priority Critical patent/KR20240034968A/en
Publication of KR20240034968A publication Critical patent/KR20240034968A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/04Printing inks based on proteins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/08Printing inks based on natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물, 이의 제조방법, 및 이를 이용한 인쇄방법에 관한 것이다.
본 발명을 이용하는 경우, 기계적 안정성이 향상된 세포 구조체를 제작할 수 있고, 종래 기술에 비해 높은 수분/양분 흡수가 가능한 세포 구조체를 제작할 수 있으며, 다양한 생체활성 분자가 포함된 수중 유적 기반 바이오잉크를 이용하여 기존에 비해 성장 인자의 초기 방출이 적고 장기간 방출이 가능한 세포 구조체를 제작할 수 있다.
The present invention relates to a composition for bioink containing a photocurable biocompatible polymer, stem cells, and oil, a method for manufacturing the same, and a printing method using the same.
When using the present invention, it is possible to produce a cell structure with improved mechanical stability, a cell structure capable of high moisture/nutrient absorption compared to the prior art, and a bioink based on underwater oil containing various bioactive molecules. Compared to existing methods, the initial release of growth factors is less and a cell structure capable of long-term release can be produced.

Description

세포가 포함된 미네랄오일 포함 바이오잉크 제작 방법 및 이의 세포 구조체 제작에의 적용{Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct}Method for manufacturing bioink containing mineral oil containing cells and application thereof for fabrication of cell construct {Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct}

본 발명은 세포가 포함된 미네랄오일 포함 바이오잉크 제작 방법 및 이의 세포 구조체 제작에 관한 것이다. 보다 구체적으로는 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물, 이의 제조방법, 및 이를 이용한 인쇄방법에 관한 것이다. The present invention relates to a method for producing bioink containing mineral oil containing cells and the production of a cell structure thereof. More specifically, it relates to a composition for bioink containing a photocurable biocompatible polymer, stem cells, and oil, a manufacturing method thereof, and a printing method using the same.

바이오프린팅 기술은 기본적으로 세포가 포함된 하이드로젤 기반 바이오잉크를 사용한다. 그러나 하이드로젤을 기반으로 제작된 세포 구조체 (cell-laden construct)는 기계적 안정성 (mechanical stability)과 세포 간 상호작용 (cell-cell interaction)에서 한계를 보이므로, 초기의 세포 활성도가 낮다. 또한 하이드로젤의 낮은 기계적 특성으로 인해 구조적 안정성을 확보하기가 어려웠다. 따라서 기계적 안정성을 효과적으로 향상시키고 세포 간 상호작용 및 세포 활성을 유도할 수 있는 바이오잉크의 제작이 필요하다. Bioprinting technology basically uses hydrogel-based bioink containing cells. However, cell-laden constructs made based on hydrogels show limitations in mechanical stability and cell-cell interaction, resulting in low initial cell activity. Additionally, it was difficult to ensure structural stability due to the low mechanical properties of the hydrogel. Therefore, it is necessary to produce bioink that can effectively improve mechanical stability and induce cell-cell interaction and cell activity.

본 발명자들은 광경화성 콜라겐 기반 바이오잉크에 미네랄 오일을 혼합한 수중 유적 (oil-in-water emulsion) 바이오잉크를 개발하여 기계적 안정성과 생물학적 특성이 향상된 세포 구조체를 제작하였다. 또한 성장 인자를 활용하여 원하는 조직 형성이 가능한 수중 유적 세포 구조체를 제작할 수 있었다. 본 발명을 통해 제작된 수중 유적 바이오잉크는 다양한 세포 구조체 제작과 손상된 조직 재생에 사용될 수 있을 것으로 사료된다.The present inventors developed an oil-in-water emulsion bioink by mixing mineral oil with a photocurable collagen-based bioink and fabricated a cell structure with improved mechanical stability and biological properties. Additionally, using growth factors, it was possible to produce an underwater relic cell structure capable of forming desired tissues. It is believed that the underwater remains bioink produced through the present invention can be used to produce various cell structures and regenerate damaged tissues.

대한민국 공개특허공보 제10-2017-0001444호(2017.01.04. 공개)Republic of Korea Patent Publication No. 10-2017-0001444 (published on January 4, 2017)

본 발명자들은 기계적 안정성을 효과적으로 향상시키고 세포 간 상호작용 및 세포 활성을 유도할 수 있는 바이오잉크를 개발하고자 예의 연구 노력하였다. 그 결과 광경화성 (photo-crosslinkable) 콜라겐 기반 바이오잉크에 미네랄 오일을 혼합한 수중 유적 (oil-in-water emulsion) 바이오잉크를 사용하는 경우, 기계적 안정성을 효과적으로 향상시키고 세포 간 상호작용 및 세포 활성을 유도할 수 있음을 규명함으로써, 본 발명을 완성하게 되었다. The present inventors have made extensive research efforts to develop a bioink that can effectively improve mechanical stability and induce cell-cell interaction and cell activity. As a result, when using an oil-in-water emulsion bioink that is a photo-crosslinkable collagen-based bioink mixed with mineral oil, it effectively improves mechanical stability and promotes cell-cell interactions and cell activity. By proving that it can be derived, the present invention was completed.

따라서, 본 발명의 목적은 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물을 제공하는 것이다. Accordingly, the purpose of the present invention is to provide a composition for bioink containing a photocurable biocompatible polymer, stem cells, and oil.

본 발명의 다른 목적은 상기 바이오잉크용 조성물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the bio-ink composition.

본 발명의 또 다른 목적은 상기 바이오잉크용 조성물을 이용한 인쇄 방법을 제공하는 것이다.Another object of the present invention is to provide a printing method using the bio-ink composition.

종래 하이드로젤을 기반으로 제작된 세포 구조체 (cell-laden construct)는 기계적 안정성 (mechanical stability)과 세포 간 상호작용 (cell-cell interaction)이 낮은 단점을 보이므로, 본 발명자들은 기계적 안정성을 효과적으로 향상시키고 세포 간 상호작용 및 세포 활성을 유도할 수 있는 바이오잉크를 개발하기 위하여 예의 연구 노력하였다. 그 결과 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크를 제조하면 콜라겐 기반 세포 구조체와 비교하여 향상된 기계적 안정성과 높은 수분/양분 흡수능을 나타낸 뿐만 아니라, 세포 간 상호작용도 활성화되는 것을 확인하고 본 발명을 완성하였다. Since cell-laden constructs produced based on conventional hydrogels have the disadvantage of low mechanical stability and cell-cell interaction, the present inventors effectively improved mechanical stability and Extensive research efforts were made to develop bioink that can induce cell-cell interaction and cell activity. As a result, manufacturing bioink containing photocurable biocompatible polymer, stem cells, and oil not only showed improved mechanical stability and high water/nutrient absorption capacity compared to collagen-based cell structures, but also activated cell-cell interactions. This was confirmed and the present invention was completed.

본 발명의 일 양태에 따르면, 본 발명은 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물을 제공한다.According to one aspect of the present invention, the present invention provides a composition for bioink containing a photocurable biocompatible polymer, stem cells, and oil.

본 명세서에서 용어 '바이오프린팅 (bio-printing)'이란 생체재료(bio-material) 내에 세포를 3차원 공간에서 제어된 패턴으로 배치시켜 조직 또는 기관을 제작하는 자동화된 공정을 의미한다. As used herein, the term 'bio-printing' refers to an automated process of producing tissues or organs by arranging cells in a bio-material in a controlled pattern in three-dimensional space.

본 명세서에서 용어 '바이오잉크 (bio-ink)'란 위에서 정의한 바이오프린팅 공정에서 사용되는 바이오프린팅이 가능한 물질을 의미하며, 살아 있는 세포를 포함하는 생체재료를 포괄한다. 바이오잉크에는 하이드로겔(hydrogel), 마이크로캐리어(microcarrier) 및 탈세포화된 기질(decellularized matrix)과 같이 스캐폴드(scaffold)-기반 물질과 세포 응집체(cell aggregates)와 같은 스캐폴드가 없는 물질이 포함될 수 있다.As used herein, the term 'bio-ink' refers to a material capable of bioprinting used in the bioprinting process defined above, and includes biomaterials containing living cells. Bioinks can include scaffold-based materials such as hydrogels, microcarriers, and decellularized matrices, as well as scaffold-free materials such as cell aggregates. there is.

본 발명의 일 구현예에 있어서, 상기 광경화성 생체적합성 폴리머는 생체적합성 폴리머에 광경화성 폴리머가 컨쥬게이션된 것이다.In one embodiment of the present invention, the photocurable biocompatible polymer is a photocurable polymer conjugated to a biocompatible polymer.

본 발명의 구체적인 구현예에 있어서, 상기 광경화성 폴리머는 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸메타크릴레이트, 헥산디올 디아크릴레이트, 헥산디올 디메타크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 디에틸렌 글리콜 디아크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 디프로필렌 글리콜 디아크릴레이트, 디프로필렌 글리콜 디메타크릴레이트 및 우레탄 아크릴레이트로 젤라틴 메타아크릴로일 (gleatin methacryloyl; GelMA), 콜라겐 메타아크릴레이트 (collagen methacrylate; ColMA), 히알루론산 메타아크릴레이트 (hyaluronic acid methacrylate; HAMA) 등으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 모노머 및 올리고머로 이루어진 것이나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the photocurable polymer is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, hexanediol diacrylate, and hexanediol diacrylate. Methacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, dipropylene glycol diacrylate, dipropylene glycol dimethacrylate and urethane acrylate. One or more monomers selected from the group consisting of gelatin methacryloyl (GelMA), collagen methacrylate (ColMA), hyaluronic acid methacrylate (HAMA), etc., and It is made of oligomers, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 생체적합성 폴리머는 히알루론산(hyaluronic acid), 콜라겐(collagen), 폴리에틸렌 글리콜, 알지네이트(alginate), 녹말(starch), 키토산(chitosan), 젤라틴(gelatin), 덱스트란(dextran), 셀룰로오스(cellulose), 알긴산(alginic acid), 콘드로이틴 설페이트(chondroitin sulfate), 및 헤파린(heparin)으로 이루어진 군으로부터 선택된 것이나, 이에 한정되는 것은 아니며 당업계에서 세포구조체 또는 세포의 3차원 배양을 위하여 사용가능한 생체적합성 폴리머라면 제한없이 사용될 수 있다. In one embodiment of the present invention, the biocompatible polymer is hyaluronic acid, collagen, polyethylene glycol, alginate, starch, chitosan, gelatin, and dextrose. It is selected from the group consisting of dextran, cellulose, alginic acid, chondroitin sulfate, and heparin, but is not limited thereto and is used in the art as a three-dimensional structure or cell. Any biocompatible polymer that can be used for culture can be used without limitation.

본 발명의 구체적인 구현예에 있어서, 상기 광경화성 생체적합성 폴리머는 젤라틴 메타아크릴로일 (gleatin methacryloyl; GelMA), 콜라겐 메타아크릴레이트 (collagen methacrylate; ColMA), 히알루론산 메타아크릴레이트 (hyaluronic acid methacrylate; HAMA), 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate; PEGDA) 등으로 이루어진 군으로부터 선택된 것이나, 세포구조체 또는 세포의 3차원 배양을 위하여 사용가능한 광경화성 폴리머라면 제한없이 사용될 수 있다.In a specific embodiment of the present invention, the photocurable biocompatible polymer includes gelatin methacryloyl (GelMA), collagen methacrylate (ColMA), and hyaluronic acid methacrylate (HAMA). ), polyethylene glycol diacrylate (PEGDA), etc., but any photocurable polymer that can be used for three-dimensional culture of cell structures or cells can be used without limitation.

본 발명의 일 구현예에 있어서, 상기 줄기세포는 다능성 줄기세포이다. In one embodiment of the present invention, the stem cells are pluripotent stem cells.

본 발명의 구체적인 구현예에 있어서, 상기 다능성 줄기세포는 배아줄기세포, 유도만능줄기세포, 배아생식줄기세포, 생식줄기세포로 이루어진 군으로부터 선택된 것이나, 이에 한정되는 것은 아니다.In a specific embodiment of the present invention, the pluripotent stem cells are selected from the group consisting of embryonic stem cells, induced pluripotent stem cells, embryonic germ stem cells, and germ stem cells, but are not limited thereto.

본 발명의 일 구현예에 있어서, 상기 줄기세포는 중간엽 줄기세포이다. In one embodiment of the present invention, the stem cells are mesenchymal stem cells.

본 명세서에서 용어 '중간엽줄기세포 (mesenchymal stem cell; MSC)'란 자가-재생(self-renewal) 능력이 있고 다계통 분화(multilineage differentiation)를 나타내는 기질 세포(stromal cell)를 의미한다.As used herein, the term 'mesenchymal stem cell (MSC)' refers to a stromal cell that has the ability to self-renew and exhibits multilineage differentiation.

본 발명의 구체적인 구현예에 있어서, 상기 중간엽 줄기세포는 제대, 제대혈, 혈액, 골수, 지방, 근육, 신경, 피부, 양막 및 태반 등으로 이루어진 군에서 선택되는 1종 이상의 조직으로부터 유래된 중간엽 줄기세포(mesenchymal stromal cell)인 것이나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the mesenchymal stem cells are mesenchymal cells derived from one or more tissues selected from the group consisting of umbilical cord, cord blood, blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta. It is a stem cell (mesenchymal stromal cell), but is not limited thereto.

본 발명의 보다 구체적인 구현예에 있어서, 상기 줄기세포는 지방 유래 중간엽 줄기세포이다.In a more specific embodiment of the present invention, the stem cells are adipose-derived mesenchymal stem cells.

본 발명의 일구현예에 있어서, 상기 오일은 원유의 정제를 통해 추출된 C15 내지 C50의 탄소수를 가지는 탄화수소의 혼합물이다. In one embodiment of the present invention, the oil is a mixture of hydrocarbons having a carbon number of C 15 to C 50 extracted through refining of crude oil.

상기 탄화수소에는 알칸(alkane), 사이클로알칸(cycloalkane) 등이 포함되나, 반드시 이에 제한되는 것은 아니며 당업계에 알려진 원유 또는 석유의 정제 과정에서 추출될 수 있는 탄화수소라면 비-제한적으로 포함될 수 있다. 본 발명에서 오일은 휘발유 및 다른 석유 제품을 제조하는 데에 발생하는 액체 부산물이 포함될 수 있다.The hydrocarbons include, but are not necessarily limited to, alkanes and cycloalkanes, and may include any hydrocarbon that can be extracted during the refining process of crude oil or petroleum known in the art. In the present invention, oil may include liquid by-products generated from manufacturing gasoline and other petroleum products.

본 발명의 구체적인 구현예에 있어서, 상기 오일은 미네랄 오일이다.In a specific embodiment of the invention, the oil is mineral oil.

본 발명의 구체적인 구현예에 있어서, 상기 오일은 조성물 전체 부피의 3 내지 40%(v/v), 3 내지 30%(v/v), 3 내지 25%(v/v), 3 내지 24%(v/v), 3 내지 23%(v/v), 3 내지 22%(v/v), 3 내지 21%(v/v), 3 내지 20%(v/v), 3 내지 19%(v/v), 3 내지 18%(v/v), 3 내지 17%(v/v), 3 내지 16%(v/v), 3 내지 15%(v/v), 3 내지 10%(v/v), 3 내지 5%(v/v), 0%(v/v), 5%(v/v), 10%(v/v), 20%(v/v), 30%(v/v), 또는 40%(v/v) 일 수 있으나, 이에 한정되는 것은 아니다.In a specific embodiment of the present invention, the oil is 3 to 40% (v/v), 3 to 30% (v/v), 3 to 25% (v/v), 3 to 24% of the total volume of the composition. (v/v), 3 to 23% (v/v), 3 to 22% (v/v), 3 to 21% (v/v), 3 to 20% (v/v), 3 to 19% (v/v), 3 to 18% (v/v), 3 to 17% (v/v), 3 to 16% (v/v), 3 to 15% (v/v), 3 to 10% (v/v), 3 to 5% (v/v), 0% (v/v), 5% (v/v), 10% (v/v), 20% (v/v), 30% (v/v), or 40% (v/v), but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 바이오잉크용 조성물은 생체활성 분자를 추가적으로 포함할 수 있다.In one embodiment of the present invention, the bio-ink composition may additionally include bioactive molecules.

본 발명의 구체적인 구현예에 있어서, 상기 생체활성 분자는 예컨대 Bone morphogenetic protein 2 (BMP-2), Kartogenin (KGN), Basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor 1 (IGF-1), angiopoietin (ANG), transforming growth factor beta 1 (TGF-β1) 등일 수 있으나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the bioactive molecules include, for example, Bone morphogenetic protein 2 (BMP-2), Kartogenin (KGN), Basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and insulin-like growth. It may be factor 1 (IGF-1), angiopoietin (ANG), transforming growth factor beta 1 (TGF-β1), etc., but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 바이오잉크용 조성물은 광개시제를 추가적으로 포함할 수 있다. In one embodiment of the present invention, the composition for bioink may additionally include a photoinitiator.

본 명세서에서 용어 '광개시제'는 빛에 노출됨에 따라 신속한 가교결합을 유발하는 물질을 의미한다. As used herein, the term 'photoinitiator' refers to a substance that causes rapid crosslinking upon exposure to light.

본 발명의 일 구현예에 있어서, 광개시제의 종류는 특별히 제한되는 것은 아니나, 자외선(UV)의 조사에 의해 가교반응이 일어나는 광학개시제 또는 가시광선의 조사에 의해 가교반응이 일어나는 광학개시제가 사용이 될 수 있다. 적절한 광개시제의 비제한적인 예시로는, 리튬 페닐-2,4,6-트리메틸벤조일포스피네이트(lithium phenyl-(2,4,6-trimethyl benzoyl) phosphinate, LAP), 벤질디메틸케탈(benzyl dimethyl ketal), 아세토페논(acetophenone), 벤조인메틸에테르(benzoin methyl ether), 디에톡시아세토페논(diethoxyacetophenone), 벤조일 포스핀 옥사이드(benzoyl phosphine oxide) 및 1- 하이드록시사이클로헥실 페닐 케톤(1-hydroxycyclohexyl phenyl ketone) 등을 들 수 있다. 첨가되는 광학개시제의 양은 노출되는 빛의 파장 및 시간에 따라 달라질 수 있다.In one embodiment of the present invention, the type of photoinitiator is not particularly limited, but an optical initiator that causes a crosslinking reaction by irradiation of ultraviolet rays or an optical initiator that causes a crosslinking reaction by irradiation of visible light can be used. there is. Non-limiting examples of suitable photoinitiators include lithium phenyl-(2,4,6-trimethyl benzoyl) phosphinate (LAP) and benzyl dimethyl ketal. ), acetophenone, benzoin methyl ether, diethoxyacetophenone, benzoyl phosphine oxide and 1-hydroxycyclohexyl phenyl ketone ), etc. The amount of optical initiator added may vary depending on the wavelength and time of light exposed.

본 발명의 다른 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 바이오잉크의 제조방법을 제공한다:According to another aspect of the present invention, the present invention provides a method for producing bioink comprising the following steps:

(a) 광경화성 생체적합성 폴리머를 포함하는 하이드로겔을 제조하는 단계; 및(a) preparing a hydrogel containing a photocurable biocompatible polymer; and

(b) 상기 하이드로겔에 줄기세포, 광개시제, 및 오일을 혼합하여 에멀젼을 제조하는 단계.(b) preparing an emulsion by mixing stem cells, photoinitiator, and oil with the hydrogel.

본 발명의 일 구현예에 있어서, 상기 하이드로겔은 광경화성 생체적합성 폴리머 및 수성 용매를 혼합하여 제조되는 것이다.In one embodiment of the present invention, the hydrogel is manufactured by mixing a photocurable biocompatible polymer and an aqueous solvent.

본 발명의 일 구현예에 있어서, 상기 수성 용매는 정제수, 인산완충용액, 생리식염수 등을 포함하나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the aqueous solvent includes, but is not limited to, purified water, phosphate buffer solution, physiological saline, etc.

본 발명의 일 구현예에 있어서, 상기 (b) 단계에는 생체활성 물질을 추가적으로 첨가하여 에멀젼을 제조할 수 있다. In one embodiment of the present invention, an emulsion may be prepared by additionally adding a bioactive material in step (b).

상기 본 발명의 바이오잉크의 제조방법은 본 발명의 다른 일 양태에 따른 바이오잉크용 조성물의 제조방법으로서, 이들 간의 공통되는 구성요소는 동일하게 적용될 수 있으므로 본 명세서의 복잡성을 피하기 위하여 그 기재를 생략한다. The method for producing bioink of the present invention is a method for producing a composition for bioink according to another aspect of the present invention, and since the common components between them can be applied in the same way, their description is omitted to avoid complexity of the present specification. do.

본 발명의 일 구현예에 있어서, 상기 수성 용매에 대한 광경화성 생체적합성 폴리머의 농도는 약 0.1 내지 20 %(w/v), 약 0.1 내지 15 %(w/v), 약 0.1 내지 10 %(w/v), 약 0.1 내지 9 %(w/v), 약 0.1 내지 8 %(w/v), 약 0.1 내지 7 %(w/v), 약 0.1 내지 6 %(w/v), 약 0.1 내지 5 %(w/v), 약 0.1 내지 4 %(w/v), 약 0.1 내지 3 %(w/v), 약 0.1 내지 2 %(w/v), 약 1 내지 20 %(w/v), 약 1 내지 15 %(w/v), 약 1 내지 10 %(w/v), 약 1 내지 9 %(w/v), 약 1 내지 8 %(w/v), 약 1 내지 7 %(w/v), 약 1 내지 6 %(w/v), 약 1 내지 5 %(w/v), 약 1 내지 4 %(w/v), 약 1 내지 3 %(w/v), 약 1 내지 2 %(w/v), 약 2 내지 20 %(w/v), 약 2 내지 15 %(w/v), 약 2 내지 10 %(w/v), 약 2 내지 9 %(w/v), 약 2 내지 8 %(w/v), 약 2 내지 7 %(w/v), 약 2 내지 6 %(w/v), 약 2 내지 5 %(w/v), 약 2 내지 4 %(w/v), 약 2 내지 3 %(w/v), 약 3 내지 20 %(w/v), 약 3 내지 15 %(w/v), 약 3 내지 10 %(w/v), 약 3 내지 9 %(w/v), 약 3 내지 8 %(w/v), 약 3 내지 7 %(w/v), 약 3 내지 6 %(w/v), 약 3 내지 5 %(w/v), 또는 약 3 내지 4 %(w/v), 약 1%(w/v), 2%(w/v), 3%(w/v), 4%(w/v), 또는 5%(w/v) 일 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the concentration of the photocurable biocompatible polymer in the aqueous solvent is about 0.1 to 20% (w/v), about 0.1 to 15% (w/v), about 0.1 to 10% ( w/v), about 0.1 to 9 % (w/v), about 0.1 to 8 % (w/v), about 0.1 to 7 % (w/v), about 0.1 to 6 % (w/v), about 0.1 to 5% (w/v), about 0.1 to 4% (w/v), about 0.1 to 3% (w/v), about 0.1 to 2% (w/v), about 1 to 20% (w) /v), about 1 to 15% (w/v), about 1 to 10% (w/v), about 1 to 9% (w/v), about 1 to 8% (w/v), about 1 to 7% (w/v), about 1 to 6% (w/v), about 1 to 5% (w/v), about 1 to 4% (w/v), about 1 to 3% (w/v) v), about 1 to 2% (w/v), about 2 to 20% (w/v), about 2 to 15% (w/v), about 2 to 10% (w/v), about 2 to 9 % (w/v), about 2 to 8 % (w/v), about 2 to 7 % (w/v), about 2 to 6 % (w/v), about 2 to 5 % (w/v) ), about 2 to 4 % (w/v), about 2 to 3 % (w/v), about 3 to 20 % (w/v), about 3 to 15 % (w/v), about 3 to 10 % (w/v), about 3 to 9 % (w/v), about 3 to 8 % (w/v), about 3 to 7 % (w/v), about 3 to 6 % (w/v) , about 3 to 5% (w/v), or about 3 to 4% (w/v), about 1% (w/v), 2% (w/v), 3% (w/v), 4 It may be %(w/v), or 5%(w/v), but is not limited thereto.

본 발명의 구체적인 구현예에 있어서, 상기 에멀젼을 제조하는 단계는 상기 광경화성 생체적합성 폴리머를 포함하는 하이드로겔에 줄기세포, 광개시제를 혼합한 혼합물을 제조하고, 이를 오일에 혼합하여 제조되는 것을 특징으로 한다. 위와 같이 제조될 경우 줄기세포를 포함하는 생체적합성 폴리머의 하이드로겔이 오일 안에 봉입된 균질한 오일 액적(oil droplet)의 형태가 된다. 즉, oil-in-water 형태의 에멀젼이 제조된다. In a specific embodiment of the present invention, the step of preparing the emulsion is characterized in that it is prepared by preparing a mixture of stem cells and a photoinitiator mixed with a hydrogel containing the photocurable biocompatible polymer and mixing it with oil. do. When manufactured as above, the biocompatible polymer hydrogel containing stem cells takes the form of a homogeneous oil droplet encapsulated in oil. In other words, an oil-in-water emulsion is produced.

본 발명의 구체적인 구현예에 있어서, 상기 바이오잉크가 생체활성 물질을 포함하는 경우에 상기 에멀젼을 제조하는 단계는, (i) 상기 광경화성 생체적합성 폴리머를 포함하는 하이드로겔에 줄기세포, 광개시제 및 생체활성물질을 혼합한 혼합물을 제조하고, 이 혼합물을 오일에 혼합하여 제조되거나, 또는 (ii) 상기 광경화성 생체적합성 폴리머를 포함하는 하이드로겔에 줄기세포, 및 광개시제를 포함하는 혼합물과, 생체활성 물질 및 오일의 혼합물을 혼합하여 제조된다. In a specific embodiment of the present invention, when the bioink contains a bioactive material, the step of preparing the emulsion includes (i) adding stem cells, photoinitiators, and biomaterials to the hydrogel containing the photocurable biocompatible polymer. It is prepared by preparing a mixture of active substances and mixing this mixture with oil, or (ii) a mixture containing a hydrogel containing the photocurable biocompatible polymer, stem cells, and a photoinitiator, and a bioactive substance. and a mixture of oils.

본 발명의 또 다른 일 양태에 따르면, 본 발명은 다음 단계를 포함하는 바이오잉크의 인쇄 방법:According to another aspect of the present invention, the present invention provides a method for printing bioink comprising the following steps:

(a) 상술한 바이오잉크를 UV 노출장치가 구비된 노즐을 포함하는 프린터 장치를 이용하여 원하는 형태의 세포 구조체를 인쇄하는 단계.(a) Printing a cell structure of a desired shape using the above-described bio-ink using a printer device including a nozzle equipped with a UV exposure device.

본 발명의 일 구현예에 있어서, 상기 UV 노출장치는 UV의 출력이 200 내지 800 mW/cm2이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the UV exposure device has a UV output of 200 to 800 mW/cm 2 , but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 노즐은 내경이 50-500 μm 이나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the nozzle has an inner diameter of 50-500 μm, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 프린터 장치는 공압(pneumatic pressure) 60 내지 250 kPa로 출력되는 것이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the printer device outputs at a pneumatic pressure of 60 to 250 kPa, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 프린터 장치는 이동속도가 3 내지 30 mm/s 이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the printer device has a moving speed of 3 to 30 mm/s, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 프린터 장치는 15 내지 30℃의 온도 범위 조건에서 출력되는 것 이나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the printer device prints in a temperature range of 15 to 30°C, but is not limited thereto.

본 발명에 따른 수중 유적 바이오잉크는 유변학적 특성을 기반으로 형성되는 미네랄 오일 에멀젼 스피어의 크기 분포와 제작 성형성 (printability), 세포 생존율, 그리고 초기 세포 손실을 평가하여 포함되는 미네랄 오일과 광경화 콜라겐의 농도를 설정하여 제작하였다. 제작된 미네랄 오일이 포함된 세포 구조체는 기존 콜라겐 기반 세포 구조체와 비교하여 향상된 기계적 안정성과 높은 수분/양분 흡수를 보였다. 세포가 포함된 수중 유적 바이오잉크 제작을 위해 예시적으로 사람 지방유래 줄기세포 (human adipose-derived stem cell; hASC)를 사용하였으며, 그 결과 높은 세포 성장과 세포 골격 형성 등을 면역형광염색법과 RT-qPCR을 통해 확인하였다. 또한, 수중 유적 바이오잉크의 미네랄 오일에 성장 인자를 혼합한 기능성 바이오잉크를 제작하였다. 골 조직과 연골 조직 형성을 위해 BMP-2와 Kartogenin을 사용하였으며, GAG 및 칼슘 염색, 면역형광염색법, 그리고 RT-qPCR을 통해 각각 골 조직 연골 형성 촉진 효과를 확인하였다.The underwater remains bioink according to the present invention evaluates the size distribution, fabrication, printability, cell viability, and initial cell loss of mineral oil emulsion spheres formed based on rheological properties, and includes mineral oil and photocured collagen. It was produced by setting the concentration. The fabricated cell structure containing mineral oil showed improved mechanical stability and high water/nutrient absorption compared to the existing collagen-based cell structure. For the production of underwater relic bioink containing cells, human adipose-derived stem cells (hASC) were used as an example, and as a result, high cell growth and cytoskeleton formation were observed using immunofluorescence staining and RT- Confirmed through qPCR. In addition, a functional bioink was produced by mixing growth factors with the mineral oil of the underwater remains bioink. BMP-2 and Kartogenin were used to form bone tissue and cartilage tissue, and their effects on promoting bone tissue cartilage formation were confirmed through GAG and calcium staining, immunofluorescence staining, and RT-qPCR, respectively.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물, 이의 제조방법, 및 이를 이용한 인쇄방법을 제공한다. (a) The present invention provides a composition for bioink containing a photocurable biocompatible polymer, stem cells, and oil, a manufacturing method thereof, and a printing method using the same.

(b) 본 발명을 이용하는 경우, 기계적 안정성이 향상된 세포 구조체를 제작할 수 있고, 종래 기술에 비해 높은 수분/양분 흡수가 가능한 세포 구조체를 제작할 수 있으며, 다양한 생체활성 분자가 포함된 수중 유적 기반 바이오잉크를 이용하여 기존에 비해 성장 인자의 초기 방출이 적고 장기간 방출이 가능한 세포 구조체를 제작할 수 있다. (b) When using the present invention, it is possible to produce a cell structure with improved mechanical stability, a cell structure capable of high moisture/nutrient absorption compared to the prior art, and an underwater oil-based bioink containing various bioactive molecules. Using , it is possible to produce a cell structure that has less initial release of growth factors and enables long-term release of growth factors compared to existing methods.

도 1은 수중 유적 (oil-in-emulsion) 바이오잉크 및 이를 활용한 세포 구조체 제작 모식도를 나타낸다.
도 2는 oil-CMA 혼합 전후의 광학 이미지 및 혼합 횟수에 따른 오일 액적의 크기와 균일도를 보여준다.
도 3은 에멀젼 바이오잉크를 사용하여 제작된 hASC가 포함된 CMA/MO 구조를 광학 이미지 및 SEM 이미지로 나타낸 것이다.
도 4는 본 발명의 에멀젼 바이오잉크를 사용하여 제작된 세포 구조체에서 세포의 생존 율을 live-dead 형광 염색이미지로 나타낸 도이다.
도 5는 CMA 구조와 CMA/MO에서 액틴 필라멘트의 발달정도를 비교하여 나타낸 도이다.
도 6은 CMA/MO 지지체에 대한 3D 이미지(표면 및 단면도)를 나타낸 도이다.
도 7은 다양한 농도의 오일(5, 10, 20, 30 및 40 v/v%)을 포함하는 CMA(3 wt/v%)/MO 바이오잉크의 광학 이미지를 나타낸 도이다.
도 8은 상기 다양한 농도의 오일 함량에 따른 오일 액적의 평균 직경을 나타낸 도이다.
도 9 및 도 10은 에멀젼 바이오잉크(CMA: 3 wt/v%, MO: 0, 5, 10, 20, 30, 40 v/v%)의 유변학적 특성을 평가하기 위해, 저장(storage)(G'), 손실 계수(loss modulus)(G'') 및 복합 점도(complex viscosity)(η*)를 나타낸 도이다.
도 11은 오일의 증가된 액적 크기에 따른 유변학적 특성의 변화를 나타낸 도이다.
도 12는 바이오프린팅 된 메쉬 구조의 광학 및 라이브/데드 이미지를 보여준다.
도 13은 바이오잉크의 오일 함량에 따른 인쇄성을 나타낸 도이다.
도 14는 본 발명의 바이오잉크의 오일 함량에 따라, 세포구조체에서 MTT assay를 이용하여 1일 동안 초기 세포 손실을 측정한 결과이다.
도 15 및 도 16은 CMA 농도에 따른 오일 액적의 크기를 나타낸 것이다.
도 17은 CMA 농도에 따른 인쇄성(printability)을 나타낸 도이다.
도 18은 CMA 농도에 따른 세포 증식(cell proliferation)에 미치는 영향을 나타낸 도이다.
도 19는 CMA 농도에 따른 초기 세포 손실(initial cell loss)을 나타낸 도이다.
도 20은 UV 강도에 따른 기계적 당도, 인쇄성, 세포 생존율 등을 나타낸 도이다.
도 21은 인쇄된 세포 적재 구성의 광학 및 SEM 이미지를 나타낸 것이다.
도 22는 본 발명의 세포구조체의 압축 응력-변형률 곡선과 압축탄성율을 나타낸 도이다.
도 23 및 도 24는 본 발명의 세포구조체의 FITC-dextran의 확산성을 나타낸 도이다.
도 25는 본 발명의 세포구조체의 단백질의 흡수능을 나타낸 도이다.
도 26은 세포 생존율 시험을 통한 본 발명의 세포구조체의 대사 활성을 나타낸 도이다.
도 27은 본 발명의 세포구조체의 세포생존율, 세포골격조직, 세포증식을 조직사진 및 유전자 발현율을 확인함으로써 나타낸 도이다.
도 28은 본 발명의 두 가지 제형 방법을 나타낸 도이다.
도 29 및 도 30은 본 발명의 두 가지 제형 방법에 따른 세포구조체의 생체활성 분자 방출 역학을 나타낸 도이다.
도 31 및 도 32는 본 발명의 생체활성 분자(KGN)를 포함하는 세포구조체의 제형에 따른 생물학적 활성을 나타낸 도이다.
도 33은 본 발명의 생체활성 분자(KGN)를 포함하는 세포구조체의 제형에 따른 유전자 발현도를 나타낸 도이다.
도 34는 본 발명의 생체활성 분자(BMP-2)를 포함하는 세포구조체의 제형에 따른 DAPI/오스테오폰틴(OPN; red)(배양 14일 후) 및 Alizarin red S(ARS)(배양 14일 및 21일 후) 염색을 나타낸 것이다.
도 35 및 도 36에서 본 발명의 생체활성 분자(BMP-2)를 포함하는 세포구조체의 제형에 따른 CMA/MO-BMP 지지체의 OPN 양성 영역, 집중 ARS 염색 및 칼슘 침착을 나타낸 도이다.
도 37은 본 발명의 생체활성 분자(BMP-2)를 포함하는 세포구조체의 제형에 따른 CMA/MO-BMP 그룹에서 알칼리성 포스파타제(Alp), 런트 관련 전사 인자 2(Runx2), 오스테오폰틴(OPN) 및 오스테오칼신(Ocn)을 포함한 골형성 관련 유전자의 발현 수준을 나타낸 것이다.
Figure 1 shows a schematic diagram of oil-in-emulsion bioink and the production of a cell structure using the same.
Figure 2 shows optical images before and after oil-CMA mixing and the size and uniformity of oil droplets according to the number of mixing times.
Figure 3 shows optical and SEM images of the CMA/MO structure containing hASC produced using emulsion bioink.
Figure 4 is a diagram showing the survival rate of cells in a cell construct produced using the emulsion bioink of the present invention as a live-dead fluorescent staining image.
Figure 5 is a diagram comparing the CMA structure and the degree of actin filament development in CMA/MO.
Figure 6 is a diagram showing 3D images (surface and cross-sectional views) of the CMA/MO support.
Figure 7 shows optical images of CMA (3 wt/v%)/MO bioink containing various concentrations of oil (5, 10, 20, 30, and 40 v/v%).
Figure 8 is a diagram showing the average diameter of oil droplets according to the various oil concentrations.
Figures 9 and 10 show storage (storage) to evaluate the rheological properties of emulsion bioink (CMA: 3 wt/v%, MO: 0, 5, 10, 20, 30, 40 v/v%) This is a diagram showing G'), loss modulus (G''), and complex viscosity (η*).
Figure 11 is a diagram showing the change in rheological properties according to increased oil droplet size.
Figure 12 shows optical and live/dead images of the bioprinted mesh structure.
Figure 13 is a diagram showing printability according to the oil content of bioink.
Figure 14 shows the results of measuring the initial cell loss for 1 day using the MTT assay in the cell construct, depending on the oil content of the bioink of the present invention.
Figures 15 and 16 show the size of oil droplets according to CMA concentration.
Figure 17 is a diagram showing printability according to CMA concentration.
Figure 18 is a diagram showing the effect on cell proliferation according to CMA concentration.
Figure 19 is a diagram showing initial cell loss according to CMA concentration.
Figure 20 is a diagram showing mechanical sweetness, printability, cell viability, etc. according to UV intensity.
Figure 21 shows optical and SEM images of the printed cell loading configuration.
Figure 22 is a diagram showing the compressive stress-strain curve and compressive elastic modulus of the cellular structure of the present invention.
Figures 23 and 24 are diagrams showing the diffusivity of FITC-dextran of the cell construct of the present invention.
Figure 25 is a diagram showing the protein absorption capacity of the cell construct of the present invention.
Figure 26 is a diagram showing the metabolic activity of the cell construct of the present invention through cell viability test.
Figure 27 is a diagram showing the cell viability, cytoskeletal organization, and cell proliferation of the cell construct of the present invention by confirming tissue photos and gene expression rates.
Figure 28 is a diagram showing two formulation methods of the present invention.
Figures 29 and 30 are diagrams showing the release dynamics of bioactive molecules from cell structures according to the two formulation methods of the present invention.
Figures 31 and 32 are diagrams showing the biological activity according to the formulation of the cell structure containing the bioactive molecule (KGN) of the present invention.
Figure 33 is a diagram showing gene expression according to the formulation of the cell structure containing the bioactive molecule (KGN) of the present invention.
Figure 34 shows DAPI/osteopontin (OPN; red) (after 14 days of culture) and Alizarin red S (ARS) (after 14 days of culture) according to the formulation of the cell construct containing the bioactive molecule (BMP-2) of the present invention. and 21 days later) staining is shown.
Figures 35 and 36 show the OPN positive area, intensive ARS staining, and calcium deposition of the CMA/MO-BMP scaffold according to the formulation of the cell construct containing the bioactive molecule (BMP-2) of the present invention.
Figure 37 shows alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx2), and osteopontin (OPN) in the CMA/MO-BMP group according to the formulation of the cell construct containing the bioactive molecule (BMP-2) of the present invention. ) and osteocalcin (Ocn), showing the expression levels of osteogenesis-related genes.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

실험방법 및 실험재료Experimental methods and experimental materials

1. 세포 및 바이오잉크의 제작1. Production of cells and bioink

인간 지방유래 줄기세포(human adipose-derived stem cell; hASC) (Lonza, USA)는 개발된 바이오잉크 및 세포구조체 평가하기 위해 이 연구에서 사용되었다. 세포는 Dulbecco's Modified Eagle's Medium-low-glucose (DMEM-L; Sigma-Aldrich, USA), 소 태아 혈청(10% FBS; BioWest, USA) 및 penicillin-streptomycin으로 구성된 성장 배지(growth medium, GM)에서 배양되었다. (1% PS, Thermo-Fisher Scientific, USA), 37℃ 및 5% CO2에서 배양하였고, 성장 배지는 2일마다 변경하였다.Human adipose-derived stem cells (hASC) (Lonza, USA) were used in this study to evaluate the developed bioink and cell construct. Cells were cultured in growth medium (GM) consisting of Dulbecco's Modified Eagle's Medium-low-glucose (DMEM-L; Sigma-Aldrich, USA), fetal bovine serum (10% FBS; BioWest, USA), and penicillin-streptomycin. It has been done. (1% PS, Thermo-Fisher Scientific, USA), cultured at 37°C and 5% CO 2 , and the growth medium was changed every 2 days.

바이오잉크를 제조하기 전에 콜라겐을 화학적으로 변형시켜 메타크릴레이트화 콜라겐(methacrylated collagen, CMA)를 제조하였다. 요약하면, 동결건조된 콜라겐 스폰지(MSBio, South Korea)를 4℃에서 아세트산 용액 80mL당 콜라겐 300mg의 비율로 0.5M 아세트산 용액에 용해시켰다. NaOH 용액(1 M; Sigma-Aldrich, USA)을 사용하여 용액을 pH 8-9로 조정하였다. 화학적 변형을 위해 메타크릴산 무수물(methacrylic anhydrate)(Sigma-Aldrich, USA)을 4℃에서 연속 교반 하에 용해된 콜라겐 600 mg당 621 mg의 밀도로 콜라겐 용액에 첨가하였다. 처리 후, 얻어진 CMA 용액을 3.5 kDa 분자 차단막 튜브(Spectrum Lab, Inc., USA)를 사용하여 4℃에서 탈이온수(deionized water, DW)에서 투석한 후 동결건조시켰다. 동결건조된 CMA를 탈이온수에 녹이고 10xDMEM(Sigma-Aldrich, USA)과 1:1의 비율로 혼합하여 중화된 CMA 하이드로겔을 얻었다. 그런 다음 CMA 하이드로겔을 hASC (2.0 x 107 cells/mL), 0.5% 광개시제(lithium phenyl-2,4,6-trimethylbenzoylphosphinate; Sigma-Aldrich, USA) 및 미네랄 오일(Sigma-Aldrich, USA)와 혼합하였다. 다양한 농도의 CMA(1, 2, 3, 4, 5 wt/v%)와 미네랄 오일(mineral oil, MO)(5, 10, 20, 30, 40 v/v%)을 사용하여 바이오잉크의 물리적 및 생물학적 특성을 평가하였다. 대조군으로 hASC(2.0 × 107 cells/mL)와 0.5% 광개시제를 포함하는 순수한 CMA(3wt/v%) 바이오잉크를 사용하였다.Before producing bioink, collagen was chemically modified to produce methacrylated collagen (CMA). Briefly, lyophilized collagen sponges (MSBio, South Korea) were dissolved in 0.5 M acetic acid solution at a ratio of 300 mg of collagen per 80 mL of acetic acid solution at 4°C. The solution was adjusted to pH 8-9 using NaOH solution (1 M; Sigma-Aldrich, USA). For chemical modification, methacrylic anhydrate (Sigma-Aldrich, USA) was added to the collagen solution at a density of 621 mg per 600 mg of dissolved collagen under continuous stirring at 4°C. After treatment, the obtained CMA solution was dialyzed in deionized water (DW) at 4°C using a 3.5 kDa molecular barrier tube (Spectrum Lab, Inc., USA) and then lyophilized. Freeze-dried CMA was dissolved in deionized water and mixed with 10xDMEM (Sigma-Aldrich, USA) at a ratio of 1:1 to obtain neutralized CMA hydrogel. The CMA hydrogel was then mixed with hASC ( 2.0 did. Physical properties of bioink were measured using various concentrations of CMA (1, 2, 3, 4, 5 wt/v%) and mineral oil (MO) (5, 10, 20, 30, 40 v/v%). and biological properties were evaluated. As a control, pure CMA (3wt/v%) bioink containing hASC (2.0 × 10 7 cells/mL) and 0.5% photoinitiator was used.

생체 활성 분자가 포함된 구조(bioactive molecule-laden structures)의 경우 hASC가 포함된 CMA를 생체 활성 분자(bioactive molecule, BM)를 포함하는 미네랄 오일과 혼합하였다:For bioactive molecule-laden structures, CMA containing hASC was mixed with mineral oil containing bioactive molecules (BM):

(1) 연골 형성을 유도하는 KGN(28 μg/mL) 및(1) KGN (28 μg/mL) to induce cartilage formation and

(2) 골형성을 유도하는 BMP-2(10 μg/mL).(2) BMP-2 (10 μg/mL), which induces osteogenesis.

선택된 생체 활성 분자는 다음 제형 방법을 사용하여 CMA/MO 바이오잉크와 혼합되었다:Selected bioactive molecules were mixed with CMA/MO bioink using the following formulation method:

(1) 세포 함유 CMA를 MO 및 BM의 혼합물(CMA/MO-BM)과 혼합하고,(1) mixing cell-laden CMA with a mixture of MO and BM (CMA/MO-BM);

(2) 세포-함유 CMA 및 BM의 혼합물을 MO(CMA-BM/MO)와 혼합하였다.(2) The mixture of cell-containing CMA and BM was mixed with MO (CMA-BM/MO).

또한, BM과 혼합된 hASC가 포함된 CMA 바이오잉크(CMA/MO)를 대조군으로 준비하였다.Additionally, CMA bioink (CMA/MO) containing hASC mixed with BM was prepared as a control.

2. 세포 구조체의 바이오프린팅2. Bioprinting of cell structures

세포 구조체(cell construct)를 제작하기 위해 준비된 CMA/MO, CMA-BM/MO 및 CMA/MO-BM 바이오잉크를 투명 유리 노즐에 연결된 30G 단일 노즐(내경: 150 μm), 공압 디스펜서(AD-3000C, Ugin-tech, South Korea) 및 제어된 온도(25℃의 배럴 및 플레이트)에서 in situ UV 노출 시스템이 구비된 3D 바이오프린팅 시스템(DTR3-2210 T-SG; DASA Robot, 한국)을 사용하여 인쇄하였다. 10 mm/s의 이동 속도, 120 kPa의 공압, 400 mW/cm2의 UV 출력을 포함하는 처리 조건을 제어하여 3D 세포 구조체를 얻었다. CMA 및 CMA-BM 바이오잉크에 대해 서로 다른 공압(100kPa)의 동일한 바이오프린팅 조건이 사용되었다. 인쇄된 3D 구조는 37℃ 및 5% CO2에서 성장배지에서 배양되었다. 성장배지는 2일마다 교체되었다.To fabricate cell constructs, the prepared CMA/MO, CMA-BM/MO, and CMA/MO-BM bioinks were dispensed using a 30G single nozzle (inner diameter: 150 μm) connected to a transparent glass nozzle, using a pneumatic dispenser (AD-3000C). , Ugin-tech, South Korea) and printed using a 3D bioprinting system (DTR3-2210 T-SG; DASA Robot, Korea) equipped with an in situ UV exposure system at controlled temperature (barrel and plate at 25°C). did. 3D cellular constructs were obtained by controlling the processing conditions, including a movement speed of 10 mm/s, pneumatic pressure of 120 kPa, and UV output of 400 mW/cm 2 . The same bioprinting conditions with different pneumatic pressure (100 kPa) were used for CMA and CMA-BM bioinks. The printed 3D structures were cultured in growth medium at 37°C and 5% CO 2 . Growth medium was changed every 2 days.

hASC의 골형성 분화를 유도하기 위해 10% FBS, 1% PS, 0.1μM 덱사메타손(Sigma-Aldrich, USA), 50μM 아스코르브산(Sigma-Aldrich, USA) 및 10mM β-글리세롤 포스페이트(Sigma-Aldrich, USA)가 보충된 DMEM-L이 성장배지로 배양한 3일 후 골형성 배지(osteogenic medium, OM)로 제공되었다. 골형성 배지(OM)는 2일마다 교체되었다.To induce osteogenic differentiation of hASCs, 10% FBS, 1% PS, 0.1 μM dexamethasone (Sigma-Aldrich, USA), 50 μM ascorbic acid (Sigma-Aldrich, USA) and 10 mM β-glycerol phosphate (Sigma-Aldrich, USA). ) was provided as osteogenic medium (OM) after 3 days of culture as a growth medium. Osteogenic medium (OM) was changed every 2 days.

3. 바이오잉크 및 세포구조체의 특성 확인3. Confirmation of characteristics of bioink and cell structure

3-1. 광학현미경, 디지털 카메라 및 주사전자 현미경 관찰3-1. Observation with light microscope, digital camera and scanning electron microscope

3D 인쇄된 구조체과 분산된 오일 액적을 시각화하기 위해 광학 현미경(BX FM-32; Olympus, Japan)을 디지털 카메라와 SNE-3000M 주사 전자 현미경(scanning electron microscope, SEM)(SEC Inc., 한국)과 함께 사용하였다. SEM을 사용하여 구조를 관찰하기 전에, 구조체 부피의 15배 이상의 탈이온수에 넣고, 37℃에서 7일 동안 인큐베이션하여 함유된 미네랄 오일 성분을 제거하였다. 그런 다음 10% 중성 완충 포르말린(NBF; Sigma-Aldrich, USA)을 사용하여 구조체를 고정하고 연속적 농도의 에탄올(50%, 60%, 70%, 80%, 90% 및 100%)을 이용하여 탈수하고 동결 건조하였다. ImageJ 소프트웨어(National Institutes of Health, USA)를 사용하여 기름 액적(n = 50 또는 100)의 직경과 세포 구조체(n = 4)의 치수를 추정하였다.To visualize the 3D printed structures and dispersed oil droplets, an optical microscope (BX FM-32; Olympus, Japan) was used together with a digital camera and a SNE-3000M scanning electron microscope (SEM) (SEC Inc., Korea). used. Before observing the structure using SEM, more than 15 times the volume of the structure was placed in deionized water and incubated at 37°C for 7 days to remove the mineral oil component contained therein. The constructs were then fixed using 10% neutral buffered formalin (NBF; Sigma-Aldrich, USA) and dehydrated using successive concentrations of ethanol (50%, 60%, 70%, 80%, 90%, and 100%). and freeze-dried. The diameters of oil droplets (n = 50 or 100) and the dimensions of cellular structures (n = 4) were estimated using ImageJ software (National Institutes of Health, USA).

3-2. 콜라겐 염색 관찰3-2. Observation of collagen staining

CMA 및 CMA/MO 바이오잉크의 콜라겐 영역은 Sirius Red 염색으로 관찰되었다. 샘플은 CO2 환경에서 37℃에서 1시간 동안 DPBS로 워싱한 후 Picro-Sirius Red(Sigma-Aldrich)에서 배양되었다. 염색된 콜라겐은 MIP(Maximum Intensity Projection) 모드에서 Zeiss 공초점 현미경(LSM 700; Carl Zeiss, Germany)을 사용하여 시각화되었다. 염색된 콜라겐의 강도는 ImageJ 소프트웨어를 사용하여 측정되었다.Collagen areas of CMA and CMA/MO bioink were observed with Sirius Red staining. Samples were washed with DPBS for 1 hour at 37°C in a CO 2 environment and then incubated in Picro-Sirius Red (Sigma-Aldrich). Stained collagen was visualized using a Zeiss confocal microscope (LSM 700; Carl Zeiss, Germany) in maximum intensity projection (MIP) mode. The intensity of stained collagen was measured using ImageJ software.

3-3. 유변학적 특성 분석(rheology)3-3. Rheology

주파수 (온도 25℃, 변형률(strain) 1%, 및 주파수 범위 0.1-10 Hz), 응력(stress) (온도 25℃, 주파수 1 Hz, 및 응력 범위 0.1-200 Pa) 스위프(sweep)가 원추형 판 구조(직경 40mm, 원추 각도 4°, 간격 150μm)와 연결된 Bohlin Gemini HR Nano 회전 레오미터(Malvern Instruments, UK)를 사용하여 수행되어 다양한 농도의 CMA (1, 2, 3, 4, 및 5 wt/v%) 및 미네랄 오일 (0, 5, 10, 20, 30, 및 40 v/v%)로 제형화된 바이오잉크의 유변학적 특성(storage modulus, G', complex viscosity, η*, loss modulus, G'', and yield stress, τy)을 평가하였다. Frequency (temperature 25°C, strain 1%, and frequency range 0.1-10 Hz), stress (temperature 25°C, frequency 1 Hz, and stress range 0.1-200 Pa) sweep the conical plate. This was performed using a Bohlin Gemini HR Nano rotational rheometer (Malvern Instruments, UK) coupled to the structure (diameter 40 mm, cone angle 4°, gap 150 μm) to obtain different concentrations of CMA (1, 2, 3, 4, and 5 wt/ rheological properties (storage modulus, G', complex viscosity, η * , loss modulus, G'', and yield stress, τ y ) were evaluated.

변형률(strain) 1%는 변형률(온도 25℃, 주파수 1Hz, 변형률 범위 0.2-100%)과 시간 스위프(온도 25℃, 주파수 1Hz, 변형률 1%) 테스트를 사용하여 라이너 점탄성 영역(liner viscoelastic region, LVER)을 측정하여 선택되었다. A strain of 1% was calculated using strain (temperature 25°C, frequency 1Hz, strain range 0.2-100%) and time sweep (temperature 25°C, frequency 1Hz, strain 1%) tests in the liner viscoelastic region. LVER) was selected by measuring.

응력 스윕(stress sweep) 결과를 사용하여 τy 를 평가하기 위해 G'와 G''의 교차를 평가하였다. 광가교율(photo-crosslinking rate)을 관찰하기 위해 CMA(3wt/v%)/MO(10v/v%) 바이오잉크에 90초 동안 아크릴 평행판 기하학(acrylic parallel-plate geometry)(직경, 40mm; 간격, 200μm)을 이용하여 타임 스윕(time sweep)(온도 25℃, 주파수 1Hz, 변형률 1%)을 수행하였다.The intersection of G' and G'' was evaluated to evaluate τ y using the stress sweep results. To observe the photo-crosslinking rate, CMA (3 wt/v%)/MO (10 v/v%) bioink was incubated in an acrylic parallel-plate geometry (diameter, 40 mm) for 90 s. A time sweep (temperature 25°C, frequency 1Hz, strain 1%) was performed using an interval of 200 μm.

30초에서 바이오잉크는 다양한 강도(0, 75, 250, 400, 700 mW/cm2)의 자외선에 노출되었다. 모든 값은 평균 ± SD로 표시되었다(n = 3).At 30 seconds, the bioink was exposed to UV light of various intensities (0, 75, 250, 400, 700 mW/cm 2 ). All values are expressed as mean ± SD (n = 3).

바이오프린트 된 구조체(6 × 6 × 4.5 mm3)의 압축 특성은 압축 모드(0.1 mm/s의 압축 속도)에서 젖은 상태에서 SurTA 시험기(Chemilab, 한국)를 사용하여 평가되었다. 응력-변형률 곡선(stress-strain curve)을 그린 후 곡선의 선형 영역에 대해 압축 계수(compressive moduli)를 추정하였다. 모든 값은 평균 ± SD로 표시되었다(n = 4).The compression properties of the bioprinted constructs (6 × 6 × 4.5 mm 3 ) were evaluated using a SurTA tester (Chemilab, Korea) in the wet state in compression mode (compression speed of 0.1 mm/s). After drawing a stress-strain curve, the compressive moduli were estimated for the linear region of the curve. All values are expressed as mean ± SD (n = 4).

3-4. 습윤성 평가3-4. Wetability evaluation

CMA 및 CMA/MO 구조체의 습윤성(wettability)을 비교하기 위해 FITC-덱스트란(4kDa; HBSS 중 5mg/mL; Sigma-Aldrich, USA) 용액을 사용하였다. CMA 및 CMA/MO 바이오잉크는 PDMS 몰드를 사용하여 제조되어 체적 구조(5 × 10 × 1 mm3)를 얻고 UV 광(400 mW/cm2)을 사용하여 10초 동안 가교결합되었다. 그런 다음 샘플을 준비된 FITC-dextran 용액(20 μL)에 넣고 CO2 환경에서 37℃에서 배양하였다. 5, 60, 120분의 배양 후, 용액의 침윤을 형광 현미경(CKX41; Olympus, Japan)으로 가시화하였다(n = 4). 대표적인 형광 강도는 ImageJ 소프트웨어를 사용하여 플로팅되었다.FITC-dextran (4 kDa; 5 mg/mL in HBSS; Sigma-Aldrich, USA) solution was used to compare the wettability of CMA and CMA/MO structures. CMA and CMA/MO bioinks were fabricated using PDMS molds to obtain volumetric structures (5 × 10 × 1 mm 3 ) and crosslinked using UV light (400 mW/cm 2 ) for 10 s. Then, the sample was added to the prepared FITC-dextran solution (20 μL) and incubated at 37°C in a CO 2 environment. After 5, 60, and 120 min of incubation, the infiltration of the solution was visualized by fluorescence microscopy (CKX41; Olympus, Japan) (n = 4). Representative fluorescence intensities were plotted using ImageJ software.

3-5. 단백질 흡수능3-5. protein absorption capacity

Pierce bicinchoninic acid(BCA) 단백질 분석 키트(Thermo-Fisher Scientific, USA)를 사용하여 단백질 흡수를 분석하였다. 프린트 된 세포 구조체(12 × 12 × 2.5 mm3)는 CO2 환경에서 37℃의 성장배지에서 배양되었다. 인큐베이션 후, 세척된 샘플을 0.1% Triton X-100으로 처리하였다. 그런 다음 용해물(25 μL)을 200 μL의 BCA 워킹 솔루션과 함께 37℃에서 30분 동안 인큐베이션하였다. 처리된 시편의 광학밀도(OD)를 측정하기 위해 microplate reader(EpochTM; BioTek, South Korea)를 사용하였으며, 알려진 표준물질은 562 nm에서 측정하였다. 알려진 표준을 사용하여 흡수된 단백질의 양을 결정하였다. 모든 값은 평균 ± SD(n = 4)로 표시하였다.Protein uptake was analyzed using the Pierce bicinchoninic acid (BCA) protein assay kit (Thermo-Fisher Scientific, USA). The printed cell constructs (12 × 12 × 2.5 mm 3 ) were cultured in growth medium at 37°C in a CO 2 environment. After incubation, the washed samples were treated with 0.1% Triton X-100. The lysate (25 μL) was then incubated with 200 μL of BCA working solution for 30 min at 37°C. A microplate reader (EpochTM; BioTek, South Korea) was used to measure the optical density (OD) of the treated specimen, and a known standard was measured at 562 nm. The amount of protein absorbed was determined using known standards. All values were expressed as mean ± SD (n = 4).

3-6. 생체활성 물질의 방출 역학3-6. Release kinetics of bioactive substances

프린트 된 구조체의 생체활성 물질의 in vitro 방출 역학을 평가하기 위하여, CMA-BM, CMA-BM/MO, CMA/MO-BM, KGN(28 μg/mL) 및 소 혈청 알부민(10 μg/mL BSA; Sigma-Aldrich, USA)를 사용하였다. 그런 다음 인쇄된 구조체를 1mL DPBS에서 인큐베이션하였다. 특정 인큐베이션 시점에서, 마이크로플레이트 판독기를 사용하여 278.4 nm에서 용해물의 흡광도를 측정함으로써 KGN의 방출 프로파일을 기록하였다. 알려진 표준을 사용하여 방출된 KGN의 양을 추정하였다. PierceTM BCA 단백질 분석 키트는 BSA 방출 역학에 사용되었다. 구조체의 인큐베이션 후, 용해물(25mL)을 37℃에서 30분 동안 BCA 워킹 솔루션(200mL)으로 처리하였다. 방출된 BSA의 OD는 562 nm에서 마이크로플레이트 판독기를 사용하여 측정되었다. 알려진 표준을 사용하여 방출된 BSA의 양을 추정하였다. KGN 및 BSA의 누적 방출 프로파일은 초기 내용으로 정규화하여 플로팅되었다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To evaluate the in vitro release kinetics of bioactive substances from the printed constructs, CMA-BM, CMA-BM/MO, CMA/MO-BM, KGN (28 μg/mL) and bovine serum albumin (10 μg/mL BSA ; Sigma-Aldrich, USA) was used. The printed constructs were then incubated in 1 mL DPBS. At specific incubation time points, the release profile of KGN was recorded by measuring the absorbance of the lysate at 278.4 nm using a microplate reader. The amount of KGN released was estimated using known standards. Pierce TM BCA Protein Assay Kit was used for BSA release kinetics. After incubation of the constructs, the lysate (25 mL) was treated with BCA working solution (200 mL) for 30 min at 37°C. The OD of released BSA was measured using a microplate reader at 562 nm. The amount of BSA released was estimated using known standards. Cumulative release profiles of KGN and BSA were plotted normalized to the initial content. All values were expressed as mean ± SD (n = 4).

4. in vitro 세포 반응4. In vitro cell response

4-1. 세포 생존율의 관찰4-1. Observation of cell viability

살아있는 세포와 죽은 세포를 관찰하기 위해 세포 구조체의 세포를 칼세인 AM(0.15mM; Invitrogen, USA)과 ethidium homodimer-1(2mM, Invitrogen, USA)로 염색하였다. MIP 모드에서 Zeiss 공초점 현미경을 사용하여 염색된 살아있는(녹색) 세포 및 죽은(빨간색) 세포를 시각화하였다. 세포 생존력을 추정하기 위해 ImageJ 소프트웨어를 사용하여 살아있는 세포와 죽은 세포를 계수하였다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To observe live and dead cells, cells in the cell construct were stained with calcein AM (0.15mM; Invitrogen, USA) and ethidium homodimer-1 (2mM, Invitrogen, USA). Stained live (green) and dead (red) cells were visualized using a Zeiss confocal microscope in MIP mode. To estimate cell viability, live and dead cells were counted using ImageJ software. All values were expressed as mean ± SD (n = 4).

4-2. 핵/F-액틴 형성 관찰4-2. Observation of nuclear/F-actin formation

핵/F-액틴 형성을 관찰하기 위해 세포 구조체를 diamondino-2-phenylinodole(DAPI; DPBS에서 1:100; Invitrogen, USA) 및 Alexa Fluor 488-접합 팔로이딘(DPBS에서 1:100, Invitrogen, USA)을 사용하여 염색하였다. 간단히, 샘플은 30분 동안 10% NBF로 고정되었고 37℃에서 10분 동안 0.1% Triton X-100(Sigma-Aldrich, USA)으로 투과화되었다. 37℃에서 1시간 동안 DAPI/팔로이딘 용액에서 표본을 배양한 후 MIP 모드에서 공초점 현미경으로 세포를 시각화하였다. F-액틴의 면적 분율은 ImageJ 소프트웨어를 사용하여 측정되었다. 모든 값은 평균 ± SD로 표시되었다(n = 4).To observe nuclear/F-actin formation, cell constructs were incubated with diamondino-2-phenylinodole (DAPI; 1:100 in DPBS; Invitrogen, USA) and Alexa Fluor 488-conjugated phalloidin (1:100 in DPBS, Invitrogen, USA). It was dyed using . Briefly, samples were fixed with 10% NBF for 30 min and permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, USA) for 10 min at 37°C. After incubating the specimens in DAPI/phalloidin solution for 1 hour at 37°C, cells were visualized by confocal microscopy in MIP mode. The area fraction of F-actin was measured using ImageJ software. All values are expressed as mean ± SD (n = 4).

4-3. 세포 증식률 관찰4-3. Observation of cell proliferation rate

초기 세포 손실(배양 1일) 및 세포 증식(배양 7일)을 추정하기 위해 Cell Proliferation Kit I(Boehringer Mannheim, Germany)을 사용하여 MTT 분석을 수행하였다. DPBS로 3회 워싱한 후 샘플을 CO2 환경에서 37℃의 3-(4,5-디메틸티아졸-2-일)-2,5-디페닐테트라졸륨 브로마이드(MTT)에서 배양하였다. 4시간 후, 대사 활성 세포에서 보라색 포르마잔 결정이 생성되었다. 결정을 SDS로 구성된 가용화 용액에 용해시켰다. 마이크로플레이트 판독기를 사용하여 570 nm에서 착색된 용액의 OD를 결정하였다. 알려진 세포 수를 사용하여 구조에 존재하는 대사 세포를 결정하였다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To estimate initial cell loss (day 1 of culture) and cell proliferation (day 7 of culture), MTT assay was performed using Cell Proliferation Kit I (Boehringer Mannheim, Germany). After washing three times with DPBS, the samples were incubated in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) at 37°C in a CO 2 environment. After 4 hours, purple formazan crystals were produced in metabolically active cells. The crystals were dissolved in a solubilization solution consisting of SDS. The OD of the colored solution was determined at 570 nm using a microplate reader. The metabolic cells present in the structure were determined using known cell numbers. All values were expressed as mean ± SD (n = 4).

4-4. 연골형성률 관찰4-4. Cartilage formation rate observation

hASC 연골 형성을 평가하기 위해, 글리코사미노글리칸(Glycosaminoglycan, GAG) 함량의 정량화 및 알시안 블루 염색이 세포 구조체에 대해 수행되었다. 파파인 추출 용액을 이용하여 배양된 세포가 담지된 구조를 화학적으로 가용화하고, 제조사의 프로토콜에 따라 Blycan™ Sulfated Glycosaminoglycans assay kit(Biocolor Life Sciences Assays, UK)를 사용하였다. 간단히, 샘플을 파파인 추출 시약(Sigma-Aldrich, USA)에서 인큐베이션하고, 아세트산나트륨(8 mg/mL), EDTA 이나트륨 염(0.4 mg/mL; Sigma -Aldrich, USA) 및 시스테인 HCl(0.8 mg/mL, Sigma-Aldrich, USA)을을 포함하는 0.2 M 인산 나트륨 완충액에 65℃에서 3시간 동안 용해시켰다. 상층액을 따라낸 후, GAGs 함량을 1,9-디메틸-메틸렌 블루 염료 시약을 사용하여 30분 동안 염색하였다. 염색된 시료를 해리 시약을 이용하여 녹인 후 마이크로플레이트 리더를 이용하여 656 nm에서 OD를 측정하였다. 알려진 표준을 사용하여 GAG 콘텐츠를 결정하였다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To evaluate hASC chondrogenesis, quantification of glycosaminoglycan (GAG) content and Alcian blue staining were performed on cell constructs. The structure containing the cultured cells was chemically solubilized using a papain extraction solution, and the Blycan™ Sulfated Glycosaminoglycans assay kit (Biocolor Life Sciences Assays, UK) was used according to the manufacturer's protocol. Briefly, samples were incubated in papain extraction reagent (Sigma-Aldrich, USA), sodium acetate (8 mg/mL), EDTA disodium salt (0.4 mg/mL; Sigma -Aldrich, USA) and cysteine HCl (0.8 mg/mL). mL, Sigma-Aldrich, USA) was dissolved in 0.2 M sodium phosphate buffer containing 100% at 65°C for 3 hours. After decanting the supernatant, the GAGs content was stained for 30 minutes using 1,9-dimethyl-methylene blue dye reagent. The stained sample was dissolved using a dissociation reagent and the OD was measured at 656 nm using a microplate reader. GAG content was determined using known standards. All values were expressed as mean ± SD (n = 4).

연골 분화 후 hASC에서 형성된 GAG를 시각화하기 위해 세포 구조체를 10% NBF로 30분 동안 고정하고, MgCl2(50mM, Sigma-Aldrich, USA)를 함유하는 아세트산나트륨 완충액(50mM pH 5.8, Sigma-Aldrich, USA)에 용해된 알시안 블루 8GX로 실온에서 3시간 동안 인큐베이션하였다. 염색된 샘플은 DW로 세 번 세척한 후 광학 현미경으로 시각화되었다(n = 4).To visualize GAGs formed in hASCs after chondrogenic differentiation, cell constructs were fixed with 10% NBF for 30 min and incubated in sodium acetate buffer (50mM pH 5.8, Sigma-Aldrich, USA) containing MgCl 2 (50mM, Sigma-Aldrich, USA). USA) was incubated for 3 hours at room temperature with Alcian Blue 8GX dissolved in water. Stained samples were washed three times with DW and then visualized by light microscopy (n = 4).

3D 구조체에서 hASC의 골형성 분화를 평가하기 위해 칼슘 함량을 Alizarin red S(ARS)를 사용하여 염색하였다. 70% 에탄올(Sigma-Aldrich, USA)로 4℃에서 1시간 동안 구조를 고정한 후, 표본을 실온에서 1시간 동안 ARS 용액(40mM, pH 4.2; Sigma-Aldrich, USA)에서 배양하였다. 염색된 샘플은 DW로 세 번 세척한 후 광학 현미경으로 시각화하였다. 그런 다음 구조체를 인산나트륨 완충액(10mM, pH 7.0)에 용해된 10% 세틸피리디늄 클로라이드(Sigma-Aldrich, USA)로 실온에서 30분 동안 처리하여 칼슘 침착을 추정하였다. 처리된 샘플 및 알려진 표준의 흡광도는 562 nm에서 마이크로플레이트 판독기를 사용하여 측정되었다. Pierce™ BCA 단백질 분석 키트를 사용하여 추정한 총 단백질 함량은 측정된 칼슘 침착 수준을 정규화하는 데 사용되었다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To evaluate the osteogenic differentiation of hASCs in the 3D construct, calcium content was stained using Alizarin red S (ARS). After fixing the structure with 70% ethanol (Sigma-Aldrich, USA) for 1 hour at 4°C, the specimen was incubated in ARS solution (40mM, pH 4.2; Sigma-Aldrich, USA) for 1 hour at room temperature. The stained samples were washed three times with DW and then visualized under a light microscope. The constructs were then treated with 10% cetylpyridinium chloride (Sigma-Aldrich, USA) dissolved in sodium phosphate buffer (10mM, pH 7.0) for 30 min at room temperature to estimate calcium deposition. The absorbance of treated samples and known standards was measured using a microplate reader at 562 nm. Total protein content estimated using the Pierce™ BCA protein assay kit was used to normalize measured calcium deposition levels. All values were expressed as mean ± SD (n = 4).

5. 면역형광법5. Immunofluorescence

FAK 및 분화 마커의 발현을 평가하기 위해 세포 구조체에 포함된 줄기 세포를 10% NBF(1시간 동안 고정), 2% BSA(2시간 동안 블로킹) 및 2% Triton X-100(2시간 동안 투과). 상기 처리는 37℃에서 수행되었다. 처리된 검체는 항-토끼 초점 유착 키나제(focal adhesion kinase, FAK) 1차 항체(5 μg/mL; Sigma-Aldrich, USA), 항-마우스 오스테오폰틴(osetopontin, OPN) 1차 항체(5 μg/mL, Invitrogen, USA), 항토끼 아그레칸(aggrecan, ACAN) 1차 항체(5 μg/mL; Abcam, USA)를 4℃에서 하룻밤 동안 처리하였다. 그런 다음 샘플을 Alexa Fluor 594-접합된 항-마우스 이차 항체(DPBS에서 1:50; Invitrogen, USA) 또는 Alexa Fluor 594-접합된 항-토끼 이차 항체(DPBS에서 1:50, Invitrogen, USA)로 37℃에서 1시간 동안 염색시키고, DAPI로 대조염색(DPBS에서 5μM)하였다. MIP 모드에서 공초점 현미경을 사용하여 염색된 세포를 시각화하였다. FAK+ 및 OPN+ 영역의 정량화는 ImageJ 소프트웨어를 사용하여 수행되었다. 모든 값은 평균 ± SD(n = 4)로 표시되었다.To assess the expression of FAK and differentiation markers, stem cells embedded in cell constructs were incubated with 10% NBF (fixed for 1 h), 2% BSA (blocked for 2 h), and 2% Triton X-100 (permeabilized for 2 h). . The treatment was carried out at 37°C. The processed specimens were incubated with anti-rabbit focal adhesion kinase (FAK) primary antibody (5 μg/mL; Sigma-Aldrich, USA) and anti-mouse osteopontin (OPN) primary antibody (5 μg). /mL, Invitrogen, USA) and anti-rabbit aggrecan (ACAN) primary antibodies (5 μg/mL; Abcam, USA) were treated overnight at 4°C. Samples were then stained with Alexa Fluor 594-conjugated anti-mouse secondary antibody (1:50 in DPBS; Invitrogen, USA) or Alexa Fluor 594-conjugated anti-rabbit secondary antibody (1:50 in DPBS, Invitrogen, USA). Staining was performed at 37°C for 1 hour and counterstaining with DAPI (5 μM in DPBS). Stained cells were visualized using confocal microscopy in MIP mode. Quantification of FAK+ and OPN+ areas was performed using ImageJ software. All values were expressed as mean ± SD (n = 4).

6. qRT-PCR6. qRT-PCR

배양된 hASC에서 유전자 발현을 추정하기 위해 2-ΔΔCT 방법을 사용하여 세포 구조체에서 qRT-PCR을 수행하였다. 분석 전에 세포를 포함하는 샘플을 TRIzol 시약(Sigma-Aldrich)으로 처리하여 전체 RNA를 분리하였다. 분광 광도계(FLX800T; Biotek, USA)를 사용하여 분리된 RNA의 순도(허용 순도 범위: 1.8 < OD260/OD280 < 2.0) 및 농도를 평가하였다. 측정 후 ReverTra Ace™ qPCR RT Master Mix(Toyobo Co., Ltd., Japan)를 사용하여 역전사하여 RNase-free DNase 처리된 total RNA로부터 cDNA를 합성하였다. 합성된 cDNA를 이용하여 qRT-PCR 분석을 위해 StepOnePlus real-time PCR system(Applied Biosystems, USA)과 Thunderbird® SYBER® qPCR mix(Toyobo Co., Ltd., Japan)를 이용하여 threshold cycle(CT) 값을 측정하였다. GAPDH(glyceraldehyde 3-phosphate dehydrogenase) 유전자의 측정된 CT 값을 사용하여 발현된 유전자 수준을 하우스키핑 유전자로 정규화하였다. 모든 값은 평균 ± SD로 보고하였다(n = 4). 사용된 프라이머는 하기 표 1에 나열하였다.To estimate gene expression in cultured hASCs, qRT-PCR was performed on cell constructs using the 2 -ΔΔCT method. Before analysis, samples containing cells were treated with TRIzol reagent (Sigma-Aldrich) to isolate total RNA. The purity (acceptable purity range: 1.8 < OD 260 /OD 280 < 2.0) and concentration of the isolated RNA was evaluated using a spectrophotometer (FLX800T; Biotek, USA). After measurement, cDNA was synthesized from RNase-free DNase-treated total RNA by reverse transcription using ReverTra Ace™ qPCR RT Master Mix (Toyobo Co., Ltd., Japan). For qRT-PCR analysis using synthesized cDNA, the threshold cycle (CT) value was calculated using the StepOnePlus real-time PCR system (Applied Biosystems, USA) and Thunderbird® SYBER® qPCR mix (Toyobo Co., Ltd., Japan). was measured. Expressed gene levels were normalized to housekeeping genes using the measured CT value of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. All values were reported as mean ± SD (n = 4). Primers used are listed in Table 1 below.

GeneGene SourceSource Primer sequencePrimer sequence Left (5' - 3')Left (5' - 3') Right (5' - 3')Right (5' - 3') GapdhGapdh Homo sapiensHomo sapiens CCATGGGGAAGGTGAAGGTCCCATGGGGAAGGTGAAGGTC AGTGATGGCATGGACTGTAGTGATGGCATGGACTGT Itgb1Itgb1 Homo sapiensHomo sapiens CGCCGCGCGGAAAAGATGCGCCCGCGGAAAAGATG AAACACCAGCAGCCGTGTAAAAACACCAGCAGCCGTGTAA TlnTln Homo sapiensHomo sapiens CGTGCAAACCAGGCAATTCACGTGCAAACCAGGCAATTCA CTCTTGGACTGCAGTGAGCACTCTTGGACTGCAGTGAGCA PxnPxn Homo sapiensHomo sapiens TCGCTGTCGGATTTCAAGATTCGCTGTCGGATTTCAAGAT ATGAACCCTCCCTCGTCCTATGAACCCTCCCTCGTCCT FakFak Homo sapiensHomo sapiens GCTCCCTTGCATCTTCCAGTGCTCCCTTGCATCTTCCAGT ATTGCAGCCCTTGTCCGTTAATTGCAGCCCTTGTCCGTTA RhoaRhoa Homo sapiensHomo sapiens GTCCACGGTCTGGTCTTCAGGTCCACGGTCTGGTCTTCAG CAGCCATTGCTCAGGCAACCAGCCATTGCTCAGGCAAC RockRock Homo sapiensHomo sapiens TGAAAGCCGCACTGATGGATTGAAAGCCGCACTGATGGAT AAGCAGCTCTCCTGGTTGACAAGCAGCTCTCCTGGTTGAC YapYap Homo sapiensHomo sapiens CCCTCGTTTTGCCATGAACCCCCTCGTTTTGCCATGAACC GTTGCTGCTGGTTGGAGTTGGTTGCTGCTGGTTGGAGTTG TazTaz Homo sapiensHomo sapiens GAGAGCCGAAGCCCTTAGAGAGAGCCGAAGCCCTTAGA CGGATTCATCTTCTGGGCGGCGGATTCATCTTCTGGGGCGG Runx1Runx1 Homo sapiensHomo sapiens AACCCAGCATAGTGGTCAGCAACCCAGCATAGTGGTCAGC CATGGCTGCGGTAGCATTTCCATGGCTGCGGTAGCATTTC AcanAcan Homo sapiensHomo sapiens AAGCACTGGAGTTCTGTGAATCTAAGCACTGGAGTTCTGTGAATCT CGGCATAGCACTTGTCCAGCGGCATAGCACTTGTCCAG Col2a1Col2a1 Homo sapiensHomo sapiens GTAGAGACCCGGACCCGCGTAGAGACCCGGACCCGC ACTCTCCGAAGGGGATCTCAACTCTCCGAAGGGGATCTCA Col10a1Col10a1 Homo sapiensHomo sapiens CTGGGCAGAGGAAGCTTCAGACTGGGCAGAGGAAGCTTCAGA AGATGGATTCTGCGTGCTGGAGATGGATTCTGCGTGCTGG Sox9Sox9 Homo sapiensHomo sapiens GTACCCGCACTTGCACAACGTACCCGCACTTGCACAAC TCTCGCTCTCGTTCAGAAGTCTCTCGCTCCTCGTTCAGAAGTC Sox5Sox5 Homo sapiensHomo sapiens GGACTCCCACTTCTCAGCACGGACTCCCACTTCTCAGCAC ATAGCTGAAGCCTGGAGGGAATAGCTGAAGCCTGGAGGGA Sox6Sox6 Homo sapiensHomo sapiens CCACAAAGCTCCACTGTTGCCCACAAAGCTCCACTGTTGC TCAGTGTGTCCACCACATCGTCAGGTGTCCACCACATCG CbfbCbfb Homo sapiensHomo sapiens CCCGACCAGAGAAGCAAGTTCCCGACCAGAGAAGCAAGTT GCCACAAAAGCGATTTCCGAGCCACAAAAGCGATTTCCGA AlpAlp Homo sapiensHomo sapiens GGCACCTGCCTTACTAACTCCGGCACCTGCCTTACTAACTCC CTTGCCACGTTGGTGTTGACTTGCCACGTTGGTGTTGA Runx2Runx2 Homo sapiensHomo sapiens CAGTGACACCATGTCAGCAACAGTGACACCATGTCAGCAA GCTCACGTCGCTCATTTTGGCTCACGTCGCTCATTTTG OpnOpn Homo sapiensHomo sapiens AAGTTTCGCAGACCTGACATCAAGTTTCGCAGACCTGACATC GGGCTGTCCCAATCAGAAGGGGGCTGTCCAATCAGAAGG OcnOcn Homo sapiensHomo sapiens TGAGAGCCCTCACACTCCTCTGAGAGCCCTCACACTCCTC ACCTTTGCTGGACTCTGCACACCTTTGCTGGACTCTGCAC

7. 통계 분석7. Statistical analysis

통계적 분석을 평가하기 위해 SPSS 소프트웨어(SPSS, Inc., 미국))를 사용하여 Tukey의 HSD post-hoc test(3개 이상의 그룹)과 함께 Student's t-test(2개 그룹) 및 ANOVA 분석을 수행하였다. * P < 0.05, ** P < 0.01 및 *** P < 0.001의 값은 통계적으로 유의한 것으로 간주되었다.To evaluate the statistical analysis, Student's t-test (two groups) and ANOVA analysis along with Tukey's HSD post-hoc test (three or more groups) were performed using SPSS software (SPSS, Inc., USA). . Values of *P < 0.05, **P < 0.01 and ***P < 0.001 were considered statistically significant.

실험결과Experiment result

실시예 1: 에멀젼 바이오 잉크의 제작(Example 1: Production of emulsion bio-ink ( Fabrication of an emulsion bioinkFabrication of an emulsion bioink ))

일반적으로 오일-물 에멀젼은 유화제를 사용하여 연속 수상에 비교적 적은 양의 오일을 분산시켜 형성할 수 있다. 본 발명자들은 향상된 세포 간 상호 작용을 갖는 세포 함유 다공성 구조체를 제작하기 위해 오일-물 혼합 공정을 사용하여 세포 함유 CMA/MO 바이오잉크를 얻었다. 제작 공정에 관한 모식도는 도 1에 나타내었다.In general, oil-water emulsions can be formed by dispersing a relatively small amount of oil in a continuous water phase using an emulsifier. We obtained cell-laden CMA/MO bioink using an oil-water mixing process to fabricate cell-laden porous structures with improved cell-cell interactions. A schematic diagram of the manufacturing process is shown in Figure 1.

본 발명에서 CMA는 뛰어난 생리활성 환경과 세포 활성을 보조하는 GFOGER 서열을 제공할 수 있고 CMA의 광가교 특성이 3D 구조 제작에 효율적일 수 있기 때문에 사용되었다. CMA의 단백질 분자는 유화제 역할을 했으며 콜라겐이 유제 구체의 계면 경계 주위에 더 집중적으로 분포되었다. 제작된 에멀젼 바이오잉크는 UV 가교 시스템이 보완된 3D 프린팅 공정에 수용되어 매크로 및 마이크로 기공이 있는 세포 로딩 메쉬 구조를 제작하였다. In the present invention, CMA was used because it can provide an excellent bioactive environment and a GFOGER sequence that supports cell activity, and because the photocrosslinking properties of CMA can be efficient in fabricating 3D structures. The protein molecules in CMA acted as an emulsifier and the collagen was distributed more intensively around the interfacial boundaries of the emulsion spheres. The produced emulsion bioink was subjected to a 3D printing process supplemented with a UV cross-linking system to fabricate a cell-loaded mesh structure with macro and micro pores.

도 2는 oil-CMA 혼합 전후의 광학 이미지를 보여준다. 도 2에 나타낸 바와 같이, 혼합시간이 증가함에 따라 cell-laden CMA 바이오잉크에 균일한 오일방울이 분산되었으나 20회 이상 혼합시 CMA 용액내 오일의 droplet 크기가 거의 균일하게 포화(19.7 ± 6.5 μm)되었다. 그 결과, 추가적인 유화제 없이 CMA와 MO의 혼합물로 하이드로콜로이드 바이오잉크를 쉽게 얻을 수 있었다.Figure 2 shows optical images before and after oil-CMA mixing. As shown in Figure 2, as the mixing time increased, oil droplets were dispersed uniformly in the cell-laden CMA bioink, but when mixed more than 20 times, the oil droplet size in the CMA solution was almost uniformly saturated (19.7 ± 6.5 μm). . As a result, hydrocolloid bioink could be easily obtained from a mixture of CMA and MO without additional emulsifiers.

에멀젼 바이오잉크를 사용하여 제작된 hASC가 포함된 CMA/MO 구조가 도 3의 광학 및 SEM 이미지로 표시되었다. SEM 이미지에서 볼 수 있듯이 메쉬 구조의 거대 기공과 인쇄된 스트럿의 미세 기공이 잘 얻어진 것을 확인할 수 있었다. The CMA/MO structure containing hASCs fabricated using emulsion bioink was shown in the optical and SEM images in Figure 3. As can be seen in the SEM image, it was confirmed that the macropores of the mesh structure and the micropores of the printed struts were well obtained.

구조체의 세포 반응을 관찰하기 위해 배양 3일 후 세포의 형광 염색사진을 도 4에 나타내었다[살아있는(녹색)/죽은(빨간색) 및 DAPI(파란색)/팔로이딘(녹색)]. CMA 지지체는 MO를 사용하지 않고 제작된 hASC가 포함된 메쉬 구조이다. 상기 도 4의 live-dead 이미지에서 볼 수 있듯이 두 구조 모두에서 세포가 잘 생존하였지만 도 5에서 나타낸 바와 같이, CMA 구조보다 CMA/MO 구조에서 더 발달된 액틴 필라멘트가 관찰되었다. To observe the cellular response to the construct, fluorescent staining pictures of cells after 3 days of culture are shown in Figure 4 [alive (green)/dead (red) and DAPI (blue)/phalloidin (green)]. The CMA scaffold is a mesh structure containing hASCs produced without using MO. As can be seen in the live-dead image of FIG. 4, cells survived well in both structures, but as shown in FIG. 5, more developed actin filaments were observed in the CMA/MO structure than in the CMA structure.

또한, CMA/MO 지지체에 대한 3D 이미지(표면 및 단면도)를 도 6에 나타내었다. Additionally, 3D images (surface and cross-sectional views) of the CMA/MO scaffold are shown in Figure 6.

이러한 결과는 에멀젼 바이오잉크를 사용하여 제작된 세포 함유 구조체가 구조체에 함유된 세포 활동에 훨씬 더 적합한 미세 환경임을 나타내었다.These results indicated that the cell-containing constructs fabricated using emulsion bioink were a much more suitable microenvironment for the activities of the cells contained in the constructs.

실시예 2: CMA 및 MO의 혼합비율의 선택Example 2: Selection of mixing ratio of CMA and MO

2-1. CMA 및 MO의 혼합비율에 따른 오일 액적의 크기 변화2-1. Change in size of oil droplets according to mixing ratio of CMA and MO

일반적으로 에멀젼의 안정적인 형성은 유상과 수상의 혼합 비율과 관련이 있다.In general, the stable formation of an emulsion is related to the mixing ratio of the oil phase and the water phase.

도 7은 다양한 농도의 오일(5, 10, 20, 30 및 40 v/v%)을 포함하는 CMA(3 wt/v%)/MO 바이오잉크의 광학 이미지를 나타낸다. 도 7의 광학 이미지에서 볼 수 있듯이 30 및 40 v/v% 오일을 포함하는 바이오 잉크에서는 상 분리된 에멀젼이 관찰된 반면, 5-20 v/v% 오일을 포함하는 에멀젼에서는 오일 액적이 균일하게 분포되어 있었다. 또한, 오일 액적의 평균 직경을 측정한 결과, 도 8에 나타낸 바와 같이, 20 v/v% 이하에서는 오일 액적의 직경이 감소하였으나, 30 v/v% 이상에서는 과도한 오일로 인해 오일 액적의 직경이 급격히 증가하였다.Figure 7 shows optical images of CMA (3 wt/v%)/MO bioink containing various concentrations of oil (5, 10, 20, 30, and 40 v/v%). As can be seen from the optical images in Figure 7, phase-separated emulsions were observed in bioinks containing 30 and 40 v/v% oil, whereas oil droplets were uniformly distributed in emulsions containing 5-20 v/v% oil. It was distributed. In addition, as a result of measuring the average diameter of the oil droplets, as shown in Figure 8, the diameter of the oil droplet decreased below 20 v/v%, but the diameter of the oil droplet decreased due to excessive oil above 30 v/v%. It increased rapidly.

2-2. CMA 및 MO의 혼합비율에 따른 에멀젼 바이오잉크의 유변학적 특성2-2. Rheological properties of emulsion bioink according to mixing ratio of CMA and MO

에멀젼 바이오잉크(cells: 2 × 107 cells/mL, CMA: 3 wt/v%, MO: 0, 5, 10, 20, 30, 40 v/v%)의 유변학적 특성을 평가하기 위해, 저장(storage)(G'), 손실 계수(loss modulus)(G'') 및 복합 점도(complex viscosity)(η*)는 도 9 및 도 10에 나타낸 바와 같이 주파수 및 전단 응력 스윕을 사용하여 분석되었다.To evaluate the rheological properties of emulsion bioink (cells: 2 × 10 7 cells/mL, CMA: 3 wt/v%, MO: 0, 5, 10, 20, 30, 40 v/v%), storage Storage (G'), loss modulus (G'') and complex viscosity (η*) were analyzed using frequency and shear stress sweeps as shown in Figures 9 and 10. .

대부분의 에멀젼 바이오잉크는 오일의 부피 분율(volume fraction)에 의존하지 않고 완전한 전단박화 거동(complete shear thinning behavior)을 보여 에멀젼 바이오잉크가 마이크로스케일 프린팅 노즐을 통해 쉽게 프린팅될 수 있음을 입증하였다. 또한, 에멀젼 바이오잉크의 오일 부피 분율이 20 v/v%로 증가함에 따라 항복 응력(yield stress, ty)을 포함하여 상당히 우수한 유변학적 특성이 관찰된 반면, 유변학적 특성은 에멀젼 바이오잉크의 오일 부피 분율이 30 v/v% 이상일 때 급격히 감소하였다. 이 현상은 에멀젼의 유변학적 특성이 분산된 오일의 액적 크기와 밀접한 관련이 있기 때문에 발생한다. Guerrero et al.에 따르면, 수중유 에멀젼의 유변학적 특성은 오일 액적을 둘러싸고 있는 단백질 분자의 탄성 네트워크의 증가로 인해 분산된 오일 액적의 직경이 감소함에 따라 증가하였다. Most emulsion bioinks showed complete shear thinning behavior without depending on the volume fraction of oil, demonstrating that emulsion bioinks can be easily printed through microscale printing nozzles. Additionally, as the oil volume fraction of the emulsion bioink increased to 20 v/v%, significantly superior rheological properties, including yield stress ( ty ), were observed, while the rheological properties were significantly lower than those of the oil in the emulsion bioink. It decreased rapidly when the volume fraction was above 30 v/v%. This phenomenon occurs because the rheological properties of the emulsion are closely related to the droplet size of the dispersed oil. According to Guerrero et al., the rheological properties of oil-in-water emulsions increased with decreasing diameter of the dispersed oil droplets due to an increase in the elastic network of protein molecules surrounding the oil droplets.

유사하게, 우리의 결과도 도 11에 나타낸 바와 같이, 미네랄 오일을 최대 20 v/v%까지 첨가하여 유변학적 특성이 향상되었지만, 미네랄 오일의 첨가는 세포 생존율에 영향을 미치지 않았다. Similarly, as our results also show in Figure 11, the addition of mineral oil up to 20 v/v% improved the rheological properties, but the addition of mineral oil did not affect cell viability.

또한, CMA/MO 바이오잉크의 상분리에 대한 시간 및 온도 의존성의 영향을 보여주기 위해 바이오잉크의 분산된 오일 방울을 정성적으로 관찰한 결과, 5-20 v/v%의 광유를 함유한 에멀젼에서 10, 25, 37℃에서 2시간 동안 배양 후에도 상분리 없이 균일하게 분포된 오일 액적이 안정적으로 유지되었다.Additionally, to show the influence of time and temperature dependence on the phase separation of CMA/MO bioink, we qualitatively observed dispersed oil droplets of bioink in emulsions containing 5–20 v/v% of mineral oil. Evenly distributed oil droplets were maintained stably without phase separation even after incubation at 10, 25, and 37°C for 2 hours.

또한, 바이오잉크의 장기 안정성을 관찰하기 위해 타임 스윕 테스트(1Hz의 주파수 및 1%의 변형률)를 수행하였다. 그 결과, MO 바이오잉크가 있거나 없는 CMA의 유변학적 특성[CMA(3wt/v%), CMA(3wt/v%)/MO(10v/v%)]은 40분까지 안정적이었다.Additionally, a time sweep test (frequency of 1 Hz and strain of 1%) was performed to observe the long-term stability of the bioink. As a result, the rheological properties [CMA(3wt/v%), CMA(3wt/v%)/MO(10v/v%)] of CMA with and without MO bioink were stable up to 40 minutes.

2-3. CMA 및 MO의 혼합비율에 따른 에멀젼 바이오잉크의 유변학적 특성2-3. Rheological properties of emulsion bioink according to mixing ratio of CMA and MO

hASC가 포함된 CMA/MO 바이오잉크의 인쇄 가능성 및 세포 활성을 평가하기 위해 5, 10 및 20 v/v%의 오일을 포함하는 바이오 잉크를 3D 바이오프린팅을 사용하여 하기 인쇄 조건에서 인쇄하였다:To evaluate the printability and cellular activity of CMA/MO bioink containing hASCs, bioinks containing 5, 10, and 20 v/v% of oil were printed using 3D bioprinting under the following printing conditions:

가공 온도 25℃, 이동 속도 10mm/s, 공압 120 kPa, UV 출력 400mW/cm2 Processing temperature 25℃, moving speed 10mm/s, pneumatic pressure 120 kPa, UV output 400mW/cm 2

도 12는 메쉬 구조의 광학 및 라이브/데드 이미지를 보여준다. 구축물에 담지된 세포는 배양 3일 후에 살아 있었다. 바이오잉크의 인쇄성은 이전에 보고된 방법(Pr = L2/16A, 여기서 L은 둘레이고 A는 기공 모양의 면적)에 기반한 광학 이미지를 사용하여 계산되었다. 분석에 따르면 10 및 20 v/v%의 MO를 포함하는 바이오잉크의 Pr은 허용 범위(0.9 < Pr < 1.1)인 반면, 5 v/v%의 오일의 경우 도 13에서 볼 수 있듯이 Pr은 0.9 미만이었다.Figure 12 shows optical and live/dead images of the mesh structure. Cells supported in the construct were alive after 3 days of culture. The printability of the bioink was calculated using optical images based on a previously reported method (Pr = L2/16A, where L is the perimeter and A is the area of the pore shape). Analysis shows that the Pr of bioinks containing 10 and 20 v/v% of MO is within the acceptable range (0.9 < Pr < 1.1), while for the oil of 5 v/v%, Pr is 0.9, as shown in Figure 13. It was less than

CMA/MO 구축물을 제작한 후, 함유된 오일은 배양 배지로 방출될 수 있고, 동시에 구축물에 함유된 세포는 분리될 수 있다. 도 14는 MTT assay를 이용하여 1일 동안 초기 세포 손실을 측정한 결과이다. 결과에서 보는 바와 같이 오일의 부피 분율이 증가할수록 세포 손실은 점차적으로 증가하였다. 그러나 10 v/v% 오일 함량 미만에서는 세포 손실이 통계적으로 무시할 수 있었다. 이러한 결과에 기초하여, 10% v/v의 오일을 함유하는 CMA/MO 바이오잉크를 선택하여 세포-함유 다공성 구조체를 제조하였다.After fabricating the CMA/MO construct, the contained oil can be released into the culture medium and at the same time the cells contained in the construct can be separated. Figure 14 shows the results of measuring initial cell loss for 1 day using the MTT assay. As shown in the results, cell loss gradually increased as the volume fraction of oil increased. However, below 10 v/v% oil content, cell loss was statistically negligible. Based on these results, CMA/MO bioink containing 10% v/v of oil was selected to prepare cell-containing porous structures.

CMA 농도가 기름 액적 크기, 인쇄성(printability), 초기 세포 손실(initial cell loss) 및 세포 증식(cell proliferation)에 미치는 영향을 관찰하기 위해, 도 15에 나타낸 바와 같이, 10 v/v%의 오일을 포함하는 바이오잉크에서 CMA 농도(1-5 wt/v%)를 변경하였다.To observe the effect of CMA concentration on oil droplet size, printability, initial cell loss, and cell proliferation, 10 v/v% of oil was used, as shown in Figure 15. The CMA concentration (1-5 wt/v%) was changed in the bioink containing.

광학 이미지에서 볼 수 있듯이 3-5 wt/v% CMA를 포함하는 바이오 잉크에서는 에멀젼이 균일하게 얻어졌지만, 도 16에 나타낸 바와 같이 1 및 2 wt/v% CMA와 혼합된 바이오 잉크는 오일 방울의 넓은 크기 분포를 나타냈다.As can be seen from the optical images, the emulsion was obtained uniformly in the bioink containing 3-5 wt/v% CMA, but as shown in Figure 16, the bioink mixed with 1 and 2 wt/v% CMA showed a slight change in the oil droplets. It showed a wide size distribution.

본 발명자들은 또한, 바이오 잉크에 다양한 농도의 CMA를 사용하여 메쉬 구조를 인쇄하였다. 광학 이미지에서 볼 수 있듯이 1 및 2 wt/v% CMA에서 인쇄 능력이 현저히 낮았다: CMA 3 ~ 5 wt/v%에 대해 'Pr' = 0.9 ~ 1.1 였고, CMA 1 및 2의 wt/v%에 대해서 'Pr' << 0.9 였다 (도 17). 그러나, 인쇄된 모든 구조체에 대한 세포 생존율은 높았다(> 90%)(도 18).The present inventors also printed mesh structures using various concentrations of CMA in bio-ink. As can be seen from the optical images, the print capability was significantly lower for 1 and 2 wt/v% CMAs: 'Pr' = 0.9 to 1.1 for CMAs 3 to 5 wt/v%, and for CMAs 1 and 2 wt/v%. For 'Pr' << 0.9 (Figure 17). However, cell survival for all printed structures was high (>90%) (Figure 18).

도 19에 나타낸 바와 같이, 초기 세포 손실의 경우 세포 구조체에서 CMA의 농도가 높을수록 상대적으로 높은 모듈러스로 인해 훨씬 낮은 세포 손실이 유도되었다. 그러나 CMA의 3wt/v% 이상에서는 세포 손실이 통계적으로 유의하지 않았다. 따라서, 상술한 인쇄성 및 초기 세포 손실을 기반으로 바이오 잉크의 CMA 농도를 3 wt/v%로 설정하였다.As shown in Figure 19, in the case of initial cell loss, higher concentrations of CMA in the cell construct induced much lower cell loss due to the relatively high modulus. However, cell loss was not statistically significant above 3wt/v% of CMA. Therefore, based on the above-mentioned printability and initial cell loss, the CMA concentration of the bio-ink was set to 3 wt/v%.

In situ 가교를 위한 UV 노출 조건을 설정하기 위해 다양한 UV 광 강도(0, 75, 250, 400 및 700 mW/cm2)를 적용하여 유변학적 특성, 인쇄성 및 세포 생존율을 평가하였다. To establish UV exposure conditions for in situ cross-linking, various UV light intensities (0, 75, 250, 400, and 700 mW/cm 2 ) were applied to evaluate rheological properties, printability, and cell viability.

도 20에 나타낸 바와 같이, 예상대로 UV 강도가 증가함에 따라 더 높은 광가교 능력이 관찰되어 바이오잉크의 저장 모듈러스(G')가 증가함을 보여주었다. 400과 700 mW/cm2의 UV 강도로 인쇄성(printability)은 허용 가능한 범위에 있었지만, 700 mW/cm2의 강도에서는 높은 UV 출력으로 인해 심각한 수의 죽은 세포가 관찰되었다. 따라서, 상술한 인쇄성과 세포생존율을 바탕으로 다음 바이오프린팅 공정을 위한 UV 노출조건(400mW/cm2)을 설정하였다. 또한, UV 조건(10초 동안 400mW/cm2)의 실행 가능성을 보여주었으며 결과적으로 바이오잉크의 가교 깊이는 약 3.8 ± 0.2mm로 나타났다.As shown in Figure 20, as expected, higher photocrosslinking ability was observed with increasing UV intensity, showing that the storage modulus (G') of the bioink increased. At UV intensities of 400 and 700 mW/cm 2 , printability was in the acceptable range, but at an intensity of 700 mW/cm 2 a significant number of dead cells were observed due to the high UV output. Therefore, based on the above-mentioned printability and cell viability, UV exposure conditions (400mW/cm 2 ) for the next bioprinting process were set. Additionally, the feasibility of UV conditions (400 mW/cm 2 for 10 seconds) was demonstrated, and the resulting cross-linking depth of the bioink was approximately 3.8 ± 0.2 mm.

실시예 3: 세포를 포함하는 CMA/MO 스캐폴드의 특성 및 in vitro 세포 반응Example 3: Characterization and in vitro cell response of CMA/MO scaffolds containing cells

3-1. 세포를 포함하는 CMA/MO 스캐폴드의 특성 확인3-1. Characterization of CMA/MO scaffolds containing cells

실시예 2에서 설정한 CMA 및 MO 중량 분율 및 인쇄 조건을 사용하여 hASC가 포함된 구조체를 얻었다:Constructs containing hASC were obtained using the CMA and MO weight fractions and printing conditions set in Example 2:

(1) CMA: hASC가 포함된 CMA(3 wt/v%) 스캐폴드 및(1) CMA: CMA (3 wt/v%) scaffold containing hASC and

(2) CMA/MO: hASC가 포함된 CMA(3wt/v%)/MO(10v/v%) 스캐폴드.(2) CMA/MO: CMA (3 wt/v%)/MO (10 v/v%) scaffold containing hASCs.

도 21은 인쇄된 세포 적재 구성의 광학 및 SEM 이미지를 보여준다. 이미지에서 볼 수 있듯이 두 메쉬 구조(15 × 15 × 4.5 mm3)는 거대 규모의 기공(평균 크기 = 454.2 ± 67.9 μm)과 나노 규모의 콜라겐 섬유를 나타낸다. 그러나 스트럿의 미세 기공(평균 크기 = 18.3 ± 16.3 μm)은 균질하게 분포된 MO 상 때문에 CMA/MO 구조에서만 관찰되었다. 예상대로 CMA/MO의 다공성(97.9 ± 0.3%)은 CMA 구조(96.4 ± 0.3%)의 다공성보다 높았다.Figure 21 shows optical and SEM images of the printed cell loading configuration. As can be seen in the images, both mesh structures (15 × 15 × 4.5 mm 3 ) exhibit macroscale pores (average size = 454.2 ± 67.9 μm) and nanoscale collagen fibers. However, the micropores of the struts (average size = 18.3 ± 16.3 μm) were only observed in the CMA/MO structure due to the homogeneously distributed MO phase. As expected, the porosity of CMA/MO (97.9 ± 0.3%) was higher than that of the CMA structure (96.4 ± 0.3%).

도 23은 젖은 상태에서 현장 인쇄 구조(6 × 6 × 4.5 mm3)에 대해 표시된다. 흥미롭게도 CMA/MO 구조는 CMA 구조(117.6 ± 24.7 kPa)에 비해 더 높은 압축탄성률(162.3 ± 9.5 kPa)을 나타냈으며, 이는 유변학적 시험과 유사한 결과를 보였고, 이러한 현상은 오일 에멀젼 상 때문일 수 있다. 오일 액적을 둘러싼 콜라겐 분자의 탄성 네트워크를 효율적으로 지원하였다.Figure 23 is shown for an in situ printed structure (6 × 6 × 4.5 mm 3 ) in the wet state. Interestingly, the CMA/MO structure showed a higher compressive modulus (162.3 ± 9.5 kPa) compared to the CMA structure (117.6 ± 24.7 kPa), similar to the rheological test, and this phenomenon may be due to the oil emulsion phase. . It efficiently supported the elastic network of collagen molecules surrounding the oil droplet.

다공성이 높은 구조는 물, 영양소 및 소화 물질의 교환에 명확하게 영향을 미쳐 다양한 대사 활동을 효율적으로 유도하는 것으로 알려져 있다. 다공성 구조체의 확산 능력은 젖음성 및 단백질 흡수 테스트를 사용하여 정량적으로 평가되었다. The highly porous structure is known to clearly affect the exchange of water, nutrients and digestive substances, efficiently inducing various metabolic activities. The diffusion capacity of the porous structures was quantitatively evaluated using wettability and protein absorption tests.

구조체의 젖음성은 도 23과 같이 5, 60, 120분에 FITC-conjugated dextran 용액의 확산을 관찰하여 측정하였다. 그 결과, 덱스트란은 도 24에서 덱스트란의 정량적 강도에서 볼 수 있듯이 CMA 스캐폴드에 비해 다공성 CMA/MO 구조로 더 빠르게 침투하였다. The wettability of the structure was measured by observing the diffusion of the FITC-conjugated dextran solution at 5, 60, and 120 minutes, as shown in Figure 23. As a result, dextran penetrated more quickly into the porous CMA/MO structure compared to the CMA scaffold, as can be seen from the quantitative intensity of dextran in Figure 24.

또한 단백질 흡수능을 측정한 결과 도 25와 같이 CMA/MO scaffold가 CMA scaffold보다 상대적으로 높은 단백질 흡수율을 보였다. 이러한 결과를 바탕으로 우리는 CMA/MO 스캐폴드가 영양소와 대사 폐기물의 효율적인 수송을 유도하여 다공성 구조를 통해 효율적인 세포 활동을 유발할 것이라고 신중하게 추정할 수 있었다.Additionally, as a result of measuring the protein absorption capacity, the CMA/MO scaffold showed a relatively higher protein absorption rate than the CMA scaffold, as shown in Figure 25. Based on these results, we could cautiously assume that the CMA/MO scaffold would induce efficient transport of nutrients and metabolic waste products, resulting in efficient cellular activity through the porous structure.

다음으로, 영양소와 대사성 폐기물의 수송능력에 영향을 받는 대사활성을 평가하기 위해 hASC가 담지된 CMA 및 CMA/MO 바이오잉크를 원통형 구조(높이: 10 mm, 직경: 3 mm)에 붓고 바이오잉크를 성장배지에서 배양하였다. (GM) 단독으로 세포 생존력을 관찰하기 위해 도 26에 도시된 바와 같이. 그 결과, CMA/MO에서는 구조체 표면으로부터의 거리인 구조체 높이가 약 2.0 ± 0.06 mm인 지점에서 높은 세포 생존율(~90%)이 관찰된 반면, 세포 생존율을 갖는 거리는 (~90%) CMA 구조에서 약 480.1 ± 50.0 μm였다. 간단한 분석에서 우리는 CMA 구조체에 비해 CMA/MO 구성체에서 효율적인 대사 교환이 발생할 수 있음을 확인할 수 있었다.Next, to evaluate metabolic activity affected by the transport capacity of nutrients and metabolic waste, hASC-loaded CMA and CMA/MO bioinks were poured into a cylindrical structure (height: 10 mm, diameter: 3 mm) and the bioink was Cultured in growth medium. (GM) alone as shown in Figure 26 to observe cell viability. As a result, in CMA/MO, high cell viability (~90%) was observed at a point where the structure height, which is the distance from the structure surface, is about 2.0 ± 0.06 mm, while the distance with cell viability (~90%) was observed in the CMA structure. It was about 480.1 ± 50.0 μm. In a simple analysis, we were able to confirm that efficient metabolic exchange can occur in the CMA/MO construct compared to the CMA construct.

3-2. in vitro 세포 반응3-2. in vitro cell response

시험관 내 세포 활동을 관찰하기 위해 인쇄된 세포가 포함된 CMA 및 CMA/MO 구성물을 다양한 기간 동안 배양하였다. To observe cell activity in vitro, CMA and CMA/MO constructs containing printed cells were cultured for various periods of time.

세포 배양 3일 및 7일 후, 바이오프린팅된 구조에 대해 live/dead 염색을 수행하였다(도 27의 (a)). 세포는 도 27의 (b)와 같이 세포 생존율이 92% 이상으로 구조에서 잘 살아있었다. 그러나, MTT 분석을 사용하여 추정된 세포 증식은 도 27의 (c)에서 볼 수 있듯이 CMA 구조보다 CMA/MO 구조에서 훨씬 더 컸다. 또한, 도 27의 (d)와 같이 DAPI/phalloidin/FAK(빨간색)로 염색하여 인쇄된 구성체에서 hASC의 F-액틴 및 초점 접착 키나제(FAK)를 관찰하였다. 세포 증식에 대한 결과와 유사하게, 훨씬 더 발달된 액틴 필라멘트(1.3-배)와 FAK(2.7-배)가 도 27의 (e), (f)와 같이 CMA/MO 구조에서 관찰되었다.After 3 and 7 days of cell culture, live/dead staining was performed on the bioprinted structure ((a) of Figure 27). The cells survived well in the structure, with a cell survival rate of over 92%, as shown in (b) of Figure 27. However, cell proliferation estimated using MTT analysis was much greater in the CMA/MO structure than in the CMA structure, as can be seen in (c) of Figure 27. In addition, as shown in (d) of Figure 27, F-actin and focal adhesion kinase (FAK) of hASC were observed in the printed construct by staining with DAPI/phalloidin/FAK (red). Similar to the results for cell proliferation, much more developed actin filaments (1.3-fold) and FAK (2.7-fold) were observed in the CMA/MO structure, as shown in (e) and (f) of Figure 27.

또한, 세포골격 조직 및 세포 증식을 보다 자세히 관찰하기 위해 integrin beta 1(Intb1), talin 1(Tln1), paxillin(Pxn), focal adhesive kinase(Fak), ras homolog family member를 포함한 FAK/RhoA 관련 유전자 A(Rhoa), rho-associated protein kinase(Rock), yes1 관련 전사 조절자(Yap), WW-domain 함유 전사 조절자 1(Taz)의 발현정도를 세포구조체에서 배양된 hASC에 대해 측정하였다(도 27의 (g)). 이러한 결과를 바탕으로, 본 발명자들은 높은 다공성을 가진 CMA/MO 스캐폴드가 효율적인 세포 간/기질 상호작용으로 인해 초기 FAK/RhoA 신호 전달 경로를 효과적으로 활성화하여 세포 성장 및 세포골격 재구성의 가속화를 초래함을 확인하였다.In addition, to observe cytoskeletal organization and cell proliferation in more detail, FAK/RhoA-related genes, including integrin beta 1 (Intb1), talin 1 (Tln1), paxillin (Pxn), focal adhesive kinase (Fak), and ras homolog family member, were analyzed. The expression levels of A (Rhoa), rho-associated protein kinase (Rock), yes1-related transcriptional regulator (Yap), and WW-domain-containing transcriptional regulator 1 (Taz) were measured in hASCs cultured in cell constructs (Figure 27 (g)). Based on these results, we show that the highly porous CMA/MO scaffold effectively activates the early FAK/RhoA signaling pathway due to efficient cell-to-matrix interaction, resulting in acceleration of cell growth and cytoskeletal reorganization. was confirmed.

실시예 4: 생체활성 분자로 접합된 CMA/MO 스캐폴드의 적용Example 4: Application of CMA/MO scaffolds conjugated with bioactive molecules

조직 공학 분야에서 CMA/MO 바이오잉크의 적용을 확장하기 위해 에멀젼 바이오잉크에서 생체활성 분자는 hASC를 세포 구조체로 분화시키는 데 도움이 되는 것으로 고려되어왔다. 본 발명자들은 hASC의 연골 형성 및 골 형성을 유도하기 위해 두 가지 전형적인 생체활성물질, 즉, kartogenin (KGN) 및 Bone morphogenic protein-2(BMP-2)를 사용하였다. KGN은 filamin A에 결합하고 core-binding factor beta/RUNX1 complex를 조절하여 간엽줄기세포의 연골형성을 유도할 수 있는 것으로 알려져 있다. 방출 거동을 제어하기 위해 도 28에 나타낸 바와 같이 BM이 포함된 바이오잉크에 대해 두 가지 제형 방법을 선택했다: (1) 세포 함유 CMA를 MO 및 BM의 혼합물과 혼합하거나(CMA/MO-BM), (2) 세포 함유 CMA 및 BM의 혼합물을 MO와 혼합하였다(CMA-BM/MO).To expand the application of CMA/MO bioinks in the field of tissue engineering, bioactive molecules in emulsion bioinks have been considered to help differentiate hASCs into cell constructs. The present inventors used two typical bioactive substances, namely, kartogenin (KGN) and bone morphogenic protein-2 (BMP-2), to induce chondrogenesis and osteogenesis in hASC. KGN is known to be able to induce chondrogenesis in mesenchymal stem cells by binding to filamin A and regulating the core-binding factor beta/RUNX1 complex. To control the release behavior, two formulation methods were chosen for the bioink containing BM, as shown in Figure 28: (1) mixing cell-laden CMA with a mixture of MO and BM (CMA/MO-BM); , (2) A mixture of cell-containing CMA and BM was mixed with MO (CMA-BM/MO).

본 발명자들은 프린팅 된 구조에서 생체활성 분자의 방출 역학을 평가하기 위해 DPBS에서 구조(12 × 12 × 2.5 mm3)를 37℃에서 배양하여 KGN 및 소 혈청 알부민(BSA)의 누적 방출을 평가하였다. 결과는 도 29 및 도 30에 나타내었다.To evaluate the release kinetics of bioactive molecules from the printed structures, we incubated the structures (12 × 12 × 2.5 mm 3 ) in DPBS at 37°C to evaluate the cumulative release of KGN and bovine serum albumin (BSA). The results are shown in Figures 29 and 30.

도 29에 나타낸 바와 같이, CMA-KGN 구조체(54.0±4.4%)와 CMA-KGN/MO 구성체(66.3±3.6%)에서 KGN의 초기 폭발 방출(initial burst release)이 관찰되었으며, 대부분 14일 후에 방출이 완료되었다. 그러나 CMA/MO-KGN 구조에서 상대적으로 낮은 초기 폭발 방출(initial burst release)이 관찰되었으며(29.0 ± 3.8%), 방출은 배양 42일까지 지속되어 시간 의존적 방출 동역학을 보여주었다. KGN의 carboxyl acid 그룹과 CMA의 잔여 amine 그룹 사이의 이온 상호작용은 상대적으로 약하기 때문에 CMA 상에 로딩된 KGN이 더 일찍 방출될 수 있다. 그러나 CMA/MO-KGN 구조의 경우 MO 방울에 물리적으로 캡슐화된 KGN은 비교적 느린 속도로 방출되었다. As shown in Figure 29, the initial burst release of KGN was observed in the CMA-KGN construct (54.0 ± 4.4%) and the CMA-KGN/MO construct (66.3 ± 3.6%), with most being released after 14 days. This has been completed. However, a relatively low initial burst release was observed in the CMA/MO-KGN structure (29.0 ± 3.8%), and the release lasted up to 42 days of culture, showing time-dependent release kinetics. Because the ionic interaction between the carboxyl acid group of KGN and the remaining amine group of CMA is relatively weak, KGN loaded on CMA may be released earlier. However, in the case of the CMA/MO-KGN structure, KGN physically encapsulated in MO droplets was released at a relatively slow rate.

도 30에 나타낸 바와 같이 BSA의 방출 동역학에 대해서도 유사한 결과가 관찰되었다. CMA-BSA 및 CMA-BSA/MO에서 BSA의 상대적으로 더 큰 초기 폭발 방출과 빠른 방출이 관찰된 반면, CMA/MO-BSA에서는 BSA의 방출이 28일까지 지속되었다. Similar results were observed for the release kinetics of BSA, as shown in Figure 30. A relatively larger initial burst release and faster release of BSA were observed in CMA-BSA and CMA-BSA/MO, whereas in CMA/MO-BSA the release of BSA lasted up to 28 days.

상기 결과로부터 본 발명자들은 KGN 및 BSA가 CMA-KGN/MO 및 CMA-BSA/MO 구조체에서 CMA/MO-KGN 및 CMA/MO-BSA 스캐폴드와 비교하여, 잘 연기된 방출 속도 및 지속 시간으로 방출되었음을 확인할 수 있었으며, 이는 생체활성 분자가 스캐폴드 전체에서 생체 활성을 유지하면서 훨씬 더 길게 작용할 수 있음을 나타낸다.From the above results, we found that KGN and BSA were released in CMA-KGN/MO and CMA-BSA/MO structures with well-delayed release rates and durations compared to CMA/MO-KGN and CMA/MO-BSA scaffolds. This indicates that the bioactive molecule can act much longer while maintaining bioactivity throughout the scaffold.

구조체에 함유된 KGN의 생물학적 활성을 관찰하기 위해, CMA-KGN, CMA-KGN/MO 및 CMA/MO-KGN 구조를 GM에서 배양하여 연골 분화를 평가하였다. To observe the biological activity of KGN contained in the constructs, CMA-KGN, CMA-KGN/MO, and CMA/MO-KGN constructs were cultured in GM to evaluate chondrogenic differentiation.

도 31은 DAPI/aggrecan(ACAN, red)(세포 배양 7일 및 14일) 및 Alcian blue(배양 14일) 염색 이미지를 배양된 구조체의 이미지로 나타낸 것이다. 도 31에 나타낸 바와 같이, CMA/MO-KGN 지지체에서 다른 지지체보다 ACAN 및 Alcian blue 염색이 훨씬 더 많이 발현되었다. Figure 31 shows DAPI/aggrecan (ACAN, red) (7 and 14 days of cell culture) and Alcian blue (14 days of culture) staining images of the cultured construct. As shown in Figure 31, ACAN and Alcian blue staining were expressed much more in the CMA/MO-KGN scaffold than in other scaffolds.

또한 도 32에 나타낸 바와 같이, CMA/MO-KGN 스캐폴드에서도 글리코사미노글리칸(GAG)의 발달이 감지되었다. Additionally, as shown in Figure 32, the development of glycosaminoglycan (GAG) was also detected in the CMA/MO-KGN scaffold.

도 33은 스캐폴드에서 보다 상세한 유전자 발현이 관찰되었으며, CMA/MO-KGN 스캐폴드에서 지속적으로 방출된 KGN은 Runx1, aggrecan(Acan), 콜라겐 2형 알파-1 사슬(Col2a1), 콜라겐 10형 알파-1 사슬(Col10a1), SRY-박스 전사 인자 9, 5, 6(Sox9, Sox5, Sox6)의 발현 수준을 유의하게 향상시켰다.Figure 33 shows more detailed gene expression observed in the scaffold, and KGN consistently released from the CMA/MO-KGN scaffold includes Runx1, aggrecan (Acan), collagen type 2 alpha-1 chain (Col2a1), and collagen type 10 alpha. The expression levels of -1 chain (Col10a1) and SRY-box transcription factors 9, 5, and 6 (Sox9, Sox5, Sox6) were significantly improved.

또한 CMA 기반 스캐폴드에서 hASC의 골 형성 분화를 가속화하기 위해 BMP-2를 생리 활성 물질로 사용하고 세 가지 CMA 기반 스캐폴드를 제작하였다.Additionally, to accelerate the osteogenic differentiation of hASCs in CMA-based scaffolds, BMP-2 was used as a bioactive material and three CMA-based scaffolds were fabricated.

CMA-BMP, CMA-BMP/MO 및 CMA/MO-BMP. 스캐폴드를 GM에서 3일 동안 배양한 다음 그림 S9와 같이 hASC의 골형성을 지원하기 위해 골형성 배지(OM)에서 배양하였다.CMA-BMP, CMA-BMP/MO and CMA/MO-BMP. Scaffolds were cultured in GM for 3 days and then cultured in osteogenic medium (OM) to support osteogenesis of hASCs, as shown in Figure S9.

도 34는 DAPI/오스테오폰틴(OPN; red)(배양 14일 후) 및 Alizarin red S(ARS)(배양 14일 및 21일 후) 염색을 나타낸 것이다. Figure 34 shows DAPI/osteopontin (OPN; red) (after 14 days of culture) and Alizarin red S (ARS) (after 14 and 21 days of culture) staining.

도 35 및 도 36에서 CMA/MO-BMP 지지체의 hASC는 다른 지지체에 비해 크게 향상된 OPN 양성 영역, 집중 ARS 염색 및 칼슘 침착을 나타냈다.In Figures 35 and 36, hASCs on CMA/MO-BMP scaffolds showed significantly improved OPN-positive areas, intensive ARS staining, and calcium deposition compared to other scaffolds.

또한, 도 37에 나타낸 바와 같이, CMA/MO-BMP 그룹에서 알칼리성 포스파타제(Alp), 런트 관련 전사 인자 2(Runx2), 오스테오폰틴(OPN) 및 오스테오칼신(Ocn)을 포함한 골형성 관련 유전자의 발현 수준이 상향 조절되었다. Additionally, as shown in Figure 37, the expression of osteogenesis-related genes including alkaline phosphatase (Alp), runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (Ocn) in the CMA/MO-BMP group. The level has been adjusted upward.

종합적으로, 이러한 결과는 CMA/MO 기반 세포 구조체에서 초기에 상향 조절된 세포 반응과 지속적으로 방출되는 생체활성 분자가 구조체에서 hASC의 연골 형성 및 골 형성을 강화했음을 시사한다. 따라서 제안된 세포 구조체는 다양한 조직 유형에서 선호되는 세포 반응을 유도하는 데 적용될 수 있을 것이다.Collectively, these results suggest that the initially upregulated cellular responses and continuously released bioactive molecules in the CMA/MO-based cell constructs enhanced chondrogenesis and osteogenesis of hASCs in the constructs. Therefore, the proposed cell construct could be applied to induce preferred cellular responses in various tissue types.

본 발명자들은 메타크릴레이트화 콜라겐과 미네랄 오일로 구성된 새로운 세포 함유 에멀젼 바이오잉크가 hASC를 포함하는 3D 세포구조체의 제작을 위해 제안되었다. 에멀젼 바이오잉크에 오일 액적이 균일하게 분포되도록 하기 위해 각 성분의 중량 분율과 처리 매개변수가 신중하게 선택되었다. We proposed a new cell-laden emulsion bioink composed of methacrylated collagen and mineral oil for the fabrication of 3D cell constructs containing hASCs. The weight fractions and processing parameters of each component were carefully selected to ensure uniform distribution of oil droplets in the emulsion bioink.

에멀젼 바이오잉크는 적절한 항복 응력을 제공하여 계층적 기공 기하학을 가진 기계적으로 안정적인 인쇄된 구조를 허용할 수 있다. 시험관내 세포 활성은 에멀젼 바이오잉크를 사용하여 제작된 세포 구조체에서 세포 증식 및 세포골격 재구성이 정상적인 세포 인쇄 구조에 비해 상당히 가속화됨을 입증했다. 또한, 에멀젼 바이오잉크의 가능성을 확장하기 위해 두 가지 생리 활성 성분(kartogenin 및 BMP-2)을 바이오잉크의 오일 액적에 물리적으로 캡슐화하여 적재된 hASC의 효율적인 연골 및 골 형성 분화를 유도했다. 다양한 연골형성 또는 골형성 유전자의 발현 수준에 따라, 세포 구조체에서 방출 조절된 생리활성 분자는 인쇄된 구조에서 hASC의 연골형성 또는 골형성 분화를 유의하게 향상시켰다. 이러한 결과를 바탕으로 본 발명자들은 에멀젼 바이오잉크를 이용한 세포 인쇄 구조가 다양한 세포 활성이 고도로 향상될 수 있는 생물학적으로 효율적인 미세 환경을 제공할 수 있다고 믿는다.Emulsion bioinks can provide an appropriate yield stress, allowing mechanically stable printed structures with hierarchical pore geometries. In vitro cell activity demonstrated that cell proliferation and cytoskeletal reorganization were significantly accelerated in cell constructs fabricated using emulsion bioink compared to normal cell-printed constructs. Additionally, to expand the potential of emulsion bioinks, two bioactive components (kartogenin and BMP-2) were physically encapsulated in oil droplets of the bioink to induce efficient chondrogenic and osteogenic differentiation of loaded hASCs. Depending on the expression level of various chondrogenic or osteogenic genes, the controlled release of bioactive molecules from the cellular constructs significantly enhanced the chondrogenic or osteogenic differentiation of hASCs in the printed structures. Based on these results, the present inventors believe that cell-printed structures using emulsion bioink can provide a biologically efficient microenvironment in which various cellular activities can be highly enhanced.

Claims (19)

광경화성 생체적합성 폴리머, 줄기세포, 및 오일을 포함하는 바이오잉크용 조성물.
A composition for bioink comprising a photocurable biocompatible polymer, stem cells, and oil.
제1항에 있어서, 상기 광경화성 생체적합성 폴리머는 생체적합성 폴리머에 광경화성 폴리머가 컨쥬게이션된 것인, 바이오잉크용 조성물.
The composition for bioink according to claim 1, wherein the photocurable biocompatible polymer is a photocurable polymer conjugated to a biocompatible polymer.
제2항에 있어서, 상기 광경화성 폴리머는 메틸아크릴레이트, 메틸메타크릴레이트, 에틸아크릴레이트, 에틸메타크릴레이트, 부틸아크릴레이트, 부틸메타크릴레이트, 헥산디올 디아크릴레이트, 헥산디올 디메타크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디메타크릴레이트, 디에틸렌 글리콜 디아크릴레이트, 디에틸렌글리콜 디메타크릴레이트, 디프로필렌 글리콜 디아크릴레이트, 디프로필렌 글리콜 디메타크릴레이트 및 우레탄 아크릴레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 모노머 및 올리고머로 이루어진 것인, 바이오잉크용 조성물.
The method of claim 2, wherein the photocurable polymer is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, hexanediol diacrylate, and hexanediol dimethacrylate. , a group consisting of polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, dipropylene glycol diacrylate, dipropylene glycol dimethacrylate, and urethane acrylate. A composition for bioink consisting of one or two or more monomers and oligomers selected from.
제2항에 있어서, 상기 생체적합성 폴리머는 히알루론산(hyaluronic acid), 콜라겐(collagen), 폴리에틸렌 글리콜, 알지네이트(alginate), 녹말(starch), 키토산(chitosan), 젤라틴(gelatin), 덱스트란(dextran), 셀룰로오스(cellulose), 알긴산(alginic acid), 콘드로이틴 설페이트(chondroitin sulfate), 및 헤파린(heparin)으로 이루어진 군으로부터 선택된 것인, 바이오잉크용 조성물.
The method of claim 2, wherein the biocompatible polymer is hyaluronic acid, collagen, polyethylene glycol, alginate, starch, chitosan, gelatin, and dextran. ), a composition for bio-ink selected from the group consisting of cellulose, alginic acid, chondroitin sulfate, and heparin.
제1항에 있어서, 상기 광경화성 생체적합성 폴리머는 젤라틴 메타아크릴로일 (gleatin methacryloyl; GelMA), 콜라겐 메타아크릴레이트 (collagen methacrylate; ColMA), 히알루론산 메타아크릴레이트 (hyaluronic acid methacrylate; HAMA), 및 폴리에틸렌글리콜 디아크릴레이트 (polyethylene glycol diacrylate; PEGDA)으로 이루어진 군으로부터 선택된 것인, 바이오잉크용 조성물.
The method of claim 1, wherein the photocurable biocompatible polymer is gelatin methacryloyl (GelMA), collagen methacrylate (ColMA), hyaluronic acid methacrylate (HAMA), and A composition for bio-ink selected from the group consisting of polyethylene glycol diacrylate (PEGDA).
제1항에 있어서, 상기 줄기세포는 배아줄기세포, 유도만능줄기세포, 배아생식줄기세포, 생식줄기세포로 이루어진 군으로부터 선택된 다능성 줄기세포인, 바이오잉크용 조성물.
The composition for bioink according to claim 1, wherein the stem cells are pluripotent stem cells selected from the group consisting of embryonic stem cells, induced pluripotent stem cells, embryonic germ stem cells, and germ stem cells.
제1항에 있어서, 상기 줄기세포는 제대, 제대혈, 혈액, 골수, 지방, 근육, 신경, 피부, 양막 및 태반 등으로 이루어진 군에서 선택되는 1종 이상의 조직으로부터 유래된 중간엽 줄기세포(mesenchymal stromal cell)인 것인, 바이오잉크용 조성물.
The method of claim 1, wherein the stem cells are mesenchymal stem cells derived from one or more types of tissue selected from the group consisting of umbilical cord, cord blood, blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, and placenta. cell), a composition for bioink.
제1항에 있어서, 상기 줄기세포는 지방 유래 중간엽 줄기세포인, 바이오잉크용 조성물.
The composition for bio-ink according to claim 1, wherein the stem cells are adipose-derived mesenchymal stem cells.
제1항에 있어서, 상기 오일은 미네랄 오일인, 바이오잉크용 조성물.
The composition for bio-ink according to claim 1, wherein the oil is mineral oil.
제1항에 있어서, 생체활성 분자를 추가적으로 포함하는 것인, 바이오잉크용 조성물.
The composition for bioink according to claim 1, further comprising bioactive molecules.
제1항에 있어서, 광개시제를 추가적으로 포함하는 것인, 바이오잉크용 조성물.
The composition for bioink according to claim 1, further comprising a photoinitiator.
다음 단계를 포함하는 바이오잉크의 제조방법:
(a) 광경화성 생체적합성 폴리머를 포함하는 하이드로겔을 제조하는 단계; 및
(b) 상기 하이드로겔에 줄기세포, 광개시제, 및 오일을 혼합하여 에멀젼을 제조하는 단계.
Method for producing bioink comprising the following steps:
(a) preparing a hydrogel containing a photocurable biocompatible polymer; and
(b) preparing an emulsion by mixing stem cells, photoinitiator, and oil with the hydrogel.
제12항에 있어서, 상기 하이드로겔은 광경화성 생체적합성 폴리머 및 수성 용매를 혼합하여 제조되는 것인, 바이오잉크의 제조방법.
The method of claim 12, wherein the hydrogel is manufactured by mixing a photocurable biocompatible polymer and an aqueous solvent.
다음 단계를 포함하는 바이오잉크의 인쇄 방법:
(a) 제1항 내지 제11항 중 어느 한 항의 바이오잉크를 UV 노출장치가 구비된 노즐을 포함하는 프린터 장치를 이용하여 원하는 형태의 구조체를 인쇄하는 단계.
A printing method of bioink comprising the following steps:
(a) Printing a structure of a desired shape using the bioink of any one of claims 1 to 11 using a printer device including a nozzle equipped with a UV exposure device.
제14항에 있어서, 상기 UV 노출장치는 UV의 출력이 200 내지 800 mW/cm2인, 바이오잉크의 인쇄 방법.
The method of printing bioink according to claim 14, wherein the UV exposure device has a UV output of 200 to 800 mW/cm 2 .
제14항에 있어서, 상기 노즐은 내경이 50-500 μm인, 바이오잉크의 인쇄 방법.
The method of claim 14, wherein the nozzle has an inner diameter of 50-500 μm.
제14항에 있어서, 상기 프린터 장치는 공압(pneumatic pressure) 60 내지 250 kPa로 출력되는 것인, 바이오잉크의 인쇄 방법.
The method of printing bioink according to claim 14, wherein the printer device prints at a pneumatic pressure of 60 to 250 kPa.
제14항에 있어서, 상기 프린터 장치는 이동속도가 3 내지 30 mm/s인, 바이오잉크의 인쇄 방법.
The method of claim 14, wherein the printer device has a moving speed of 3 to 30 mm/s.
제14항에 있어서, 상기 프린터 장치는 15 내지 30℃의 온도 범위 조건에서 출력되는 것인, 바이오잉크의 인쇄 방법.The method of printing bioink according to claim 14, wherein the printer device prints in a temperature range of 15 to 30°C.
KR1020220113818A 2022-09-07 2022-09-07 Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct KR20240034968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220113818A KR20240034968A (en) 2022-09-07 2022-09-07 Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220113818A KR20240034968A (en) 2022-09-07 2022-09-07 Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct

Publications (1)

Publication Number Publication Date
KR20240034968A true KR20240034968A (en) 2024-03-15

Family

ID=90272974

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220113818A KR20240034968A (en) 2022-09-07 2022-09-07 Method for Manufacture of Bioink Comprising Cell-Laden Mineral Oil and Application thereof for Fabrication of Cell Construct

Country Status (1)

Country Link
KR (1) KR20240034968A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001444A (en) 2015-06-26 2017-01-04 아주대학교산학협력단 The method for preparing bio-ink and its application on 3D printing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001444A (en) 2015-06-26 2017-01-04 아주대학교산학협력단 The method for preparing bio-ink and its application on 3D printing

Similar Documents

Publication Publication Date Title
Lee et al. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering
Kim et al. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration
Hwangbo et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration
US11511016B2 (en) Method for preparing porous scaffold for tissue engineering, cell culture and cell delivery
Usal et al. A novel GelMA-pHEMA hydrogel nerve guide for the treatment of peripheral nerve damages
Dong et al. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration
Köpf et al. A tailored three-dimensionally printable agarose–collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells
Benton et al. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
Jang et al. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering
Yao et al. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo
Hu et al. 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration
Gasperini et al. Natural polymers for the microencapsulation of cells
Yeo et al. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation
Khoshakhlagh et al. Photoreactive interpenetrating network of hyaluronic acid and Puramatrix as a selectively tunable scaffold for neurite growth
Sheik et al. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications
US20140329323A1 (en) Three-dimensional nanostructured hybrid scaffold and manufacture thereof
Yan et al. Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation
Silva et al. Soft-matrices based on silk fibroin and alginate for tissue engineering
Zhang et al. “All-in-one” zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting
Sun et al. The development of cell-initiated degradable hydrogel based on methacrylated alginate applicable to multiple microfabrication technologies
KR20220102606A (en) Bio-ink formulations, bio-printed corneal lenticules and applications thereof
US20110269208A1 (en) Cross-linked polymer network formed by sequential cross-linking
Wang et al. Bioprinted constructs that simulate nerve–bone crosstalk to improve microenvironment for bone repair
CN114761544A (en) Bioengineered formulations, methods of making and embodiments thereof
Rim et al. Characterization of gelatin/gellan gum/glycol chitosan ternary hydrogel for retinal pigment epithelial tissue reconstruction materials

Legal Events

Date Code Title Description
E902 Notification of reason for refusal