KR20220003119A - 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 - Google Patents
크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 Download PDFInfo
- Publication number
- KR20220003119A KR20220003119A KR1020217042136A KR20217042136A KR20220003119A KR 20220003119 A KR20220003119 A KR 20220003119A KR 1020217042136 A KR1020217042136 A KR 1020217042136A KR 20217042136 A KR20217042136 A KR 20217042136A KR 20220003119 A KR20220003119 A KR 20220003119A
- Authority
- KR
- South Korea
- Prior art keywords
- quantization parameter
- chroma
- flag
- qpi
- chroma quantization
- Prior art date
Links
- 238000013139 quantization Methods 0.000 title claims abstract description 698
- 238000000034 method Methods 0.000 title claims abstract description 180
- 239000000523 sample Substances 0.000 description 69
- 238000009795 derivation Methods 0.000 description 67
- 230000011664 signaling Effects 0.000 description 56
- 238000013507 mapping Methods 0.000 description 46
- 230000008569 process Effects 0.000 description 39
- 241000023320 Luma <angiosperm> Species 0.000 description 33
- 238000001914 filtration Methods 0.000 description 33
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 33
- 230000006870 function Effects 0.000 description 21
- 238000012545 processing Methods 0.000 description 21
- 239000011449 brick Substances 0.000 description 16
- 230000006978 adaptation Effects 0.000 description 14
- 239000013074 reference sample Substances 0.000 description 12
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 11
- 230000002123 temporal effect Effects 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 235000019395 ammonium persulphate Nutrition 0.000 description 4
- 238000000261 appearance potential spectroscopy Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 102100027896 Cytochrome b-c1 complex subunit 7 Human genes 0.000 description 1
- 101710147953 Cytochrome b-c1 complex subunit 7 Proteins 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/107—Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/18—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 문서에 따른 디코딩 장치에 의하여 수행되는 영상 디코딩 방법은 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득하는 단계, 상기 플래그를 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출하는 단계, 상기 레지듀얼 정보 및 크로마 양자화 파라미터를 기반으로 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출하는 단계 및 상기 예측 정보를 기반으로 도출된 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하는 것을 특징으로 한다.
Description
본 문서는 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 크로마 성분들에 대한 크로마 양자화 파라미터 테이블의 도출을 위한 크로마 양자화 파라미터 데이터를 포함하는 영상 정보를 코딩하는 영상 디코딩 방법 및 그 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 문서의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 다른 기술적 과제는 크로마 성분에 대한 양자화 파라미터 도출에 대한 데이터 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 문서의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득하는 단계, 상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득하는 단계, 상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출하는 단계, 상기 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출하는 단계, 상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출하는 단계, 상기 레지듀얼 정보를 기반으로 상기 크로마 성분들에 대한 변환 계수들을 도출하는 단계, 상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 레지듀얼 샘플들을 도출하는 단계 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하고, 상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 한다.
본 문서의 다른 일 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득하고, 상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득하는 엔트로피 디코딩부, 상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출하는 예측부, 상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출하고, 상기 레지듀얼 정보를 기반으로 상기 크로마 성분들에 대한 변환 계수들을 도출하고, 상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 레지듀얼 샘플들을 도출하는 레지듀얼 처리부 및 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 가산부를 포함하고, 상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법을 제공한다. 상기 방법은 인터 예측 또는 인트라 예측을 기반으로 크로마 성분들에 대한 예측 샘플들을 도출하는 단계, 상기 예측 샘플들을 기반으로 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출하는 단계, 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그를 생성하는 단계, 상기 플래그를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 생성하는 단계 및 상기 크로마 성분들에 대한 예측 정보, 상기 크로마 성분들에 대한 레지듀얼 정보, 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 인코딩하는 단계를 포함하고, 상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 한다.
본 문서의 또 다른 일 실시예에 따르면, 비디오 인코딩 장치를 제공한다. 상기 인코딩 장치는 인터 예측 또는 인트라 예측을 기반으로 크로마 성분들에 대한 예측 샘플들을 도출하는 예측부, 상기 예측 샘플들을 기반으로 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출하고, 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그를 생성하고, 상기 플래그를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 생성하는 레지듀얼 처리부 및 상기 크로마 성분들에 대한 예측 정보, 상기 크로마 성분들에 대한 레지듀얼 정보, 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 인코딩하는 엔트로피 인코딩부를 포함하고, 상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 한다.
본 문서에 따르면 크로마 성분들에 대한 양자화 파라미터 도출을 위하여 동일한 크로마 양자화 파라미터 테이블이 사용되는지 여부를 나타내는 플래그를 기반으로 크로마 성분들에 대한 크로마 양자화 파라미터 테이블이 결정될 수 있고, 영상의 특성에 따른 양자화 파라미터를 기반으로 코딩을 수행하여 코딩 효율을 향상시킬 수 있다.
본 문서에 따르면 크로마 성분들에 대하여 개별적으로 또는 공통적으로 시그널링되는 크로마 양자화 데이터를 기반으로 크로마 성분들에 대한 크로마 양자화 파라미터 테이블을 결정할 수 있고, 영상의 특성에 따른 양자화 파라미터를 기반으로 코딩을 수행하여 코딩 효율을 향상시킬 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 7은 본 문서에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다.
도 8은 본 문서에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다.
도 9는 본 문서에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다.
도 10은 본 문서에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다.
도 11은 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 7은 본 문서에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다.
도 8은 본 문서에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다.
도 9는 본 문서에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다.
도 10은 본 문서에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다.
도 11은 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 문서의 실시예들을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 문서의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 문서에서 설명되는 도면 상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 문서의 본질에서 벗어나지 않는 한 본 문서의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 문서의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면 상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 서브픽처(subpicture)/슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 서브픽처/슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 서브픽처/슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 또한, 서브 픽처는 픽처 내 하나 이상의 슬라이스의 사각 영역을 나타낼 수 있다(a subpicture may represent a rectangular region of one or more slices within a picture). 즉, 서브 픽처는 픽처의 직사각형 영역을 총괄적으로 커버하는 하나 이상의 슬라이스를 포함할 수 있다(a subpicture contains one or more slices that collectively cover a rectangular region of a picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불리 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "예측(인트라 예측)"로 표시된 경우, "예측"의 일례로 "인트라 예측"이 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "예측"은 "인트라 예측"으로 제한(limit)되지 않고, "인트라 예측"이 "예측"의 일례로 제안될 것일 수 있다. 또한, "예측(즉, 인트라 예측)"으로 표시된 경우에도, "예측"의 일례로 "인트라 예측"이 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
이하의 도면은 본 명세서의 구체적인 일례를 설명하기 위해 작성되었다. 도면에 기재된 구체적인 장치의 명칭이나 구체적인 신호/메시지/필드의 명칭은 예시적으로 제시된 것이므로, 본 명세서의 기술적 특징이 이하의 도면에 사용된 구체적인 명칭에 제한되지 않는다.
도 2는 본 문서의 실시예들이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 문서에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측 모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Loeve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(250)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(200)와 디코딩 장치(300)에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 문서의 실시예들이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memory, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 322)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 2의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 2의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들을 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(200)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
본 문서에서 양자화/역양자화 및/또는 변환/역변환 중 적어도 하나는 생략될 수 있다. 상기 양자화/역양자화가 생략되는 경우, 상기 양자화된 변환 계수는 변환 계수라고 불릴 수 있다. 상기 변환/역변환이 생략되는 경우, 상기 변환 계수는 계수 또는 레지듀얼 계수 라고 불릴 수도 있고, 또는 표현의 통일성을 위하여 변환 계수라고 여전히 불릴 수도 있다.
본 문서에서 양자화된 변환 계수 및 변환 계수는 각각 변환 계수 및 스케일링된(scaled) 변환 계수라고 지칭될 수 있다. 이 경우 레지듀얼 정보는 변환 계수(들)에 관한 정보를 포함할 수 있고, 상기 변환 계수(들)에 관한 정보는 레지듀얼 코딩 신택스를 통하여 시그널링될 수 있다. 상기 레지듀얼 정보(또는 상기 변환 계수(들)에 관한 정보)를 기반으로 변환 계수들이 도출될 수 있고, 상기 변환 계수들에 대한 역변환(스케일링)을 통하여 스케일링된 변환 계수들이 도출될 수 있다. 상기 스케일링된 변환 계수들에 대한 역변환(변환)을 기반으로 레지듀얼 샘플들이 도출될 수 있다. 이는 본 문서의 다른 부분에서도 마찬가지로 적용/표현될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
인트라 예측은 현재 블록이 속하는 픽처(이하, 현재 픽처) 내의 참조 샘플들을 기반으로 현재 블록에 대한 예측 샘플들을 생성하는 예측을 나타낼 수 있다. 현재 블록에 인트라 예측이 적용되는 경우, 현재 블록의 인트라 예측에 사용할 주변 참조 샘플들이 도출될 수 있다. 상기 현재 블록의 주변 참조 샘플들은 nWxnH 크기의 현재 블록의 좌측(left) 경계에 인접한 샘플 및 좌하측(bottom-left)에 이웃하는 총 2xnH 개의 샘플들, 현재 블록의 상측(top) 경계에 인접한 샘플 및 우상측(top-right)에 이웃하는 총 2xnW 개의 샘플들 및 현재 블록의 좌상측(top-left)에 이웃하는 1개의 샘플을 포함할 수 있다. 또는, 상기 현재 블록의 주변 참조 샘플들은 복수열의 상측 주변 샘플들 및 복수행의 좌측 주변 샘플들을 포함할 수도 있다. 또한, 상기 현재 블록의 주변 참조 샘플들은 nWxnH 크기의 현재 블록의 우측(right) 경계에 인접한 총 nH 개의 샘플들, 현재 블록의 하측(bottom) 경계에 인접한 총 nW 개의 샘플들 및 현재 블록의 우하측(bottom-right)에 이웃하는 1개의 샘플을 포함할 수도 있다.
다만, 현재 블록의 주변 참조 샘플들 중 일부는 아직 디코딩되지 않았거나, 이용 가능하지 않을 수 있다. 이 경우, 디코더는 이용 가능한 샘플들로 이용 가능하지 않은 샘플들을 대체(substitution)하여 예측에 사용할 주변 참조 샘플들을 구성할 수 있다. 또는, 이용 가능한 샘플들의 보간(interpolation)을 통하여 예측에 사용할 주변 참조 샘플들을 구성할 수 있다.
주변 참조 샘플들이 도출된 경우, (i) 현재 블록의 주변(neighboring) 참조 샘플들의 평균(average) 혹은 인터폴레이션(interpolation)을 기반으로 예측 샘플을 유도할 수 있고, (ii) 현재 블록의 주변 참조 샘플들 중 예측 샘플에 대하여 특정 (예측) 방향에 존재하는 참조 샘플을 기반으로 상기 예측 샘플을 유도할 수도 있다. (i)의 경우는 비방향성(non-directional) 모드 또는 비각도(non-angular) 모드, (ii)의 경우는 방향성(directional) 모드 또는 각도(angular) 모드라고 불릴 수 있다.
또한, 상기 주변 참조 샘플들 중 상기 현재 블록의 예측 샘플을 기준으로 상기 현재 블록의 인트라 예측 모드의 예측 방향에 위치하는 제1 주변 샘플과 상기 예측 방향의 반대 방향에 위치하는 제2 주변 샘플과의 보간을 통하여 상기 예측 샘플이 생성될 수도 있다. 상술한 경우는 선형 보간 인트라 예측(Linear interpolation intra prediction, LIP) 이라고 불릴 수 있다. 또한, 선형 모델(linear model, LM)을 이용하여 루마 샘플들을 기반으로 크로마 예측 샘플들이 생성될 수도 있다. 이 경우는 LM 모드 또는 CCLM(chroma component LM) 모드라고 불릴 수 있다.
또한, 필터링된 주변 참조 샘플들을 기반으로 상기 현재 블록의 임시 예측 샘플을 도출하고, 상기 기존의 주변 참조 샘플들, 즉, 필터링되지 않은 주변 참조 샘플들 중 상기 인트라 예측 모드에 따라 도출된 적어도 하나의 참조 샘플과 상기 임시 예측 샘플을 가중합(weighted sum)하여 상기 현재 블록의 예측 샘플을 도출할 수도 있다. 상술한 경우는 PDPC(Position dependent intra prediction) 라고 불릴 수 있다.
또한, 현재 블록의 주변 다중 참조 샘플 라인 중 가장 예측 정확도가 높은 참조 샘플 라인을 선택하여 해당 라인에서 예측 방향에 위치하는 참조 샘플을 이용하여 예측 샘플을 도출하고 이 때, 사용된 참조 샘플 라인을 디코딩 장치에 지시(시그널링)하는 방법으로 인트라 예측 부호화를 수행할 수 있다. 상술한 경우는 다중 참조 라인 (multi-reference line) 인트라 예측 또는 MRL 기반 인트라 예측이라고 불릴 수 있다.
또한, 현재 블록을 수직 또는 수평의 서브파티션들로 나누어 동일한 인트라 예측 모드를 기반으로 인트라 예측을 수행하되, 상기 서브파티션 단위로 주변 참조 샘플들을 도출하여 이용할 수 있다. 즉, 이 경우 현재 블록에 대한 인트라 예측 모드가 상기 서브파티션들에 동일하게 적용되되, 상기 서브파티션 단위로 주변 참조 샘플을 도출하여 이용함으로써 경우에 따라 인트라 예측 성능을 높일 수 있다. 이러한 예측 방법은 ISP (intra sub-partitions) 기반 인트라 예측이라고 불릴 수 있다.
상술한 인트라 예측 방법들은 인트라 예측 모드와 구분하여 인트라 예측 타입이라고 불릴 수 있다. 상기 인트라 예측 타입은 인트라 예측 기법 또는 부가 인트라 예측 모드 등 다양한 용어로 불릴 수 있다. 예를 들어 상기 인트라 예측 타입(또는 부가 인트라 예측 모드 등)은 상술한 LIP, PDPC, MRL, ISP 중 적어도 하나를 포함할 수 있다. 상기 LIP, PDPC, MRL, ISP 등의 특정 인트라 예측 타입을 제외한 일반 인트라 예측 방법은 노멀 인트라 예측 타입이라고 불릴 수 있다. 노멀 인트라 예측 타입은 상기와 같은 특정 인트라 예측 타입이 적용되지 않는 경우 일반적으로 적용될 수 있으며, 상술한 인트라 예측 모드를 기반으로 예측이 수행될 수 있다. 한편, 필요에 따라서 도출된 예측 샘플에 대한 후처리 필터링이 수행될 수도 있다.
구체적으로, 인트라 예측 절차는 인트라 예측 모드/타입 결정 단계, 주변 참조 샘플 도출 단계, 인트라 예측 모드/타입 기반 예측 샘플 도출 단계를 포함할 수 있다. 또한, 필요에 따라서 도출된 예측 샘플에 대한 후처리 필터링(post-filtering) 단계가 수행될 수도 있다.
인트라 예측이 적용되는 경우, 주변 블록의 인트라 예측 모드를 이용하여 현재 블록에 적용되는 인트라 예측 모드가 결정될 수 있다. 예를 들어, 디코딩 장치는 현재 블록의 주변 블록(ex. 좌측 및/또는 상측 주변 블록)의 인트라 예측 모드 및 추가적인 후보 모드들을 기반으로 도출된 MPM(most probable mode) 리스트 내 MPM 후보들 중 하나를 수신된 MPM 인덱스를 기반으로 선택할 수 있으며, 또는 상기 MPM 후보들(및 플래너 모드)에 포함되지 않은 나머지 인트라 예측 모드들 중 하나를 리메이닝 인트라 예측 모드 정보를 기반으로 선택할 수 있다. 상기 MPM 리스트는 플래너 모드를 후보로 포함하거나 포함하지 않도록 구성될 수 있다. 예를 들어, 상기 MPM 리스트가 플래너 모드를 후보로 포함하는 경우 상기 MPM 리스트는 6개의 후보를 가질 수 있고, 상기 MPM 리스트가 플래너 모드를 후보로 포함하지 않는 경우 상기 MPM 리스트는 5개의 후보를 가질 수 있다. 상기 MPM 리스트가 플래너 모드를 후보로 포함하지 않는 경우 현재 블록의 인트라 예측 모드가 플래너 모드가 아닌지 나타내는 not 플래너 플래그(ex. intra_luma_not_planar_flag)가 시그널링될 수 있다. 예를 들어, MPM 플래그가 먼저 시그널링되고, MPM 인덱스 및 not 플래너 플래그는 MPM 플래그의 값이 1인 경우 시그널링될 수 있다. 또한, 상기 MPM 인덱스는 상기 not 플래너 플래그의 값이 1인 경우 시그널링될 수 있다. 여기서, 상기 MPM 리스트가 플래너 모드를 후보로 포함하지 않도록 구성되는 것은, 상기 플래너 모드가 MPM이 아니라는 것이라기보다는, MPM으로 항상 플래너 모드가 고려되기에 먼저 플래그(not planar flag)를 시그널링하여 플래너 모드인지 여부를 먼저 확인하기 위함이다.
예를 들어, 현재 블록에 적용되는 인트라 예측 모드가 MPM 후보들(및 플래너 모드) 중에 있는지, 아니면 리메이닝 모드 중에 있는지는 MPM 플래그 (ex. intra_luma_mpm_flag)를 기반으로 지시될 수 있다. MPM 플래그의 값 1은 상기 현재 블록에 대한 인트라 예측 모드가 MPM 후보들(및 플래너 모드) 내에 있음을 나타낼 수 있으며, MPM flag의 값 0은 상기 현재 블록에 대한 인트라 예측 모드가 MPM 후보들(및 플래너 모드) 내에 없음을 나타낼 수 있다. 상기 not 플래너 플래그 (ex. intra_luma_not_planar_flag) 값 0은 상기 현재 블록에 대한 인트라 예측 모드가 플래너 모드임을 나타낼 수 있고, 상기 not 플래너 플래그 값 1은 상기 현재 블록에 대한 인트라 예측 모드가 플래너 모드가 아님을 나타낼 수 있다. 상기 MPM 인덱스는 mpm_idx 또는 intra_luma_mpm_idx 신텍스 요소의 형태로 시그널링될 수 있고, 상기 리메이닝 인트라 예측 모드 정보는 rem_intra_luma_pred_mode 또는 intra_luma_mpm_remainder 신텍스 요소의 형태로 시그널링될 수 있다. 예를 들어, 상기 리메이닝 인트라 예측 모드 정보는 전체 인트라 예측 모드들 중 상기 MPM 후보들(및 플래너 모드)에 포함되지 않는 나머지 인트라 예측 모드들을 예측 모드 번호 순으로 인덱싱하여 그 중 하나를 가리킬 수 있다. 상기 인트라 예측 모드는 루마 성분(샘플)에 대한 인트라 예측 모드일 수 있다. 이하, 인트라 예측 모드 정보는 상기 MPM flag (ex. intra_luma_mpm_flag), 상기 not planar flag (ex. intra_luma_not_planar_flag), 상기 MPM 인덱스 (ex. mpm_idx 또는 intra_luma_mpm_idx), 상기 리메이닝 인트라 예측 모드 정보 (rem_intra_luma_pred_mode 또는 intra_luma_mpm_remainder) 중 적어도 하나를 포함할 수 있다. 본 문서에서 MPM 리스트는 MPM 후보 리스트, candModeList 등 다양한 용어로 불릴 수 있다. MIP가 현재 블록에 적용되는 경우, MIP를 위한 별도의 mpm flag(ex. intra_mip_mpm_flag), mpm 인덱스(ex. intra_mip_mpm_idx), 리메이닝 인트라 예측 모드 정보(ex. intra_mip_mpm_remainder)가 시그널링될 수 있으며, 상기 not planar flag는 시그널링되지 않는다.
다시 말해, 일반적으로 영상에 대한 블록 분할이 되면, 코딩하려는 현재 블록과 주변(neighboring) 블록은 비슷한 영상 특성을 갖게 된다. 따라서, 현재 블록과 주변 블록은 서로 동일하거나 비슷한 인트라 예측 모드를 가질 확률이 높다. 따라서, 인코더는 현재 블록의 인트라 예측 모드를 인코딩하기 위해 주변 블록의 인트라 예측 모드를 이용할 수 있다.
예를 들어, 인코더/디코더는 현재 블록에 대한 MPM(most probable modes) 리스트를 구성할 수 있다. 상기 MPM 리스트는 MPM 후보 리스트라고 나타낼 수도 있다. 여기서, MPM이라 함은 인트라 예측 모드 코딩시 현재 블록과 주변 블록의 유사성을 고려하여 코딩 효율을 향상시키기 위해 이용되는 모드를 의미할 수 있다. 상술한 바와 같이 MPM 리스트는 플래너 모드를 포함하여 구성될 수 있고, 또는 플래너 모드를 제외하여 구성될 수 있다. 예를 들어, MPM 리스트가 플래너 모드를 포함하는 경우 MPM 리스트의 후보들의 개수는 6개일 수 있다. 그리고, MPM 리스트가 플래너 모드를 포함하지 않는 경우, MPM 리스트의 후보들의 개수는 5개일 수 있다.
인코더/디코더는 5개 또는 6개의 MPM을 포함하는 MPM 리스트를 구성할 수 있다.
MPM 리스트를 구성하기 위하여 디폴트 인트라 모드들 (Default intra modes), 주변 인트라 모드들 (Neighbour intra modes) 및 도출된 인트라 모드들 (Derved intra modes)의 3가지 종류의 모드들이 고려될 수 있다.
상기 주변 인트라 모드들을 위하여, 두 개의 주변 블록들, 즉, 좌측 주변 블록 및 상측 주변 블록가 고려될 수 있다.
상술한 바와 같이 만약 MPM 리스트가 플래너 모드를 포함하지 않도록 구성하는 경우, 상기 리스트에서 플래너(planar) 모드가 제외되며, 상기 MPM 리스트 후보들의 개수는 5개로 설정될 수 있다.
또한, 인트라 예측 모드 중 비방향성 모드(또는 비각도 모드)는 현재 블록의 주변(neighboring) 참조 샘플들의 평균(average) 기반의 DC 모드 또는 보간(interpolation) 기반의 플래너(planar) 모드를 포함할 수 있다.
한편, 인터 예측이 적용되는 경우, 인코딩 장치/디코딩 장치의 예측부는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(ex. 샘플값들, 또는 움직임 정보)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다(Inter prediction can be a prediction derived in a manner that is dependent on data elements (ex. sample values or motion information) of picture(s) other than the current picture). 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 같을 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 상기 현재 블록의 움직임 벡터를 도출할 수 있다.
상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등)에 따라 L0 움직임 정보 및/또는 L1 움직임 정보를 포함할 수 있다. L0 방향의 움직임 벡터는 L0 움직임 벡터 또는 MVL0라고 불릴 수 있고, L1 방향의 움직임 벡터는 L1 움직임 벡터 또는 MVL1이라고 불릴 수 있다. L0 움직임 벡터에 기반한 예측은 L0 예측이라고 불릴 수 있고, L1 움직임 벡터에 기반한 예측을 L1 예측이라고 불릴 수 있고, 상기 L0 움직임 벡터 및 상기 L1 움직임 벡터 둘 다에 기반한 예측을 쌍(Bi) 예측이라고 불릴 수 있다. 여기서 L0 움직임 벡터는 참조 픽처 리스트 L0 (L0)에 연관된 움직임 벡터를 나타낼 수 있고, L1 움직임 벡터는 참조 픽처 리스트 L1 (L1)에 연관된 움직임 벡터를 나타낼 수 있다. 참조 픽처 리스트 L0는 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 포함할 수 있고, 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 포함할 수 있다. 상기 이전 픽처들은 순방향 (참조) 픽처라고 불릴 수 있고, 상기 이후 픽처들은 역방향 (참조) 픽처라고 불릴 수 있다. 상기 참조 픽처 리스트 L0은 상기 현재 픽처보다 출력 순서상 이후 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트 L0 내에서 상기 이전 픽처들이 먼저 인덱싱되고 상기 이후 픽처들은 그 다음에 인덱싱될 수 있다. 상기 참조 픽처 리스트 L1은 상기 현재 픽처보다 출력 순서상 이전 픽처들을 참조 픽처들로 더 포함할 수 있다. 이 경우 상기 참조 픽처 리스트1 내에서 상기 이후 픽처들이 먼저 인덱싱되고 상기 이전 픽처들은 그 다음에 인덱싱 될 수 있다. 여기서 출력 순서는 POC(picture order count) 순서(order)에 대응될 수 있다.
인터 예측에 기반한 비디오/영상 인코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
인코딩 장치는 현재 블록에 대한 인터 예측을 수행한다(S400). 인코딩 장치는 현재 블록의 인터 예측 모드 및 움직임 정보를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서 인터 예측 모드 결정, 움직임 정보 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 인코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 상기 현재 블록의 움직임 정보를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 인코딩 장치의 인터 예측부는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 상기 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 상기 참조 블록과 상기 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다. 인코딩 장치는 다양한 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 인코딩 장치는 상기 다양한 예측 모드들에 대한 RD cost를 비교하고 상기 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다.
예를 들어, 인코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 상기 현재 블록과 중 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 디코딩 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다.
다른 예로, 인코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp (motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 이 경우, 예를 들어, 상술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 mvp 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 mvp 후보가 상기 선택된 mvp 후보가 될 있다. 상기 현재 블록의 움직임 벡터에서 상기 mvp를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 MVD에 관한 정보가 디코딩 장치로 시그널링될 수 있다. 또한, (A)MVP 모드가 적용되는 경우, 상기 참조 픽처 인덱스의 값은 참조 픽처 인덱스 정보 구성되어 별도로 상기 디코딩 장치로 시그널링될 수 있다.
인코딩 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S410). 인코딩 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다.
인코딩 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩한다(S420). 인코딩 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 정보에 관한 정보를 포함할 수 있다. 상기 움직임 정보에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 상술한 MVD에 관한 정보 및/또는 참조 픽처 인덱스 정보를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 L0 예측, L1 예측, 또는 쌍(bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 디코딩 장치로 전달될 수 있고, 또는 네트워크를 통하여 디코딩 장치로 전달될 수도 있다.
한편, 상술한 바와 같이 인코딩 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록 포함)를 생성할 수 있다. 이는 디코딩 장치에서 수행되는 것과 동일한 예측 결과를 인코딩 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 인코딩 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)을 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
인터 예측에 기반한 비디오/영상 디코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 5를 참조하면, 디코딩 장치는 상기 인코딩 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 디코딩 장치는 수신된 예측 정보를 기반으로 현재 블록에 예측을 수행하고 예측 샘플들을 도출할 수 있다.
구체적으로 디코딩 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S500). 디코딩 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 인터 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되는지 또는 (A)MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 인터 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 인터 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 (A)MVP 모드를 포함할 수 있고, 또는 후술하는 다양한 인터 예측 모드들을 포함할 수 있다.
디코딩 장치는 상기 결정된 인터 예측 모드를 기반으로 상기 현재 블록의 움직임 정보를 도출한다(S510). 예를 들어, 디코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 상술한 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다. 상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 이용될 수 있다.
다른 예로, 디코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp (motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 상기 선택은 상술한 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 mvp와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 또한, 상기 참조 픽처 인덱스 정보를 기반으로 상기 현재 블록의 참조 픽처 인덱스를 도출할 수 있다. 상기 현재 블록에 관한 참조 픽처 리스트 내에서 상기 참조 픽처 인덱스가 가리키는 픽처가 상기 현재 블록의 인터 예측을 위하여 참조되는 참조 픽처로 도출될 수 있다.
한편, 후술하는 바와 같이 후보 리스트 구성 없이 상기 현재 블록의 움직임 정보가 도출될 수 있으며, 이 경우 후술하는 예측 모드에서 개시된 절차에 따라 상기 현재 블록의 움직임 정보가 도출될 수 있다. 이 경우 상술한 바와 같은 후보 리스트 구성은 생략될 수 있다.
디코딩 장치는 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S520). 이 경우 상기 현재 블록의 참조 픽처 인덱스를 기반으로 상기 참조 픽처를 도출하고, 상기 현재 블록의 움직임 벡터가 상기 참조 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 이 경우 후술하는 바와 같이 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 디코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 수신된 움직임 정보에 관한 정보를 기반으로 상기 현재 블록의 움직임 정보(움직임 벡터 및/또는 참조 픽처 인덱스 등)를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
디코딩 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성한다(S530). 디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다. (S540). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 6을 참조하면, 상술한 바와 같이 인터 예측 절차는 인터 예측 모드 결정 단계, 결정된 예측 모드에 따른 움직임 정보 도출 단계, 도출된 움직임 정보에 기반한 예측 수행(예측 샘플 생성) 단계를 포함할 수 있다. 상기 인터 예측 절차는 상술한 바와 같이 인코딩 장치 및 디코딩 장치에서 수행될 수 있다. 본 문서에서 코딩 장치라 함은 인코딩 장치 및/또는 디코딩 장치를 포함할 수 있다.
도 6을 참조하면, 코딩 장치는 현재 블록에 대한 인터 예측 모드를 결정한다(S600). 픽처 내 현재 블록의 예측을 위하여 다양한 인터 예측 모드가 사용될 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(Affine) 모드, 서브블록 머지 모드, MMVD (merge with MVD) 모드 등 다양한 모드가 사용될 수 있다. DMVR (Decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, Bi-prediction with CU-level weight (BCW), Bi-directional optical flow (BDOF) 등이 부수적인 모드로 더 혹은 대신 사용될 수 있다. 어파인 모드는 어파인 움직임 예측(affine motion prediction) 모드라고 불릴 수도 있다. MVP 모드는 AMVP(advanced motion vector prediction) 모드라고 불릴 수도 있다. 본 문서에서 일부 모드 및/또는 일부 모드에 의하여 도출된 움직임 정보 후보는 다른 모드의 움직임 정보 관련 후보들 중 하나로 포함될 수도 있다. 예를 들어, HMVP 후보는 상기 머지/스킵 모드의 머지 후보로 추가될 수 있고, 또는 상기 MVP 모드의 mvp 후보로 추가될 수도 있다. 상기 HMVP 후보가 상기 머지 모드 또는 스킵 모드의 움직임 정보 후보로 사용되는 경우, 상기 HMVP 후보는 HMVP 머지 후보라고 불릴 수 있다.
현재 블록의 인터 예측 모드를 가리키는 예측 모드 정보가 인코딩 장치로부터 디코딩 장치로 시그널링될 수 있다. 상기 예측 모드 정보는 비트스트림에 포함되어 디코딩 장치에 수신될 수 있다. 상기 예측 모드 정보는 다수의 후보 모드들 중 하나를 지시하는 인덱스 정보를 포함할 수 있다. 또는, 플래그 정보의 계층적 시그널링을 통하여 인터 예측 모드를 지시할 수도 있다. 이 경우 상기 예측 모드 정보는 하나 이상의 플래그들을 포함할 수 있다. 예를 들어, 스킵 플래그를 시그널링하여 스킵 모드 적용 여부를 지시하고, 스킵 모드가 적용 안되는 경우에 머지 플래그를 시그널링하여 머지 모드 적용 여부를 지시하고, 머지 모드가 적용 안되는 경우에 MVP 모드 적용되는 것으로 지시하거나 추가적인 구분을 위한 플래그를 더 시그널링할 수도 있다. 어파인 모드는 독립적인 모드로 시그널링될 수도 있고, 또는 머지 모드 또는 MVP 모드 등에 종속적인 모드로 시그널링될 수도 있다. 예를 들어, 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드를 포함할 수 있다.
코딩 장치는 상기 현재 블록에 대한 움직임 정보를 도출한다(S610). 상기 움직임 정보 도출을 상기 인터 예측 모드를 기반으로 도출될 수 있다.
코딩 장치는 현재 블록의 움직임 정보를 이용하여 인터 예측을 수행할 수 있다. 인코딩 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 인코딩 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 위상(phase) 기반 샘플 값들의 차를 기반으로 도출할 수 있다. 예를 들어, 블록의 유사성은 현재 블록(or 현재 블록의 템플릿)과 참조 블록(or 참조 블록의 템플릿) 간 SAD를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 디코딩 장치로 시그널링될 수 있다.
코딩 장치는 상기 현재 블록에 대한 움직임 정보를 기반으로 인터 예측을 수행한다(S620). 코딩 장치는 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플(들)을 도출할 수 있다. 상기 예측 샘플들을 포함하는 현재 블록은 예측된 블록이라고 불릴 수 있다.
한편, 상술한 바와 같이 인코딩 장치의 양자화부는 변환 계수들에 양자화를 적용하여 양자화된 변환 계수들을 도출할 수 있고, 인코딩 장치의 역양자화부 또는 디코딩 장치의 역양자화부는 양자화된 변환 계수들에 역양자화를 적용하여 변환 계수들을 도출할 수 있다.
일반적으로 비디오/영상 코딩에서는 양자화율을 변화시킬 수 있으며, 변화된 양자화율을 이용하여 압축를을 조절할 수 있다. 구현 관점에서는 복잡도를 고려하여 양자화율을 직접 사용하는 대신 양자화 파라미터(quantization parameter, QP)가 사용될 수 있다. 예를 들어, 0부터 63까지의 정수 값의 양자화 파라미터가 사용될 수 있으며, 각 양자화 파라미터 값은 실제 양자화율에 대응될 수 있다. 또한, 예를 들어, 루마 성분(루마 샘플)에 대한 양자화 파라미터(QPY)와 크로마 성분(크로마 샘플)에 대한 양자화 파라미터(QPC)는 다르게 설정될 수 있다.
양자화 과정은 변환 계수(C)를 입력으로 하고, 양자화율(Qstep)로 나누어서, 이를 기반으로 양자화된 변환 계수(C`)을 얻을 수 있다. 이 경우, 계산 복잡도를 고려하여 양자화율에 스케일을 곱하여 정수 형태로 만들고, 스케일 값에 해당하는 값만큼 쉬프트 연산을 수행할 수 있다. 양자화율과 스케일 값의 곱을 기반으로 양자화 스케일(quantization scale)이 도출될 수 있다. 즉, QP에 따라 상기 양자화 스케일이 도출될 수 있다. 예를 들어, 상기 변환 계수(C)에 상기 양자화 스케일을 적용하여, 이를 기반으로 양자화된 변환 계수(C`)가 도출될 수도 있다.
역양자화 과정은 양자화 과정의 역과정으로 양자화된 변환 계수(C`)에 양자화율(Qstep)을 곱하여, 이를 기반으로 복원된 변환 계수(C``)를 얻을 수 있다. 이 경우 상기 양자화 파라미터에 따라 레벨 스케일(level scale)이 도출될 수 있으며, 상기 양자화된 변환 계수(C`)에 상기 레벨 스케일을 적용하여, 이를 기반으로 복원된 변환 계수(C``)가 도출될 수 있다. 복원된 변환 계수(C``)는 변환 및/또는 양자화 과정에서의 손실(loss)로 인하여 최초 변환 계수(C)와 다소 차이가 있을 수 있다. 따라서, 인코딩 장치에서도 디코딩 장치에서와 동일하게 역양자화을 수행한다.
한편, 주파수에 따라 양자화 강도를 조절하는 적응적 주파수별 가중 양자화(adaptive frequency weighting quantization) 기술이 적용될 수 있다. 상기 적응적 주파수별 가중 양자화 기술은 주파수별로 양자화 강도를 다르게 적용하는 방법이다. 상기 적응적 주파수별 가중 양자화는 미리 정의된 양자화 스케일링 메트릭스를 이용하여 각 주파수별 양자화 강도를 다르게 적용할 수 있다. 즉, 상술한 양자화/역양자화 과정은 상기 양자화 스케일링 메트릭스를 기반으로 수행될 수 있다. 예를 들어, 현재 블록의 사이즈 및/또는 상기 현재 블록의 레지듀얼 신호를 생성하기 위하여 상기 현재 블록에 적용된 예측 모드가 인터 예측인지, 인트라 예측인지에 따라 다른 양자화 스케일링 메트릭스가 사용될 수 있다. 상기 양자화 스케일링 메트릭스는 양자화 메트릭스 또는 스케일링 메트릭스라고 불릴 수 있다. 상기 양자화 스케일링 메트릭스는 미리 정의될 수 있다. 또한, 주파수 적응적 스케일링을 위하여 상기 양자화 스케일링 메트릭스에 대한 주파수별 양자화 스케일 정보가 인코딩 장치에서 구성/인코딩되어 디코딩 장치로 시그널링될 수 있다. 상기 주파수별 양자화 스케일 정보는 양자화 스케일링 정보라고 불릴 수 있다. 상기 주파수별 양자화 스케일 정보는 스케일링 리스트 데이터(scaling_list_data)를 포함할 수 있다. 상기 스케일링 리스트 데이터를 기반으로 (수정된) 상기 양자화 스케일링 메트릭스가 도출될 수 있다. 또한 상기 주파수별 양자화 스케일 정보는 상기 스케일링 리스트 데이터의 존부 여부를 지시하는 존부 플래그(present flag) 정보를 포함할 수 있다. 또는, 상기 스케일링 리스트 데이터가 상위 레벨(예를 들어, SPS)에서 시그널링된 경우, 상기 상위 레벨의 하위 레벨(예를 들어, PPS 또는 tile group header 등)에서 상기 스케일링 리스트 데이터가 수정되는지 여부를 지시하는 정보 등이 더 포함될 수 있다.
상술한 내용과 같이 양자화 파라미터를 기반으로 루마 성분 및 크로마 성분에 양자화/역양자화가 적용될 수 있다.
코딩 유닛(coding unit)에 대한 양자화 파라미터들은 픽처 및/또는 슬라이스 레벨로 시그널링되는 정보를 기반으로 결정될 수 있다. 예를 들어, 상기 양자화 파라미터들은 후술하는 내용과 같이 도출될 수 있다.
예를 들어, SPS(sequence parameter set)를 통하여 양자화 파라미터들 도출과 관련한 정보가 다음의 표와 같이 시그널링될 수 있다.
상술한 표 1의 신텍스 엘리먼트들(syntax elements)에 대한 시멘틱(semantics)은 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 bit_depth_luma_minus8 는 루마 어레이(luma array)의 샘플들의 비트 뎁스(bit depth)인 BitDepthY 및 루마 양자화 파라미터 레인지 오프셋(luma quantization parameter range offset)인 QpBdOffsetY 을 나타낼 수 있다. 즉, 예를 들어, 상기 신텍스 엘리먼트 bit_depth_luma_minus8 을 기반으로 상기 BitDepthY 및 상기 QpBdOffsetY 가 도출될 수 있다. 예를 들어, 상기 BitDepthY 는 상기 신텍스 엘리먼트 bit_depth_luma_minus8 의 값에 8을 더한 값으로 도출될 수 있고, 상기 QpBdOffsetY 는 상기 신텍스 엘리먼트 bit_depth_luma_minus8 의 값에 6을 곱한 값으로 도출될 수 있다. 또한, 상기 bit_depth_luma_minus8는 0 내지 8의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 bit_depth_chroma_minus8 는 크로마 어레이(chroma array)의 샘플들의 비트 뎁스(bit depth)인 BitDepthc 및 크로마 양자화 파라미터 레인지 오프셋(chroma quantization parameter range offset)인 QpBdOffsetc 을 나타낼 수 있다. 즉, 예를 들어, 상기 신텍스 엘리먼트 bit_depth_chroma_minus8 을 기반으로 상기 BitDepthc 및 상기 QpBdOffsetc 가 도출될 수 있다. 예를 들어, 상기 BitDepthc 는 상기 신텍스 엘리먼트 bit_depth_chroma_minus8 의 값에 8을 더한 값으로 도출될 수 있고, 상기 QpBdOffsetc 는 상기 신텍스 엘리먼트 bit_depth_chroma_minus8 의 값에 6을 곱한 값으로 도출될 수 있다. 또한, 상기 bit_depth_chroma_minus8 는 0 내지 8의 범위에 있을 수 있다.
또한, 예를 들어, PPS(picture parameter set)를 통하여 양자화 파라미터들 도출과 관련한 정보가 다음의 표와 같이 시그널링될 수 있다. 상기 정보는 크로마 Cb 오프셋(Chroma Cb offset), 크로마 Cr 오프셋(Chroma Cr offset), 조인트 크로마 오프셋 및 이니셜 양자화 파라미터를 포함할 수 있다. 즉, 상기 정보는 크로마 Cb 오프셋(Chroma Cb offset), 크로마 Cr 오프셋(Chroma Cr offset), 조인트 크로마 오프셋 및 이니셜 양자화 파라미터에 대한 신텍스 엘리먼트들을 포함할 수 있다.
상술한 표 3의 신텍스 엘리먼트들(syntax elements)에 대한 시멘틱(semantics)은 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 init_qp_minus26 에 26을 더한 값은 PPS를 참조하는 각 슬라이스에 대한 SliceQpY 의 초기 값(initial value)을 나타낼 수 있다. slice_qp_delta 의 0이 아닌 값(non-zero value)이 디코딩되는 경우, 상기 SliceQpY 의 초기 값은 슬라이스 레이어에서 수정될 수 있다. 상기 init_qp_minus26 0 는 -( 26 + QpBdOffsetY ) 내지 +37의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 pps_cb_qp_offset 및 pps_cr_qp_offset 는 각각 Qp'Cb 및 Qp'Cr 를 도출하는데 사용되는 루마 양자화 파라미터 Qp'Y에 대한 오프셋(offset)을 나타낼 수 있다. 상기 pps_cb_qp_offset 및 pps_cr_qp_offset 는 -12 내지 +12의 범위에 있을 수 있다. 또한, ChromaArrayType 이 0인 경우, 디코딩 과정에서 pps_cb_qp_offset 및 pps_cr_qp_offset 는 사용되지 않을 수 있고, 디코딩 장치는 상기 신텍스 엘리먼트들의 값을 무시(ignore)할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 pps_joint_cbcr_qp_offset 는 Qp'CbCr 를 도출하는데 사용되는 루마 양자화 파라미터 Qp'Y에 대한 오프셋(offset)을 나타낼 수 있다. 상기 pps_joint_cbcr_qp_offset 는 -12 내지 +12의 범위에 있을 수 있다. 또한, ChromaArrayType 이 0인 경우, 디코딩 과정에서 pps_joint_cbcr_qp_offset 는 사용되지 않을 수 있고, 디코딩 장치는 상기 신텍스 엘리먼트의 값을 무시(ignore)할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 pps_slice_chroma_qp_offsets_present_flag 는 신텍스 엘리먼트들 slice_cb_qp_offset 및 slice_cr_qp_offset 연관된 슬라이스 헤더들에 존재(present)하는지 여부를 나타낼 수 있다. 예를 들어, 값이 1인 pps_slice_chroma_qp_offsets_present_flag는 slice_cb_qp_offset 및 slice_cr_qp_offset 연관된 슬라이스 헤더들에 존재(present)함을 나타낼 수 있다. 또한, 예를 들어, 값이 0인 pps_slice_chroma_qp_offsets_present_flag는 slice_cb_qp_offset 및 slice_cr_qp_offset 연관된 슬라이스 헤더들에 존재하지 않음을 나타낼 수 있다. 또한, ChromaArrayType 이 0인 경우, 디코딩 과정에서 pps_slice_chroma_qp_offsets_present_flag 는 0과 같을 수 있다.
상술한 내용과 같이 PPS 에서 파싱되는 신텍스 엘리먼트들은 init_qp_minus26, pps_cb_qp_offset_pps_cr_qp_offset, pps_joint_cbcr_qp_offset 및 pps_slice_chroma_qp_offsets_present_flag 일 수 있다. 신텍스 엘리먼트 init_qp_minus26는 PPS를 참조하는 각 슬라이스에 대한 SliceQpY의 초기 값을 나타낼 수 있다. 또한, 신텍스 엘리먼트들 pps_cb_qp_offset, pps_cr_qp_offset 및 pps_joint_cbcr_qp_offset은 루마 양자화 파라미터 Qp'Y에 대한 오프셋을 나타낼 수 있다. 또한, 신텍스 엘리먼트 pps_slice_chroma_qp_offsets_present_flag는 오프셋 파라미터가 슬라이스 헤더에 존재하는지 여부를 나타낼 수 있다.
또한, 예를 들어, 슬라이스 헤더(slice header)를 통하여 양자화 파라미터들 도출과 관련한 정보가 다음의 표와 같이 시그널링될 수 있다.
상술한 표 5의 신텍스 엘리먼트들(syntax elements)에 대한 시멘틱(semantics)은 다음의 표와 같을 수 있다.
예를 들어, slice_qp_delta는 코딩 유닛 레이어에서 CuQpDeltaVal의 값에 의해 수정(modified)될 때까지 슬라이스 내 코딩 블록에 사용될 QpY의 초기 값을 나타낼 수 있다. 예를 들어, 슬라이스에 대한 QpY의 초기 값, SliceQpY 는 26 + init_qp_minus26 + slice_qp_delta 으로 도출될 수 있다. SliceQpY 의 값은 -QpBdOffsetY 내지 +63 의 범위에 있을 수 있다.
또한, 예를 들어, slice_cb_qp_offset은 양자화 파라미터 Qp'Cb 의 값을 결정할 때 pps_cb_qp_offset의 값에 추가될 차이(difference)를 나타낼 수 있다. slice_cb_qp_offset의 값은 -12 내지 +12의 범위에 있을 수 있다. 또한, 예를 들어, slice_cb_qp_offset이 존재하지 않는 경우, 상기 slice_cb_qp_offset 는 0으로 간주(inferred)될 수 있다. pps_cb_qp_offset + slice_cb_qp_offset의 값은 12 내지 +12의 범위에 있을 수 있다.
또한, 예를 들어, slice_cr_qp_offset은 양자화 파라미터 Qp'Cr 의 값을 결정할 때 pps_cr_qp_offset의 값에 추가될 차이(difference)를 나타낼 수 있다. slice_cr_qp_offset의 값은 -12 내지 +12의 범위에 있을 수 있다. 또한, 예를 들어, slice_cr_qp_offset이 존재하지 않는 경우, 상기 slice_cr_qp_offset 는 0으로 간주(inferred)될 수 있다. pps_cr_qp_offset + slice_cr_qp_offset의 값은 12 내지 +12의 범위에 있을 수 있다.
또한, 예를 들어, slice_cbcr_qp_offset은 양자화 파라미터 Qp'CbCr 의 값을 결정할 때 pps_cbcr_qp_offset의 값에 추가될 차이(difference)를 나타낼 수 있다. slice_cbcr_qp_offset의 값은 -12 내지 +12의 범위에 있을 수 있다. 또한, 예를 들어, slice_cbcr_qp_offset이 존재하지 않는 경우, 상기 slice_cbcr_qp_offset 는 0으로 간주(inferred)될 수 있다. pps_cbcr_qp_offset + slice_cbcr_qp_offset의 값은 12 내지 +12의 범위에 있을 수 있다.
루마 및 크로마 양자화 파라미터에 대한 도출 프로세스는 상기 프로세스에 대한 입력이 루마 위치(luma location), 현재 코딩 블록의 폭 및 높이를 지정하는 변수 및 싱글 트리(single tree) 또는 듀얼 트리(dual tree)인지를 지정하는 변수인 것으로 시작할 수 있다. 한편, 상술한 내용과 같이 루마 양자화 파라미터, 크로마 양자화 파라미터 및 조인트 크로마 양자화 파라미터는 Qp'Y, Qp'Cb, Qp'Cr 및 Qp'CbCr 로 나타낼 수 있다.
한편, 예를 들어, CuQpDeltaVal의 부호(sign)를 나타내는 신텍스 엘리먼트 cu_qp_delta_sign_flag 가 파싱될 수 있다. 예를 들어, 상기 cu_qp_delta_sign_flag 는 CuQpDeltaVal의 부호(sign)를 다음과 같이 나타낼 수 있다.
예를 들어, 상기 cu_qp_delta_sign_flag 가 0인 경우, 상기 cu_qp_delta_sign_flag 에 대응하는 CuQpDeltaVal 는 양수(positive value)를 가질 수 있다. 또는, 예를 들어, 상기 cu_qp_delta_sign_flag 가 1인 경우, 상기 cu_qp_delta_sign_flag 에 대응하는 CuQpDeltaVal 는 음수(negative value)를 가질 수 있다. 또한, 상기 cu_qp_delta_sign_flag 가 존재하지 않는 경우, 상기 cu_qp_delta_sign_flag 는 0으로 간주될 수 있다.
또한, 예를 들어, cu_qp_delta_abs 가 존재하는 경우, 변수 IsCuQpDeltaCoded 는 1로 도출될 수 있고, 변수 CuQpDeltaVal 는 cu_qp_delta_abs * ( 1 - 2 * cu_qp_delta_sign_flag ) 로 도출될 수 있다. 상기 CuQpDeltaVal 는 -( 32 + QpBdOffsetY / 2 ) 내지 +( 31 + QpBdOffsetY / 2 )의 범위에 있을 수 있다.
이후, 예를 들어, 상기 루마 양자화 파라미터 Qp'Y 는 다음의 수학식과 같이 도출될 수 있다.
또한, ChromaArrayType 가 0 이 아니고, treeType 이 SINGLE_TREE 또는 DUAL_TREE_CHROMA 인 경우, 다음이 적용될 수 있다.
- treeType이 DUAL_TREE_CHROMA와 같으면 변수 QpY는 루마 위치 (xCb + cbWidth / 2, yCb + cbHeight / 2)를 포함하는 루마 코딩 유닛의 루마 양자화 파라미터 QpY와 동일하게 설정될 수 있다.
- 변수 qPCb, qPCr 및 qPCbCr 는 다음과 같이 도출될 수 있다.
예를 들어, ChromaArrayType이 1이면 변수 qPCb, qPCr 및 qPCbCr은 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 다음의 표 7에 지정된 QpC 값과 동일하게 설정될 수 있다.
또는, ChromaArrayType이 1이 아니면 변수 qPCb, qPCr 및 qPCbCr은 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 Min (qPi, 63)과 동일하게 설정될 수 있다.
- Cb 성분 및 Cr 성분에 대한 크로마 양자화 파라미터들, Qp'Cb 및 Qp'Cr, 조인트 Cb-Cr 코딩에 대한 크로마 양자화 파라미터 Qp'CbCr 는 다음과 같이 도출될 수 있다.
한편, 본 문서는 양자화/역양자화 과정에서의 코딩 효율을 향상시키기 위한 방안들을 제안한다.
일 실시예로, 본 문서는 ChromaArrayType이 0이 아닌 경우(예를 들어, ChromaArrayType이 1인 경우), 기존 VVC 드래프트5 v.7 에 미리 정의된 크로마 양자화 매핑 테이블을 통해 루마 양자화 파라미터 값으로부터 크로마 양자화 파라미터 값을 얻는 방법이 아닌, 사용자가 크로마 양자화 매핑 테이블(user defined Chroma Quantization Table)을 정의하고 이를 사용하는 방법을 제안한다. VVC 설명 텍스트(VVC specification text) (예를 들어, VVC 드래프트5 v.7) 에서는 qPi (루마 양자화 파라미터 값)가 주어진 경우, 미리 정의된 크로마 양자화 테이블 (예를 들어, 상술한 표 7)을 통해 Qpc (크로마 양자화 파라미터 값)이 도출되지만, 본 문서는 사용자가 새롭게 정의한 크로마 양자화 매핑 테이블을 기반으로 qPi로부터 Qpc 를 도출하는 방법을 제안한다. 본 문서의 실시예에 따르면, Qpc 값이 qPi값의 함수(function)관계를 통해 도출될 수 있고, 사용자 정의 기능(user defined functionality) 방법을 통해 함수가 APS, SPS 또는 PPS와 같은 신텍스로 시그널링될 수 있으며, 함수 관계는 미리 정의된 신택스 엘리먼트들의 값들을 전송하고, 전송된 값들을 기반으로 사용자가 크로마 양자화 테이플 매핑을 정의하는 방법을 제안한다. 한 가지 예로, Qpc 값이 qPi값의 함수(function)관계를 통해 도출될 수 있으므로, 해당 함수를 나타내는 신택스 엘리먼트 값들이 전송될 경우 사용자가 정의하는 크로마 양자화 매핑테이블(a user defined Chroma Quantization Table) 이 표 7과 같은 형식으로 유도될 수 있다.
일 실시예로 APS(adaptation parameter set)에서 후술하는 표와 같이크로마 양자화 매핑 관련 함수를 나타내는 신택스 엘리먼트들 (Qpc_data)에 관한 정보를 시그널링하는 방안을 제안한다.
상술한 표 8을 참조하면, 상기 aps_params_type 가 Qpc_APS 를 나타내는 경우, 예를 들어, 상기 aps_params_type 의 값이 2인 경우에는 Qpc_data() 가 시그널링될 수 있다.
상술한 표 8의 신텍스 엘리먼트들(syntax elements)에 대한 시멘틱(semantics)은 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 adaptation_parameter_set_id 는 다른 신텍스 엘리먼트들에 의하여 참조되는 APS의 식별자(identifier)를 제공할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하는지 여부를 나타낼 수 있다. 예를 들어, 값이 1인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재함을 나타낼 수 있고, 값이 0인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하지 않음을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_data_flag 는 임의의 값을 가질 수 있다. 상기 aps_extension_data_flag 의 존재(presence)와 가치(value)는 이 규격의 버전에서 명시된 프로파일에 대한 디코더 적합성에 영향을 미치지 않을 수 있다. 예를 들어, 이 규격의 버전을 따르는 디코딩 장치는 모든 신텍스 엘리먼트 aps_extension_data_flag 를 무시할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_params_type 은 후술하는 표 10에 도시된대로 APS에 포함된 APS 파라미터들의 타입을 나타낼 수 있다.
예를 들어 표 10을 참조하면, 신텍스 엘리먼트 aps_params_type 의 값이 0 이면, 상기 신텍스 엘리먼트 aps_params_type 는 APS 파라미터들의 타입이 ALF 파라미터들임을 나타낼 수 있고, 신텍스 엘리먼트 aps_params_type 의 값이 1 이면, 상기 신텍스 엘리먼트 aps_params_type 는 APS 파라미터들의 타입이 LMCS 파라미터들임을 나타낼 수 있고, 신텍스 엘리먼트 aps_params_type 의 값이 2 이면, 상기 신텍스 엘리먼트 aps_params_type 는 APS 파라미터들의 타입이 Qpc 데이터 파라미터들임을 나타낼 수 있다. Qpc 데이터 파라미터는 크로마 양자화 데이터 파라미터를 나타낼 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예에서는, PPS(picture parameter set)에서 사용자 정의 QpC 데이터(user defined QpC data)를 시그널링하는 방안을 제안한다. 본 실시예에서 제안한 방안을 수행하기 위한 일 예로서, SPS에서 PPS가 사용자 정의 데이터를 포함하는지 여부를 나타내는 플래그가 도입될 수 있다. 즉, SPS 에서 PPS가 사용자 정의 데이터를 포함하는지 여부를 나타내는 플래그가 시그널링될 수 있다. 또한, 본 실시예에 따르면 PPS에서 상기 사용자 정의 데이터가 시그널링될 수 있다. 또는, 슬라이스 헤더(slice header) 및/또는 다른 헤더 세트에서 상기 사용자 정의 데이터가 시그널링될 수도 있다.
PPS가 사용자 정의 데이터를 포함하는지 여부를 나타내는 플래그는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 Qpc_data_default_flag 는 상술한 플래그의 신텍스 엘리먼트일 수 있다. 상기 신텍스 엘리먼트 Qpc_data_default_flag는 PPS RBSP 신텍스 구조에 Qpc_data() 파라미터들이 존재하는지 여부를 나타낼 수 있다. 예를 들어, 0인 Qpc_data_default_flag는 PPS RBSP 신텍스 구조에 Qpc_data() 파라미터들이 존재하지 않고, 디폴트 테이블(default table)이 크로마 양자화(chroma quantization)의 결정을 돕기 위하여 사용됨을 나타낼 수 있다. 여기서, 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, 예를 들어, 1인 Qpc_data_default_flag는 PPS RBSP 신텍스 구조에 Qpc_data() 파라미터들이 존재할 수 있음을 나타낼 수 있다.
또한, 본 실시예에 따른 PPS에서 시그널링되는 상기 사용자 정의 데이터는 다음의 표와 같을 수 있다.
한편, 예를 들어, Qpc_data()는 ChromaArrayType이 1 일 때의 크로마 양자화 도출에 필요한 정보를 포함할 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예에서는, 크로마 양자화 계수 (Quantization Parameter, QP) 도출과 컴바인(combined) 크로마 QP 도출을 위한 유연한 구조(flexible structure)를 제안한다. 본 실시예는 SPS 및/또는 PPS에서 크로마 양자화 계수 (QP)를 도출하기 위해 사용되는 함수를 나타내는 파라메터들(parameters)이 사용될 수 있는 사용자 정의 모드(user defined mode)의 존재 여부를 나타내는 이니셜 플래그(initial flag)를 시그널링하는 방안을 제안한다.
예를 들어, 본 실시예에서 제안한 하이 레벨 신텍스(high level syntax)에서 시그널링되는 플래그 정보는 후술하는 표와 같을 수 있다.
예를 들어, Qpc_data_present_flag 는 하이 레벨 신텍스 RBSP 신텍스 구조에 크로마 양자화 계수를 도출하기 위한 파라미터들이 존재하는지 여부를 나타낼 수 있다. 예를 들어, 0인 Qpc_data_present_flag 는 하이 레벨 신텍스 RBSP 신텍스 구조에 크로마 양자화 파라미터들이 존재하지 않음을 나타낼 수 있다. 또한, 예를 들어, 1인 Qpc_data_present_flag 는 하이 레벨 신텍스 RBSP 신텍스 구조에 크로마 양자화 파라미터들이 존재함을 나타낼 수 있다.
또는, 상기 신텍스 엘리먼트 Qpc_data_present_flag 는 비트스트림에서 크로마 양자화 도출의 사용 방안을 나타내기 위해 사용될 수도 있다. 예를 들어, Qpc_data_present_flag 다음과 같이 크로마 양자화 도출을 위하여 사용되는 툴(tool) 또는 사용자 정의 모드의 사용을 나타낼 수 있다.
예를 들어, Qpc_data_present_flag 는 비트스트림에서 사용자 정의 크로마 양자화(user defined chroma quantization)가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 Qpc_data_present_flag 는 사용자 정의 크로마 양자화가 비트스트림에서 사용되지 않음을 나타낼 수 있다. 또한, 예를 들어, 1인 Qpc_data_present_flag 는 사용자 정의 크로마 양자화가 단독으로 또는 다른 플래그와 함께 사용됨을 나타낼 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예에서는, 하나의 함수(function)에서 시그널링되는 사용자 정의 정보(user defined information)를 사용하여 크로마 양자화 파라미터 (QP), 즉, Qp`Cb, Qp`Cr 및 Qp`CbCr이 어떻게 도출될 수 있는지의 일 실시예를 제안한다. 예를 들어, 본 실시예에 따르면, 크로마 양자화 파라미터 (QP)를 도출하기 위한 함수를 나타내는 데이터가 시그널링될 수 있고, 상기 크로마 양자화 데이터를 기반으로 크로마 양자화 파라미터들이 도출될 수 있다. 상기 크로마 양자화 계수 도출을 위한 데이터 (또는 사용자 정의 QP 맵핑 테이블(user defined QP mapping table))는 다음의 표와 같이 시그널링될 수 있다.
상술한 표 14의 신텍스 엘리먼트들(syntax elements)에 대한 시멘틱(semantics)은 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_val[i] 는 i번째 인덱스에 대한 QpC 값을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpOffsetC 는 QpC 의 도출에 사용되는 오프셋 값(offset value)을 나타낼 수 있다.
또한, 예를 들어, qPi 에 대한 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 qPiMaxIdx 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_val[qPi]와 동일하게 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - QpOffsetC 로 설정될 수 있다.
이후, QpC 의 값은 QpCIdx[qPi] 로 도출될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 16을 참조하면 루마 및 크로마 양자화 파라미터에 대한 도출 프로세스는 상기 프로세스에 대한 입력이 루마 위치 (xCb, yCb), 현재 코딩 블록의 폭 및 높이를 지정하는 변수 cbWidth, cbHeight 및 싱글 트리(single tree) 또는 듀얼 트리(dual tree)인지를 지정하는 변수 treeType 인 것으로 시작할 수 있다. 한편, 상술한 내용과 같이 루마 양자화 파라미터, 크로마 양자화 파라미터는 Qp'Y, Qp'Cb 및 Qp'Cr 로 나타낼 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 SPS 내의 플래그가 사용자 정의 모드(user defined mode) 또는 디폴트 모드(default mode)를 가짐으로써 양자화 파라미터의 도출을 제어하기 위해 사용될 수 있는 신택스 엘리먼트들를 사용하는 예를 제안한다. 양자화 파라미터를 도출하기 위하여 사용될 수 있는 신텍스 엘리먼트의 일 예는 다음의 표들과 같을 수 있다. 한편, 상기 신텍스 엘리먼트들의 구조는 일 예로, 상기 구조는 하기의 표들에 도시된 구조에 제한되지 않는다.
예를 들어, 신텍스 엘리먼트 Qpc_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 Qpc_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 또한, 예를 들어, 1인 Qpc_data_default_flag 는 디폴트 테이블이 크로마 양자화 파라미터를 도출하기 위하여 사용됨을 나타낼 수 있다. 여기서, 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, 상기 신텍스 엘리먼트 Qpc_data_default_flag 가 존재하지 않는 경우, 상기 신텍스 엘리먼트 Qpc_data_default_flag는 1로 간주될 수 있다.
한편, 상기 사용자 정의 모드가 사용되는 경우에는 대응하는 슬라이스 헤더, 타일 그룹/헤더, 또는 다른 적절한 헤더가 APS ID 를 시그널링하는데 사용될 수 있다. 예를 들어, 상기 표 18과 같이 슬라이스 헤더를 통하여 상기 APS ID 를 나타내는 신텍스 엘리먼트가 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 slice_QpC_aps_id 는 슬라이스가 참조하는 QpC APS 의 adaptation_parameter_set_id 를 나타낼 수 있다. slice_QpC_aps_id와 같은 adaptation_parameter_set_id를 갖는 QpC APS NAL 유닛의 TemporalId 는 코딩된 슬라이스 NAL 유닛의 TemporalId 보다 작거나 같을 수 있다. 동일한 값의 adaptation_parameter_set_id를 갖는 복수의 QpC APS들이 동일한 픽처의 2 개 이상의 슬라이스들에 의해 참조되는 경우, 동일한 값의 adaptation_parameter_set_id를 갖는 복수의 QpC APS들은 동일한 컨텐츠(content)를 가질 수 있다.
또한, 본 실시예에서 제안된 크로마 양자화 데이터를 전달하는 APS 구조는 상술한 표 19와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 adaptation_parameter_set_id 는 다른 신텍스 엘리먼트들에 의하여 참조되는 APS의 식별자(identifier)를 제공할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하는지 여부를 나타낼 수 있다. 예를 들어, 값이 1인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재함을 나타낼 수 있고, 값이 0인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하지 않음을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_data_flag 는 임의의 값을 가질 수 있다. 상기 aps_extension_data_flag 의 존재(presence)와 가치(value)는 이 규격의 버전에서 명시된 프로파일에 대한 디코더 적합성에 영향을 미치지 않을 수 있다. 예를 들어, 이 규격의 버전을 따르는 디코딩 장치는 모든 신텍스 엘리먼트 aps_extension_data_flag 를 무시할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_params_type 은 상술한 표 10에 도시된대로 APS에 포함된 APS 파라미터들의 타입을 나타낼 수 있다.
상술한 표 19에 개시된 QpC_data() 는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_prec_minus1 에 1을 더한 값은 신텍스 lmcs_delta_abs_cw[i] 의 표현(representation)에 대하여 사용되는 비트들(bits)의 수를 나타낼 수 있다. QpC_prec_minus1 의 값은 0 내지 BitDepthY - 2 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_init_val 는 qPi_min_idx 에 대응하는 QpC 값을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 델타(delta)를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpOffsetC 는 QpC 의 도출에 사용되는 오프셋 값(offset value)을 나타낼 수 있다.
예를 들어, qPi 에 대한 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 qPiMaxIdx 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - QpOffsetC 로 설정될 수 있다.
이후, QpC 의 값은 QpCIdx[qPi] 로 도출될 수 있다.
상술한 실시예와 같이, 크로마 양자화 파라미터, 즉 Qp`Cb, Qp`Cr 및 Qp`CbCr은 시그널링되는 사용자 정의 정보를 사용하여 또는 상술한 표 7과 같은 디폴트 테이블에 도시된 디폴트 값을 사용하여 도출될 수있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 21을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr and qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있고, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 SPS의 플래그가 사용자 정의 모드 또는 디폴트 모드를 나타냄을 통하여 양자화 파라미터의 도출을 컨트롤하기 위하여 사용될 수 있는 신택스 엘리먼트들을 제안한다. 구체적으로, 본 실시예는 다음과 같은 신텍스 구조의 신텍스 엘리먼트들을 시그널링하는 방안을 제안한다. 한편, 상기 신텍스 엘리먼트들의 구조는 일 예로, 상기 구조는 하기의 표에 도시된 구조에 제한되지 않는다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 델타(delta)를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpOffsetC 는 상술한 내용과 같은 QpC 의 도출에 사용되는 오프셋 값(offset value)을 나타낼 수 있다.
상술한 실시예와 같이, 크로마 양자화 파라미터, 즉 Qp`Cb, Qp`Cr 및 Qp`CbCr은 시그널링되는 사용자 정의 정보를 사용하여 또는 상술한 표 7과 같은 디폴트 테이블에 도시된 디폴트 값을 사용하여 도출될 수있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 23을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr and qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr and qPCbCr 는 다음과 같이 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 QpC 의 값과 동일하게 도출될 수 있다.
예를 들어, 변수 QpCIdx[i] 는 다음과 같이 도출될 수 있다.
- i < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- i = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[i]는 QpC_qPi_delta_val[i] + QpCIdx[i-1]로 설정될 수 있다.
- i > qPiMaxIdx 인 경우, QpCIdx[i]는 qPi - QpOffsetC 로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[i] 로 설정될 수 있다.
또한, 표 23을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 APS(Adaptation Parameter Set)에서 크로마 양자화(QpC) 도출 파라미터에 대한 신텍스 엘리먼트들을 제안한다. 예를 들어, 슬라이스 헤더에서 APS ID 가 시그널링될 수 있다. 또한, 예를 들어, 디폴트 테이블이 사용되는지 또는 APS에서 시그널링되는 정보로부터 도출되는 테이블이 사용되는지를 나타내는 PPS(picture parameter set) 내 플래그가 제안될 수 있다. 또한, 예를 들어, 상기 디폴트 테이블이 사용되지 않는 경우, 슬라이스 헤더에 QpC 데이터를 포함하는 APS 에 대한 액세스(access)를 지원하기 위한 추가적인 제어 방안이 더해질 수 있다.
한편, 기존 비디오/영상 표준에 따르면, 크로마 QP 는 루마 QP 로부터 도출될 수 있고, 추가적으로 시그널링된 크로마 QP 오프셋에 의하여 업데이트될 수 있다. 기존의 크로마 양자화 파라미터 QpC 테이블은 상술한 표 7과 같은 디폴트 테이블일 수 있다.
본 실시예는 인덱스 qPi 의 함수로서 크로마 양자화 파라미터 QpC를 시그널링하기 위한 기능을 추가하는 것을 제안한다. APS는 QpC 값의 시그널링 방안을 통합하는데 사용될 수 있다.
예를 들어, 본 실시예에 따른 APS 는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 adaptation_parameter_set_id 는 다른 신텍스 엘리먼트들에 의하여 참조되는 APS의 식별자(identifier)를 제공할 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_params_type 은 상술한 표 10에 도시된대로 APS에 포함된 APS 파라미터들의 타입을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하는지 여부를 나타낼 수 있다. 예를 들어, 값이 1인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재함을 나타낼 수 있고, 값이 0인 신텍스 엘리먼트 aps_extension_flag 는 APS RBSP 신텍스 구조에 aps_extension_data_flag 신텍스 엘리먼트들이 존재하지 않음을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 aps_extension_data_flag 는 임의의 값을 가질 수 있다. 상기 aps_extension_data_flag 의 존재(presence)와 가치(value)는 이 규격의 버전에서 명시된 프로파일에 대한 디코더 적합성에 영향을 미치지 않을 수 있다. 예를 들어, 이 규격의 버전을 따르는 디코딩 장치는 모든 신텍스 엘리먼트 aps_extension_data_flag 를 무시할 수 있다.
상술한 표 24에 개시된 QpC_data() 는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 또한, 예를 들어, qPi_delta_max_idx 의 값은 0 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 차이(difference)를 나타낼 수 있다. 상기 차이는 델타라고 불릴 수도 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpCOffsetC_present_flag 는 비트스트림에 QpOffsetC 가 존재하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpCOffsetC_present_flag 는 비트스트림에 QpOffsetC 가 존재함을 나타낼 수 있다. 또한, 예를 들어, 0인 QpCOffsetC_present_flag 는 비트스트림에 QpOffsetC 가 존재하지 않음을 나타낼 수 있다. QpCOffsetC_present_flag 가 존재하지 않는 경우, QpCOffsetC_present_flag 는 0으로 간주될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpOffsetC 는 QpC 의 도출에 사용되는 오프셋 값(offset value)을 나타낼 수 있다.
예를 들어, qPi 에 대한 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 63 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCOffsetC_present_flag 가 1이면, QpCIdx[qPi]는 qPi - QpOffsetC 로 설정될 수 있고, QpCOffsetC_present_flag 가 1이 아니면, 즉, QpCOffsetC_present_flag 가 0이면, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, QpC 의 값은 QpCIdx[qPi] 로 도출될 수 있다.
또한, 본 실시예는 다음의 표와 같은 PPS 로 시그널링되는 플래그를 제안한다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터 도출을 위하여 사용자 정의 모드(user defined mode)가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터 도출을 위하여 상술한 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. QpC_data_default_flag 가 존재하지 않는 경우, QpC_data_default_flag 는 1로 간주될 수 있다.
또한, 본 실시예는 다음의 표와 같이 슬라이스 헤더로 시그널링되는 신텍스 엘리먼트를 제안한다.
예를 들어, 신텍스 엘리먼트 slice_QpC_aps_id 는 슬라이스가 참조하는 QpC APS 의 adaptation_parameter_set_id 를 나타낼 수 있다. slice_QpC_aps_id와 같은 adaptation_parameter_set_id를 갖는 QpC APS NAL 유닛의 TemporalId 는 코딩된 슬라이스 NAL 유닛의 TemporalId 보다 작거나 같을 수 있다. 동일한 값의 adaptation_parameter_set_id를 갖는 복수의 QpC APS들이 동일한 픽처의 2 개 이상의 슬라이스들에 의해 참조되는 경우, 동일한 값의 adaptation_parameter_set_id를 갖는 복수의 QpC APS들은 동일한 컨텐츠(content)를 가질 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 28을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr and qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예서는 SPS에서 크로마 양자화의 사용자 정의 유도를 다음과 같이 시그널링하는 것이 제안된다. 예를 들어, 본 실시예는 사용자 정의 크로마 양자화(QpC)를 제안한다. 예를 들어, SPS의 플래그가 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위한 테이블의 내용을 SPS에서 시그널링된 정보에서 도출하는지 여부를 나타낼 수 있다.
예를 들어, 본 실시예는 다음의 표에 도시된 신텍스 엘리먼트들을 사용하여 인덱스 qPi 의 함수로서 크로마 양자화를 수행하는 방안을 제안한다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 델타(delta)를 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예에 제안되는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 SPS 의 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 31을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 인덱스 qPi 의 함수로서 크로마 양자화 파라미터 QpC를 시그널링하기 위한 기능을 추가하는 것을 제안한다. 예를 들어, PPS에서 양자화 파라미터 도출을 위한 사용자 정의 테이블(user defined table)에 대한 신텍스 엘리먼트들을 시그널링하는 방안이 제안될 수 있고, 이를 통하여 PPS를 참조하는 각 픽처에 사용자 정의 테이블과 디폴트 테이블 사이를 전환할 수있는 유연성을 제공할 수 있다.
본 실시예에서 제안되는 PPS에서 시그널링되는 사용자 정의 테이블(user defined table)에 대한 신텍스 엘리먼트들은 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 델타(delta)를 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예에 제안되는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 SPS 의 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 34를 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 크로마 양자화 파라미터 QpC 를 도출 및 시그널링하는 일반적인 모드를 제안한다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터, QpC_data()는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 델타(delta)를 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 37을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 오프셋없이 크로마 양자화 파라미터 QpC 테이블의 도출하는 방안을 제안한다. 본 실시예는 APS와 함께 사용될 수 있고 또는 독립적으로 사용되도록 제안될 수도 있다. 예를 들어, 크로마 양자화 데이터와 통합된 APS의 신텍스 구조는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_delta_val[i] 는 i번째 인덱스에 대한 QpC 값의 차이(difference)를 나타낼 수 있다. 상기 차이는 델타(delta)라고 불릴 수도 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 63 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_delta_val[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 연속적인 QpC 값들 사이의 델타(또는 차이)가 1로 제한되는 방안을 일 예로 제시한다.
예를 들어, 본 실시예는 기존 영상/비디오 표준에 사용자 정의 크로마 양자화(QpC)를 추가적으로 포함하는 방안을 제안한다. 예를 들어, 본 실시예에서 제안되는 SPS(sequence parameter set)의 플래그는 크로마 양자화 파라미터 도출을 위하여 기존의 디폴트 테이블을 사용하는지 또는 테이블의 내용을 SPS에서 시그널링된 정보를 기반으로 도출하는지 여부를 나타낼 수 있다. 본 실시예에 따르면 사용자 정의 크로마 양자화를 수용하여 코딩되는 영상에 적합한 방안이 선택될 수 있고 코딩 효율을 향상시킬 수 있다.
예를 들어, 본 실시예는 다음의 표와 같은 신텍스 엘리먼트들을 사용하여 인덱스 qPi의 함수로서 크로마 양자화(Chroma Quantization) QpC를 시그널링하는 기능을 추가할 것을 제안한다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 1 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 63 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 41을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 크로마 QP 도출을 위한 데이터 시그널링 구조의 일 예를 제안한다. 구체적으로, 본 실시예는 SPS에서 새로운 신텍스 엘리먼트(syntax element)인 chroma_qp_mapping_flag를 추가하는 방안을 제안한다. 예를 들어, 상기 chroma_qp_mapping_flag의 값이 0인 경우, 크로마 양자화 파라미터의 도출을 위하여 디폴트(default) 크로마 QP 매핑 테이블이 사용될 수 있다. 또한, 예를 들어, 상기 chroma_qp_mapping_flag의 값이 1인 경우, 크로마 QP 매핑 테이블을 도출하기 위하여 사용되는 신텍스 엘리먼트들이 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 상술한 표 42에 도시된 크로마 양자화 파라미터 데이터를 기반으로 도출되는 크로마 QP 매핑 테이블이 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상술한 표 42에 도시된 크로마 양자화 파라미터 데이터가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 매핑 함수(mapping function)가 증가하지 않는 포인트(points)의 수를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 는 매핑 함수가 증가하지 않는 포인트의 세트의 첫번째 요소(first element)를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 매핑 함수가 증가하지 않는 포인트의 세트의 i번째 요소와 (i-1)번째 요소간의 델타 값(delta value)를 나타낼 수 있다.
표 42에 도시된 크로마 양자화 파라미터 데이터를 기반으로 크로마 QP 매핑 테이블은 다음과 같이 도출될 수 있다.
예를 들어, 변수 cQpFlatSize 는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 변수 cQpFlat[] 는 다음의 표와 같이 도출될 수 있다.
이후, 상기 변수 cQpFlatSize 및 상기 변수 cQpFlat[] 를 기반으로 크로마 QP 매핑 테이블이 다음의 표와 같이 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 SPS에서 새로운 신텍스 엘리먼트(syntax element)인 chroma_qp_mapping_flag를 추가하는 방안을 제안한다. 예를 들어, 상기 chroma_qp_mapping_flag의 값이 0인 경우, 크로마 양자화 파라미터의 도출을 위하여 디폴트(default) 크로마 QP 매핑 테이블이 사용될 수 있다. 또한, 예를 들어, 상기 chroma_qp_mapping_flag의 값이 1인 경우, 크로마 QP 매핑 테이블을 도출하기 위하여 사용되는 신텍스 엘리먼트들이 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 상술한 표 42에 도시된 크로마 양자화 파라미터 데이터를 기반으로 도출되는 크로마 QP 매핑 테이블이 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상술한 표 42에 도시된 크로마 양자화 파라미터 데이터가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 매핑 함수(mapping function)가 증가하지 않는 포인트(points)의 수를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 매핑 함수가 증가하지 않는 포인트의 세트의 첫번째 요소(first element)를 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_idx_minus1[i] 에 1을 더한 값은 매핑 함수가 증가하지 않는 포인트의 세트의 i번째 요소와 (i-1)번째 요소간의 델타 값(delta value)를 나타낼 수 있다.
표 45에 도시된 크로마 양자화 파라미터 데이터를 기반으로 크로마 QP 매핑 테이블은 다음과 같이 도출될 수 있다.
예를 들어, 변수 cQpFlatSize 는 상술한 수학식 5와 같이 도출될 수 있다.
또한, 예를 들어, 변수 cQpFlat[] 는 다음의 표와 같이 도출될 수 있다.
이후, 상기 변수 cQpFlatSize 및 상기 변수 cQpFlat[] 를 기반으로 크로마 QP 매핑 테이블이 도출될 수 있다. 예를 들어, 상기 크로마 QP 매핑 테이블는 상술한 표 44와 같이 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다.
예를 들어, 본 실시예는 각각의 크로마 성분에 대한 개별 테이블을 시그널링하는 방안을 제안한다. 즉, 예를 들어, 본 실시예는 각각의 크로마 성분에 대한 크로마 QP 매핑 테이블을 도출하기 위하여 사용되는 신텍스 엘리먼트들을 시그널링하는 방안을 제안한다.
예를 들어, 각각의 크로마 성분에 대한 크로마 QP 매핑 테이블이 도출될 수 있고, 각각의 크로마 성분에 대한 신텍스 엘리먼트들은 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qp_luma_to_chroma_joint_map_flag 는 공통의(common) 루마-크로마 양자화 파라미터 매핑 테이블이 크로마 성분 Cb, Cr 및 CbCr에 사용되는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 qp_luma_to_chroma_joint_map_flag 는 하나의 루마-크로마 양자화 파라미터 매핑 테이블이 Cb 레지듀얼(Cb residual), Cr 레지듀얼(Cr residual) 및 CbCr 레지듀얼(CbCr reisidual)에 대하여 적용되는지 여부를 나타낼 수 있다. 예를 들어, qp_luma_to_chroma_joint_map_flag 의 값이 1 인 경우, 공통의(common) 루마-크로마 양자화 파라미터 매핑 테이블이 크로마 성분 Cb, Cr 및 CbCr에 사용될 수 있고, qp_luma_to_chroma_joint_map_flag 의 값이 0 인 경우, 크로마 성분 Cb, Cr 및 CbCr 각각에 대하여 개별적인 루마-크로마 양자화 파라미터 매핑 테이블이 사용될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 크로마 양자화에 사용되는 최소(minimum) qPi 인덱스를 나타낼 수 있다. qPi_min_idx_minus1 의 값은 1 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 Qpi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, qPi_delta_max_idx_minus1 의 값은 1 내지 63의 범위에 있을 수 있다. QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[j] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i][j] 는 i번째 크로마 성분의 j번째 QpC 값이 (j-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[j] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[j] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[i][qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 maxQp 일 수 있다.
- qPi < qPi_min_idx_minus1+1 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx_minus1+1…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 의 값은 상기 QpCIdx[i][qPi] 로 도출될 수 있다.
한편, 본 실시예에 따르면, SPS 로 크로마 QP 매핑 테이블을 도출하기 위하여 사용되는 신텍스 엘리먼트들이 시그널링되는지 또는 디폴트 테이블이 사용되는지 여부를 나타내는 플래그가 시그널링될 수 있다. 예를 들어, 상기 플래그는 다음의 표와 같이 시그널링될 수 있다.
신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 상술한 표 47에 도시된 크로마 양자화 파라미터 데이터를 기반으로 도출되는 크로마 QP 매핑 테이블이 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상술한 표 47에 도시된 크로마 양자화 파라미터 데이터가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 49를 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 본 실시예는 종료 포인트(end point)를 최대 QP에 대한 델타(delta)로 시그널링함으로써 시작 포인트(starting point)와 종료 포인트 사이의 최대 차이를 시그널링하는 방안을 제안한다. 즉, 예를 들어, 본 실시예에 따르면, 크로마 QpC 도출에 사용되는 maxQp와 최대 qPi 인덱스 사이의 델타 값을 나타내는 신텍스 엘리먼트가 시그널링될 수 있다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터, QpC_data()는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx 는 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 0 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 maxQp 와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 1 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 63 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 52를 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 본 실시예는 종료 포인트(end point)를 최대 QP에 대한 델타로 또는 시작 포인트(starting point)와 시작 포인트에 델타를 더한 값의 차이로 시그널링함으로써 시작 포인트와 종료 포인트 사이의 최대 차이를 시그널링하는 방안을 제안한다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터, QpC_data()는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 maxQp 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 is_delta_maxQp 는 최대 인덱스 qPiMaxIdx 가 maxQp 값으로부터 도출되는지 여부를 나타낼 수 있다. 예를 들어, 1인 is_delta_maxQp 는 qPiMaxIdx 가 maxQp 값으로부터 도출됨을 나타낼 수 있다. 또한, 예를 들어, 0인 is_delta_maxQp 는 qPiMaxIdx 가 신텍스 엘리먼트 qPi_min_idx_minus1 로부터 도출됨을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 maxQp 와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, qPi_delta_max_idx_minus1 의 값은 1 내지 63의 범위에 있을 수 있다. QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 다음의 표와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 maxQp 일 수 있다.
- qPi < qPi_min_idx_minus1+1 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx_minus1…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 56을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 본 실시예는 종료 포인트(end point)를 최대 QP에 대한 델타로 또는 시작 포인트(starting point)와 시작 포인트에 델타를 더한 값의 차이로 시그널링함으로써 시작 포인트와 종료 포인트 사이의 최대 차이를 시그널링하는 방안을 제안한다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터, QpC_data()는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 maxQp 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 is_delta_maxQp 는 최대 인덱스 qPiMaxIdx 가 maxQp 값으로부터 도출되는지 여부를 나타낼 수 있다. 예를 들어, 1인 is_delta_maxQp 는 qPiMaxIdx 가 maxQp 값으로부터 도출됨을 나타낼 수 있다. 또한, 예를 들어, 0인 is_delta_maxQp 는 qPiMaxIdx 가 신텍스 엘리먼트 qPi_min_idx_minus1 로부터 도출됨을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 maxQp 와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. 예를 들어, qPi_delta_max_idx_minus1 의 값은 1 내지 63의 범위에 있을 수 있다. QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 표 54와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 maxQp 일 수 있다.
- qPi < qPi_min_idx_minus1+1 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx_minus1…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 59를 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 본 실시예는 실제 값대신 minus1 명명법(minus1 nomenclature)을 사용하여 크로마 QP 매핑 테이블에 대한 인덱스를 시그널링하는 방안을 제안한다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터, QpC_data()는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 63 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx_minus1 에 1을 더한 값은 qPi_min_idx 와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 1 내지 63 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 63 일 수 있다.
- qPi < qPi_min_idx_minus1+1 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx_minus1+1…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 62를 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 본 실시예는 개별 크로마 양자화 테이블이 각각의 크로마 성분에 대해 사용되는 방안을 제안한다.
본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 디폴트 크로마 양자화 파라미터 테이블이 사용되는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 디폴트 크로마 양자화 파라미터 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, 예를 들어, 0인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 디폴트 크로마 양자화 파라미터 테이블이 사용되지 않음을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 크로마 양자화 파라미터의 도출을 위하여 시그널링되는 크로마 양자화 파라미터 데이터를 기반으로 도출되는 크로마 양자화 파라미터 테이블이 사용됨을 나타낼 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 sps_separate_qpc_table_flag 는 Cb 샘플 및 Cr 샘플에 대하여 두 개의 개별 QpC 테이블이 사용되는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 sps_separate_qpc_table_flag 는 Cb 레지듀얼(Cb residual), Cr 레지듀얼(Cr residual) 각각에 대하여 개별적인 루마-크로마 양자화 파라미터 매핑 테이블이 사용되는지 여부를 나타낼 수 있다. 예를 들어, 1인 sps_separate_qpc_table_flag 는 Cb 샘플 및 Cr 샘플 각각에 대하여 개별적인 QpC 테이블이 사용됨을 나타낼 수 있고, 0인 sps_separate_qpc_table_flag 는 Cb 샘플 및 Cr 샘플에 대하여 하나의 QpC 테이블이 사용됨을 나타낼 수 있다.
한편, 예를 들어, 변수 QpCb[i]는 Cb 샘플에 사용되는 QpC 테이블을 나타낼 수 있다. 또한, 예를 들어, 변수 QpCr[i]는 Cr 샘플에 사용되는 QpC 테이블을 나타낼 수 있다. 또한, 예를 들어, sps_separate_qpc_table_flag 의 값이 0인 경우, QpCr[i]는 QpCb[i]와 동일할 수 있다. 여기서, i는 0 에서 69 일 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_cb_min_idx_minus1 에 1을 더한 값은 Cb 크로마 성분에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_cb_min_idx_minus1 의 값은 1 내지 69 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_cb_delta_max_idx_minus1 에 1을 더한 값은 qPi_cb_min_idx_minus1 와 Cb 크로마 QpC 도출에 사용되는 최대 qPi_cb_delta_max_idx_minus1 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_cb_delta_max_idx_minus1 의 값은 1 내지 69 의 범위에 있을 수 있다. 예를 들어, Cb 성분에 대한 QpC 도출에 사용되는 최대 인덱스 qPiMaxIdxcb는 다음의 수학식과 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_cb_qPi_flag[i] 는 Cb 성분에 대한 i번째 QpC 값 QpCb[i]와 (i-1)번째 QpC 값 QpCb[i-1] 사이의 델타 값(delta values)을 나타낼 수 있다. QpC_cb_qPi_flag[i] 의 값은 0 내지 1 의 범위에 있을 수 있다.
예를 들어, 변수 QpCb[i] 는 다음과 같이 도출될 수 있다. 여기서, 상기 i 는 0 에서 69 일 수 있다.
- i = 0 .. qPiMaxIdxCb 인 경우, QpCb[i]는 i와 동일하게 설정될 수 있다.
- i = qPi_cb_min_idx_minus1 + 1 + 1.. qPiMaxIdxCb 인 경우, QpCb[i]는 QpCb[i-1]+ QpC_cb_qPi_flag[i]로 설정될 수 있다.
- i = qPiMaxIdxCb + 1...69 인 경우, QpCb[i]는 i - deltaEnd 로 설정될 수 있고, deltaEnd 는 qPiMaxIdxCb - QpCb[qPiMaxIdxCb] 로 도출될 수 있다.
또한, 예를 들어, Cr 성분에 대한 신텍스 엘리먼트들인 qPi_cr_min_idx_minus1, qPiMaxIdxCr 및 QpC_cr_qPi_flag[i] 는 Cb 성분에 대한 신텍스 엘리먼트들과 동일한 의미를 가질 수 있다.
또한, 본 문서는 양자화 파라미터에 대한 정보를 시그널링하는 다른 일 실시예를 제안한다. 예를 들어, 본 실시예는 복수의 크로마 QP 테이블에 대한 파라미터들을 시그널링하는 방안을 제안한다. 또한, 본 실시예는 상술한 실시예들 중 적어도 하나와 연결될 수도 있다. 즉, 예를 들어, 본 문서의 실시예들은 공통적으로 적용될 수도 있다.
구체적으로, 예를 들어, 본 실시예는 VVC 사양 텍스트(VVC Specification Text)에 사용자 정의 크로마 양자화 파라미터(QpC)를 포함하는 것을 제안한다. 예를 들어, 본 실시예에 따르면 SPS(sequence parameter set)의 플래그는 크로마 양자화 파라미터의 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 QP 매핑 테이블를 SPS에서 시그널링된 정보를 기반으로 도출하는지 여부를 나타낼 수 있다. 이를 통하여 영상 코딩에서 영상의 컨텐츠 특성을 고려하여 사용자 정의 크로마 양자화 파라미터가 사용될 수 있고, 코딩 효율을 향상시킬 수 있다. 또한, 본 실시예는 크로마 성분들에 대하여 하나의 사용자 정의 테이블이 사용되는 옵션과 Cb 구성 요소 및 Cr 구성 요소에 대해 별도의 사용자 정의 테이블이 사용되는 옵션으로 유연성(flexibility)을 제공할 수 있다.
예를 들어, 본 실시예에서 제안되는 크로마 양자화 파라미터에 대한 크로마 양자화 파라미터 데이터 QpC_data() 는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1 에 1을 더한 값은 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 69 의 범위에 있을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 qPi_min_idx와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx의 값은 qPi_min_idx 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 69 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx는 상술한 수학식 4와 같이 도출될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i] 는 i번째 QpC 값이 (i-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[i] 는 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[i] 는 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[qPi] 는 다음과 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 69 일 수 있다.
- qPi < qPi_min_idx 인 경우, QpCIdx[qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx…qPiMaxIdx 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[qPi] + QpCIdx[qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[qPi]는 qPi - (qPiMaxIdx - QpCIdx[qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 는 상기 QpCIdx[qPi] 로 설정될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 시그널링되는 정보를 기반으로 도출되는 크로마 QP 매핑 테이블이 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 66을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
또한, 예를 들어, 본 실시예에서 제안되는 크로마 성분들 각각에 대해 별도의 사용자 정의 테이블들이 사용되는 경우의 크로마 양자화 파라미터 데이터 QpC_data() 는 다음의 표와 같이 시그널링될 수 있다.
예를 들어, 신텍스 엘리먼트 is_separate_chroma_table 는 Cb 성분 및 Cr 성분에 대하여 별도의 크로마 양자화 테이블 관련 파라미터들이 시그널링되는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 is_separate_chroma_table 는 Cb 성분 및 Cr 성분에 대하여 두 개의 개별 크로마 양자화 파라미터 맵핑 테이블이 사용되는지 여부를 나타낼 수 있다. 예를 들어, 신텍스 엘리먼트 is_separate_chroma_table 는 Cb 레지듀얼(Cb residual), Cr 레지듀얼(Cr residual) 각각에 대하여 개별적인 루마-크로마 양자화 파라미터 매핑 테이블이 사용되는지 여부를 나타낼 수 있다. 예를 들어, 1인 is_separate_chroma_table 는 Cb 성분 및 Cr 성분에 대하여 별도의 크로마 양자화 파라미터 맵핑 테이블이 시그널링됨을 나타낼 수 있고, 0인 is_separate_chroma_table 는 Cb 요소 및 Cr 요소 및 조인트(joint) CbCr 요소들에 대하여 하나의 크로마 양자화 파라미터 맵핑 테이블이 사용됨을 나타낼 수 있다. 예를 들어, is_separate_chroma_table 의 값이 1인 경우, Cb 성분에 대한 qPi_min_idx_minus1[i], qPi_delta_max_idx[i] 및 QpC_qPi_flag[i][j] 와 Cr 성분에 대한 qPi_min_idx_minus1[i], qPi_delta_max_idx[i] 및 QpC_qPi_flag[i][j] 가 시그널링될 수 있다. 또한, 예를 들어, is_separate_chroma_table 의 값이 0인 경우, Cb 성분 및 Cr 성분 및 조인트(joint) CbCr 성분에 대한 qPi_min_idx_minus1[i], qPi_delta_max_idx[i] 및 QpC_qPi_flag[i][j] 가 시그널링될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_min_idx_minus1[i] 에 1을 더한 값은 크로마 양자화에 사용되는 최소 qPi 인덱스를 나타낼 수 있다. qPi_min_idx 의 값은 1 내지 69 의 범위에 있을 수 있다. 변수 qPi_min_idx[i] 는 qPi_min_idx_minus1[i] 에 1을 더한 값과 동일하게 설정될 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 qPi_delta_max_idx 는 qPi_min_idx[i]와 크로마 QpC 도출에 사용되는 최대 qPi 인덱스 사이의 델타 값(delta value)을 나타낼 수 있다. qPiMaxIdx[i]의 값은 qPi_min_idx[i] 보다 크거나 같을 수 있다. qPi_delta_max_idx 의 값은 0 내지 69 의 범위에 있을 수 있다. 예를 들어, QpC 도출에 사용되는 최대 인덱스 qPiMaxIdx[i]는 다음의 수학식과 같이 도출될 수 있다.
qPiMaxIdx[i]의 값은 qPi_min_idx_minus1[i] 보다 크거나 같을 수 있다.
또한, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i][j] 는 i번째 크로마 성분의 j번째 QpC 값이 1 증가하는지 여부를 나타낼 수 있다. 즉, 예를 들어, 신텍스 엘리먼트 QpC_qPi_flag[i][j] 는 i번째 크로마 성분의 j번째 QpC 값이 (j-1)번째 QpC 값보다 1 증가하는지 여부를 나타낼 수 있다. 예를 들어, 1인 QpC_qPi_flag[j] 는 i번째 크로마 성분의 j번째 QpC 값이 1 증가함을 나타낼 수 있고, 0인 QpC_qPi_flag[j] 는 는 i번째 크로마 성분의 j번째 QpC 값이 증가하지 않음을 나타낼 수 있다.
예를 들어, 변수 QpCIdx[i][qPi] 는 다음의 표와 같이 도출될 수 있다. 여기서, 상기 qPi 는 0 에서 69 일 수 있다.
표 68을 참조하면 is_separate_chroma_table 의 값이 1 이면 0번째(i=0) 크로마 양자화 파라미터 데이터 및 1번째(i=1) 크로마 양자화 파라미터 데이터가 시그널링될 수 있다. 여기서, 예를 들어, 0번째(i=0) 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 크로마 양자화 파라미터 맵핑 테이블을 도출하기 위한 크로마 양자화 파라미터 데이터일 수 있고, 1번째(i=0) 크로마 양자화 파라미터 데이터는 Cr 성분에 대한 크로마 양자화 파라미터 맵핑 테이블을 도출하기 위한 크로마 양자화 파라미터 데이터일 수 있다.
또한, 표 68을 참조하면 is_separate_chroma_table 의 값이 0 이면 0번째(i=0) 크로마 양자화 파라미터 데이터만 시그널링될 수 있다. 여기서, 예를 들어, 0번째(i=0) 크로마 양자화 파라미터 데이터는 Cb 성분, Cr 성분 및 조인트 CbCr 성분에 대한 크로마 양자화 파라미터 맵핑 테이블을 도출하기 위한 크로마 양자화 파라미터 데이터일 수 있다. 즉, 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 맵핑 테이블이 사용될 수 있다.
또한, 표 68을 참조하면 QpCIdx[i][qPi] 는 다음과 같이 도출될 수 있다.
- qPi < qPi_min_idx[i] 인 경우, QpCIdx[i][qPi]는 qPi와 동일하게 설정될 수 있다.
- qPi = qPi_min_idx[i]…qPiMaxIdx[i] 인 경우, QpCIdx[qPi]는 QpC_qPi_flag[i][qPi] + QpCIdx[i][qPi-1]로 설정될 수 있다.
- qPi > qPiMaxIdx 인 경우, QpCIdx[i][qPi]는 qPi - (qPiMaxIdx[i] - QpCIdx[i][qPiMaxIdx])로 설정될 수 있다.
이후, 상기 QpC 의 값은 상기 QpCIdx[i][qPi] 로 도출될 수 있다.
또한, 본 실시예는 크로마 양자화 도출을 위하여 디폴트 테이블을 사용하는지 또는 크로마 양자화 도출을 위하여 시그널링되는 정보가 사용되는지 여부를 나타내는 플래그를 시그널링하는 방안을 제안한다. 상기 플래그는 SPS(sequence parameter set), 또는 PPS(picture parameter set) 등의 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 하이 레벨 신텍스를 통하여 시그널링되는 상기 플래그는 다음의 표와 같을 수 있다.
예를 들어, 신텍스 엘리먼트 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용되는지 여부를 나타낼 수 있다. 예를 들어, 0인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 사용자 정의 모드가 사용됨을 나타낼 수 있다. 즉, 예를 들어, 0인 QpC_data_default_flag 는 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 사용됨을 나타낼 수 있다. 상기 QpC_data_default_flag 가 0 인 경우, 상기 크로마 양자화 파라미터 데이터 QpC_data() 가 시그널링될 수 있다. 또한, 예를 들어, 1인 QpC_data_default_flag 는 양자화 파라미터의 도출을 위하여 디폴트 테이블이 사용됨을 나타낼 수 있다. 상기 디폴트 테이블은 상술한 표 7과 같을 수 있다. 또한, QpC_data_default_flag 가 존재하지 않는 경우, 상기 QpC_data_default_flag는 1로 간주될 수 있다.
예를 들어, 본 실시예에 따라서 양자화 파라미터를 도출하는 과정을 표준 형식으로 기재하면 다음의 표와 같이 나타낼 수 있다.
상술한 표 70을 참조하면 ChromaArrayType 이 1 이고, QpC_data_default_flag 가 부정(FALSE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 0인 경우), 변수 qPCb, qPCr 및 qPCbCr 는 본 실시예에서 제안한 바와 같이 시그널링되는 사용자 정의 정보를 기반으로 도출될 수 있다. 또한, 예를 들어, ChromaArrayType 이 1 이고, QpC_data_default_flag 가 긍정(TRUE)를 나타내는 경우(즉, 예를 들어, QpC_data_default_flag 가 1인 경우), 변수 qPCb, qPCr and qPCbCr 는 각각 qPiCb, qPiCr 및 qPiCbCr과 동일한 인덱스 qPi를 기반으로 디폴트 테이블에 의하여 도출될 수 있다.
도 7은 본 문서에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다. 도 7에서 개시된 방법은 도 2에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 7의 S700은 상기 인코딩 장치의 예측부에 의하여 수행될 수 있고, 도 7의 S710 내지 S730은 상기 인코딩 장치의 레지듀얼 처리부에 의하여 수행될 수 있고, S740은 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다. 또한, 비록 도시되지는 않았으나 레지듀얼 샘플들과 예측 샘플들을 기반으로 복원 샘플들 및 복원 픽처를 생성하는 과정은 상기 인코딩 장치의 가산부에 의하여 수행될 수 있다.
인코딩 장치는 인터 예측 또는 인트라 예측을 기반으로 크로마 성분들에 대한 예측 샘플들을 도출한다(S700). 인코딩 장치는 예측 모드를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출할 수 있다. 즉, 예를 들어, 인코딩 장치는 예측 모드를 기반으로 상기 크로마 성분들에 대한 현재 블록의 예측 샘플들을 도출할 수 있다. 이 경우 인터 예측 또는 인트라 예측 등 본 문서에서 개시된 다양한 예측 방법이 적용될 수 있다. 상기 크로마 성분들은 Cb 성분, Cr 성분 및/또는 조인트(joint) CbCr 성분을 포함할 수 있다.
예를 들어, 인코딩 장치는 상기 크로마 성분들에 대한 현재 블록에 인터 예측을 수행할지 또는 인트라 예측을 수행할지 여부를 결정할 수 있고, 구체적인 인터 예측 모드 또는 구체적인 인트라 예측 모드를 RD 코스트 기반으로 결정할 수 있다. 결정된 모드에 따라 인코딩 장치는 상기 현재 블록에 대한 예측 샘플들을 도출할 수 있다.
인코딩 장치는 상기 예측 샘플들을 기반으로 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출한다(S710). 예를 들어, 인코딩 장치는 현재 픽처 내 상기 크로마 성분들에 대한 현재 블록의 원본 샘플들과 예측 샘플들의 감산을 통하여 상기 레지듀얼 샘플들을 도출할 수 있다.
인코딩 장치는 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그를 생성한다(S720). 인코딩 장치는 상기 크로마 성분들에 대한 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 결정할 수 있고, 상기 플래그를 생성할 수 있다.
예를 들어, 인코딩 장치는 크로마 타입을 기반으로, 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 생성할 수 있다. 여기서, 상기 크로마 타입은 상술한 ChromaArrayType 을 의미할 수 있다. 예를 들어, 상기 크로마 타입의 값이 0이 아닌 경우, 인코딩 장치는 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 생성할 수 있다. 예를 들어, 상기 크로마 타입의 값이 1인 경우, 인코딩 장치는 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 생성할 수 있다. 여기서, 상기 크로마 타입의 값이 0인 경우, 상기 크로마 타입은 Monochrome 포맷(format)일 수 있고, 상기 크로마 타입의 값이 1인 경우, 상기 크로마 타입은 4:2:0 포맷일 수 있고, 상기 크로마 타입의 값이 2인 경우, 상기 크로마 타입은 4:2:2 포맷일 수 있고, 상기 크로마 타입의 값이 3인 경우, 상기 크로마 타입은 4:4:4 포맷일 수 있다. 예를 들어, 상기 플래그에 대한 신텍스 엘리먼트는 상술한 qp_luma_to_chroma_joint_map_flag flag, sps_separate_qpc_table_flag 또는 is_separate_chroma_table 일 수 있다.
예를 들어, 상기 플래그의 값이 1인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용됨을 나타낼 수 있다. 또한, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타낼 수 있다. 즉, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 플래그는 상기 크로마 성분들 각각에 대하여 개별적인 크로마 양자화 파라미터 테이블이 적용됨을 나타낼 수 있다.
또한, 예를 들어, 상기 플래그는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 플래그는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
인코딩 장치는 상기 플래그를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 생성한다(S730). 인코딩 장치는 상기 플래그를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 생성할 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우(즉, 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용된다고 판단된 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 0인 경우(즉, 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용된다고 판단된 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터, Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터 및/또는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터를 포함할 수 있다.
한편, 예를 들어, 인코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 생성할 수 있다. 즉, 예를 들어, 인코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 판단할 수 있고, 상기 조인트 CbCr 가용 플래그를 생성할 수 있다. 또한, 예를 들어, 인코딩 장치는 크로마 타입을 기반으로, 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 생성할 수 있다. 여기서, 상기 크로마 타입은 상술한 ChromaArrayType 을 의미할 수 있다. 예를 들어, 상기 크로마 타입의 값이 0이 아닌 경우, 인코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 생성할 수 있다. 예를 들어, 상기 크로마 타입의 값이 1인 경우, 인코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 생성할 수 있다. 또한, 예를 들어, 상기 조인트 CbCr 가용 플래그는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 조인트 CbCr 가용 플래그는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
이 경우, 상기 플래그의 값이 0이고(즉, 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용된다고 판단되고), 상기 조인트 CbCr 가용 플래그의 값이 1인 경우(즉, 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재한다고 판단된 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터, Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터 및 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터를 포함할 수 있다.
또한, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제1 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제1 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제1 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제1 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx, qPi_min_idx_minus1[i] 또는 qPi_cb_min_idx_minus1일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx, qPi_cb_delta_max_idx_minus1 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i], QpC_cb_qPi_flag[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제2 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제2 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제2 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제2 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx, qPi_min_idx_minus1[i] 또는 qPi_cr_min_idx_minus1일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx, qPi_cr_delta_max_idx_minus1 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i], QpC_cr_qPi_flag[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 상기 제3 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제3 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제3 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 상기 제3 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제3 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제3 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx 또는 qPi_min_idx_minus1[i] 일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 플래그의 값이 1인 경우(즉, 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용된다고 판단된 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분, Cr 성분 및 조인트 CbCr 성분에 대한 크로마 양자화 파라미터 데이터를 포함할 수 있다.
인코딩 장치는 상기 크로마 성분들에 대한 예측 정보, 상기 크로마 성분들에 대한 레지듀얼 정보, 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 인코딩한다(S740). 인코딩 장치는 상기 영상 정보를 인코딩할 수 있다. 상기 영상 정보는 상기 크로마 성분들에 대한 상기 예측 정보, 상기 크로마 성분들에 대한 상기 레지듀얼 정보, 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 포함할 수 있다.
예를 들어, 인코딩 장치는 상기 현재 블록에 대한 예측 정보를 생성 및 인코딩할 수 있다. 상기 예측 정보는 상기 크로마 성분들에 대한 현재 블록의 예측 모드를 나타내는 예측 모드 정보를 포함할 수 있다. 상기 영상 정보는 상기 예측 정보를 포함할 수 있다.
또한, 예를 들어, 인코딩 장치는 상기 레지듀얼 샘플들에 대한 레지듀얼 정보를 인코딩할 수 있다. 예를 들어, 인코딩 장치는 상기 레지듀얼 샘플들을 기반으로 변환 계수들을 도출할 수 있고, 상기 변환 계수들을 기반으로 상기 레지듀얼 정보를 생성할 수 있다. 예를 들어, 인코딩 장치는 상기 레지듀얼 샘플들을 크로마 양자화 파라미터를 기반으로 양자화하여 양자화된 레지듀얼 샘플들을 도출할 수 있고, 상기 양자화된 레지듀얼 샘플들을 기반으로 변환 계수들을 도출할 수 있고, 상기 변환 계수들을 기반으로 상기 레지듀얼 정보를 생성 및 인코딩할 수 있다. 또는, 예를 들어, 인코딩 장치는 상기 레지듀얼 샘플들을 크로마 양자화 파라미터를 기반으로 양자화하여 양자화된 레지듀얼 샘플들을 도출할 수 있고, 상기 양자화된 레지듀얼 샘플들을 변환하여 변환 계수들을 도출할 수 있고, 상기 변환 계수들을 기반으로 상기 레지듀얼 정보를 생성 및 인코딩할 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우, 인코딩 장치는 상기 Cb 성분에 대한 레지듀얼 샘플들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 양자화하여 상기 Cb 성분에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 레지듀얼 샘플들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 양자화하여 상기 Cr 성분에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 0인 경우, 인코딩 장치는 상기 Cb 성분에 대한 레지듀얼 샘플들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 양자화하여 상기 Cb 성분에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 레지듀얼 샘플들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 양자화하여 상기 Cr 성분에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있고, 상기 조인트 CbCr 성분에 대한 레지듀얼 샘플들을 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터를 기반으로 양자화하여 상기 조인트 CbCr 성분에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 1인 경우, 인코딩 장치는 상기 크로마 성분들에 대한 레지듀얼 샘플들을 크로마 양자화 파라미터를 기반으로 양자화하여 상기 크로마 성분들에 대한 양자화된 레지듀얼 샘플들을 도출할 수 있다.
상기 영상 정보는 상기 레지듀얼 정보를 포함할 수 있다. 예를 들어, 상기 레지듀얼 정보는 현재 크로마 블록의 변환 계수들에 대한 신텍스 엘리먼트들을 포함할 수 있다. 예를 들어, 상기 신텍스 엘리먼트들은 coded_sub_block_flag, sig_coeff_flag, coeff_sign_flag, abs_level_gt1_flag, par_level_flag, abs_level_gtX_flag, abs_remainder 및/또는 coeff_sign_flag 등의 신텍스 엘리먼트들(syntax elements)을 포함할 수 있다.
또한, 예를 들어, 인코딩 장치는 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 인코딩할 수 있다. 영상 정보는 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 포함할 수 있다.
인코딩 장치는 상기 크로마 양자화 파라미터 데이터, 상기 플래그 및/또는 상기 조인트 CbCr 가용 플래그를 포함하는 영상 정보를 인코딩할 수 있다.
인코딩 장치는 영상 정보를 인코딩하여 비트스트림 형태로 출력할 수 있다.
한편, 상기 영상 정보를 포함하는 비트스트림은 네트워크 또는 (디지털) 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다.
도 8은 본 문서에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다. 도 7에서 개시된 방법은 도 8에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 8의 상기 인코딩 장치의 예측부는 S700을 수행할 수 있고, 상기 인코딩 장치의 레지듀얼 처리부는 S710 내지 S730을 수행할 수 있고, 상기 인코딩 장치의 엔트로피 인코딩부는 S740을 수행할 수 있다. 또한, 비록 도시되지는 않았으나 상기 레지듀얼 샘플들과 예측 샘플들을 기반으로 복원 샘플들 및 복원 픽처를 생성하는 과정은 상기 인코딩 장치의 가산부에 의하여 수행될 수 있다.
도 9는 본 문서에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다. 도 9에서 개시된 방법은 도 3에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 9의 S900 내지 S910은 상기 디코딩 장치의 엔트로피 디코딩부에 의하여 수행될 수 있고, 도 9의 S940은 상기 디코딩 장치의 예측부에 의하여 수행될 수 있고, 도 9의 S920 내지 S930, S950 내지 S960은 상기 디코딩 장치의 레지듀얼 처리부에 의하여 수행될 수 있고, 도 9의 S970은 상기 디코딩 장치의 가산부에 의하여 수행될 수 있다.
디코딩 장치는 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득한다(S900). 디코딩 장치는 비트스트림을 통하여 영상 정보를 획득할 수 있다. 예를 들어, 상기 영상 정보는 크로마 양자화 파라미터에 대한 정보를 포함할 수 있다.
예를 들어, 상기 영상 정보는 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그를 포함할 수 있다. 예를 들어, 디코딩 장치는 크로마 타입을 기반으로, 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 획득할 수 있다. 여기서, 상기 크로마 타입은 상술한 ChromaArrayType 을 의미할 수 있다. 예를 들어, 상기 크로마 타입의 값이 0이 아닌 경우, 디코딩 장치는 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 획득할 수 있다. 예를 들어, 상기 크로마 타입의 값이 1인 경우, 디코딩 장치는 하나의 크로마 양자화 파라미터 테이블이 적용되는지 여부를 나타내는 플래그를 획득할 수 있다. 여기서, 상기 크로마 타입의 값이 0인 경우, 상기 크로마 타입은 Monochrome 포맷(format)일 수 있고, 상기 크로마 타입의 값이 1인 경우, 상기 크로마 타입은 4:2:0 포맷일 수 있고, 상기 크로마 타입의 값이 2인 경우, 상기 크로마 타입은 4:2:2 포맷일 수 있고, 상기 크로마 타입의 값이 3인 경우, 상기 크로마 타입은 4:4:4 포맷일 수 있다. 또한, 예를 들어, 상기 크로마 성분은 Cb 성분, Cr 성분 및/또는 조인트(joint) CbCr 성분을 포함할 수 있다. 예를 들어, 상기 플래그에 대한 신텍스 엘리먼트는 상술한 qp_luma_to_chroma_joint_map_flag flag, sps_separate_qpc_table_flag 또는 is_separate_chroma_table 일 수 있다.
예를 들어, 상기 플래그의 값이 1인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용됨을 나타낼 수 있다. 또한, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타낼 수 있다. 즉, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 플래그는 상기 크로마 성분들 각각에 대하여 개별적인 크로마 양자화 파라미터 테이블이 적용됨을 나타낼 수 있다.
또한, 예를 들어, 상기 플래그는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 플래그는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 영상 정보는 상기 크로마 성분들에 대한 예측 정보 및/또는 레지듀얼 정보를 포함할 수 있다. 예를 들어, 상기 영상 정보는 상기 크로마 성분들에 대한 예측 정보를 포함할 수 있고, 상기 예측 정보는 상기 예측 모드 정보를 포함할 수 있다. 상기 예측 모드 정보는 상기 크로마 성분들에 대한 현재 블록에 인터 예측이 적용되는지 인트라 예측이 적용되는지 여부를 나타낼 수 있다. 또한, 예를 들어, 상기 레지듀얼 정보는 상기 크로마 성분들에 대한 현재 블록의 변환 계수들에 대한 신텍스 엘리먼트들을 포함할 수 있다. 예를 들어, 상기 신텍스 엘리먼트들은 coded_sub_block_flag, sig_coeff_flag, coeff_sign_flag, abs_level_gt1_flag, par_level_flag, abs_level_gtX_flag, abs_remainder 및/또는 coeff_sign_flag 등의 신텍스 엘리먼트들(syntax elements)을 포함할 수 있다.
디코딩 장치는 상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득한다(S910). 디코딩 장치는 상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득할 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우(즉, 상기 플래그가 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타내는 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 0인 경우(즉, 상기 플래그가 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타내는 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터, Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터 및/또는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터를 포함할 수 있다.
한편, 예를 들어, 디코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 획득할 수 있다. 예를 들어, 상기 영상 정보는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 포함할 수 있다. 또한, 예를 들어, 디코딩 장치는 크로마 타입을 기반으로, 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 획득할 수 있다. 여기서, 상기 크로마 타입은 상술한 ChromaArrayType 을 의미할 수 있다. 예를 들어, 상기 크로마 타입의 값이 0이 아닌 경우, 디코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 획득할 수 있다. 예를 들어, 상기 크로마 타입의 값이 1인 경우, 디코딩 장치는 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재하는지 여부를 나타내는 조인트 CbCr 가용 플래그를 획득할 수 있다. 또한, 예를 들어, 상기 조인트 CbCr 가용 플래그는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 조인트 CbCr 가용 플래그는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
이 경우, 상기 플래그의 값이 0이고(즉, 상기 플래그가 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타내고), 상기 조인트 CbCr 가용 플래그의 값이 1인 경우(즉, 상기 조인트 CbCr 가용 플래그가 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터가 존재함을 나타내는 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터, Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터 및 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터를 포함할 수 있다.
또한, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제1 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제1 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제1 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제1 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx, qPi_min_idx_minus1[i] 또는 qPi_cb_min_idx_minus1일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx, qPi_cb_delta_max_idx_minus1 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i], QpC_cb_qPi_flag[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제1 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제2 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제2 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제2 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제2 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx, qPi_min_idx_minus1[i] 또는 qPi_cr_min_idx_minus1일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx, qPi_cr_delta_max_idx_minus1 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i], QpC_cr_qPi_flag[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제2 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 상기 제3 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제3 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제3 크로마 양자화 파라미터 테이블의 인덱스들의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함할 수 있다. 즉, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 상기 제3 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element), 상기 제3 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 제3 크로마 양자화 파라미터 테이블의 각 인덱스의 크로마 양자화 파라미터 값에 대한 신텍스 엘리먼트를 포함할 수 있다. 상기 시작 인덱스를 나타내는 상기 신텍스 엘리먼트는 상술한 qPi_min_idx 또는 qPi_min_idx_minus1[i] 일 수 있다. 또한, 상기 시작 인덱스와 상기 마지막 인덱스의 차이를 나타내는 상기 신텍스 엘리먼트는 qPi_delta_max_idx 또는 qPi_delta_max_idx[i] 일 수 있다. 또한, 상기 인덱스의 양자화 파라미터 값에 대한 신텍스 엘리먼트는 상술한 QpC_qPi_val[i] 또는 QpC_qPi_flag[i][j] 일 수 있다. 또한, 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 하이 레벨 신텍스(high level syntax)를 통하여 시그널링될 수 있다. 예를 들어, 상기 제3 크로마 양자화 파라미터 데이터는 SPS(sequence parameter set), PPS(picture parameter set), 슬라이스 헤더(slice header), 또는 APS(adaptation parameter set) 등을 통하여 시그널링될 수 있다.
또한, 예를 들어, 상기 플래그의 값이 1인 경우(즉, 상기 플래그가 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용됨을 나타내는 경우), 상기 크로마 양자화 파라미터 데이터는 Cb 성분, Cr 성분 및 조인트 CbCr 성분에 대한 크로마 양자화 파라미터 데이터를 포함할 수 있다.
디코딩 장치는 상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출한다(S920). 디코딩 장치는 상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출할 수 있다. 상기 크로마 양자화 파라미터 테이블은 크로마 양자화 파라미터 맵핑 테이블(chroma quantization parameter mapping table) 또는 사용자 정의 양자화 파라미터 맵핑 테이블(user defined quantization parameter mapping table)이라고 불릴 수도 있다.
예를 들어, 상술한 내용과 같이 상기 크로마 양자화 파라미터 테이블은 상기 크로마 양자화 파라미터 테이블의 상기 시작 인덱스를 나타내는 신텍스 엘리먼트, 상기 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트 및/또는 상기 크로마 양자화 파라미터 테이블의 인덱스들의 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 기반으로 도출될 수 있다. 즉, 예를 들어, 상기 양자화 파라미터 데이터를 기반으로 크로마 성분들에 대한 크로마 양자화 파라미터 테이블이 도출될 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우(즉, 상기 플래그가 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타내는 경우), 상기 Cb 성분에 대한 상기 제1 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 Cb 성분에 대한 상기 제1 크로마 양자화 파라미터 테이블이 도출될 수 있다. 또한, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 Cr 성분에 대한 상기 제2 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 Cr 성분에 대한 상기 제2 크로마 양자화 파라미터 테이블이 도출될 수 있다. 또한, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 조인트 CbCr 성분에 대한 상기 제3 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 조인트 CbCr 성분에 대한 상기 제3 크로마 양자화 파라미터 테이블이 도출될 수 있다.
또한, 예를 들어, 상기 플래그의 값이 1인 경우(즉, 상기 플래그가 상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블이 적용됨을 나타내는 경우), 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 성분들에 대한 상기 제1 크로마 양자화 파라미터 테이블이 도출될 수 있다. 상기 크로마 성분들은 Cb 성분, Cr 성분 및 조인트 CbCr 성분을 포함할 수 있다.
디코딩 장치는 상기 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출한다(S930). 디코딩 장치는 상기 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출할 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우, 상기 제1 크로마 양자화 파라미터 테이블을 기반으로 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터가 도출될 수 있고, 상기 제2 크로마 양자화 파라미터 테이블을 기반으로 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터가 도출될 수 있다. 또한, 예를 들어, 상기 플래그의 값이 0인 경우, 상기 제1 크로마 양자화 파라미터 테이블을 기반으로 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터가 도출될 수 있고, 상기 제2 크로마 양자화 파라미터 테이블을 기반으로 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터가 도출될 수 있고, 상기 제3 크로마 양자화 파라미터 테이블을 기반으로 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터가 도출될 수 있다. 여기서, 상기 Cb 성분에 대한 상기 양자화 파라미터는 상술한 QP`Cb 을 나타낼 수 있고, 상기 Cr 성분에 대한 상기 양자화 파라미터는 상술한 QP`Cr 을 나타낼 수 있고, 상기 조인트 CbCr 성분에 대한 상기 양자화 파라미터는 상술한 QP`CbCr 을 나타낼 수 있다.
예를 들어, 루마 성분에 대한 양자화 파라미터를 기반으로 크로마 성분(Cb 성분, Cr 성분 또는 조인트 CbCr 성분)에 대한 인덱스가 도출될 수 있고, 상기 크로마 성분에 대한 크로마 양자화 파라미터 테이블의 상기 인덱스에 대한 크로마 양자화 파라미터를 기반으로 상기 크로마 성분에 대한 크로마 양자화 파라미터가 도출될 수 있다. 즉, 예를 들어, 상기 크로마 양자화 파라미터 테이블에서 루마 성분의 양자화 파라미터와 동일한 인덱스에 대한 크로마 양자화 파라미터를 기반으로 상기 크로마 성분에 대한 크로마 양자화 파라미터가 도출될 수 있다.
또한, 예를 들어, 크로마 성분(Cb 성분, Cr 성분 또는 조인트 CbCr 성분)에 대한 상기 크로마 양자화 파라미터 테이블의 상기 인덱스에 대한 크로마 양자화 파라미터(예를 들어, QPCb, QPCr, 또는 QPCbCr)에 오프셋을 더하여 상기 크로마 성분에 대한 상기 크로마 양자화 파라미터(예를 들어, QP`Cb, QP`Cr 또는 QP`CbCr)가 도출될 수 있다. 상기 오프셋은 상기 크로마 성분에 대한 양자화 파라미터의 도출을 위한 오프셋(offset)을 나타내는 신텍스 엘리먼트를 기반으로 도출될 수 있다.
또는, 예를 들어, 상기 플래그의 값이 1인 경우, 상기 크로마 성분들에 대한 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터가 도출될 수 있다. 즉, 예를 들어, 상기 플래그의 값이 1인 경우, 상기 크로마 성분들에 대한 하나의 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터가 도출될 수 있다. 따라서, 상기 크로마 성분들에 대하여 크로마 양자화 파라미터가 동일하게 적용될 수 있다.
예를 들어, 루마 성분에 대한 양자화 파라미터를 기반으로 크로마 성분들(Cb 성분, Cr 성분 및 조인트 CbCr 성분)에 대한 인덱스가 도출될 수 있고, 상기 크로마 성분들에 대한 크로마 양자화 파라미터 테이블의 상기 인덱스에 대한 크로마 양자화 파라미터를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터가 도출될 수 있다. 즉, 예를 들어, 상기 크로마 양자화 파라미터 테이블에서 루마 성분의 양자화 파라미터와 동일한 인덱스에 대한 크로마 양자화 파라미터를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터가 도출될 수 있다.
또한, 예를 들어, 크로마 성분들에 대한 상기 크로마 양자화 파라미터 테이블의 상기 인덱스에 대한 크로마 양자화 파라미터에 오프셋을 더하여 상기 크로마 성분들에 대한 상기 크로마 양자화 파라미터가 도출될 수 있다. 상기 오프셋은 상기 크로마 성분들에 대한 양자화 파라미터의 도출을 위한 오프셋(offset)을 나타내는 신텍스 엘리먼트를 기반으로 도출될 수 있다.
디코딩 장치는 상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출한다(S940). 디코딩 장치는 상기 예측 정보를 기반으로 상기 크로마 성분들에 인터 예측이 적용되는지 인트라 예측이 적용되는지 판단할 수 있고, 이를 기반으로 예측을 수행할 수 있다. 즉, 예를 들어, 디코딩 장치는 상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 현재 블록에 인터 예측이 적용되는지 인트라 예측이 적용되는지 판단할 수 있고, 이를 기반으로 예측을 수행할 수 있다.
예를 들어, 디코딩 장치는 상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 상기 현재 블록에 적용되는 예측 모드를 도출할 수 있고, 상기 예측 모드를 기반으로 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 상기 현재 블록에 인터 예측이 적용되는 경우, 디코딩 장치는 상기 영상 정보에 포함된 예측 정보를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있고, 상기 움직임 정보를 기반으로 상기 현재 블록의 상기 예측 샘플들을 도출할 수 있다. 또한, 예를 들어, 상기 현재 블록에 인트라 예측이 적용되는 경우, 디코딩 장치는 상기 현재 블록의 주변 샘플을 기반으로 참조 샘플을 도출할 수 있고, 상기 참조 샘플 및 상기 현재 블록의 인트라 예측 모드를 기반으로 상기 현재 블록의 상기 예측 샘플들을 도출할 수 있다. 상기 참조 샘플들은 상기 현재 블록의 상측 참조 샘플들 및 좌측 참조 샘플들을 포함할 수 있다. 예를 들어, 상기 현재 블록의 사이즈가 NxN이고, 상기 현재 블록의 좌상단(top-left) 샘플 포지션의 x성분이 0 및 y성분이 0인 경우, 상기 좌측 참조 샘플들은 p[-1][0] 내지 p[-1][2N-1], 상기 상측 참조 샘플들은 p[0][-1] 내지 p[2N-1][-1]일 수 있다.
디코딩 장치는 상기 레지듀얼 정보를 기반으로 상기 크로마 성분들에 대한 변환 계수들을 도출한다(S950). 예를 들어, 디코딩 장치는 상기 수신된 레지듀얼 정보를 기반으로 크로마 성분들에 대한 변환 계수들을 도출할 수 있다. 또는, 예를 들어, 디코딩 장치는 레지듀얼 정보를 기반으로 변환 계수들을 도출할 수 있고, 상기 변환 계수들을 역변환하여 역변환된 변환 계수들을 도출할 수 있다. 상기 변환 계수들은 상기 Cb 성분에 대한 변환 계수들, 상기 Cr 성분에 대한 변환 계수들 및/또는 상기 조인트 CbCr 성분에 대한 변환 계수들을 포함할 수 있다.
디코딩 장치는 상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 레지듀얼 샘플들을 도출한다(S960). 디코딩 장치는 상기 크로마 양자화 파라미터를 기반으로 레지듀얼 샘플들을 도출할 수 있다.
예를 들어, 상기 플래그의 값이 0인 경우, 디코딩 장치는 상기 Cb 성분에 대한 변환 계수들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cb 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 변환 계수들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cr 성분에 대한 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 0인 경우, 디코딩 장치는 상기 Cb 성분에 대한 변환 계수들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cb 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 변환 계수들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cr 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 조인트 CbCr 성분에 대한 변환 계수들을 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 조인트 CbCr 성분에 대한 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 1인 경우, 디코딩 장치는 상기 크로마 성분들에 대한 변환 계수들을 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출할 수 있다.
또는, 상기 플래그의 값이 0인 경우, 디코딩 장치는 상기 Cb 성분에 대한 역변환된 변환 계수들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cb 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 역변환된 변환 계수들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cr 성분에 대한 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 0인 경우, 디코딩 장치는 상기 Cb 성분에 대한 역변환된 변환 계수들을 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cb 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 Cr 성분에 대한 역변환된 변환 계수들을 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cr 성분에 대한 레지듀얼 샘플들을 도출할 수 있고, 상기 조인트 CbCr 성분에 대한 역변환된 변환 계수들을 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 조인트 CbCr 성분에 대한 레지듀얼 샘플들을 도출할 수 있다. 또는, 예를 들어, 상기 플래그의 값이 1인 경우, 디코딩 장치는 상기 크로마 성분들에 대한 역변환된 변환 계수들을 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출할 수 있다.
디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성한다(S970). 예를 들어, 디코딩 장치는 상기 레지듀얼 샘플들을 기반으로 상기 복원 픽처를 생성할 수 있다.
한편, 예를 들어, 디코딩 장치는 비트스트림을 통하여 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 인터 예측 모드 또는 인트라 예측 모드를 수행하여 예측 샘플들을 도출할 수 있고, 상기 예측 샘플들과 상기 레지듀얼 샘플들의 가산을 통하여 복원 샘플들 및/또는 복원 픽처를 생성할 수 있다.
이후 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링, SAO 및/또는 ALF 절차와 같은 인루프 필터링 절차가 상기 복원 샘플들에 적용될 수 있음은 상술한 바와 같다.
도 10은 본 문서에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다. 도 9에서 개시된 방법은 도 10에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 10의 상기 디코딩 장치의 엔트로피 디코딩부는 도 9의 S900 내지 S910을 수행할 수 있고, 도 10의 상기 디코딩 장치의 예측부는 도 9의 S940을 수행할 수 있고, 도 10의 상기 디코딩 장치의 레지듀얼 처리부는 도 9의 S920 내지 S930, S950 내지 S960을 수행할 수 있고, 도 10의 상기 디코딩 장치의 가산부는 도 9의 S970을 수행할 수 있다.
상술한 본 문서에 따르면 크로마 성분들에 대한 양자화 파라미터 도출을 위하여 동일한 크로마 양자화 파라미터 테이블이 사용되는지 여부를 나타내는 플래그를 기반으로 크로마 성분들에 대한 크로마 양자화 파라미터 테이블이 결정될 수 있고, 영상의 특성에 따른 양자화 파라미터를 기반으로 코딩을 수행하여 코딩 효율을 향상시킬 수 있다.
또한, 본 문서에 따르면 크로마 성분들에 대하여 개별적으로 또는 공통적으로 시그널링되는 크로마 양자화 데이터를 기반으로 크로마 성분들에 대한 크로마 양자화 파라미터 테이블을 결정할 수 있고, 영상의 특성에 따른 양자화 파라미터를 기반으로 코딩을 수행하여 코딩 효율을 향상시킬 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 문서는 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 문서의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
본 문서에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 문서의 실시예들이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 문서의 실시예들이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 문서에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 문서의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 문서의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 11은 본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템 구조도를 예시적으로 나타낸다.
본 문서의 실시예들이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 문서의 실시예들이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.
Claims (15)
- 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득하는 단계;
상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득하는 단계;
상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출하는 단계;
상기 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출하는 단계;
상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출하는 단계;
상기 레지듀얼 정보를 기반으로 상기 크로마 성분들에 대한 변환 계수들을 도출하는 단계;
상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 레지듀얼 샘플들을 도출하는 단계; 및
상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하고,
상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제1항에 있어서,
상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 상기 예측 샘플들을 도출하는 단계는,
상기 예측 정보를 기반으로 상기 현재 크로마 블록의 예측 모드를 도출하는 단계; 및
상기 예측 모드를 기반으로 상기 예측 샘플들을 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제1항에 있어서,
상기 플래그의 값이 1인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 상기 하나의 크로마 양자화 파라미터 테이블이 적용됨을 나타내고,
상기 플래그의 값이 0인 경우, 상기 플래그는 상기 크로마 성분들에 대하여 복수의 크로마 양자화 파라미터 테이블들이 적용됨을 나타내는 것을 특징으로 하는 영상 디코딩 방법. - 제1항에 있어서,
상기 플래그는 크로마 타입을 기반으로 획득되고,
상기 크로마 타입의 값은 0 이 아닌 것을 특징으로 하는 영상 디코딩 방법. - 제1항에 있어서,
상기 플래그는 SPS(sequence parameter set)을 통하여 시그널링되는 것을 특징으로 하는 영상 디코딩 방법. - 제1항에 있어서,
상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 조인트(joint) CbCr 성분에 대한 제3 크로마 양자화 파라미터 데이터를 더 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제6항에 있어서,
상기 플래그의 값이 0인 경우, 상기 제1 크로마 양자화 파라미터 데이터를 기반으로 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터 테이블이 도출되고, 상기 제2 크로마 양자화 파라미터 데이터를 기반으로 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터 테이블이 도출되고, 상기 제3 크로마 양자화 파라미터 데이터를 기반으로 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터 테이블이 도출되는 것을 특징으로 하는 영상 디코딩 방법. - 제7항에 있어서,
상기 제1 크로마 양자화 파라미터 테이블을 기반으로 상기 Cb 성분에 대한 제1 크로마 양자화 파라미터가 도출되고,
상기 제2 크로마 양자화 파라미터 테이블을 기반으로 상기 Cr 성분에 대한 제2 크로마 양자화 파라미터가 도출되고,
상기 제3 크로마 양자화 파라미터 테이블을 기반으로 상기 조인트 CbCr 성분에 대한 제3 크로마 양자화 파라미터가 도출되는 것을 특징으로 하는 영상 디코딩 방법. - 제8항에 있어서,
상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 상기 레지듀얼 샘플들을 도출하는 단계는,
상기 Cb 성분에 대한 변환 계수들을 상기 제1 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cb 성분에 대한 레지듀얼 샘플들을 도출하는 단계;
상기 Cr 성분에 대한 변환 계수들을 상기 제2 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 Cr 성분에 대한 레지듀얼 샘플들을 도출하는 단계; 및
상기 조인트 CbCr 성분에 대한 변환 계수들을 상기 제3 크로마 양자화 파라미터를 기반으로 역양자화하여 상기 조인트 CbCr 성분에 대한 레지듀얼 샘플들을 도출하는 단계를 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제6항에 있어서,
상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element)와 상기 제1 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트를 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제10항에 있어서,
상기 제1 크로마 양자화 파라미터 데이터는 상기 제1 크로마 양자화 파라미터 테이블의 인덱스들의 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제10항에 있어서,
상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 시작 인덱스를 나타내는 신텍스 엘리먼트(syntax element)와 상기 제2 크로마 양자화 파라미터 테이블의 상기 시작 인덱스와 마지막 인덱스의 차이를 나타내는 신텍스 엘리먼트를 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 제12항에 있어서,
상기 제2 크로마 양자화 파라미터 데이터는 상기 제2 크로마 양자화 파라미터 테이블의 인덱스들의 양자화 파라미터 값에 대한 신텍스 엘리먼트들을 포함하는 것을 특징으로 하는 영상 디코딩 방법. - 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
인터 예측 또는 인트라 예측을 기반으로 크로마 성분들에 대한 예측 샘플들을 도출하는 단계;
상기 예측 샘플들을 기반으로 상기 크로마 성분들에 대한 레지듀얼 샘플들을 도출하는 단계;
상기 크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그를 생성하는 단계;
상기 플래그를 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터 데이터를 생성하는 단계; 및
상기 크로마 성분들에 대한 예측 정보, 상기 크로마 성분들에 대한 레지듀얼 정보, 상기 크로마 양자화 파라미터 데이터 및 상기 플래그를 인코딩하는 단계를 포함하고,
상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 하는 영상 인코딩 방법. - 디코딩 장치로 하여금 영상 디코딩 방법을 수행하도록 야기하는 영상 정보를 포함하는 비트스트림이 저장된 컴퓨터 판독가능 디지털 저장 매체에 있어서, 상기 영상 디코딩 방법은,
크로마 성분들에 대하여 하나의 크로마 양자화 파라미터 테이블(chroma quantization parameter table)이 적용되는지 여부를 나타내는 플래그, 상기 크로마 성분들에 대한 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 획득하는 단계;
상기 플래그를 기반으로 크로마 양자화 파라미터 데이터를 획득하는 단계;
상기 크로마 양자화 파라미터 데이터를 기반으로 상기 크로마 양자화 파라미터 테이블을 도출하는 단계;
상기 크로마 양자화 파라미터 테이블을 기반으로 상기 크로마 성분들에 대한 크로마 양자화 파라미터를 도출하는 단계;
상기 예측 정보를 기반으로 상기 크로마 성분들에 대한 예측 샘플들을 도출하는 단계;
상기 레지듀얼 정보를 기반으로 상기 크로마 성분들에 대한 변환 계수들을 도출하는 단계;
상기 크로마 양자화 파라미터를 기반으로 상기 변환 계수들을 역양자화하여 레지듀얼 샘플들을 도출하는 단계; 및
상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하고,
상기 플래그의 값이 0인 경우, 상기 크로마 양자화 파라미터 데이터는 Cb 성분에 대한 제1 크로마 양자화 파라미터 데이터 및 Cr 성분에 대한 제2 크로마 양자화 파라미터 데이터를 포함하는 것을 특징으로 하는 컴퓨터 판독가능 디지털 저장 매체.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247005776A KR102702823B1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962867875P | 2019-06-28 | 2019-06-28 | |
US62/867,875 | 2019-06-28 | ||
PCT/KR2020/008131 WO2020262913A1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247005776A Division KR102702823B1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220003119A true KR20220003119A (ko) | 2022-01-07 |
KR102640264B1 KR102640264B1 (ko) | 2024-02-23 |
Family
ID=74060281
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247029203A KR20240135873A (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
KR1020247005776A KR102702823B1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
KR1020217042136A KR102640264B1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247029203A KR20240135873A (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
KR1020247005776A KR102702823B1 (ko) | 2019-06-28 | 2020-06-24 | 크로마 양자화 파라미터 데이터에 대한 영상 디코딩 방법 및 그 장치 |
Country Status (6)
Country | Link |
---|---|
US (2) | US12015792B2 (ko) |
EP (1) | EP3993417A4 (ko) |
JP (3) | JP7339370B2 (ko) |
KR (3) | KR20240135873A (ko) |
CN (1) | CN114208181A (ko) |
WO (1) | WO2020262913A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2020354852A1 (en) * | 2019-09-23 | 2022-07-21 | Huawei Technologies Co., Ltd. | Method and apparatus for chrominance quantization parameters signalling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140088098A (ko) * | 2011-11-25 | 2014-07-09 | 인포브릿지 피티이 엘티디 | 색차 영상 복호화 방법 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9363509B2 (en) * | 2011-03-03 | 2016-06-07 | Electronics And Telecommunications Research Institute | Method for determining color difference component quantization parameter and device using the method |
KR20130049526A (ko) * | 2011-11-04 | 2013-05-14 | 오수미 | 복원 블록 생성 방법 |
GB2499865B (en) * | 2012-03-02 | 2016-07-06 | Canon Kk | Method and devices for encoding a sequence of images into a scalable video bit-stream, and decoding a corresponding scalable video bit-stream |
EP2843949B1 (en) | 2013-06-28 | 2020-04-29 | Velos Media International Limited | Methods and devices for emulating low-fidelity coding in a high-fidelity coder |
US10057578B2 (en) | 2014-10-07 | 2018-08-21 | Qualcomm Incorporated | QP derivation and offset for adaptive color transform in video coding |
KR102365685B1 (ko) * | 2015-01-05 | 2022-02-21 | 삼성전자주식회사 | 인코더의 작동 방법과 상기 인코더를 포함하는 장치들 |
US20180309995A1 (en) | 2015-04-21 | 2018-10-25 | Vid Scale, Inc. | High dynamic range video coding |
KR102601732B1 (ko) * | 2016-05-31 | 2023-11-14 | 삼성디스플레이 주식회사 | 영상 부호화 방법 및 영상 복호화 방법 |
US10448056B2 (en) * | 2016-07-15 | 2019-10-15 | Qualcomm Incorporated | Signaling of quantization information in non-quadtree-only partitioned video coding |
KR20190042090A (ko) * | 2016-09-30 | 2019-04-23 | 엘지전자 주식회사 | 영상 코딩 시스템에서 블록 분할 및 인트라 예측 방법 및 장치 |
BR112021000379A2 (pt) * | 2019-04-26 | 2021-04-13 | Huawei Technologies Co., Ltd. | Método e aparelho para sinalização de função de mapeamento de parâmetro de quantização de croma |
CN115623209A (zh) * | 2019-05-28 | 2023-01-17 | 杜比实验室特许公司 | 用信号发送量化参数 |
-
2020
- 2020-06-24 US US17/623,386 patent/US12015792B2/en active Active
- 2020-06-24 KR KR1020247029203A patent/KR20240135873A/ko active Application Filing
- 2020-06-24 JP JP2021577661A patent/JP7339370B2/ja active Active
- 2020-06-24 EP EP20831609.1A patent/EP3993417A4/en active Pending
- 2020-06-24 KR KR1020247005776A patent/KR102702823B1/ko active Application Filing
- 2020-06-24 KR KR1020217042136A patent/KR102640264B1/ko active IP Right Grant
- 2020-06-24 CN CN202080056507.2A patent/CN114208181A/zh active Pending
- 2020-06-24 WO PCT/KR2020/008131 patent/WO2020262913A1/ko active Application Filing
-
2023
- 2023-08-24 JP JP2023136480A patent/JP7509974B2/ja active Active
-
2024
- 2024-05-13 US US18/662,228 patent/US20240305795A1/en active Pending
- 2024-06-20 JP JP2024099392A patent/JP2024111194A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140088098A (ko) * | 2011-11-25 | 2014-07-09 | 인포브릿지 피티이 엘티디 | 색차 영상 복호화 방법 |
Non-Patent Citations (2)
Title |
---|
Adarsh K. Ramasubramonian et al., AHG15: On signalling of chroma QP tables, JVET of ITU-T and ISO/IEC, JVET-O0650-v1(2019.06.26.)* * |
Fangjun Pu et al., AHG15: chroma quantization parameters QpC table, JVET of ITU-T and ISO/IEC, JVET-O0433-v1(2019.06.25.)* * |
Also Published As
Publication number | Publication date |
---|---|
US20240305795A1 (en) | 2024-09-12 |
EP3993417A4 (en) | 2023-08-02 |
JP2023153372A (ja) | 2023-10-17 |
JP2022539765A (ja) | 2022-09-13 |
JP7509974B2 (ja) | 2024-07-02 |
WO2020262913A1 (ko) | 2020-12-30 |
KR102640264B1 (ko) | 2024-02-23 |
EP3993417A1 (en) | 2022-05-04 |
KR20240135873A (ko) | 2024-09-12 |
US12015792B2 (en) | 2024-06-18 |
CN114208181A (zh) | 2022-03-18 |
US20220408103A1 (en) | 2022-12-22 |
JP2024111194A (ja) | 2024-08-16 |
JP7339370B2 (ja) | 2023-09-05 |
KR102702823B1 (ko) | 2024-09-04 |
KR20240027876A (ko) | 2024-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210142007A (ko) | Bdpcm 기반 영상 디코딩 방법 및 그 장치 | |
KR20210142009A (ko) | 블록 사이즈를 기반으로 bdpcm 을 수행하는 영상 디코딩 방법 및 그 장치 | |
US20220103848A1 (en) | Image decoding method and device therefor | |
KR20220137935A (ko) | 레지듀얼 코딩에 대한 영상 디코딩 방법 및 그 장치 | |
US20240275974A1 (en) | Image decoding method for chroma component and apparatus therefor | |
KR102594692B1 (ko) | 크로마 성분에 대한 영상 디코딩 방법 및 그 장치 | |
JP2023145648A (ja) | 画像デコード方法及びその装置 | |
KR20220110834A (ko) | 영상 디코딩 방법 및 그 장치 | |
US20240305795A1 (en) | Image decoding method for chroma quantization parameter data and apparatus therefor | |
US20240291988A1 (en) | Method for decoding image and apparatus therefor | |
KR102637085B1 (ko) | 영상 디코딩 방법 및 그 장치 | |
KR20220019258A (ko) | 영상 코딩 시스템에서 영상 코딩 방법 및 장치 | |
KR20210130235A (ko) | 스케일링 리스트 파라미터 기반 비디오 또는 영상 코딩 | |
KR20220134632A (ko) | 영상 디코딩 방법 및 그 장치 | |
KR20220106174A (ko) | Dpb 관리 프로세스를 포함하는 영상 디코딩 방법 및 그 장치 | |
KR20220110835A (ko) | Bdpcm 을 사용하는 영상 디코딩 방법 및 그 장치 | |
KR20220002701A (ko) | 크로마 양자화 파라미터 테이블을 사용하는 영상 디코딩 방법 및 그 장치 | |
KR20210129224A (ko) | 스케일링 리스트 기반 비디오 또는 영상 코딩 | |
KR102727878B1 (ko) | 영상 디코딩 방법 및 그 장치 | |
KR20220100063A (ko) | Ph nal 유닛 코딩 관련 영상 디코딩 방법 및 그 장치 | |
KR20220100711A (ko) | 영상 디코딩 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |