Nothing Special   »   [go: up one dir, main page]

KR20220105939A - Dual catalyst layers coated electrode for electrolysis and preparation method thereof - Google Patents

Dual catalyst layers coated electrode for electrolysis and preparation method thereof Download PDF

Info

Publication number
KR20220105939A
KR20220105939A KR1020210008915A KR20210008915A KR20220105939A KR 20220105939 A KR20220105939 A KR 20220105939A KR 1020210008915 A KR1020210008915 A KR 1020210008915A KR 20210008915 A KR20210008915 A KR 20210008915A KR 20220105939 A KR20220105939 A KR 20220105939A
Authority
KR
South Korea
Prior art keywords
electrode
platinum
titanium
metal oxide
electrolysis
Prior art date
Application number
KR1020210008915A
Other languages
Korean (ko)
Other versions
KR102491154B1 (en
Inventor
박석원
김성태
권경안
이상훈
김대원
조병원
오시형
하정훈
이화영
Original Assignee
주식회사 테크로스
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 테크로스, 한국과학기술연구원 filed Critical 주식회사 테크로스
Priority to KR1020210008915A priority Critical patent/KR102491154B1/en
Priority to PCT/KR2022/000817 priority patent/WO2022158803A1/en
Publication of KR20220105939A publication Critical patent/KR20220105939A/en
Application granted granted Critical
Publication of KR102491154B1 publication Critical patent/KR102491154B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a method for manufacturing a catalyst electrode for electrolysis doubly coated with a catalyst using electrospinning deposition (ESD) and physical vapor deposition (PVD), and a catalyst electrode for electrolysis manufactured by the method. The present invention includes the steps of: manufacturing a coating solution; forming a metal oxide layer; and forming a platinum layer. The present invention can increase the activity of a noble metal catalyst.

Description

전기분해용 이중코팅 촉매 전극 및 이의 제조방법{DUAL CATALYST LAYERS COATED ELECTRODE FOR ELECTROLYSIS AND PREPARATION METHOD THEREOF}Double-coated catalyst electrode for electrolysis and manufacturing method thereof

본 발명은 전기방사증착(Electrospinning deposition, ESD)과 물리기상증착(Physical vapor deposition, PVD) 방식을 이용한 이중코팅 촉매 전극의 제조 방법 및 상기 방법으로 제조된 전기분해용 촉매 전극에 관한 것이다.The present invention relates to a method for manufacturing a double-coated catalyst electrode using electrospinning deposition (ESD) and physical vapor deposition (PVD) methods, and to a catalyst electrode for electrolysis manufactured by the method.

환경 오염물질(SOx, NOx, CO2 및 CO 등)을 배출하는 기존의 화석 연료를 대체할 신재생 에너지에 대한 관심이 증가하면서 태양 에너지, 풍력에너지, 조력 에너지와 더불어 수소에너지에 대한 연구가 활발히 진행되고 있다. 특히 수소(H2)에너지의 경우 간헐적으로 생산되는 신재생 에너지의 불안정한 전력 공급 문제를 해결할 수 있고 연소 생성물이 물(H2O)이기 때문에 친환경 에너지로 각광받고 있다. 또한 질량 기준에서 수소의 에너지 함량은 디젤보다 2.8배 높고 천연가스보다 2.5배 높은 120 MJ/m3 (liquid)로 가장 높은 질량 에너지 밀도를 가지고 있다. 그러나 동일체적 기준으로 천연가스 및 디젤의 40%, 23%로 상대적으로 낮은 부피 에너지밀도를 갖는다. Research on hydrogen energy along with solar energy, wind energy, and tidal energy as interest in renewable energy to replace existing fossil fuels that emit environmental pollutants (SO x , NO x , CO 2 and CO, etc.) increases is being actively pursued. In particular, in the case of hydrogen (H 2 ) energy, it can solve the problem of unstable power supply of intermittently produced renewable energy, and since the combustion product is water (H 2 O), it is in the spotlight as an eco-friendly energy. In addition, in terms of mass, hydrogen has the highest mass energy density at 120 MJ/m3 (liquid), which is 2.8 times higher than diesel and 2.5 times higher than natural gas. However, it has a relatively low volumetric energy density of 40% and 23% of natural gas and diesel based on the same volume.

따라서 수소에너지를 효율적으로 사용하기 위해서는 압축수소, 액체수소, LNG, 메탄올, 금속수소화물, LOHC 등의 사용 유형에 따라 운송을 위한 수소 저장시스템이 개선되어야 하며, 수전해 반응에서의 효율을 증가시킬 수 있는 방안이 필요하다.Therefore, in order to use hydrogen energy efficiently, the hydrogen storage system for transportation must be improved depending on the type of use of compressed hydrogen, liquid hydrogen, LNG, methanol, metal hydride, LOHC, etc. You need a way to

한편, 수전해 반응에는 산소발생반응(Oxygen evolution reaction, OER)과 수소발생반응(Hydrogen evolution reaction, HER)이 있으며, 반응식을 하기 화학식 1로 나타내었고 일반적인 수전해 반응 모식도는 도 1로 나타내었다.On the other hand, the water electrolysis reaction includes an oxygen evolution reaction (OER) and a hydrogen evolution reaction (HER).

[화학식 1] 수전해 반응 시,[Formula 1] In the case of water electrolysis,

산소발생전극: 2H2O → O2 + 4H+ + 4e- Oxygen generating electrode: 2H 2 O → O 2 + 4H + + 4e -

수소발생전극: 4H+ + 4e- → 2H2 Hydrogen generating electrode: 4H + + 4e - → 2H 2

[화학식 2] 산소발생반응(OER) 전압[Formula 2] Oxygen evolution reaction (OER) voltage

Figure pat00001
Figure pat00001

특히, 상기 수전해 반응에서 수소발생반응보다 산소발생반응시 느린 반응속도로 인하여 이론적인 산소발생반응 전압(화학식 2)보다 높은 과전압(Overpotential)이 발생하기 때문에 산화 이리듐(IrO2), 산화 루테늄(RuO2) 및 백금(Pt) 등 고가의 귀금속 촉매가 사용되고 있다. In particular, since an overpotential higher than the theoretical oxygen evolution reaction voltage (Formula 2) occurs due to a slower reaction rate in the oxygen evolution reaction than in the hydrogen evolution reaction in the water electrolysis reaction, iridium oxide (IrO 2 ), ruthenium oxide ( RuO 2 ) and expensive noble metal catalysts such as platinum (Pt) are used.

따라서, 가격이 저렴하고 귀금속 촉매만큼 높은 활성과 안정성을 가지는 비귀금속 촉매에 대한 연구가 많이 진행되었지만, 완전 귀금속 촉매를 대체할 수 없는 실정이다. 따라서, 귀금속 촉매의 양을 효율적으로 줄이면서 촉매의 활성도를 높인 귀금속 저감 촉매전극 개발이 요구된다.Therefore, although many studies have been conducted on non-noble metal catalysts that are inexpensive and have activity and stability as high as noble metal catalysts, they cannot replace the complete noble metal catalyst. Therefore, there is a need to develop a noble metal reduction catalyst electrode that increases the activity of the catalyst while efficiently reducing the amount of the noble metal catalyst.

산소발생전극과 관련된 선행문헌으로서, 한국공개특허 제10-2020-0047279호에서 티타늄 전극위에 백금(Pt) 층을 먼저 전기도금하고 그 위에 산화 이리듐(IrO2) 층을 전기도금을 통해 형성함으로써 산소발생전극을 제조하는 방법을 개시하고 있다. 한국등록특허 제10-0947892호에서는 전기방사를 이용하여 전극을 제조하는 과정을 개시하고 있다.As a prior document related to an oxygen generating electrode, in Korean Patent Application Laid-Open No. 10-2020-0047279, a platinum (Pt) layer is first electroplated on a titanium electrode, and an iridium oxide (IrO 2 ) layer is formed thereon through electroplating. Disclosed is a method for manufacturing a generating electrode. Korean Patent No. 10-0947892 discloses a process for manufacturing an electrode using electrospinning.

본 발명의 목적은, 전기방사증착(Electrospinning deposition, ESD)와 물리기상증착(Physical vapor deposition, PVD)을 이용하여 촉매를 이중으로 코팅함으로써 귀금속 촉매의 활성도를 높이고 귀금속의 함량을 줄인 전기분해용 이중코팅 촉매 전극의 제조방법을 제공하는 것이다. An object of the present invention is to increase the activity of a noble metal catalyst by double coating the catalyst using electrospinning deposition (ESD) and physical vapor deposition (PVD), and to reduce the content of noble metal double for electrolysis To provide a method for manufacturing a coated catalyst electrode.

또한, 본 발명은 전극 위에 촉매를 이중으로 코팅함으로써 귀금속의 함량을 줄일 수 있는 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method capable of reducing the content of noble metals by double coating a catalyst on an electrode.

상기한 과제는, 1종 이상의 금속화합물을 포함하는 코팅 용액을 제조하는 단계; 및 티타늄 전극 위에 상기 코팅 용액을 전기방사증착(Electrospinning deposition, ESD) 방식으로 코팅한 후 열처리하여 금속산화물 층을 형성하는 단계; 및 상기 금속산화물 층 위에 물리기상증착(Physical vapor deposition, PVD) 방식을 이용하여 백금(Pt) 층을 형성하는 단계를 포함하는, 전기분해용 이중코팅 촉매 전극의 제조 방법에 의해 달성된다.The above-mentioned task, the steps of preparing a coating solution containing one or more metal compounds; and coating the coating solution on the titanium electrode by an electrospinning deposition (ESD) method and then heat-treating to form a metal oxide layer; and forming a platinum (Pt) layer on the metal oxide layer using a physical vapor deposition (PVD) method.

바람직하게는, 상기 금속화합물은 이리듐(Ir), 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다.Preferably, the metal compound is iridium (Ir), ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), tantalum (Ta), antimony (Sb) and manganese (Mn). It may include one or more metals selected from the group consisting of.

또한 바람직하게는, 상기 코팅 용액은 1종 이상의 금속화합물, 도전제, 유기용매 및 바인더 용액을 혼합하여 제조될 수 있다.Also preferably, the coating solution may be prepared by mixing at least one metal compound, a conductive agent, an organic solvent, and a binder solution.

또한 바람직하게는, 상기 백금 층 형성 단계는 상온의 진공 챔버에서 플라즈마를 이용하여 고순도의 백금 타겟을 증발시켜 금속산화물 층 표면에 백금을 증착시키는 단계를 포함할 수 있다.Also preferably, the step of forming the platinum layer may include depositing platinum on the surface of the metal oxide layer by evaporating a high-purity platinum target using plasma in a vacuum chamber at room temperature.

또한 바람직하게는, 상기 촉매 전극 코팅 용액은 1종 이상의 금속화합물, 도전제, 유기용매 및 바인더 용액을 혼합하여 제조될 수 있다.Also preferably, the catalyst electrode coating solution may be prepared by mixing at least one metal compound, a conductive agent, an organic solvent, and a binder solution.

또한 바람직하게는, 상기 백금 층의 두께는 25 nm 내지 1 μm일 수 있다.Also preferably, the thickness of the platinum layer may be 25 nm to 1 μm.

또한 바람직하게는, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다.Also preferably, the titanium electrode may be of a general plate material, a regular perforated network, a perforated perforated network, an expanded wire mesh type or a mesh type.

또한, 본 발명의 목적은 상기 방법으로 제조되고, 티타늄 전극, 상기 티타늄 전극 위에 형성된 금속산화물 층 및 상기 금속산화물 층 위에 형성된 백금 층이 형성된 이중코팅 촉매층으로 이루어진, 전기분해용 이중코팅 촉매 전극에 의해 달성된다.In addition, an object of the present invention is a double coating catalyst electrode for electrolysis, comprising a titanium electrode, a metal oxide layer formed on the titanium electrode, and a double coating catalyst layer having a platinum layer formed on the metal oxide layer, prepared by the above method. is achieved

본 발명의 방법에 따르면, 전기방사증착과 물리기상증착을 통해 이중구조의 촉매 층을 얇게 형성시킴으로써 귀금속 사용을 줄이고 촉매전극의 활성도를 높임으로써 전기분해용 불용성 전극의 문제점인 가격 문제를 해결하고, 전기분해용 촉매 전극 산업에 이바지할 계기가 될 것으로 기대된다.According to the method of the present invention, by forming a thin double-structured catalyst layer through electroradiation and physical vapor deposition, the use of precious metals is reduced and the activity of the catalyst electrode is increased, thereby solving the problem of price, which is a problem of insoluble electrodes for electrolysis, It is expected to contribute to the catalyst electrode industry for electrolysis.

도 1은 일반적인 수전해 운전을 나타내는 반응 모식도이다.
도 2는 본 발명에 이용된 전기방사증착(ESD)장치의 모식도이다.
도 3은 본 발명에 이용된 물리기상증착(PVD)장치의 모식도이다.
도 4는 본 발명에 따른 방법으로 제조된 촉매 전극 단면을 표현한 그림이다.
도 5는 본 발명에 사용된 티타늄 전극의 SEM 이미지 그리고 원소 분석데이터이다.
도 6은 실시예 1에서 제조된 이중코팅 촉매 전극의 SEM 이미지 그리고 원소 분석데이터이다.
도 7은 실시예 2에서 제조된 이중코팅 촉매 전극의 SEM 이미지 그리고 원소 분석데이터이다.
도 8은 비교예 1에서 제조된 금속산화물이 코팅된 촉매 전극의 SEM 이미지 그리고 원소 분석데이터이다.
도 9는 실시예 1,2 및 비교예 1에서 제조한 촉매 전극을 5 mV/s의 속도로 전압을 인가하여 전류 값의 변화를 나타낸 LSV 측정 그래프이다.
도 10은 실시예 1,2 및 비교예 1에서 제조한 촉매 전극을 전류밀도 0.1 A/cm2하에 100 kHz - 50 mHz범위로 EIS를 측정한 그래프이다.
도 11은 실시예 1과 실시예 2에서 제조한 촉매 전극을 전류밀도 0.5 A/cm2에서 100 kHz - 50 mHz범위로 EIS를 측정한 그래프이다.
1 is a reaction schematic diagram showing a general water electrolysis operation.
2 is a schematic diagram of an electrospray deposition (ESD) apparatus used in the present invention.
3 is a schematic diagram of a physical vapor deposition (PVD) apparatus used in the present invention.
4 is a diagram illustrating a cross-section of a catalyst electrode manufactured by the method according to the present invention.
5 is an SEM image and elemental analysis data of the titanium electrode used in the present invention.
6 is an SEM image and elemental analysis data of the double-coated catalyst electrode prepared in Example 1. FIG.
7 is an SEM image and elemental analysis data of the double-coated catalyst electrode prepared in Example 2. FIG.
8 is an SEM image and elemental analysis data of the metal oxide-coated catalyst electrode prepared in Comparative Example 1. FIG.
9 is an LSV measurement graph showing changes in current values by applying a voltage to the catalyst electrodes prepared in Examples 1 and 2 and Comparative Example 1 at a rate of 5 mV/s.
10 is a graph showing EIS measurements of the catalyst electrodes prepared in Examples 1 and 2 and Comparative Example 1 in a range of 100 kHz to 50 mHz under a current density of 0.1 A/cm 2 .
11 is a graph showing EIS measurements of the catalyst electrodes prepared in Examples 1 and 2 in the range of 100 kHz - 50 mHz at a current density of 0.5 A/cm 2 .

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다.All technical terms used in the present invention, unless otherwise defined, have the following definitions and are consistent with the meanings commonly understood by one of ordinary skill in the art of the present invention. In addition, although preferred methods and samples are described herein, similar or equivalent ones are also included in the scope of the present invention.

용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" means 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, means an amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length varying by 4, 3, 2 or 1%.

본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, unless the context requires otherwise, the terms "comprises" and "comprising" include the steps or elements presented, or groups of steps or elements, but include any other step or element, or It is to be understood that a step or group of elements is meant to be implied not to be excluded.

본 발명은 전기분해용 이중코팅 촉매 전극의 제조 방법 및 상기 방법으로 제조된 촉매 전극에 관한 것이다.The present invention relates to a method for manufacturing a double-coated catalyst electrode for electrolysis and a catalyst electrode prepared by the method.

본 발명의 일실시 형태에 따르면, 이중코팅 촉매 전극은 1종 이상의 금속화합물을 포함하는 코팅 용액을 제조하는 단계; 및 티타늄 전극 위에 상기 코팅 용액을 전기방사증착(ESD) 방식으로 코팅한 후 열처리하여 금속산화물 층을 형성하는 단계; 및 상기 금속산화물 층 위에 물리기상증착(PVD) 방식으로 백금 층을 형성하는 단계를 포함하여 제조된다.According to an embodiment of the present invention, the double coating catalyst electrode comprises the steps of: preparing a coating solution containing one or more metal compounds; and forming a metal oxide layer by coating the coating solution on a titanium electrode by an electrospinning deposition (ESD) method and then performing heat treatment; and forming a platinum layer on the metal oxide layer by a physical vapor deposition (PVD) method.

본 발명에 따른 이중코팅 촉매 전극은 1차 금속산화물 층 코팅으로 전극의 산화를 보호하고 2차 백금 층 코팅으로 1차 촉매와 함께 촉매 활성도를 높인다. 또한, 백금 층 코팅시 진공상태에서 PVD 방식으로 코팅하기 때문에 부산물 없이 촉매 층을 코팅할 수 있다.The double-coated catalyst electrode according to the present invention protects the oxidation of the electrode by coating the primary metal oxide layer and increases the catalytic activity together with the primary catalyst by coating the secondary platinum layer. In addition, the catalyst layer can be coated without by-products because the platinum layer is coated in a PVD method in a vacuum state.

바람직하게는, 상기 1차 금속산화물 층은 상온에서 전기방사증착 방식으로 금속화합물 코팅 용액을 티타늄 전극 표면에 증착시켜 형성될 수 있다. 이때, 전기방사증착 조건은 약 10 kV 내지 30 kV 전압 하에 0.1 내지 10 mL/h의 속도로 금속화합물 코팅 용액을 분사하는 것이 바람직하다. 또한, 1차 금속화합물(M-Clx) 코팅 이후, 600℃ 내지 800℃의 온도에서 열처리를 통해 금속산화물을 형성시키는 것이 바람직하다.Preferably, the first metal oxide layer may be formed by depositing a metal compound coating solution on the surface of the titanium electrode by electroradiation at room temperature. At this time, it is preferable that the electroradiation deposition conditions spray the metal compound coating solution at a rate of 0.1 to 10 mL/h under a voltage of about 10 kV to 30 kV. In addition, after the primary metal compound (M-Cl x ) coating, it is preferable to form a metal oxide through heat treatment at a temperature of 600 ℃ to 800 ℃.

상기 2차 백금 층은 진공 챔버에서 상온의 온도로 플라즈마를 이용하여 고순도 백금 타겟을 증발시켜 물리기상증착(PVD)방식을 통해 금속산화물 촉매 전극 표면에 증착시켜 형성될 수 있다. 이때, 진공도는 1x10-6 Torr 이하이며, 인가 전류는 15 내지 50 mA 범위에서 증착하는 것이 바람직하다. The secondary platinum layer may be formed by evaporating a high-purity platinum target using plasma at room temperature in a vacuum chamber and depositing it on the surface of the metal oxide catalyst electrode through a physical vapor deposition (PVD) method. At this time, the vacuum degree is 1x10 -6 Torr or less, and the applied current is preferably in the range of 15 to 50 mA for deposition.

상기 금속화합물 코팅 용액은 1종 이상의 금속화합물, 도전제, 유기용매 및 바인더 용액을 혼합하여 제조될 수 있다.The metal compound coating solution may be prepared by mixing at least one metal compound, a conductive agent, an organic solvent, and a binder solution.

상기 금속화합물은 이리듐(Ir), 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다. 바람직하게는 상기 금속화합물 중 가장 비중이 높은 금속화합물은 IrCl2 일 수 있다.The metal compound is selected from the group consisting of iridium (Ir), ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), tantalum (Ta), antimony (Sb) and manganese (Mn) It may include one or more metals. Preferably, the metal compound having the highest specific gravity among the metal compounds may be IrCl 2 .

상기 금속산화물은 상기 금속화합물을 티타늄 표면에 코팅 후 공기 중에 고온 열처리하여 만들어진 생성물일 수 있다.The metal oxide may be a product made by coating the metal compound on a titanium surface and then heat-treating it at a high temperature in air.

상기 유기용매는 탄소수 1-4 개의 저급 알코올(예를 들면, 메탄올, 에탄올, 프로판올 및 부탄올), 염산으로 이루어진 군에서 선택된 것일 수 있다.The organic solvent may be selected from the group consisting of lower alcohols having 1 to 4 carbon atoms (eg, methanol, ethanol, propanol and butanol) and hydrochloric acid.

상기 바인더 용액은 티타늄 메톡사이드, 티타늄 에톡사이드, 티타늄 프로폭사이드 및 티타늄 부톡사이드 등 티타늄 염으로 이루어진 군에서 선택된 것일 수 있다.The binder solution may be selected from the group consisting of titanium salts such as titanium methoxide, titanium ethoxide, titanium propoxide and titanium butoxide.

상기 금속산화물 층 형성 단계는 상기 금속화합물 코팅 용액을 전기방사증착 방식으로 티타늄 기판 위에 증착한 후, 열처리하는 단계를 포함한다.The step of forming the metal oxide layer includes depositing the metal compound coating solution on the titanium substrate by an electroradiation deposition method, and then performing heat treatment.

본 발명의 일실시형태에 따르면, 상기 1차 금속산화물 층 형성 단계는 상기 촉매 전극 코팅 용액을 전기방사증착 방식으로 증착한 후 600℃ 내지 800℃에서 열처리하는 단계(1시간)를 포함할 수 있다.According to an embodiment of the present invention, the step of forming the first metal oxide layer may include depositing the catalyst electrode coating solution by an electroradiation deposition method and then performing heat treatment at 600° C. to 800° C. (1 hour). .

도 2는 본 발명의 방법으로서, 1차 금속산화물(Metal oxide, MOx) 층 코팅을 위한 전기방사증착(ESD) 방식의 모식도이다.Figure 2 is a method of the present invention, a primary metal oxide (Metal oxide, MO x ) is a schematic diagram of the electro-radiation deposition (ESD) method for layer coating.

도 3은 본 발명의 방법으로서, 2차 백금(Pt) 층 코팅을 위한 물리기상증착(PVD) 방식의 모식도이다.3 is a schematic diagram of a physical vapor deposition (PVD) method for coating a secondary platinum (Pt) layer as a method of the present invention.

도 4는 본 발명의 방법으로 1차 및 2차 촉매 층을 코팅한 전극의 단면도를 나타낸 것이다. 도 4를 보면, 티타늄 전극(Ti) 표면 위에 금속산화물 층(Metal oxide, MOx)이 형성되어 있고 금속산화물 촉매 표면에 백금 층이 형성되어 있다.4 is a cross-sectional view of an electrode coated with the primary and secondary catalyst layers by the method of the present invention. 4, a metal oxide layer (Metal oxide, MO x ) is formed on the surface of the titanium electrode (Ti), and a platinum layer is formed on the surface of the metal oxide catalyst.

본 발명의 방법은 1차 코팅된 금속산화물 촉매층 위에 2차로 백금 층을 형성함으로써, 값비싼 귀금속인 이리듐(Ir) 또는 백금(Pt)의 사용량을 줄이고 전기분해에 안정한 이중코팅 촉매 전극을 제조한다.The method of the present invention reduces the amount of expensive noble metals iridium (Ir) or platinum (Pt) used by forming a second platinum layer on the first coated metal oxide catalyst layer and prepares a double-coated catalyst electrode stable for electrolysis.

상기에서 티타늄 전극은 바람직하게는 순도 100%의 티타늄 금속 또는 티타늄 합금을 포함할 수 있다. 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형일 수 있다. 또한, 상기 티타늄 전극은 바람직하게는 전기분해 반응시 반응면적을 넓히기 위하여 샌드 블라스트(sand blast) 등으로 처리된 거친 표면을 갖는 전극일 수 있다. In the above, the titanium electrode may include a titanium metal or a titanium alloy having a purity of 100%. The titanium electrode may be of a general plate material, a regular perforated network, a perforated perforated network, an expanded wire mesh type, or a mesh type. In addition, the titanium electrode may be an electrode having a rough surface treated with sand blast or the like in order to increase the reaction area during the electrolysis reaction.

이하에서, 실시예를 들어서 본 발명을 구체적으로 설명한다. 그러나 아래 실시예 및 첨부된 도면은 본 발명의 코팅 후의 상태를 보여주기 위하여 사용된 일례에 불과하며 상기 도면에 의해 본 발명의 전극 코팅 범위나 사용범위가 제한되는 것은 아니다.Hereinafter, the present invention will be specifically described with reference to Examples. However, the following examples and the accompanying drawings are only examples used to show the state after coating of the present invention, and the electrode coating range or use range of the present invention is not limited by the drawings.

실시예 1 - 백금 코팅한 금속산화물 촉매 전극 제조 1 Example 1 - Preparation of Platinum Coated Metal Oxide Catalyst Electrode 1

먼저 부탄올 3 mL에 IrCl2 0.14g을 넣어 용액 1을 제조하고, Ti{OCH(CH3)} 0.6mL, 카본 0.015g을 HCl 3 mL, 부탄올 5 mL에 혼합하여 용액 2를 만들었다. 상기 방법으로 제조된 용액 1 3mL와 용액 2 6.4mL을 혼합하고 2시간 중탕하여, 금속화합물 코팅 용액을 제조하였다.First, 0.14 g of IrCl 2 was added to 3 mL of butanol to prepare solution 1, and 0.6 mL of Ti{OCH(CH 3 )} and 0.015 g of carbon were mixed with 3 mL of HCl and 5 mL of butanol to prepare solution 2. 3 mL of solution 1 prepared by the above method and 6.4 mL of solution 2 were mixed and bathed for 2 hours to prepare a metal compound coating solution.

상기 금속화합물 코팅 용액을 폼형 티타늄 전극에 전기방사증착(ESD) 장비를 이용하여 10 kV 전압 하에 1 mL/h의 속도로 증착 및 건조 후 700℃로 1시간 동안 열처리하여 금속산화물 층을 코팅한 티타늄 전극을 제조하였다.The metal compound coating solution was deposited on a foam-type titanium electrode at a rate of 1 mL/h under a 10 kV voltage using electro-radiation deposition (ESD) equipment, dried, and then heat-treated at 700° C. for 1 hour to coat a metal oxide layer. Electrodes were prepared.

상기 방법으로 제조된 금속산화물 층이 형성된 티타늄 전극을 약 1x10-6 Torr의 고진공이 유지되는 진공 챔버에서 놓고, 고순도 백금(99.99%) 타겟을 준비하였다. 진공챔버 내에 5분간 전극과 백금 타겟에 15mA의 전류를 인가하여 백금 타겟을 플라즈마(plasma)를 이용하여 증발시켰다. 이때 사용되는 플라즈마로 인해 증발된 백금은 이온화된 상태이며, 전압이 인가된 금속산화물 층 표면에 약 25nm두께의 백금 을 증착시켜 이중코팅 촉매 전극을 제조하였다. 상기에서 제조된 금속산화물 층 표면에 백금 층을 갖는 티타늄 전극의 SEM 이미지와 EDS 분석데이터를 도 6에서 나타냈으며 제조된 전극에 산화 이리듐(IrOx) 및 산화 티타늄(TiOx)을 포함한 백금(Pt) 원소가 분석되는 것을 확인하였다.The titanium electrode with the metal oxide layer prepared by the above method was placed in a vacuum chamber in which a high vacuum of about 1x10 -6 Torr was maintained, and a high-purity platinum (99.99%) target was prepared. A current of 15 mA was applied to the electrode and the platinum target for 5 minutes in a vacuum chamber, and the platinum target was evaporated using plasma. Platinum evaporated by the plasma used at this time is in an ionized state, and platinum with a thickness of about 25 nm was deposited on the surface of the metal oxide layer to which a voltage was applied to prepare a double-coated catalyst electrode. The SEM image and EDS analysis data of the titanium electrode having a platinum layer on the surface of the metal oxide layer prepared above are shown in FIG. 6 , and platinum (Pt) including iridium oxide (IrO x ) and titanium oxide (TiO x ) in the prepared electrode ), it was confirmed that the element was analyzed.

또한, 수전해 셀에 사용할 Membrane electrode assembly (MEA)을 제작하기 위하여 상기 방법으로 제조된 촉매 전극을 산소발생전극으로 사용하고 Pt/C(50:50)을 스프레이 코팅한 전극을 수소발생전극으로 사용하여 나피온(Nafion) 분리막을 사이에 두고 100 ℃에서 30초 동안 2 MPa의 압력으로 압착하였다.In addition, in order to fabricate a membrane electrode assembly (MEA) for use in a water electrolysis cell, the catalyst electrode prepared by the above method was used as an oxygen generating electrode, and an electrode spray-coated with Pt/C (50:50) was used as a hydrogen generating electrode. The Nafion (Nafion) membrane was pressed at 100 °C for 30 seconds at a pressure of 2 MPa.

수전해 성능을 평가하기 위하여 상기 방법으로 제작된 MEA를 수전해 셀에 넣고 80 ℃ 조건에서 10 mL/min의 속도록 증류수를 양쪽 셀에 공급하였다. 1.3 V에서 2.0 V까지 50 mV/s의 속도로 전압을 올려주면서 반응 전류의 변화를 측정하였다. 이때, 전압상승에 따른 전류 값 변화(LSV 분석)는 전류 밀도(current density)이며 도 9에 나타내었다.In order to evaluate the water electrolysis performance, the MEA prepared by the above method was put into the water electrolysis cell, and distilled water was supplied to both cells at a rate of 10 mL/min at 80 °C. The change in the reaction current was measured while increasing the voltage from 1.3 V to 2.0 V at a rate of 50 mV/s. At this time, the current value change (LSV analysis) according to the voltage increase is the current density and is shown in FIG. 9 .

상기 방법으로 LSV분석 후, 수전해 셀에 0.1 A/cm2과 0.5 A/cm2 전류를 인가하면서 100 kHz - 50 mHz범위에서 EIS(Electrochemical Impedance Spectroscopy)분석을 진행하였으며 그 결과를 각각 도 10과 도 11에 나타내었다.After LSV analysis by the above method, EIS (Electrochemical Impedance Spectroscopy) analysis was performed in the range of 100 kHz - 50 mHz while applying 0.1 A/cm 2 and 0.5 A/cm 2 current to the electrolytic cell. 11 shows.

실시예 2 - 백금 코팅한 금속산화물 촉매 전극 제조 2 Example 2 - Preparation of platinum-coated metal oxide catalyst electrode 2

먼저 부탄올 3 mL에 IrCl2 0.14g을 넣어 용액 1을 제조하고, Ti{OCH(CH3)} 0.6mL, 카본 0.015g을 HCl 3 mL, 부탄올 5 mL에 혼합하여 용액 2를 만들었다. 상기 방법으로 제조된 용액1 3mL와 용액2 6.4mL을 혼합하고 2시간 중탕하여, 금속화합물 코팅 용액을 제조하였다.First, 0.14 g of IrCl 2 was added to 3 mL of butanol to prepare solution 1, and 0.6 mL of Ti{OCH(CH 3 )} and 0.015 g of carbon were mixed with 3 mL of HCl and 5 mL of butanol to prepare solution 2. 3 mL of solution 1 prepared by the above method and 6.4 mL of solution 2 were mixed and bathed for 2 hours to prepare a metal compound coating solution.

상기 금속화합물 코팅 용액을 폼형 티타늄 전극에 전기방사증착(ESD) 장비를 이용하여 10 kV 전압하에 1 mL/h의 속도로 증착 및 건조 후 700℃로 1시간 동안 열처리하여 금속산화물 층을 코팅한 티타늄 전극을 제조하였다.The metal compound coating solution was deposited on a foam-type titanium electrode at a rate of 1 mL/h under a voltage of 10 kV using electro-radiation deposition (ESD) equipment, dried, and then heat-treated at 700° C. for 1 hour to coat a metal oxide layer. Electrodes were prepared.

상기 방법으로 제조된 금속산화물 층이 형성된 티타늄 전극을 약 1x10-6 Torr의 고진공이 유지되는 진공 챔버에서 놓고, 고순도 백금(99.99%) 타겟을 준비하였다. 진공챔버 내에 10분간 전극과 백금 타겟에 15 mA의 전류를 인가하여 백금 타겟을 플라즈마(plasma)를 이용하여 증발시켰다. 이때 사용되는 플라즈마로 인해 증발된 백금은 이온화된 상태이며, 전압이 인가된 금속산화물 층 표면에 약 50 nm두께의 백금을 증착시켜 이중코팅 촉매 전극을 제조하였다. 상기에서 제조된 금속산화물 층 표면에 백금 층을 갖는 티타늄 전극의 SEM 이미지와 EDS 분석데이터를 도 7에서 나타냈으며 제조된 전극에 산화 이리듐(IrOx) 및 산화 티타늄(TiOx)을 포함한 백금(Pt) 원소가 분석되는 것을 확인하였다.The titanium electrode with the metal oxide layer prepared by the above method was placed in a vacuum chamber in which a high vacuum of about 1x10 -6 Torr was maintained, and a high-purity platinum (99.99%) target was prepared. A current of 15 mA was applied to the electrode and the platinum target for 10 minutes in a vacuum chamber, and the platinum target was evaporated using plasma. At this time, the platinum evaporated due to the plasma used is in an ionized state, and platinum with a thickness of about 50 nm was deposited on the surface of the metal oxide layer to which a voltage was applied to prepare a double-coated catalyst electrode. The SEM image and EDS analysis data of the titanium electrode having a platinum layer on the surface of the metal oxide layer prepared above are shown in FIG. 7 , and platinum (Pt) including iridium oxide (IrO x ) and titanium oxide (TiO x ) in the prepared electrode ), it was confirmed that the element was analyzed.

또한, 수전해 셀에 사용할 Membrane electrode assembly (MEA)을 제작하기 위하여 상기 방법으로 제조된 촉매 전극을 산소발생전극으로 사용하고 Pt/C(50:50)을 스프레이 코팅한 전극을 수소발생전극으로 사용하여 나피온(Nafion) 분리막을 사이에 두고 100 ℃에서 30초 동안 2 MPa의 압력으로 압착하였다.In addition, in order to fabricate a membrane electrode assembly (MEA) for use in a water electrolysis cell, the catalyst electrode prepared by the above method was used as an oxygen generating electrode, and an electrode spray-coated with Pt/C (50:50) was used as a hydrogen generating electrode. Thus, Nafion (Nafion) membrane was pressed at 100 ° C. for 30 seconds at a pressure of 2 MPa.

수전해 성능을 평가하기 위하여 상기 방법으로 제작된 MEA를 수전해 셀에 넣고 80 ℃ 조건에서 10 mL/min의 속도록 증류수를 양쪽 셀에 공급하였다. 1.3 V에서 2.0 V까지 50 mV/s의 속도로 전압을 올려주면서 반응 전류의 변화를 측정하였다. 이때, 전압상승에 따른 전류 값 변화(LSV 분석)는 전류 밀도(current density)이며 도 9에 나타내었다.In order to evaluate the water electrolysis performance, the MEA prepared by the above method was put into the water electrolysis cell, and distilled water was supplied to both cells at a rate of 10 mL/min at 80 °C. The change in the reaction current was measured while increasing the voltage from 1.3 V to 2.0 V at a rate of 50 mV/s. At this time, the current value change (LSV analysis) according to the voltage increase is the current density and is shown in FIG. 9 .

상기 방법으로 LSV분석 후, 수전해 셀에 0.1 A/cm2과 0.5 A/cm2 전류를 인가하면서 100 kHz - 50 mHz범위에서 EIS(Electrochemical Impedance Spectroscopy)분석을 진행하였으며 그 결과를 각각 도 10과 도 11에 나타내었다.After LSV analysis by the above method, EIS (Electrochemical Impedance Spectroscopy) analysis was performed in the range of 100 kHz - 50 mHz while applying 0.1 A/cm 2 and 0.5 A/cm 2 current to the electrolytic cell. 11 shows.

비교예 1 - 금속산화물 촉매 전극 제조 Comparative Example 1 - Preparation of metal oxide catalyst electrode

상기 실시예에서 2차 백금 코팅을 제외한 1차 금속산화물 촉매 코팅 전극을 제작하는 방법과 동일하게 제조하였다. 제조된 금속산화물 촉매 전극의 SEM 이미지와 EDS 분석데이터를 도 9에 나타냈으며 제조된 전극에 산화 이리듐(IrOx) 및 산화 티타늄(TiOx)원소가 분석되는 것을 확인하였다.In the above example, except for the secondary platinum coating, it was prepared in the same manner as in the preparation of the primary metal oxide catalyst-coated electrode. The SEM image and EDS analysis data of the prepared metal oxide catalyst electrode are shown in FIG. 9 , and it was confirmed that iridium oxide (IrO x ) and titanium oxide (TiO x ) elements were analyzed in the prepared electrode.

또한, 수전해 셀에 사용할 Membrane electrode assembly (MEA)을 제작하기 위하여 상기 방법으로 제조된 촉매 전극을 산소발생전극으로 사용하고 Pt/C(50:50)을 스프레이 코팅한 전극을 수소발생전극으로 사용하여 나피온(Nafion) 분리막을 사이에 두고 100 ℃에서 30초 동안 2 MPa의 압력으로 압착하였다.In addition, in order to fabricate a membrane electrode assembly (MEA) for use in a water electrolysis cell, the catalyst electrode prepared by the above method was used as an oxygen generating electrode, and an electrode spray-coated with Pt/C (50:50) was used as a hydrogen generating electrode. Thus, Nafion (Nafion) membrane was pressed at 100 ° C. for 30 seconds at a pressure of 2 MPa.

수전해 성능을 평가하기 위하여 상기 방법으로 제작된 MEA를 수전해 셀에 넣고 80 ℃ 조건에서 10 mL/min의 속도록 증류수를 양쪽 셀에 공급하였다. 1.3 V에서 2.0 V까지 50 mV/s의 속도로 전압을 올려주면서 반응 전류의 변화를 측정하였다. 이때, 전압상승에 따른 전류 값 변화(LSV 분석)는 전류 밀도(current density)이며 도 9에 나타내었다.In order to evaluate the water electrolysis performance, the MEA prepared by the above method was put into the water electrolysis cell, and distilled water was supplied to both cells at a rate of 10 mL/min at 80 °C. The change in the reaction current was measured while increasing the voltage from 1.3 V to 2.0 V at a rate of 50 mV/s. At this time, the current value change (LSV analysis) according to the voltage increase is the current density and is shown in FIG. 9 .

상기 방법으로 LSV분석 후, 수전해 셀에 0.1 A/cm2전류를 인가하면서 100 kHz - 50 mHz범위에서 EIS(Electrochemical Impedance Spectroscopy)분석을 진행하였으며 도 10에 나타내었다.After the LSV analysis by the above method, an EIS (Electrochemical Impedance Spectroscopy) analysis was performed in the range of 100 kHz - 50 mHz while applying a current of 0.1 A/cm 2 to the electrolytic cell, as shown in FIG. 10 .

도 5는 본 발명에 사용된 티타늄 전극으로 약 20 um의 티타늄 선이 적층된 폼 형태의 전극이며 원소분석결과 티타늄이 주원소로 측정되었다.5 is a titanium electrode used in the present invention, a foam-type electrode in which a titanium wire of about 20 um is laminated, and as a result of elemental analysis, titanium was measured as a main element.

도 6은 실시예 1에서 제조한 산화 이리듐 및 산화 티타늄 코팅 전극 위에 약 25 nm의 백금을 코팅한 촉매 전극의 SEM 사진으로서, 원소분석 결과 이리듐 원소가 백금 원소보다 약 2배 이상 코팅되어 있는 것을 확인하였다.6 is an SEM photograph of a catalyst electrode coated with about 25 nm platinum on the iridium oxide and titanium oxide coated electrode prepared in Example 1. As a result of elemental analysis, it is confirmed that the iridium element is coated at least twice that of the platinum element. did.

도 7은 실시예 2에서 제조한 산화 이리듐 및 산화 티타늄 코팅 전극 위에 약 50 nm의 백금을 코팅한 촉매 전극의 SEM 사진으로서, 원소분석 결과 이리듐 원소와 백금 원소가 약 1:1 로 같은 양이 코팅되어있는 것을 확인하였다.7 is a SEM photograph of a catalyst electrode coated with about 50 nm platinum on the iridium oxide and titanium oxide coated electrode prepared in Example 2, and as a result of elemental analysis, the iridium element and the platinum element are coated in the same amount at about 1:1. confirmed that it has been

도 8은 비교예 1에서 제조한 산화 이리듐 및 산화 티타늄 코팅 전극의 SEM 사진으로서, 원소분석 결과 이리듐 원소와 티타늄 원소의 양이 비슷하게 분석되었다.FIG. 8 is an SEM photograph of the iridium oxide and titanium oxide coated electrodes prepared in Comparative Example 1. As a result of elemental analysis, the amounts of iridium and titanium elements were similarly analyzed.

도 9는 실시예 1,2 와 비교예 1에서 제조한 촉매 전극의 수전해 셀을 이용한 LSV 측정 그래프이다. 백금을 코팅하지 않고 ESD로 1차 금속산화물을 코팅한 전극인 비교예 1 전극의 LSV 분석 결과, 최종 2.0V까지 약 0.2 A/cm2에 못 미치는 반응 전류를 보였다. 하지만 비교예 1 전극에 2차로 백금 층을 형성한 실시예 1(Pt, 25nm)과 실시예 2(Pt, 50nm) 전극의 경우, 각각 2.5 A/cm2과 3.5 A/cm2 이상의 반응 전류밀도를 보였다. 이는 얇은 산화이리듐 층이 코팅된 전극의 부족한 촉매활성도를 백금 층이 이중으로 코팅되면서 촉매활성도를 증가시켰다.9 is a graph of LSV measurement using the water electrolysis cell of the catalyst electrode prepared in Examples 1 and 2 and Comparative Example 1. FIG. As a result of LSV analysis of the electrode of Comparative Example 1, which is an electrode coated with a primary metal oxide by ESD without a platinum coating, a reaction current of less than about 0.2 A/cm 2 was shown up to a final 2.0V. However, in the case of the electrodes of Example 1 (Pt, 25 nm) and Example 2 (Pt, 50 nm) in which a platinum layer was formed secondarily on the electrode of Comparative Example 1, the reaction current densities of 2.5 A/cm 2 and 3.5 A/cm 2 or more, respectively showed This increased the catalytic activity as the platinum layer was double coated for the insufficient catalytic activity of the electrode coated with the thin iridium oxide layer.

도 10은 실시예 1, 2와 비교예 1에서 제조한 촉매 전극의 수전해 셀을 이용하여 0.1 A/cm2 전류인가 하에 EIS를 측정한 그래프이다. 임피던스 측정결과, 2차 백금 층을 코팅한 전극인 실시예 1과 실시예 2는 비슷한 표면저항특성을 보였지만 1차 금속산화물 층만 코팅한 비교예 1 전극은 3배 이상의 높은 표면 저항이 발생하는 것을 확인하였다.10 is a graph illustrating EIS measurements under the application of 0.1 A/cm 2 current using the electrolytic cell of the catalyst electrode prepared in Examples 1 and 2 and Comparative Example 1. FIG. As a result of impedance measurement, Example 1 and Example 2, which are electrodes coated with a secondary platinum layer, showed similar surface resistance characteristics, but it was confirmed that the electrode of Comparative Example 1 coated with only the primary metal oxide layer had a surface resistance that was three times or more. did.

도 11은 실시예 1, 2에서 제조한 촉매 전극의 수전해 셀을 이용하여 0.5 A/cm2 전류인가 하에 EIS를 측정한 그래프이다. 인가되는 전류의 증가로 비교예 1은 표면 저항이 분석할 수 없을 정도로 커져 분석이 불가능하였고, 2차로 코팅된 백금의 두께가 50 nm인 실시예 2 전극의 경우 25 nm인 실시예 1의 약 1/2의 표면저항을 보였다.11 is a graph showing EIS measurements under the application of 0.5 A/cm 2 current using the electrolytic cell of the catalyst electrode prepared in Examples 1 and 2; Due to the increase in the applied current, the surface resistance of Comparative Example 1 became so large that it could not be analyzed, and analysis was not possible. It showed a surface resistance of /2.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. As described above in detail a specific part of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

1종 이상의 금속화합물을 포함하는 코팅 용액을 제조하는 단계; 및 티타늄 전극 위에 상기 코팅 용액을 전기방사증착(ESD) 방식으로 코팅한 후 열처리하여 금속산화물 층을 형성하는 단계; 및
상기 금속산화물 층 위에 백금(Pt)을 물리기상증착(PVD) 방식으로 코팅하여 백금 층을 형성하는 단계를 포함하는, 전기분해용 이중코팅 촉매 전극의 제조 방법.
preparing a coating solution containing one or more metal compounds; and forming a metal oxide layer by coating the coating solution on a titanium electrode by an electrospinning deposition (ESD) method and then performing heat treatment; and
and coating platinum (Pt) on the metal oxide layer by a physical vapor deposition (PVD) method to form a platinum layer.
제1항에 있어서, 상기 금속화합물은 이리듐(Ir), 루테늄(Ru), 팔라듐(Pd), 티타늄(Ti), 주석(Sn), 백금(Pt), 탄탈럼(Ta), 안티모니(Sb) 및 망간(Mn)으로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 것을 특징으로 하는, 전기분해용 이중코팅 촉매 전극의 제조 방법.According to claim 1, wherein the metal compound is iridium (Ir), ruthenium (Ru), palladium (Pd), titanium (Ti), tin (Sn), platinum (Pt), tantalum (Ta), antimony (Sb) ) and manganese (Mn), characterized in that it comprises one or more metals selected from the group consisting of, a method for producing a double-coated catalyst electrode for electrolysis. 제1항에 있어서, 상기 코팅 용액은 1종 이상의 금속화합물, 도전제, 유기용매 및 바인더 용액을 혼합하여 제조된 것을 특징으로 하는, 전기분해용 이중코팅 촉매 전극의 제조 방법.The method of claim 1, wherein the coating solution is prepared by mixing at least one metal compound, a conductive agent, an organic solvent, and a binder solution. 제1항에 있어서, 상기 백금 층의 두께는 25 nm 내지 1 μm인 것을 특징으로 하는, 전기분해용 이중코팅 촉매 전극의 제조 방법.The method of claim 1, wherein the platinum layer has a thickness of 25 nm to 1 μm. 제1항에 있어서, 상기 티타늄 전극은 일반 판재, 정타공망, 막타공망, 확장 철망형 또는 메쉬형인, 전기분해용 이중코팅 촉매 전극의 제조 방법.The method of claim 1, wherein the titanium electrode is a general plate, a regular perforated network, a perforated network, an expanded wire mesh or a mesh type, a method for manufacturing a double-coated catalyst electrode for electrolysis. 제1항 내지 제5항 중 어느 한 항의 방법으로 제조되고, 티타늄 전극, 상기 티타늄 전극 위에 형성된 금속산화물 층 및 상기 금속산화물 층 위에 백금 층이 형성된 이중코팅 촉매층으로 이루어진, 전기분해용 이중코팅 촉매 전극.
A double-coated catalyst electrode for electrolysis, which is prepared by the method of any one of claims 1 to 5 and consists of a double-coated catalyst layer in which a titanium electrode, a metal oxide layer formed on the titanium electrode, and a platinum layer is formed on the metal oxide layer. .
KR1020210008915A 2021-01-21 2021-01-21 Dual catalyst layers coated electrode for electrolysis and preparation method thereof KR102491154B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210008915A KR102491154B1 (en) 2021-01-21 2021-01-21 Dual catalyst layers coated electrode for electrolysis and preparation method thereof
PCT/KR2022/000817 WO2022158803A1 (en) 2021-01-21 2022-01-17 Double-coated catalyst electrode for electrolysis and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210008915A KR102491154B1 (en) 2021-01-21 2021-01-21 Dual catalyst layers coated electrode for electrolysis and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20220105939A true KR20220105939A (en) 2022-07-28
KR102491154B1 KR102491154B1 (en) 2023-01-26

Family

ID=82549808

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210008915A KR102491154B1 (en) 2021-01-21 2021-01-21 Dual catalyst layers coated electrode for electrolysis and preparation method thereof

Country Status (2)

Country Link
KR (1) KR102491154B1 (en)
WO (1) WO2022158803A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049380A (en) * 2009-09-03 2012-05-16 인두스트리에 데 노라 에스.피.에이. Activation of electrode surfaces by means of vacuum deposition techniques in a continuous process
KR20180053088A (en) * 2016-11-11 2018-05-21 한국과학기술연구원 Oxygen Electrode For Regenerative Fuel Cell, Regenerative Fuel Cell Including The Same and Method For Preparing The Oxygen Electrode
KR20190022333A (en) * 2017-08-23 2019-03-06 주식회사 엘지화학 Anode for electrolysis and preparation method thereof
KR20200095601A (en) * 2019-01-31 2020-08-11 한국과학기술원 Noble Metal Nano-star and the Catalyst Containing the Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633481B2 (en) * 1987-07-17 1994-05-02 ペルメレック電極株式会社 Electrolytic cathode and method of manufacturing the same
JP6700260B2 (en) * 2014-10-21 2020-05-27 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Electrode with bilayer coating, method of use and method of manufacture
KR20200136765A (en) * 2019-05-28 2020-12-08 주식회사 엘지화학 Electrode for Electrolysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120049380A (en) * 2009-09-03 2012-05-16 인두스트리에 데 노라 에스.피.에이. Activation of electrode surfaces by means of vacuum deposition techniques in a continuous process
KR20180053088A (en) * 2016-11-11 2018-05-21 한국과학기술연구원 Oxygen Electrode For Regenerative Fuel Cell, Regenerative Fuel Cell Including The Same and Method For Preparing The Oxygen Electrode
KR20190022333A (en) * 2017-08-23 2019-03-06 주식회사 엘지화학 Anode for electrolysis and preparation method thereof
KR20200095601A (en) * 2019-01-31 2020-08-11 한국과학기술원 Noble Metal Nano-star and the Catalyst Containing the Same

Also Published As

Publication number Publication date
KR102491154B1 (en) 2023-01-26
WO2022158803A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
Jeong et al. Effect of graphene encapsulation of NiMo alloys on oxygen evolution reaction
Siracusano et al. New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis
RU2709479C1 (en) Anode for electrolysis of aqueous solution of alkali and method of making anode for electrolysis of aqueous solution of alkali
AU2015303818B2 (en) Catalytic assembly
Doan et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis
US20140291163A1 (en) Catalysts for low temperature electrolytic co2 reduction
Kokoh et al. Efficient multi-metallic anode catalysts in a PEM water electrolyzer
Kirshenbaum et al. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst
US10103388B2 (en) Method for producing fine catalyst particle and fuel cell comprising fine catalyst particle produced by the production method
Tian et al. Killing two birds with one stone: selective oxidation of small organic molecule as anodic reaction to boost CO2 electrolysis
Zheng et al. Construction of a hierarchically structured, NiCo–Cu-based trifunctional electrocatalyst for efficient overall water splitting and 5-hydroxymethylfurfural oxidation
US11459664B2 (en) Multi-metal catalysts and devices and methods of use thereof
JP2024500218A (en) Iridium-containing catalyst for water electrolysis
KR101939666B1 (en) Gas diffusion layer with corrosion protective coating and method for manufacturing thereof, and membrane electrode assembly having the gas diffusion layers
JP2007504950A5 (en)
Liu et al. Cu2+ 1O/Ag heterostructure for boosting the electrocatalytic nitrate reduction to ammonia performance
KR20140012016A (en) Electro-catalyst
Kang et al. Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers
Choi et al. Ru-Doped Co3O4 Nanoparticles as Efficient and Stable Electrocatalysts for the Chlorine Evolution Reaction
Paul et al. Electrochemical characterization of MnO2 as electrocatalytic energy material for fuel cell electrode
KR102491154B1 (en) Dual catalyst layers coated electrode for electrolysis and preparation method thereof
CN117107286A (en) Batch preparation method of NiFe-based composite oxygen evolution anode
JP5484120B2 (en) Gas diffusion electrode, gas diffusion electrode manufacturing method, fuel cell and salt electrolysis cell
JP2020012170A (en) Manufacturing method of electrode, electrode, and manufacturing method of hydrogen
WO2021193467A1 (en) Manganese-iridium complex oxide for water decomposition catalyst, manganese-iridium complex oxide electrode material, and production methods therefor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant