KR20220094065A - Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof - Google Patents
Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof Download PDFInfo
- Publication number
- KR20220094065A KR20220094065A KR1020200185354A KR20200185354A KR20220094065A KR 20220094065 A KR20220094065 A KR 20220094065A KR 1020200185354 A KR1020200185354 A KR 1020200185354A KR 20200185354 A KR20200185354 A KR 20200185354A KR 20220094065 A KR20220094065 A KR 20220094065A
- Authority
- KR
- South Korea
- Prior art keywords
- sio
- geopolymer
- composition
- metakaolin
- koh
- Prior art date
Links
- 229920000876 geopolymer Polymers 0.000 title claims abstract description 56
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 28
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 28
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000003513 alkali Substances 0.000 claims abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000012190 activator Substances 0.000 claims abstract description 27
- 229910021485 fumed silica Inorganic materials 0.000 claims abstract description 20
- 229940043430 calcium compound Drugs 0.000 claims abstract description 13
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 79
- 238000000034 method Methods 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 25
- 238000002156 mixing Methods 0.000 claims description 15
- 239000013543 active substance Substances 0.000 claims description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000000527 sonication Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 2
- 239000004567 concrete Substances 0.000 abstract description 2
- 230000001788 irregular Effects 0.000 abstract description 2
- 239000012779 reinforcing material Substances 0.000 abstract description 2
- 238000001723 curing Methods 0.000 description 28
- 238000013400 design of experiment Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000011575 calcium Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 8
- 239000004568 cement Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- 229910052913 potassium silicate Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910000323 aluminium silicate Inorganic materials 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000002411 thermogravimetry Methods 0.000 description 3
- 101100223811 Caenorhabditis elegans dsc-1 gene Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920003041 geopolymer cement Polymers 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052622 kaolinite Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 239000011044 quartzite Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910002800 Si–O–Al Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011153 ceramic matrix composite Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000011413 geopolymer cement Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000013086 organic photovoltaic Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/006—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
- C04B14/386—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0003—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of electric or wave energy or particle radiation
- C04B40/0021—Sonic or ultrasonic waves, e.g. to initiate sonochemical reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0032—Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Nanotechnology (AREA)
- Civil Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명에 따른 고속경화형 지오폴리머는 메타카올린; 칼슘화합물; 탄소섬유; 비표면적이 150~250 m2/g인 건식(fumed) 실리카; 및 알칼리활성제를 포함하여, 높은 취성을 가지며, 경화가 빠르고, 성형이 자유로우며, 불연 성능 또한 뛰어나기에, 내화 성능에 구조적으로 안정한 불연마감재 복합재로 사용될 수 있고, 빠른 경화 및 불규칙적인 형상으로 성형이 필요한 콘크리트 구조물의 손상 및 파손 부위의 보수 보강재로서 적용이 가능하다.The high-speed curing type geopolymer according to the present invention is metakaolin; calcium compounds; carbon fiber; Fumed silica having a specific surface area of 150-250 m 2 /g; And alkali activator, it has high brittleness, fast curing, free molding, and excellent non-combustible performance, so it can be used as a structurally stable non-combustible finishing composite material for fire-resistance performance, and can be quickly cured and molded into irregular shapes It can be applied as a reinforcing material for repairing and repairing damaged or damaged concrete structures.
Description
본 발명은 고속경화가 가능한 지오폴리머 및 그의 제조방법에 관한 것이다.The present invention relates to a geopolymer capable of high-speed curing and a method for preparing the same.
지오폴리머는 시멘트 대체 재료 중 하나로서 기존의 포틀랜드 시멘트를 대체 혹은 첨가제로 사용되기 위한 용도로 각광을 받기 시작하였다. 지오폴리머는 비정질 알루미노 규산염의 시멘트계 재료로 지오폴리머 전구체와 알칼리 활성제의 중축합(polycondensation) 반응을 통해 합성되는 알루미노 실리케이트 친환경 바인더이다. 상기 전구체로서 천연의 광물 혹은 플라이애쉬와 같은 산업부산물을 원료로 하기 때문에 경제적으로 광범위하게 활용이 가능한 무기질 소재이다. Geopolymer is one of the cement alternative materials, and it is starting to attract attention as a substitute or additive for the existing Portland cement. Geopolymer is a cement-based material of amorphous aluminosilicate and is an aluminosilicate eco-friendly binder synthesized through a polycondensation reaction between a geopolymer precursor and an alkali activator. As the precursor, natural minerals or industrial by-products such as fly ash are used as raw materials, so it is an inorganic material that can be widely used economically.
지오폴리머의 구조는 Si-O-Al 결합을 구성하는 알칼리 폴리규산염과 산화 알루미노 규산염의 화학반응에 의해 생성되는 것으로 경화과정에서 폴리머와 유사하게 네트워크를 형성하기에 지오폴리머라 명명되고 있는 소재이다. 지오폴리머는 실온 또는 100℃ 이하의 저온에서 합성이 가능하며 제조공정 중 이산화탄소 배출량이 극히 낮아 시멘트 대비 약 70%까지 이산화탄소 배출을 낮출 수 있을 것으로 기대되고 있다. 또한, 지오폴리머는 플라이애쉬와 같은 산업부산물로부터 제조가 가능하며, 제조 조건에 따라 물리적 특성 변화의 폭이 크다는 특징이 있다. The structure of the geopolymer is created by the chemical reaction of alkali polysilicate and oxide aluminosilicate constituting the Si-O-Al bond. It is a material named geopolymer because it forms a network similar to that of a polymer during the curing process. . Geopolymers can be synthesized at room temperature or at low temperatures below 100°C, and carbon dioxide emissions during the manufacturing process are extremely low, which is expected to reduce carbon dioxide emissions by up to 70% compared to cement. In addition, geopolymers can be manufactured from industrial by-products such as fly ash, and are characterized by a large range of changes in physical properties depending on manufacturing conditions.
상기 지오폴리머의 장점으로 인해 지오폴리머에 대한 연구가 지속적으로 진행되어 왔으나, 그 활용 용도는 시멘트 첨가제 혹은 대체제로 제안된 것이 대부분이며, 최근 세라믹섬유-세라믹매트릭스 복합소재로 연구가 진행된 경우는 있으나, 고온안정성을 가진 지오폴리머 단독 소재에 대한 연구는 소수이다. Although research on geopolymers has been continuously conducted due to the advantages of the geopolymers, most of them have been proposed as cement additives or substitutes, and recent studies have been conducted on ceramic fiber-ceramic matrix composite materials. There are few studies on geopolymer-only materials with high temperature stability.
또한, 지오폴리머의 원료 및 알칼리 활성제에 대한 최적화는 지오폴리머 전구체 (e.g. 플라이애쉬, 메타카올린 등)에 크게 의존하기에, 출발 원료와 목표 물성에 따라 합성 조건에 대한 최적화가 필요하다. In addition, since optimization of the raw material of the geopolymer and the alkali activator greatly depends on the geopolymer precursor (e.g. fly ash, metakaolin, etc.), it is necessary to optimize the synthesis conditions according to the starting material and target physical properties.
지오폴리머는 순도 높은 세라믹 소재이므로 높은 내열성 및 내화성을 가지며, 100℃이하의 저온에서 경화가 가능하며 그 제조 방법이 간단하다. 이러한 특성을 갖고 고속으로 경화 가능한 소재라면 내열성이 요구되는 산업용 내열 부재 혹은 건축물의 보수 및 마감재 등에 활용이 가능하다. Since geopolymer is a high-purity ceramic material, it has high heat resistance and fire resistance, can be cured at a low temperature of 100°C or less, and its manufacturing method is simple. If it is a material that can be cured at high speed with these characteristics, it can be used as an industrial heat-resistant member that requires heat resistance, or as a repair and finishing material for buildings.
따라서, 본 발명자는 경화속도를 상승시킨 고속경화형 지오폴리머에 대한 연구를 진행하였다. 여기서 고속이라 함은 기존의 지오폴리머 시멘트가 7-28일의 건조기간을 거치는 반면, 0.5~1 시간의 양생과 1-2일의 후속 건조로 제조되는 지오폴리머를 말한다. 메타카올린을 주 원료로 다양한 제조 공정 변수에 따른 지오폴리머를 연구하여 현저한 효과가 있음을 확인하였다.Therefore, the present inventors conducted research on a high-speed curing type geopolymer with an increased curing rate. Here, high-speed refers to a geopolymer manufactured by curing for 0.5 to 1 hour and subsequent drying for 1-2 days, whereas conventional geopolymer cement goes through a drying period of 7-28 days. Using metakaolin as the main raw material, geopolymers according to various manufacturing process parameters were studied and it was confirmed that there was a remarkable effect.
한편, 실제로 오랫동안 연구되어온 지오폴리머 활성제 배합비에 대한 연구만 놓고 봐도, 참고문헌간에 단순 선형적인 비교만으로는 활성제들의 역할을 파악하기가 불가능에 가깝다. 예를 들어 A 논문에서는 KOH : K2SiO3의 비율이 1:2 일때 높은 강도가 발현되었고, B 논문에서는 2:1일 때 높은 강도가 발현되었다. 동일한 활성제를 사용했음에도 최적화된 활성제 비율이 다른 것은 놀랍게도 두 논문에서 사용된 원료의 양이 다르기 때문인 것으로 사료된다 [논문 A: B. Singh, Ishwarya G., M. Gupta, S.K. Bhattacharyya, Geopolymer concrete; 논문 B: A review of some recent developments. Construction and Building Materials, 2015. 85 : p.78-90]. 이와 같은 다변수 연구에서는 여러 변수를 동시에 최적화를 진행하여야 목표 물성에 도달할 수 있으며, 실제로 변수가 많은 약학에서는 실험계획법 (DOE : Design of experiments) 기법이 널리 사용되고 있다 [Cao, B., et al., How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano, 2018. 12(8): p. 7434-7444]. 다만, 지오폴리머 연구 중에는 아직 DOE를 통해 최적화한 사례는 없었다.On the other hand, when looking only at the research on the composition ratio of geopolymer active agents that have been studied for a long time, it is almost impossible to grasp the role of active agents only by simple linear comparison between references. For example, in Paper A, high strength was expressed when the ratio of KOH:K 2 SiO 3 was 1:2, and in Paper B, high strength was expressed when it was 2:1. Surprisingly, it is thought that the difference in the optimized activator ratio even with the same activator is due to the different amount of raw material used in the two papers [Paper A: B. Singh, Ishwarya G., M. Gupta, SK Bhattacharyya, Geopolymer concrete; Paper B: A review of some recent developments. Construction and Building Materials, 2015. 85: p.78-90]. In multivariate studies such as this, the target properties can be reached only when several variables are simultaneously optimized. In fact, the design of experiments (DOE) technique is widely used in pharmaceuticals with many variables [Cao, B., et al. ., How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano, 2018. 12(8): p. 7434-7444]. However, among geopolymer studies, there have been no cases of optimization through DOE yet.
본 발명자는 고속경화형 지오폴리머의 강도를 보다 향상시키기 위해 보다 연구를 진행하여, 탄소섬유를 사용함으로써 세라믹소재의 취성이 약하다는 단점을 극복하기 위한 방법으로 실험계획법(DOE)을 통해 여러 성분 중에서 알칼리 활성제의 최적비를 조절함으로써 현저한 물리적 효과를 달성할 수 있음을 발견하여 본 발명을 완성하였다.The present inventors conducted further research to further improve the strength of the high-speed curing type geopolymer, and used carbon fiber to overcome the disadvantage of weak brittleness of the ceramic material. The present invention has been completed by discovering that remarkable physical effects can be achieved by controlling the optimum ratio of active agents.
본 발명의 목적은 경화속도 및 굴곡강도를 상승시킨 고속경화형 지오폴리머 및 그 제조방법을 제공하는 것이다.It is an object of the present invention to provide a high-speed curing type geopolymer having an increased curing speed and flexural strength and a method for manufacturing the same.
본 발명에 따른 고속경화형 지오폴리머는 메타카올린; 칼슘화합물; 탄소섬유; 비표면적이 150~250 m2/g인 건식(fumed) 실리카; 및 알칼리활성제를 포함하는 것이 바람직하다.The high-speed curing type geopolymer according to the present invention is metakaolin; calcium compounds; carbon fiber; Fumed silica having a specific surface area of 150-250 m 2 /g; and an alkali activator.
본 발명의 또다른 구체예로서, 본 발명에 따른 고속경화형 지오폴리머의 제조방법은, As another embodiment of the present invention, the method for producing a high-speed curing type geopolymer according to the present invention,
제1 알칼리활성제와 건식 실리카를 혼합하여 제1 조성물을 제공하는 단계;mixing a first alkali active agent and fumed silica to provide a first composition;
상기 제1 조성물을 분산시키는 제1 분산단계;a first dispersing step of dispersing the first composition;
상기 분산된 제1 조성물에 제2 알칼리활성화제 및 탄소섬유를 혼합하여 제2 조성물을 제공하는 단계;mixing the dispersed first composition with a second alkali activator and carbon fibers to provide a second composition;
상기 제2 조성물을 분산시키는 제2 분산단계;a second dispersing step of dispersing the second composition;
상기 분산된 제2 조성물에 메타카올린 및 칼슘화합물을 혼합하여 제3 조성물을 제공하는 단계; 및providing a third composition by mixing metakaolin and a calcium compound in the dispersed second composition; and
상기 제3 조성물을 혼합, 캐스팅 및 경화시키는 단계;를 포함하는 것이 바람직하다.It is preferable to include; mixing, casting and curing the third composition.
또한, 상기 제1 및 제2 분산단계가 5~15분 동안 음파처리를 하는 것이 바람직하다.In addition, it is preferable that the first and second dispersion steps are sonicated for 5 to 15 minutes.
또한, 상기 경화시키는 단계를 20~40℃에서 수행하는 것이 바람직하다.In addition, it is preferable to perform the curing step at 20 ~ 40 ℃.
또한, 메타카올린이 카올린이 700~900℃에서 3~5시간 하소된 것이 바람직하다.Moreover, it is preferable that metakaolin and kaolin are calcined at 700-900 degreeC for 3-5 hours.
또한, 상기 상기 칼슘화합물이 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것이 바람직하다.In addition, the calcium compound is preferably calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ).
또한, 상기 탄소섬유는 200~300℃에서 1~4시간 열처리된 것이 바람직하다.In addition, the carbon fiber is preferably heat-treated at 200 to 300 ℃ for 1 to 4 hours.
또한, 상기 건식 실리카가 2.5 ≤ SiO2/Al2O3 ≤ 3.0의 몰비로 포함되는 것이 바람직하다.In addition, the fumed silica is preferably included in a molar ratio of 2.5 ≤ SiO 2 /Al 2 O 3 ≤ 3.0.
또한, 상기 알칼리활성제가 KOH 및 K2SiO3 중 하나 이상인 것이 바람직하다.In addition, it is preferable that the alkali activator is at least one of KOH and K 2 SiO 3 .
또한, 상기 알칼리활성제에 물을 추가하여 5.0 ≤ H2O/K2O ≤ 7.0의 몰비로 포함되는 것이 바람직하다.In addition, by adding water to the alkali activator, it is preferably included in a molar ratio of 5.0 ≤ H 2 O/K 2 O ≤ 7.0.
또한, 상기 알칼리활성제가 KOH 및 K2SiO3를 2~6:1~3의 중량비로 포함하는 것이 바람직하다.In addition, it is preferable that the alkali activator includes KOH and K 2 SiO 3 in a weight ratio of 2 to 6:1 to 3.
또한, 상기 KOH가 메타카올린 중량 대비 0.57~0.7의 비율로 포함되는 것이 바람직하다.In addition, it is preferable that the KOH is included in a ratio of 0.57 to 0.7 based on the weight of metakaolin.
또한, 상기 K2SiO3가 메타카올린 중량 대비 0.4~0.45의 비율로 포함되는 것이 바람직하다.In addition, the K 2 SiO 3 is preferably included in a ratio of 0.4 to 0.45 based on the weight of metakaolin.
본 발명에 따라 제조된 고속경화형 지오폴리머는 높은 취성을 가지며, 경화가 빠르고, 성형이 자유로우며, 불연 성능 또한 뛰어나기에, 내화 성능에 구조적으로 안정한 불연마감재 복합재로 사용될 수 있다. 또한, 빠른 경화 및 불규칙적인 형상으로 성형이 필요한 콘크리트 구조물의 손상 및 파손 부위의 보수 보강재로서 적용이 가능하다.The high-speed curing type geopolymer prepared according to the present invention has high brittleness, fast curing, free molding, and excellent non-combustible performance, so it can be used as a structurally stable non-combustible finishing material composite for fire resistance performance. In addition, it can be applied as a reinforcing material for repairing and repairing damaged and damaged concrete structures that require rapid hardening and forming into irregular shapes.
도 1은 탄소섬유 유무 및 하소 전후에 따른 메타카올린의 XRD 분석결과를 개략적으로 도시한 것이다.
도 2는 본 발명에 따른 고속경화형 지오폴리머의 제조방법을 개략적으로 도시한 것이다.
도 3은 본 발명에 따른 3점 굴곡시험 방법(3-point bending test)을 개략적으로 도시한 것이다.
도 4는 제1 DOE법에서 3요소(K2SiO3, KOH, Fumed SiO2)의 굴곡강도에 미치는 효과를 개략적으로 도시한 것이다.
도 5는 제1 DOE법에서 알칼리활성제(K2SiO3 및 KOH) 함량의 함수로서 굴곡 강도를 컬러맵(colormap)으로 개략적으로 도시한 것이다.
도 6는 제2 DOE법에서 2요소(K2SiO3, KOH)의 굴곡강도에 미치는 효과를 개략적으로 도시한 것이다.
도 7은 제2 DOE법에서 알칼리활성제(K2SiO3 및 KOH) 함량의 함수로서 굴곡 강도를 컬러맵(colormap)으로 개략적으로 도시한 것이다.
도 8은 제3 DOE법에서 2요소(K2SiO3, KOH)의 굴곡강도에 미치는 효과를 개략적으로 도시한 것이다.
도 9는 제3 DOE법에서 알칼리활성제(K2SiO3 및 KOH) 함량의 함수로서 굴곡 강도를 컬러맵(colormap)으로 개략적으로 도시한 것이다.
도 10은 제1, 제2 및 제3 DOE법에서 알칼리활성제(K2SiO3 및 KOH) 함량의 함수로서 굴곡 강도를 전체 컬러맵(colormap)으로 개략적으로 도시한 것이다.
도 11은 상온에서 900℃까지의 온도변화에서 TGA법을 이용한 중량 손실 측정결과를 개략적으로 도시한 것이다.
도 12는 제3~제7 DOE법의 샘플에 대한 내화성 및 내열성 시험 결과를 개략적으로 도시한 것이다.1 schematically shows the XRD analysis results of metakaolin in the presence or absence of carbon fibers and before and after calcination.
Figure 2 schematically shows a method for producing a fast-setting geopolymer according to the present invention.
3 schematically shows a three-point bending test method according to the present invention.
Figure 4 schematically shows the effect on the flexural strength of the three elements (K 2 SiO 3 , KOH, Fumed SiO 2 ) in the first DOE method.
FIG. 5 schematically shows, in colormap, the flexural strength as a function of alkali activator (K 2 SiO 3 and KOH) content in the first DOE method.
6 schematically shows the effect on the flexural strength of two elements (K 2 SiO 3 , KOH) in the second DOE method.
7 is a colormap schematically showing the flexural strength as a function of alkali activator (K 2 SiO 3 and KOH) content in the second DOE method.
8 schematically shows the effect on the flexural strength of two elements (K 2 SiO 3 , KOH) in the third DOE method.
9 is a colormap schematic representation of flexural strength as a function of alkali activator (K 2 SiO 3 and KOH) content in the third DOE method.
FIG. 10 schematically shows the flexural strength as a function of alkali activator (K 2 SiO 3 and KOH) content in the first, second and third DOE methods as an overall colormap.
11 schematically shows the weight loss measurement results using the TGA method at a temperature change from room temperature to 900°C.
12 schematically shows the fire resistance and heat resistance test results for the samples of the third to seventh DOE methods.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 실시예들을 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 부호가 사용되며, 이에 따라 중복되는 부가적인 설명은 아래에서 생락된다. 아래에서 참조되는 도면들에서는 축적비가 적용되지 않는다.In describing the present embodiments, the same names and reference numerals are used for the same components, and thus overlapping additional descriptions are omitted below. In the drawings referenced below, no scale ratio applies.
고속경화 지오폴리머는 그 제조 조건이 다변수이며 (화학성분 몰비 (SiO2, Al2O3, K2O, Ca(OH)2, H2O), 각각의 원료(MK, 건식 실리카, Ca(OH)2, KOH, K2SiO3))의 양이 최종 물성에 미치는 영향이 크기에, 변화가 가장 적은 변수들을 고정하고, 구조 재료로써 중요한 굴곡강도를 지표로 선택하였다.Fast curing geopolymers are multi-variable in their manufacturing conditions (chemical component molar ratio (SiO 2 , Al 2 O 3 , K 2 O, Ca(OH) 2 , H 2 O), and each raw material (MK, fumed silica, Ca (OH) 2 , KOH, K 2 SiO 3 ))) on the final physical properties, the variables with the least change were fixed, and flexural strength, which is important as a structural material, was selected as an index.
본 발명에 따른 고속경화형 지오폴리머는 메타카올린; 칼슘화합물; 탄소섬유; 비표면적이 150~250 m2/g인 건식(fumed) 실리카; 및 알칼리활성제를 포함하는 것이 바람직하다.The high-speed curing type geopolymer according to the present invention is metakaolin; calcium compounds; carbon fiber; Fumed silica having a specific surface area of 150-250 m 2 /g; and an alkali activator.
상기 카올린 (DJ 5041-1400 Daejung Chemicals & Metals Co., Ltd, S.Korea)을 주원료로서 사용하며, 700~900℃에서 3~5시간 하소한 것이 바람직하다. 구체적으로 본 발명의 실험에서는 전기로에서 800℃로 4시간 동안 하소시켜 수득한 메타카올린 파우더 (MK)를 사용하였다. 도 1에 도시된 바와 같이, 하소 전 카올린의 XRD 패턴에서는 Kaolinite와 quartzite의 피크를 명확하게 확인할 수 있다. 하소 후의 XRD 패턴에서는 Kaolinite와 quartzite의 주피크가 미비하게 관측되나, 비정질 상의 알루미노 실리케이트의 메타카올린이 생성됨을 확인할 수 있다. The kaolin (DJ 5041-1400 Daejung Chemicals & Metals Co., Ltd, S.Korea) is used as the main raw material, and it is preferably calcined at 700-900°C for 3-5 hours. Specifically, in the experiment of the present invention, metakaolin powder (MK) obtained by calcining at 800° C. for 4 hours in an electric furnace was used. As shown in FIG. 1 , peaks of kaolinite and quartzite can be clearly identified in the XRD pattern of kaolin before calcination. In the XRD pattern after calcination, the main peaks of kaolinite and quartzite are slightly observed, but it can be confirmed that metakaolin of aluminosilicate in amorphous phase is generated.
또한, 굴곡강도를 고려하면, 상기 메타카올린의 평균입자크기가 3~10 μm인 것이 바람직하다.In addition, considering the flexural strength, it is preferable that the average particle size of the metakaolin is 3 to 10 μm.
상기 칼슘화합물은 수산화칼슘(Ca(OH)2), 산화칼슘(CaO) 또는 탄산칼슘 (CaCO3)인 것이 바람직하다. 경화속도를 제어하는데 있어서 필요한 칼슘화합물로서, 본 발명에서는 수산화칼슘(Ca(OH)2) (DJ 2511-4400 Daejung Chemicals & Metals Co., Ltd, S.Korea)이 사용되었다.The calcium compound is preferably calcium hydroxide (Ca(OH) 2 ), calcium oxide (CaO) or calcium carbonate (CaCO 3 ). As a calcium compound necessary for controlling the curing rate, in the present invention, calcium hydroxide (Ca(OH) 2 ) (DJ 2511-4400 Daejung Chemicals & Metals Co., Ltd, S.Korea) was used.
또한, Ca는 Si 소스와 염기 분위기에서 칼슘실리케이트 결정상을 이루며, 그 결정상은 지오폴리머의 핵생성처(nucleation site)로 작용하여 경화 속도를 빠르게 하는 경화촉진제 역할을 한다. 이와 같은 칼슘실리케이트는 시멘트 양생과정에서도 형성되어 시멘트의 강도를 발현시키는 역할을 한다. 하지만 Ca의 함량이 높을 경우에는 Ca로 이뤄진 결정과 지오폴리머 사이의 계면 면적이 증가하게 되며, 이러한 계면은 강도의 저하를 가져오고, 국부적 경화에 의해 성형이 불가능해진다. 결국, 그 몰비가 4.0 ≤ 칼슘화합물/Al2O3 ≤ 4.7인 것이 바람직하다.In addition, Ca forms a calcium silicate crystal phase in a Si source and a base atmosphere, and the crystal phase acts as a nucleation site of the geopolymer and serves as a curing accelerator to speed up the curing rate. Such calcium silicate is also formed during the curing process of cement and plays a role in expressing the strength of cement. However, when the content of Ca is high, the interfacial area between the crystals made of Ca and the geopolymer increases, and this interface causes a decrease in strength, and molding becomes impossible due to local hardening. As a result, it is preferable that the molar ratio be 4.0 ≤ calcium compound/Al 2 O 3 ≤ 4.7.
상기 탄소섬유는 상기 탄소섬유는 200~300℃에서 3~5시간 열처리된 것이 바람직하다. 구체적으로, 본 발명에서는 탄소섬유(HD Fiber, S.Korea)를 250℃, 4시간 열처리를 통해 표면의 사이징제 등을 제거한 뒤 실험에 사용하였다.It is preferable that the carbon fiber is heat-treated at 200 to 300° C. for 3 to 5 hours. Specifically, in the present invention, carbon fibers (HD Fiber, S. Korea) were used in the experiment after removing the sizing agent from the surface through heat treatment at 250° C. for 4 hours.
탄소섬유는 메타카올린의 중량 대비 0.03 이하의 비율로 사용되는 것이 바람직하다. 상기 범위 보다 많은 탄소섬유를 사용하면, 섬유 표면적의 증가되며, 섬유로 인해 강도가 향상되는 효과보다 상대적으로 취약한 계면면적이 넓어져 오히려 굴곡강도가 감소하게 된다.Carbon fiber is preferably used in a ratio of 0.03 or less based on the weight of metakaolin. When more carbon fibers than the above range are used, the fiber surface area is increased, and the relatively weak interfacial area is widened rather than the effect of improving strength due to the fibers, so that the flexural strength is rather reduced.
상기 건식 실리카(Fumed-SiO2) 는 비표면적이 150~250 m2/g인 것이 바람직하다. 구체적으로 본 발명의 실시예에서는 200±25 m2/g인 건식 실리카 (Konasil K-200, OCI, S.Korea)가 사용되었다. The fumed silica (Fumed-SiO 2 ) preferably has a specific surface area of 150 to 250 m 2 /g. Specifically, in Examples of the present invention, 200±25 m 2 /g of fumed silica (Konasil K-200, OCI, S.Korea) was used.
입자상이 작고 표면적이 넓은 실리카(SiO2)의 사용 및 상태 (액상, 고상)에 따라 굴곡강도의 차이가 있기 때문에, 활성제와 만나 유동성이 있는 지오폴리머 원료가 침투하여 충진률을 상승시킬 수 있는 가지친 구조의 건식 실리카가 가장 바람직하다.Since there is a difference in flexural strength depending on the use and state (liquid, solid) of silica (SiO 2 ) with a small particle shape and a large surface area, the geopolymer raw material with fluidity in contact with the active agent penetrates to increase the filling rate. The fumed silica with a parental structure is most preferred.
한편, 건식실리카의 경우 SiO2 함량이 증가하면 굴곡강도가 감소함을 보인다. 이는 과도한 입자 함량에 의해 지오폴리머와의 충진율 상승 보다는 공극의 형성에 기여하기 때문으로 추정된다. On the other hand, in the case of dry silica, as the SiO 2 content increases, the flexural strength decreases. It is presumed that this is because excessive particle content contributes to the formation of pores rather than an increase in the filling rate with the geopolymer.
SiO2와 Al2O3은 지오폴리머의 기본 구조를 이루며 알칼리활성제는 지오폴리머 반응을 일으키는 화학성분이다. 동일한 Si/Al/K 몰비가 적용된 지오폴리머라도, 원료별로 공급되는 분율에 따라 지오폴리머의 물성이 달라질 수 있다. 따라서, 혼합비 중 건식 실리카가 2.5 ≤ SiO2/Al2O3 ≤ 3.0의 몰비로 포함되는 것이 지오폴리머의 굴곡강도를 높게 유지할 수 있다.SiO 2 and Al 2 O 3 form the basic structure of the geopolymer, and the alkali activator is a chemical component that causes the geopolymer reaction. Even in a geopolymer to which the same Si/Al/K molar ratio is applied, the physical properties of the geopolymer may vary depending on the fraction supplied for each raw material. Therefore, in the mixing ratio, when the fumed silica is included in a molar ratio of 2.5 ≤ SiO 2 /Al 2 O 3 ≤ 3.0, the flexural strength of the geopolymer can be maintained high.
또한, 굴곡강도의 관점에서 상기 실리카의 입자크기는 0.01~0.1 μm인 것이 바람직하다.In addition, from the viewpoint of flexural strength, the particle size of the silica is preferably 0.01 to 0.1 μm.
상기 알칼리활성제로는 6M 수산화칼륨(KOH) (DJ 6597-4405 Daejung Chemicals & Metals Co., Ltd, S.Korea)와 메타규산칼륨 (K2SiO3) (DJ 6617-4405 Daejung Chemicals & Metals Co., Ltd, S.Korea)을 사용하였다.The alkali activator includes 6M potassium hydroxide (KOH) (DJ 6597-4405 Daejung Chemicals & Metals Co., Ltd, S.Korea) and potassium metasilicate (K 2 SiO 3 ) (DJ 6617-4405 Daejung Chemicals & Metals Co., Ltd.). , Ltd, S. Korea) was used.
고속 경화에 있어 가장 중요한 요인은 지오폴리머가 되는 반응속도와 균질성이다. 이에 가장 큰 영향을 주는 인자는 H2O/K2O 비율이다. H2O 함량이 낮은 경우, 활성제의 유동성이 떨어져 성형이 어렵고, 경화가 불균질하게 일어나게 된다. 따라서 입자상과 반응을 균질하게 유도하며 탄소섬유와의 충진률을 향상시키기 위하여 적당한 양의 H2O를 별도로 추가할 수 있다. K2O는 전하 밸런스를 통해 지오폴리머화를 촉진시킨다. 따라서, 그 몰비가 5.0 ≤ H2O/K2O ≤ 7.0인 것이 바람직하다.The most important factors for high-speed curing are the reaction rate and homogeneity of the geopolymer. The factor that has the greatest influence on this is the H 2 O/K 2 O ratio. When the H 2 O content is low, the fluidity of the activator is low, making molding difficult, and curing occurs non-uniformly. Therefore, an appropriate amount of H 2 O can be separately added to induce a homogeneous reaction with the particle phase and to improve the filling rate with carbon fibers. K 2 O promotes geopolymerization through charge balance. Therefore, it is preferable that the molar ratio is 5.0 ≤ H 2 O/K 2 O ≤ 7.0.
보다 구체적으로, 아래 제조방법과 같이 알칼리활성제로서 수산화칼륨과 메타규산칼륨을 모두 사용하는 경우, 상기 수산화칼륨은 메타카올린의 중량 대비 0.3~07의 비율로 사용되는 것이 바람직하고, 상기 메타규산칼륨은 메타카올린의 중량 대비 0.6~1.2의 비율로 사용되는 것이 바람직하다. 또한, 수산화칼륨 : 메타규산칼륨을 2~6:1~3의 중량비로 포함하는 것이 보다 바람직하다. More specifically, when both potassium hydroxide and potassium metasilicate are used as alkali activators as in the manufacturing method below, the potassium hydroxide is preferably used in a ratio of 0.3 to 07 relative to the weight of metakaolin, and the potassium metasilicate is It is preferably used in a ratio of 0.6 to 1.2 based on the weight of metakaolin. In addition, it is more preferable to include potassium hydroxide: potassium metasilicate in a weight ratio of 2-6:1-3.
본 발명의 또다른 구체예로서, 본 발명에 따른 고속경화형 지오폴리머의 제조방법은, As another embodiment of the present invention, the method for producing a high-speed curing type geopolymer according to the present invention,
제1 알칼리활성제와 건식 실리카를 혼합하여 제1 조성물을 제공하는 단계;mixing a first alkali active agent and fumed silica to provide a first composition;
상기 제1 조성물을 분산시키는 제1 분산단계;a first dispersing step of dispersing the first composition;
상기 분산된 제1 조성물에 제2 알칼리활성화제 및 탄소섬유를 혼합하여 제2 조성물을 제공하는 단계;mixing the dispersed first composition with a second alkali activator and carbon fibers to provide a second composition;
상기 제2 조성물을 분산시키는 제2 분산단계;a second dispersing step of dispersing the second composition;
상기 분산된 제2 조성물에 메타카올린 및 칼슘화합물을 혼합하여 제3 조성물을 제공하는 단계; 및providing a third composition by mixing metakaolin and a calcium compound in the dispersed second composition; and
상기 제3 조성물을 혼합, 캐스팅 및 경화시키는 단계;를 포함하는 것이 바람직하다.It is preferable to include; mixing, casting and curing the third composition.
또한, 상기 제1 및 제2 분산단계가 4~12분 동안 음파처리를 하는 것이 바람직하다.In addition, it is preferable that the first and second dispersion steps are sonicated for 4 to 12 minutes.
또한, 상기 경화시키는 단계를 20~40℃에서 수행하는 것이 바람직하다.In addition, it is preferable to perform the curing step at 20 ~ 40 ℃.
상기 제1 알칼리활성제가 KOH이고 제2 알칼리활성제가 K2SiO3인 경우 2~6:1~3의 중량비로 포함하는 것이 바람직하다.When the first alkali active agent is KOH and the second alkali active agent is K 2 SiO 3 , it is preferably included in a weight ratio of 2-6:1∼3.
한편, 본 발명에 따라 제조된 지오폴리머의 굽힘 강도 측정은 UTM 시험기 (5982B13133, Instron Co., Ltd, USA)로 3점 굴곡 시험(3point bending test)을 진행하였다. 도 3에 도시된 바와 같이, 시편을 전장(span length) 40mm에 고정 후 0.5mm/min의 속도로 굴곡 강도(flexural strength)를 계산하는데 사용된 식은 아래와 같다. On the other hand, to measure the bending strength of the geopolymer prepared according to the present invention, a three-point bending test was performed with a UTM tester (5982B13133, Instron Co., Ltd, USA). As shown in FIG. 3 , the formula used to calculate the flexural strength at a rate of 0.5 mm/min after fixing the specimen to a span length of 40 mm is as follows.
Modulus of rupture = MOR = 3FL /(2bd2)Modulus of rupture = MOR = 3FL /(2bd 2 )
위 식에서 F 는 측정된 힘이고, L 은 지지대 간의 거리, b 와 d는 시편의 폭과 두께이다. In the above equation, F is the measured force, L is the distance between supports, and b and d are the width and thickness of the specimen.
또한, 경화시간의 측정은 혼합한(manual mixing) 슬러리 상태의 지오폴리머를 쇠 몰드 위에 소량 덜어내 시간 흐름에 따른 표면 경화 정도를 측정하였다. 측정시에는 면봉을 이용하여 20초 간격으로 표면에서 굴리며 수시 확인을 하였다. 표면에서 굴렸을 때 지오폴리머가 묻어나오지 않는 시간을 완전 경화로 기록하였다.In addition, the curing time was measured by taking a small amount of geopolymer in a slurry state of manual mixing on an iron mold and measuring the degree of surface hardening over time. During the measurement, a cotton swab was used to roll it on the surface at intervals of 20 seconds and check from time to time. The time at which the geopolymer did not come off when rolled on the surface was recorded as complete cure.
추가적으로 고열에 의해 분해되는 온도 측정 및 시간을 확인하고 (TGA(Thermal Gravimetric Analysis, TGA/DSC 1/LF/1100, Mettier Toledo), 45(±2mm) * 50(±2mm) 원통형 샘플을 제작하여 불연소재로써 마감재 사용 가능성(KS F ISO 1182)을 확인하기 위해 불연테스트(The FESTEC Non-Comb 2005, FESTEC International Co., Ltd., S.Korea)를 했다. 탄소섬유 첨가와 알칼리활성제 배합에 따른 미세구조의 차이를 관찰하기 위하여 SEM분석 (FESEM, JSM 7610F, JEOL)도 진행하였다.Additionally, check the temperature measurement and time to decompose by high heat (TGA (Thermal Gravimetric Analysis, TGA/DSC 1/LF/1100, Mettier Toledo), 45(±2mm) * 50(±2mm) cylindrical sample and make it non-combustible A non-flammability test (The FESTEC Non-Comb 2005, FESTEC International Co., Ltd., S.Korea) was conducted to confirm the possibility of using a finishing material as a material (KS F ISO 1182). SEM analysis (FESEM, JSM 7610F, JEOL) was also performed to observe the difference in structure.
이하에서는 구체적인 제조방법을 통해 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail through a specific manufacturing method.
<지오폴리머의 제조><Production of geopolymer>
본 발명의 실시예에서 사용된 시약의 기본 정보를 아래 표 1에 정리하여 나타내었다.Basic information of reagents used in Examples of the present invention is summarized in Table 1 below.
도 2에 도시된 바와 같이, 증류수 1L에 KOH 펄렛을 2시간동안 용해시켜 6M KOH용액을 제조하였다. 상기 알칼리용액 (pH13~)에서 고체 건식 실리카의 분산이 이루어지도록 음파처리기로 5분 동안 처리하였으며, 이어서, 메타규산칼륨 용액을 첨가하였다. As shown in FIG. 2, a 6M KOH solution was prepared by dissolving KOH pellets in 1 L of distilled water for 2 hours. The alkali solution (pH13~) was treated with a sonicator for 5 minutes so that the solid fumed silica was dispersed, and then potassium metasilicate solution was added.
그리고, 탄소섬유를 첨가한 후, 고른 분산을 위해 초음파처리기(ultra sonicator)로 10분 동안 처리하였다. 만약, 탄소섬유의 분산이 이루어지지 않은 상태에서 경화시키면, 탄소섬유의 응집구역에 지오폴리머의 침투가 어려워지게 되고 자연스레 기계적 강도가 낮아질 수밖에 없다. 그렇기 때문에 위와 같이 초음파처리 과정을 추가하였고, 필요에 따라서 처리시간을 추가할 수 있다. Then, after the carbon fiber was added, it was treated with an ultra sonicator for 10 minutes for even dispersion. If the carbon fiber is hardened in a state in which the carbon fiber is not dispersed, it becomes difficult to penetrate the geopolymer into the agglomeration zone of the carbon fiber, and the mechanical strength is naturally lowered. Therefore, the sonication process is added as above, and the processing time can be added as needed.
다음으로, 메타카울린과 수산화칼슘을 첨가하는데 수동 혼합(manual mixing)의 과정에서 칼슘의 투입과 동시에 경화가 진행 (30분 이내에 표면이 경화)되므로 신속한 작업이 요구된다. Next, metacaulin and calcium hydroxide are added, and hardening proceeds at the same time as calcium is added in the process of manual mixing (the surface is hardened within 30 minutes), so a quick operation is required.
이후, 실리콘 몰드(12 ×120 ×5 mm)에 주조하여 상온에서 하루 건조하고, 추가로 데시케이터 내에서 상온으로 7일 동안 경화시켰다. Thereafter, it was cast in a silicone mold (12 × 120 × 5 mm), dried at room temperature for one day, and further cured at room temperature in a desiccator for 7 days.
(1) 1차 DOE(1) Primary DOE
아래 표 2와 같이, 탄소섬유(0.1g), 칼슘(2.5g) 및 메타카올린(20g)의 양을 고정하고, 다른 성분을 함량을 변경시켜 샘플들을 제조하고 굴곡강도를 측정하였다.As shown in Table 2 below, samples were prepared by fixing the amounts of carbon fiber (0.1 g), calcium (2.5 g) and metakaolin (20 g), and by changing the content of other components, and the flexural strength was measured.
상기와 같이 제조된 샘플 1~27에 대해 도 4에 도시된 바와 같이, KOH양이 증가할수록 굴곡강도는 상승하였으며, 9 g (0.45 W_MK) 기준으로 변곡점이 형성됨을 확인하였으며, 건식 실리카 0.6 g (0.03 W_MK)첨가가 되었을 때는 건식 실리카를 첨가하지 않은 강도보다 소폭 향상된 값을 나타냈다. 마찬가지로 메타규산칼륨(K2SiO3)도 18 g (0.90 W_MK)에서 굴곡강도 값이 (+) 증가를 보이다가 감소되는 값이 나타나는 변곡점이 나타났다.As shown in FIG. 4 for samples 1 to 27 prepared as described above, as the amount of KOH increased, the flexural strength increased, and it was confirmed that an inflection point was formed based on 9 g (0.45 W_MK), fumed silica 0.6 g ( When 0.03 W_MK) was added, the strength was slightly improved compared to the strength without the addition of fumed silica. Similarly, potassium metasilicate (K 2 SiO 3 ) also showed an inflection point where the flexural strength value increased (+) at 18 g (0.90 W_MK) and then decreased.
도 5에 도시된 바와 같이, KOH의 양이 증가하고 K2SiO3의 양이 감소하는 범위에 들어가야 높은 기계적 특성을 나타낼 수 있음을 확인할 수 있었다.As shown in FIG. 5 , it was confirmed that high mechanical properties could be exhibited only when the amount of KOH increased and the amount of K 2 SiO 3 decreased.
(2) 2차 DOE(2) 2nd DOE
상기 1차 DOE에서 탄소섬유를 포함하는 경우, 알칼리활성제의 변화가 중요 요인임을 확인하였다. 따라서, 아래 표 3과 같이, 탄소섬유, 칼슘, 메타카올린 및 건식 실리카의 양을 고정하고, 다른 성분을 함량을 변경시켜 샘플들을 제조하고 굴곡강도 및 경화시간을 측정하였다.In the case of including carbon fibers in the first DOE, it was confirmed that the change in alkali activator was an important factor. Therefore, as shown in Table 3 below, samples were prepared by fixing the amounts of carbon fiber, calcium, metakaolin and fumed silica, and by changing the contents of other components, and flexural strength and curing time were measured.
상기 표 3 및 도 6에서 기재된 바와 같이, KOH의 양이 증가하면 굴곡강도가 증가하지만, K2SiO3의 양이 증가하면 오히려 굴곡강도가 감소하였다. As described in Table 3 and FIG. 6, when the amount of KOH increases, the flexural strength increases, but when the amount of K 2 SiO 3 increases, the flexural strength decreases.
나아가 도 7을 살펴보면, 이러한 경향이 더욱 뚜렷하다. 우측 하단 모서리 범위에 속할수록 높은 굴곡강도를 얻을 수 있다.Further, referring to FIG. 7 , this trend is more pronounced. Higher flexural strength can be obtained as it falls within the range of the lower right corner.
(3) 3차 DOE(3) 3rd DOE
아래 표 4와 같이, 탄소섬유, 칼슘, 메타카올린 및 건식 실리카의 양을 고정하고, 다른 성분을 함량을 변경시켜 샘플들을 제조하고 굴곡강도 및 경화시간을 측정하였다.As shown in Table 4 below, samples were prepared by fixing the amounts of carbon fiber, calcium, metakaolin and fumed silica, and by changing the contents of other components, and flexural strength and curing time were measured.
상기 표 4 및 도 7에서 기재된 바와 같이, KOH의 양은 12g에서 변곡점이 나타났고, K2SiO3의 양이 증가하면 굴곡강도가 증가하였다. As described in Table 4 and FIG. 7, the amount of KOH showed an inflection point at 12 g, and when the amount of K 2 SiO 3 increased, the flexural strength increased.
나아가 도 8을 살펴보면, 좌측 상단 모서리 범위에 속할수록 높은 굴곡강도를 얻을 수 있다.Further, referring to FIG. 8 , as it falls within the range of the upper left corner, higher flexural strength can be obtained.
이상의 실험결과로부터, 탄소섬유를 첨가하면 건식실리카 비율보다 K를 포함하는 KOH 및 K2SiO3 활성제의 양이 굴곡강도에 영향이 크다는 것을 확인하였다. 굴곡강도 최고점을 나타내는 샘플은 2.7 ≤ SiO2 / Al2O3 ≤ 2.8 및 5.5 ≤ H2O / K2O ≤ 6.4의 몰비로 구성되었다.From the above experimental results, it was confirmed that the amount of KOH and K 2 SiO 3 activator containing K had a greater effect on flexural strength than the dry silica ratio when carbon fiber was added. The sample showing the highest flexural strength was composed of a molar ratio of 2.7 ≤ SiO 2 / Al 2 O 3 ≤ 2.8 and 5.5 ≤ H 2 O / K 2 O ≤ 6.4.
한편, DOE의 3-7 샘플로 열중량분석 (TGA : Thermal Gravimetric Analysis, TGA/DSC 1/LF/1100, Mettler Toledo)를 통해 온도-무게 변화량의 곡선을 통해 열안정성 및 질량변화량을 체크하였다(도 11 참조).On the other hand, thermal stability and mass change were checked through the curve of temperature-weight change through thermogravimetric analysis (TGA: Thermal Gravimetric Analysis, TGA/DSC 1/LF/1100, Mettler Toledo) with 3-7 samples of DOE ( 11).
또한, 구조물의 화재발생시 재료에서 화염과 유독가스 발생 및 화재 확산을 방지하기 위한 건축마감재로써 적합여부를 확인하기 위해서는 한국산업규격의 불연성능 시험방법을 통해 성능기준을 통과하여야 한다. 가열시험 시작 후 20분간의 가열로 내의 최고온도가 20K 초과 상승하지 않아야 하며, 시험 종료 후 시험체의 질량 감소율이 30% 이하여야 부합한다. 그래서 3차 DOE의 3-7 샘플로 국토부 규격(KS F ISO 1182) 적합여부를 목적으로 불연성능시험(Non-Combustibility Test)을 추가 분석하였고(도 12 참조), 질량 감소율이 30%이하로써 불연소재로서 적합함을 확인하였다.In addition, in order to check whether the material is suitable as a building finishing material to prevent the generation of flames and toxic gases and the spread of fire in the event of a fire of a structure, it must pass the performance standards through the non-combustible performance test method of the Korean Industrial Standards. The maximum temperature in the furnace for 20 minutes after the start of the heating test should not rise more than 20K, and the mass reduction rate of the specimen after the end of the test should be 30% or less. So, as a 3-7 sample of the 3rd DOE, a Non-Combustibility Test was additionally analyzed for the purpose of compliance with the Ministry of Land, Infrastructure and Transport standards (KS F ISO 1182) (see Fig. 12), and the mass reduction rate was 30% or less. It was confirmed that it is suitable as a non-combustible material.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and variations are possible within the scope without departing from the technical spirit of the present invention described in the claims. It will be apparent to those of ordinary skill in the art.
Claims (22)
상기 제1 조성물을 분산시키는 제1 분산단계;
상기 분산된 제1 조성물에 제2 알칼리활성화제 및 탄소섬유를 혼합하여 제2 조성물을 제공하는 단계;
상기 제2 조성물을 분산시키는 제2 분산단계;
상기 분산된 제2 조성물에 메타카올린 및 칼슘화합물을 혼합하여 제3 조성물을 제공하는 단계; 및
상기 제3 조성물을 혼합, 캐스팅 및 경화시키는 단계;를 포함하는 고속경화형 지오폴리머의 제조방법.mixing a first alkali active agent and fumed silica to provide a first composition;
a first dispersing step of dispersing the first composition;
mixing the dispersed first composition with a second alkali activator and carbon fibers to provide a second composition;
a second dispersing step of dispersing the second composition;
providing a third composition by mixing metakaolin and a calcium compound in the dispersed second composition; and
Mixing, casting, and curing the third composition; A method of producing a fast-curing geopolymer comprising a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200185354A KR20220094065A (en) | 2020-12-28 | 2020-12-28 | Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200185354A KR20220094065A (en) | 2020-12-28 | 2020-12-28 | Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220094065A true KR20220094065A (en) | 2022-07-05 |
Family
ID=82402313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200185354A KR20220094065A (en) | 2020-12-28 | 2020-12-28 | Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20220094065A (en) |
-
2020
- 2020-12-28 KR KR1020200185354A patent/KR20220094065A/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arellano-Aguilar et al. | Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate: binder ratio | |
Villaquirán-Caicedo et al. | Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources | |
Sabbatini et al. | Control of shaping and thermal resistance of metakaolin-based geopolymers | |
RU2506241C2 (en) | Stable magnesial oxychloride cement and method of obtaining thereof | |
KR102348274B1 (en) | Fast-curing Geopolymer reinforced by silica, and Preparation method thereof | |
US20100212549A1 (en) | Method for preparing materials containing binder systems derived from amorphous silica and bases | |
He et al. | Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer | |
Figovsky et al. | Advanced nanomaterials based on soluble silicates | |
JP2010524823A (en) | Light weight additive, its production method and use | |
Ouda et al. | Behavior of alkali-activated pozzocrete-fly ash paste modified with ceramic tile waste against elevated temperatures and seawater attacks | |
Sinica et al. | Impact of complex additive consisting of continuous basalt fibres and SiO2 microdust on strength and heat resistance properties of autoclaved aerated concrete | |
CN112408819A (en) | Slag-based alkali-activated cementing material and preparation method and application thereof | |
JP5871685B2 (en) | Calcium silicate molded body and method for producing the same | |
Chen et al. | Mechanical and microstructural investigations on the low-reactive copper mine tailing-based geopolymer activated by phosphoric acid | |
Koňáková et al. | High-temperature resistance of cement composites with randomly distributed aluminium silicate fibers | |
US20220081363A1 (en) | Uncalcined geopolymer-based refractory material and method for its preparation | |
KR102565729B1 (en) | Manufacturing Method of Calcium Silicated Base Cement Clinker And Calcium Silicated Base Cement Clinker Hardening Body | |
CN108349807A (en) | Construction material containing flying dust with improved intensity and water resistance and the method for forming it | |
KR20220094065A (en) | Carbon fiber reinforced fast-curing geopolymer, and Preparation method thereof | |
Horszczaruk et al. | Properties of cement composites modified with silica-magnetite nanostructures | |
EP4029843A1 (en) | Sustainable goods | |
JP2007217208A (en) | Production method of zonotlite-based calcium silicate hydrate porous molded body | |
Prud'Homme et al. | Consolidated Geo‐Materials from Sand or Industrial Waste | |
JP2002308669A (en) | (calcium silicate)-silica composite formed body | |
ABDULLAH et al. | Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20201228 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20221028 Patent event code: PE09021S01D |
|
PE0601 | Decision on rejection of patent |
Patent event date: 20230227 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20221028 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |