Nothing Special   »   [go: up one dir, main page]

KR20210141825A - Benzazole derivatives and organic electroluminescent device including the same - Google Patents

Benzazole derivatives and organic electroluminescent device including the same Download PDF

Info

Publication number
KR20210141825A
KR20210141825A KR1020200057310A KR20200057310A KR20210141825A KR 20210141825 A KR20210141825 A KR 20210141825A KR 1020200057310 A KR1020200057310 A KR 1020200057310A KR 20200057310 A KR20200057310 A KR 20200057310A KR 20210141825 A KR20210141825 A KR 20210141825A
Authority
KR
South Korea
Prior art keywords
group
mmol
layer
compound
synthesis
Prior art date
Application number
KR1020200057310A
Other languages
Korean (ko)
Inventor
박용필
임철수
고병수
윤정훈
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Priority to KR1020200057310A priority Critical patent/KR20210141825A/en
Priority to CN202180032238.0A priority patent/CN115697977A/en
Priority to PCT/KR2021/004881 priority patent/WO2021230512A1/en
Publication of KR20210141825A publication Critical patent/KR20210141825A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • H01L51/0067
    • H01L51/0069
    • H01L51/0072
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a benzazole derivative which contributes improvement of substantial service life of an organic electroluminescence device by absorbing a high-energy external light source in the UV region effectively to minimize damages of the organic materials in the organic electroluminescence device. The present invention also relates to an organic electroluminescence device including: a first electrode; a second electrode; at least one organic layer disposed between the first electrode and the second electrode; and a capping layer, wherein the organic layer or capping layer includes a benzazole derivative represented by chemical formula 1. In chemical formula 1, each substituent is the same as defined in the specificiation.

Description

벤즈아졸 유도체 및 이를 포함한 유기전계발광소자{Benzazole derivatives and organic electroluminescent device including the same}Benzazole derivatives and organic electroluminescent device including the same

본 발명은 벤즈아졸 유도체 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 벤즈아졸 유도체에 의해 캡핑층을 포함한 유기 전계 발광 소자가 저굴절률 특성을 갖도록 하는 것이다. The present invention relates to a benzazole derivative and an organic electroluminescent device including the same, and to make an organic electroluminescent device including a capping layer have low refractive index by using the benzazole derivative.

디스플레이 산업에서 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다. OLED (Organic Light Emitting Diodes) is attracting attention as a display using the self-luminescence phenomenon in the display industry.

OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성이 이해되고 연구되어왔다.In OLED, a study of carrier injection electroluminescence (EL) using a single crystal of an anthracene aromatic hydrocarbon was first attempted by Pope et al. in 1963. From these studies, basic mechanisms such as charge injection, recombination, exciton generation, and light emission in organic materials and electroluminescence properties have been understood and studied.

특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364]. In particular, in order to increase the luminous efficiency, various approaches are being made, such as changing the structure of the device and developing materials [Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].

OLED 디스플레이의 기본적 구조는 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층 (Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다. The basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL). ), and a multilayer structure of a cathode, and a sandwich structure in which an electron organic multilayer film is formed between two electrodes.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon typically has a structure including an anode and a cathode and an organic material layer therebetween. Here, the organic material layer is often formed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. When a voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet It lights up when it falls into a state. Such an organic light emitting device is known to have characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.

유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. A material used as an organic material layer in an organic light emitting device may be classified into a light emitting material and a charge transport material, for example, a hole injection material, a hole transport material, an electron transport material, an electron injection material, and the like, according to functions.

발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.The light-emitting material includes blue, green, and red light-emitting materials depending on the light-emitting color, and yellow and orange light-emitting materials required to realize better natural colors. In addition, in order to increase color purity and increase luminous efficiency through energy transfer, a host/dopant system may be used as a light emitting material. The principle is that when a small amount of a dopant having a smaller energy band gap and excellent luminous efficiency than the host constituting the light emitting layer is mixed in the light emitting layer in a small amount, excitons generated from the host are transported to the dopant to emit light with high efficiency. At this time, since the wavelength of the host moves to the wavelength band of the dopant, light having a desired wavelength can be obtained according to the type of dopant used.

전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다. In order to sufficiently express the excellent characteristics of the above-mentioned organic light emitting device, materials constituting the organic material layer in the device, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc. The performance of the organic light emitting device is recognized by the products.

그러나 유기 발광 소자의 상용화가 이루어지고 시간이 지남에 따라 유기 발광 소자 자체의 발광 특성 이외에 다른 특성들의 필요성이 대두되고 있다. However, as the commercialization of the organic light emitting device is made and time passes, the need for other characteristics in addition to the light emitting characteristic of the organic light emitting device itself is emerging.

유기 발광 소자는 외부 광원에 노출되는 시간이 많은 경우가 대부분이므로 고에너지를 갖는 자외선에 노출되는 환경에 있게 된다. 이에 따라 유기 발광 소자를 구성하는 유기물이 지속적인 영향을 받게 되는 문제가 있다. 이러한 고에너지 광원에 노출을 막기 위해 자외선 흡수특성을 갖는 캡핑층을 유기 발광 소자에 적용함으로써 문제를 해결할 수 있다. Since the organic light emitting diode is exposed to an external light source for a large amount of time, it is in an environment exposed to ultraviolet rays having high energy. Accordingly, there is a problem in that the organic material constituting the organic light emitting device is continuously affected. In order to prevent exposure to such a high energy light source, the problem can be solved by applying a capping layer having ultraviolet absorption characteristics to the organic light emitting diode.

일반적으로 유기 발광 소자의 시야각 특성은 넓다고 알려져 있지만 광원 스펙트럼 관점에서는 시야각에 따라 상당한 편차가 발생하게 되며 이는 유기 발광 소자를 이루는 유리 기판, 유기물, 전극재료 등의 전체 굴절률과 유기 발광 소자의 발광파장에 따른 적절한 굴절률 사이에서 편차가 발생하는 것에 기인한다.In general, it is known that the viewing angle characteristics of an organic light emitting device are wide, but a significant deviation occurs depending on the viewing angle from the viewpoint of the light source spectrum. This is due to the occurrence of a deviation between the appropriate refractive indices.

일반적으로 청색의 필요한 굴절률 값이 크고 파장이 길어질수록 필요 굴절률의 값은 작아진다. 이에 따라 상기 언급된 자외선 흡수특성과 적정 굴절률을 동시에 만족하는 캡핑층을 이루는 재료의 개발이 필요하다.In general, the larger the required refractive index value of blue and the longer the wavelength, the smaller the required refractive index value. Accordingly, it is necessary to develop a material for forming a capping layer that simultaneously satisfies the above-mentioned ultraviolet absorption characteristics and an appropriate refractive index.

유기 발광 소자의 효율은 일반적으로 내부 발광 효율 (internal luminescent efficiency)과 외부 발광 효율로 나눌 수 있다. 내부 발광 효율은 광변환이 이루어지기 위해 유기층에서 엑시톤의 형성의 효율성에 관련된다. The efficiency of the organic light emitting diode can be generally divided into internal luminescent efficiency and external luminescent efficiency. The internal luminous efficiency is related to the efficiency of the formation of excitons in the organic layer for light conversion to take place.

외부 발광 효율은 유기층에서 생성된 광이 유기 발광 소자 외부로 방출되는 효율을 말한다.The external luminous efficiency refers to the efficiency at which light generated in the organic layer is emitted to the outside of the organic light emitting device.

전체적으로 효율을 제고하기 위해서는 내부 발광 효율뿐만 아니라 외부 발광 효율을 높여야 한다. 외부 발광 효율을 높이는 능력이 우수한 캡핑층(CPL, 광효율 개선층) 물질 개발이 요구되고 있다.In order to improve the overall efficiency, it is necessary to increase the external luminous efficiency as well as the internal luminous efficiency. There is a demand for the development of a capping layer (CPL, light efficiency improving layer) material having an excellent ability to increase external luminous efficiency.

한편, 공진 구조의 전면(Top) 소자 구조는 비공진 구조의 배면(Bottom) 소자 구조와 비교해보면 형성된 빛이 반사막인 애노드에 반사되어 캐소드쪽으로 나오므로 SPP(Surface Plasmon Polariton)에 의한 광학 에너지 손실이 크다. On the other hand, the top device structure of the resonant structure is compared with the bottom device structure of the non-resonant structure, since the formed light is reflected by the anode, which is a reflective film, and comes out toward the cathode, the optical energy loss due to SPP (Surface Plasmon Polariton) is reduced. Big.

따라서, EL Spectrum의 모양과 효율향상을 위한 중요한 방법 중의 하나는 탑 캐소드(Top cathode)에 광효율 개선층(캡핑층)을 사용하는 방법이 있다. Therefore, one of the important methods for improving the shape and efficiency of the EL spectrum is to use a light efficiency improving layer (capping layer) for the top cathode.

일반적으로 SPP는 전자방출은 Al, Pt, Ag, Au의 4종의 금속이 주로 사용되며 금속 전극 표면에서 표면 프라즈몬이 발생한다. 예를 들어 음극을 Ag로 사용할 경우 방출되는 빛이 SPP에 의해 Quenching(Ag로 인한 빛에너지 손실)되어 효율이 감소된다.In general, in SPP, four types of metals are mainly used for electron emission: Al, Pt, Ag, and Au, and surface plasmons are generated on the surface of the metal electrode. For example, when the cathode is used as Ag, the emitted light is quenched by SPP (light energy loss due to Ag) and the efficiency is reduced.

반면, 캡핑층(광효율 개선층)을 사용할 경우에는 MgAg 전극과 유기재료 경계면에서 SPP가 발생하는데, 이때 상기 유기재료가 고굴절의 경우에(예를 들면 n>1.69 @620nm), 그 중 TE(Transverse electric) 편광된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 캡핑층면(광효율 개선층면)에서 소멸되며, 음극과 캡핑층을 따라 이동하는 TM(Transverse magnetic) 편광된 빛은 표면 프라즈마 공진(Surface plasma resonance)에 의해 파장의 증폭현상이 일어나며, 이로 인해 피크(peak)의 세기(Intensity)가 증가하여 높은 효율과 효과적인 색순도 조절이 가능하게 된다. On the other hand, when a capping layer (light efficiency improvement layer) is used, SPP occurs at the interface between the MgAg electrode and the organic material. electric) Polarized light is dissipated on the capping layer surface (light efficiency improving layer surface) in the vertical direction by an evanescent wave, and TM (Transverse magnetic) polarized light moving along the cathode and the capping layer is a surface plasma resonance (Surface) The amplification of the wavelength occurs due to plasma resonance, which increases the intensity of the peak, enabling high efficiency and effective color purity control.

그러나 여전히 유기 발광 소자에서 효율과 색순도의 향상과 더불어 균형이 있게 다양한 특성의 향상에 필요한 재료와 구조의 개발이 요구되고 있다.However, it is still required to develop materials and structures necessary for improving various properties in a balanced manner along with improvement of efficiency and color purity in organic light emitting devices.

대한민국 공개특허공보 제2016-0062307호(발명의 명칭: 고굴절률 캡핑층을 포함하는 유기발광 표시장치)Republic of Korea Patent Publication No. 2016-0062307 (Title of the invention: organic light emitting display device including a high refractive index capping layer)

본 발명의 목적은, 발광 효율과 수명을 개선할 수 있고 동시에 시야각 특성을 개선할 수 있는, 유기 발광 소자용 캡핑층 재료를 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a capping layer material for an organic light emitting device, which can improve luminous efficiency and lifespan, and at the same time improve viewing angle characteristics.

본 발명의 목적은 특히 유기 전계 발광 소자의 광 추출율을 개선하기 위하여 굴절률이 조절된 캡핑층을 포함하는 고효율 및 장수명의 유기 전계 발광 소자를 제공하는 것에 있다. It is an object of the present invention to provide an organic electroluminescent device with high efficiency and long life, including a capping layer having a controlled refractive index, in particular to improve the light extraction rate of the organic electroluminescent device.

본 발명은 제1 전극; 상기 제1 전극 상에 배치된 유기물층; 상기 유기물층 상에 배치된 제2전극; 및 상기 제2 전극 상에 배치된 캡핑층을 포함하며, 상기 유기물층 또는 캡핑층은 하기 화학식 1로 표시되는 벤즈아졸 유도체를 포함하는 유기 전계 발광 소자를 제공한다.The present invention is a first electrode; an organic material layer disposed on the first electrode; a second electrode disposed on the organic material layer; and a capping layer disposed on the second electrode, wherein the organic material layer or the capping layer provides an organic electroluminescent device including a benzazole derivative represented by Formula 1 below.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 화학식 1에 있어서, In Formula 1,

Z1는 O, S 또는 NR이고(단, R은 페닐임),Z 1 is O, S or NR with the proviso that R is phenyl;

X1, X2, X3, X 4 및 X5는 서로 독립적으로 CH 또는 N이고,X 1 , X 2 , X 3 , X 4 and X 5 are each independently CH or N,

Ar1는 H, 메틸기, tert-부틸기, F, CF3, CN 및 Si(CH3)3 중에서 선택되고, Ar 1 is selected from H, a methyl group, a tert-butyl group, F, CF 3 , CN and Si(CH 3 ) 3 ,

L1는 직접결합; 이거나 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기;이며,L 1 is a direct bond; or a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group;

n 은 0 내지 5의 정수이고,n is an integer from 0 to 5,

R1 내지 R5는 각각 독립적으로 알킬기, H, F, CF3, CN, 및 Si(CH3)3 중에서 선택되는 어느 하나이며,R 1 to R 5 are each independently any one selected from an alkyl group, H, F, CF 3 , CN, and Si(CH 3 ) 3 ,

m 은 1 내지 2의 정수이다.m is an integer of 1 to 2.

본 명세서에 기재된 화합물은 유기 발광 소자의 캡핑층 및/또는 유기물층의 재료로서 사용될 수 있다. The compound described herein may be used as a material for a capping layer and/or an organic material layer of an organic light emitting device.

본 명세서에 기재된 화합물을 저굴절 캡핑층(광효율 개선층)으로 이용한 유기 발광 소자에서 발광효율 향상, 발광 스펙트럼 반치폭 감소에 따른 색순도를 현저히 개선시킬 수 있다. In an organic light emitting device using the compound described in the present specification as a low refractive index capping layer (light efficiency improving layer), it is possible to significantly improve luminous efficiency and color purity according to a reduction in the emission spectrum half width.

본 발명에 따른 유기 전계 발광 소자는 MgAg 전극 상에 고굴절의 유기재료 박막과 저굴절의 박막을 연속해서 도입함으로써 도파로 공진 현상으로 인해 공기 중으로 추출되는 빛의 시야각과 광효율 향상이 이루어질 수 있다.The organic electroluminescent device according to the present invention continuously introduces a thin film of a high refractive organic material and a thin film of low refractive index on an MgAg electrode, thereby improving the viewing angle and luminous efficiency of light extracted into the air due to the waveguide resonance phenomenon.

도 1은 본 발명의 일 실시예에 따른 기판(100) 위에 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 캡핑층(300)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 벤즈아졸 유도체를 이용할 경우에 나타나는 빛의 굴절과 흡수 특성의 그래프이다.
1 shows a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer on a substrate 100 according to an embodiment of the present invention. An example of an organic light emitting device in which 235 , the second electrode 120 , and the capping layer 300 are sequentially stacked is shown.
2 is a graph showing the refraction and absorption characteristics of light when using a benzazole derivative according to an embodiment of the present invention.

이하 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.

각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The singular expression includes the plural expression unless the context clearly dictates otherwise.

본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐 만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof. Also, when a part of a layer, film, region, plate, etc. is said to be “on” another part, this includes not only cases where it is “directly on” another part, but also cases where there is another part in between.

본 명세서에서, “치환 또는 비치환된”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.As used herein, "substituted or unsubstituted" is a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, an alke group It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of a nyl group, an aryl group, a heteroaryl group, and a heterocyclic group. In addition, each of the substituents exemplified above may be substituted or unsubstituted. For example, a biphenyl group may be interpreted as an aryl group or a phenyl group substituted with a phenyl group.

본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.In the present specification, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear, branched or cyclic. Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methylheptyl group, 2,2-dimethylheptyl group, 2-ethylheptyl group, 2-butylheptyl group, n-octyl group, t-octyl group, 2-ethyloctyl group, 2-butyloctyl group, 2-hexyl group Siloctyl group, 3,7-dimethyloctyl group, cyclooctyl group, n-nonyl group, n-decyl group, adamantyl group, 2-ethyldecyl group, 2-butyldecyl group, 2-hexyldecyl group, 2-ox Tyldecyl group, n-undecyl group, n-dodecyl group, 2-ethyldodecyl group, 2-butyldodecyl group, 2-hexyldodecyl group, 2-octyldodecyl group, n-tridecyl group, n-tetradecyl group, n -pentadecyl group, n-hexadecyl group, 2-ethylhexadecyl group, 2-butylhexadecyl group, 2-hexylhexadecyl group, 2-octylhexadecyl group, n-heptadecyl group, n-octadecyl group , n-nonadecyl group, n-icosyl group, 2-ethyl icosyl group, 2-butyl icosyl group, 2-hexyl icosyl group, 2-octyl icosyl group, n-henicosyl group, n-docosyl group, n-tricho Sil group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, n-heptacosyl group, n-octacosyl group, n-nonacosyl group, and n-triacontyl group, etc. are mentioned, It is not limited to these.

본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.As used herein, the hydrocarbon ring group means any functional group or substituent derived from an aliphatic hydrocarbon ring. The hydrocarbon ring group may be a saturated hydrocarbon ring group having 5 to 20 ring carbon atoms.

본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.As used herein, the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring. The aryl group may be a monocyclic aryl group or a polycyclic aryl group. The number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less. Examples of the aryl group include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a peryleneyl group, a naphtha group Although a cenyl group, a pyrenyl group, a benzo fluoranthenyl group, a chrysenyl group, etc. can be illustrated, it is not limited to these.

본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다. In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.

본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다. In the present specification, the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si and S as a heterogeneous element. The N and S atoms may optionally be oxidized and the N atom(s) may optionally be quaternized. The number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less. The heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group. The polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.

헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다. Examples of the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a pyrazolyl group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group , tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyridopyrimidine group, pyridopyrazino group Pyrazine group, isoquinoline group, cinnol group, indole group, isoindole group, indazole group, carbazole group, N-arylcarbazole group, N-heteroarylcarbazole group, N-alkylcarbazole group, benzoxazole group, benzoimidazole group , benzothiazole group, benzocarbazole group, benzothiophene group, benzothiophene group, benzoisothiazolyl, benzoisoxazolyl, dibenzothiophene group, thienothiophene group, benzofuran group, phenanthroline group, phenanthridine group , thiazole group, isoxazole group, oxadiazole group, thiadiazole group, isothiazole group, isoxazole group, phenothiazine group, benzodioxol group, dibenzosilol group and dibenzofuran group, isobenzofuran group, etc., It is not limited to these. In addition, there are N-oxide aryl groups corresponding to the monocyclic heteroaryl group or polycyclic heteroaryl group, for example, quaternary salts such as pyridyl N-oxide group, quinolyl N-oxide group, etc., but these not limited

본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the silyl group includes an alkyl silyl group and an aryl silyl group. Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. not limited

본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the boron group includes an alkyl boron group and an aryl boron group. Examples of the boron group include, but are not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a diphenylboron group, and a phenylboron group.

본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkenyl group may be straight-chain or branched. Although carbon number is not specifically limited, 2 or more and 30 or less, 2 or more and 20 or less, or 2 or more and 10 or less. Examples of the alkenyl group include, but are not limited to, a vinyl group, a 1-butenyl group, a 1-pentenyl group, a 1,3-butadienyl aryl group, a styrenyl group, and a styryl vinyl group.

본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다. In the present specification, examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group. The aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group or a monocyclic aryl group and a polycyclic aryl group at the same time.

아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of the arylamine group include a phenylamine group, a naphthylamine group, a biphenylamine group, an anthracenylamine group, a 3-methyl-phenylamine group, a 4-methyl-naphthylamine group, and a 2-methyl-biphenylamine group. group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, but is not limited thereto.

본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다. In the present specification, examples of the heteroallylamine group include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group. The heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group. The heteroarylamine group including two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group at the same time.

본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.In the present specification, the aryl heteroarylamine group refers to an amine group substituted with an aryl group and a heterocyclic group.

본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.As used herein, "adjacent group" may mean a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, another substituent substituted on the atom in which the substituent is substituted, or a substituent sterically closest to the substituent. have. For example, in 1,2-dimethylbenzene, two methyl groups can be interpreted as “adjacent groups” to each other, and in 1,1-diethylcyclopentene, 2 The two ethyl groups can be interpreted as “adjacent groups” to each other.

이하에서는 상기 유기물층 및/또는 캡핑층에 사용되는 벤즈아졸 유도체 화합물에 대해 설명한다. Hereinafter, the benzazole derivative compound used in the organic material layer and/or the capping layer will be described.

본 발명의 일 실시예에 따른 벤즈아졸 유도체 화합물은 하기 화학식 1로 표시된다. The benzazole derivative compound according to an embodiment of the present invention is represented by the following formula (1).

[화학식 1][Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에 있어서, In Formula 1,

Z1는 O, S 또는 NR이고(단, R은 페닐임),Z 1 is O, S or NR with the proviso that R is phenyl;

X1, X2, X3, X 4 및 X5는 서로 독립적으로 CH 또는 N이고,X 1 , X 2 , X 3 , X 4 and X 5 are each independently CH or N,

Ar1는 H, 메틸기, tert-부틸기, F, CF3, CN 및 Si(CH3)3 중에서 선택되고, Ar 1 is selected from H, a methyl group, a tert-butyl group, F, CF 3 , CN and Si(CH 3 ) 3 ,

L1는 직접결합; 이거나 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기;이며L 1 is a direct bond; or a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group;

n 은 1 내지 5의 정수이고,n is an integer from 1 to 5,

R1 내지 R5는 각각 독립적으로 알킬기, H, F, CF3, CN, 및 Si(CH3)3 중에서 선택되는 어느 하나이며,R 1 to R 5 are each independently any one selected from an alkyl group, H, F, CF 3 , CN, and Si(CH 3 ) 3 ,

m 은 1 내지 2의 정수이다.m is an integer of 1 to 2.

본 발명의 일 실시예에 따르면, 상기 화학식 1에서, L1는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 피리딜기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라센기; 치환 또는 비치환된 페난트린기; 및 치환 또는 비치환된 페난트리딘기인 화합물을 포함하는 벤즈아졸 유도체이다. According to an embodiment of the present invention, in Formula 1, L 1 Is a substituted or unsubstituted phenyl group; a substituted or unsubstituted pyridyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted anthracene group; a substituted or unsubstituted phenanthrine group; and a benzazole derivative including a compound that is a substituted or unsubstituted phenanthridine group.

본 발명의 일 실시예에 있어서, 상기 화학식 1로 표시되는 벤즈아졸 유도체는 하기 화학식 2 및 화학식 3으로 표시된 화합물들 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다.In an embodiment of the present invention, the benzazole derivative represented by Formula 1 may be any one selected from compounds represented by Formula 2 and Formula 3, and the following compounds may be further substituted.

[화학식 2][Formula 2]

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

Figure pat00013
Figure pat00013

Figure pat00014
Figure pat00014

Figure pat00015
Figure pat00015

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

Figure pat00018
Figure pat00018

Figure pat00019
Figure pat00019

Figure pat00020
Figure pat00020

Figure pat00021
Figure pat00021

[화학식 3][Formula 3]

Figure pat00022
Figure pat00022

Figure pat00023
Figure pat00023

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028
Figure pat00028

Figure pat00029
Figure pat00029

Figure pat00030
Figure pat00030

Figure pat00031
Figure pat00031

Figure pat00032
Figure pat00032

Figure pat00033
Figure pat00033

이하 도 1 및 2를 참조하여 본 발명의 실시예를 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 .

도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 캡핑층(300)을 포함할 수 있다.1 is a cross-sectional view schematically illustrating an organic light emitting diode according to an embodiment of the present invention. Referring to FIG. 1 , in an organic light emitting device according to an exemplary embodiment, a first electrode 110 , a hole injection layer 210 , a hole transport layer 215 , a light emitting layer 220 , and electrons are sequentially stacked on a substrate 100 . It may include a transport layer 230 , an electron injection layer 235 , a second electrode 120 , and a capping layer 300 .

제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층(200)이 배치될 수 있다. 유기물층(200)은 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235)를 포함할 수 있다.The first electrode 110 and the second electrode 120 are disposed to face each other, and the organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120 . The organic material layer 200 may include a hole injection layer 210 , a hole transport layer 215 , a light emitting layer 220 , an electron transport layer 230 , and an electron injection layer 235 .

한편, 본 발명에서 제시되는 캡핑층(300)은 제2 전극(120) 위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.Meanwhile, the capping layer 300 presented in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Chemical Formula 1 of the present invention.

도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다.In the organic light emitting diode according to the exemplary embodiment shown in FIG. 1 , the first electrode 110 has conductivity. The first electrode 110 may be formed of a metal alloy or a conductive compound. The first electrode 110 is generally an anode, but the function as an electrode is not limited.

제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다. The first electrode 110 may be formed by depositing an electrode material on the substrate 100 using a deposition method, electron beam evaporation, or sputtering. The material of the first electrode 110 may be selected from materials having a high work function to facilitate injection of holes into the organic light emitting device.

본 발명에서 제안되는 캡핑층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다. The capping layer 300 proposed in the present invention is applied when the emission direction of the organic light emitting device is top emission, and thus the first electrode 110 uses a reflective electrode. These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), Mg-Ag (magnesium-silver) and It can also be manufactured using the same metal. In recent years, carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene (graphene) may be used.

상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층(200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)를 포함할 수 있다.The organic material layer 200 may be formed of a plurality of layers. When the organic material layer 200 is a plurality of layers, the organic material layer 200 includes the hole transport regions 210 to 215 disposed on the first electrode 110 , the light emitting layer 220 disposed on the hole transport region, and the light emitting layer. It may include electron transport regions 230 to 235 disposed on 220 .

일 실시예의 상기 캡핑층(300)은 후술하는 화학식 1로 표시되는 유기화합물을 포함한다. The capping layer 300 of an embodiment includes an organic compound represented by Chemical Formula 1 to be described later.

정공 수송 영역(210~215)은 제1 전극(110) 상에 제공된다. 정공 수송 영역(210~215)은 정공 주입층(210), 정공 수송층(215), 정공 버퍼층 및 전자 저지층(EBL) 중 적어도 하나를 포함할 수 있고, 유기 발광 소자 내로 원활한 정공 주입과 수송의 역할을 맡고 있으며 일반적으로 정공이동도가 전자이동도 보다 빠르기 때문에 전자 수송영역보다 두꺼운 두께를 갖는다.The hole transport regions 210 to 215 are provided on the first electrode 110 . The hole transport regions 210 to 215 may include at least one of a hole injection layer 210 , a hole transport layer 215 , a hole buffer layer, and an electron blocking layer (EBL). In general, since hole mobility is faster than electron mobility, it has a thicker thickness than the electron transport region.

정공 수송 영역(210~215)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The hole transport regions 210 to 215 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.

예를 들어, 정공 수송 영역(210~215)은 정공 주입층(210) 또는 정공 수송층(215)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(210~215)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(110)으로부터 차례로 적층된 정공 주입층(210)/정공 수송층(215), 정공 주입층(210)/정공 수송층(215)/정공 버퍼층, 정공 주입층(210)/정공 버퍼층, 정공 수송층(215)/정공 버퍼층, 또는 정공 주입층(210)/정공 수송층(215)/전자 저지층(EBL)의 구조를 가질 수 있으나, 실시예가 이에 한정되는 것은 아니다. For example, the hole transport regions 210 to 215 may have a single-layer structure of the hole injection layer 210 or the hole transport layer 215 , or may have a single-layer structure including a hole injection material and a hole transport material. have. In addition, the hole transport regions 210 to 215 have a single-layer structure made of a plurality of different materials, or a hole injection layer 210/hole transport layer 215 stacked sequentially from the first electrode 110, Hole injection layer 210 / hole transport layer 215 / hole buffer layer, hole injection layer 210 / hole buffer layer, hole transport layer 215 / hole buffer layer, or hole injection layer 210 / hole transport layer 215 / electron It may have a structure of the blocking layer EBL, but the embodiment is not limited thereto.

상기 정공 수송 영역(210~215) 중 정공 주입층(210)은 양극 위로 진공증착법, 스핀코팅법, 캐스트법, LB법 등 다양한 방법으로 형성될 수 있다. 진공 증착법에 의하여 정공 주입층(210)을 형성하는 경우, 그 증착 조건은 정공주입층(210) 재료로 사용하는 화합물, 목적으로 하는 정공주입층(210)의 구조 및 열적 특성 등에 따라 100 내지 500Å에서 증착 속도를 1Å/s 전후로 하여 자유롭게 조절할 수 있으며, 특정한 조건에 한정되는 것은 아니다. 스핀 코팅법에 의하여 정공주입층(210)을 형성하는 경우 코팅 조건은 정공주입층(210) 재료로 사용하는 화합물과 계면으로 형성되는 층들 간의 특성에 따라 상이하지만 고른 막형성을 위해 코팅속도, 코팅 후 용매 제거를 위한 열처리 등이 필요하다.The hole injection layer 210 of the hole transport regions 210 to 215 may be formed on the anode by various methods, such as a vacuum deposition method, a spin coating method, a casting method, and an LB method. When the hole injection layer 210 is formed by vacuum deposition, the deposition conditions are 100 to 500 Å depending on the compound used as the material for the hole injection layer 210, the structure and thermal characteristics of the hole injection layer 210, etc. The deposition rate can be freely controlled by setting the deposition rate to around 1 Å/s, and is not limited to specific conditions. In the case of forming the hole injection layer 210 by the spin coating method, the coating conditions are different depending on the characteristics between the compound used as the hole injection layer 210 material and the layers formed as the interface, but for an even film formation, the coating speed, coating After that, heat treatment to remove the solvent is required.

Figure pat00034
Figure pat00034

상기 정공 수송 영역(210~215)은, 예를 들면, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민(4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):폴리(3,4-에틸렌디옥시티오펜) /폴리(4-스티렌술포네이트)), Pani/CSA (Polyaniline/Camphor sulfonicacid : 폴리아닐린/캠퍼술폰산), PANI/PSS (Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함 할 수 있다. The hole transport regions 210 to 215 are, for example, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA. (4,4',4"-tris(N-carbazolyl)triphenylamine (4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid: polyaniline/dodecylbenzene sulfonic acid), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):poly(3,4-ethylenedioxythiophene) /poly(4-styrenesulfonate)), Pani/CSA ( Polyaniline/Camphor sulfonicacid: polyaniline/camphorsulfonic acid), PANI/PSS (Polyaniline)/Poly(4-styrenesulfonate):polyaniline)/poly(4-styrenesulfonate)), and the like.

Figure pat00035
Figure pat00035

상기 정공 수송 영역(210~215)의 두께는 약 100 내지 약 10,000Å으로 형성될 수 있으며, 각 정공 수송영역(210~215)의 해당 유기물 층들은 같은 두께로 한정되는 것은 아니다. 예를 들면, 정공 주입층(210)의 두께가 50Å이면 정공 수송층(215)의 두께는 1000Å, 전자 저지층의 두께는 500Å을 형성할 수 있다. 정공 수송영역(210~215)의 두께 조건은 유기 발광 소자의 구동전압 상승이 커지지 않는 범위 내에서 효율과 수명을 만족하는 정도로 정할 수 있다. 상기 유기막(200)은 정공주입층(210), 정공수송층(215), 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층(220), 정공저지층, 전자수송층(230), 전자주입층(235), 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.The thickness of the hole transport regions 210 to 215 may be about 100 to about 10,000 Å, and the corresponding organic material layers in each of the hole transport regions 210 to 215 are not limited to the same thickness. For example, if the hole injection layer 210 has a thickness of 50 Å, the hole transport layer 215 may have a thickness of 1000 Å and the electron blocking layer may have a thickness of 500 Å. The thickness condition of the hole transport regions 210 to 215 may be determined to a degree that satisfies the efficiency and lifespan within a range in which the increase in the driving voltage of the organic light emitting device does not increase. The organic layer 200 includes a hole injection layer 210, a hole transport layer 215, a functional layer having both a hole injection function and a hole transport function, a buffer layer, an electron blocking layer, a light emitting layer 220, a hole blocking layer, an electron transport layer. 230 , the electron injection layer 235 , and one or more layers selected from the group consisting of a functional layer having an electron transport function and an electron injection function at the same time.

정공 수송 영역(210~215)은 발광층(220)과 마찬가지로 특성 향상을 위해 도핑을 사용할 수 있으며 이러한 정공 수송 영역(210~215) 내로 전하-생성 물질의 도핑은 유기 발광 소자의 전기적 특성을 향상시킬 수 있다.The hole transport regions 210 to 215 may use doping to improve properties like the light emitting layer 220 , and doping of a charge-generating material into the hole transport regions 210 to 215 may improve the electrical properties of the organic light emitting device. can

전하-생성 물질은 일반적으로 HOMO와 LUMO가 굉장히 낮은 물질로 이루어지며 예를 들어, 전하-생성 물질의 LUMO는 정공수송층(215) 물질의 HOMO와 유사한 값을 갖는다. 이러한 낮은 LUMO로 인하여 LUMO의 전자가 비어있는 특성을 이용하여 인접한 정공수송층(215)에 쉽게 정공을 전달하여 전기적 특성을 향상시킨다.The charge-generating material is generally made of a material having a very low HOMO and LUMO. For example, the LUMO of the charge-generating material has a value similar to the HOMO of the hole transport layer 215 material. Due to the low LUMO, holes are easily transferred to the adjacent hole transport layer 215 by using the electron vacancy characteristic of the LUMO, thereby improving electrical properties.

상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다. 상기 p-도펀트는 퀴논 유도체, 금속 산화물 및 시아노기-함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 p-도펀트의 비제한적인 예로는, 테트라사이아노퀴논다이메테인(TCNQ) 및 2,3,5,6-테트라플루오로-테트라사이아노-1,4-벤조퀴논다이메테인(F4-TCNQ) 등과 같은 퀴논 유도체; 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물; 및 하기 화합물 2-22 등과 같은 시아노기-함유 화합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The charge-generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of the p-dopant include tetracyanoquinonedimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane quinone derivatives such as phosphorus (F4-TCNQ) and the like; metal oxides such as tungsten oxide and molybdenum oxide; and a cyano group-containing compound such as Compound 2-22 below, but is not limited thereto.

Figure pat00036
Figure pat00036

정공 수송 영역(210~215)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. 전하 생성 물질은 정공 수송 영역(210~215) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.In addition to the aforementioned materials, the hole transport regions 210 to 215 may further include a charge generating material to improve conductivity. The charge generating material may be uniformly or non-uniformly dispersed in the hole transport regions 210 to 215 . The charge generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of p-dopants include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane), metal oxides such as tungsten oxide and molybdenum oxide, etc. may be mentioned, but is not limited thereto.

전술한 바와 같이, 정공 수송 영역(210~215)은 정공 주입층(210) 및 정공 수송층(215) 외에, 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다. 정공 버퍼층은 발광층(220)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(210~215)에 포함될 수 있는 물질을 사용할 수 있다. As described above, the hole transport regions 210 to 215 may further include at least one of a hole buffer layer and an electron blocking layer in addition to the hole injection layer 210 and the hole transport layer 215 . The hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer 220 . As a material included in the hole buffer layer, a material that may be included in the hole transport regions 210 to 215 may be used.

전자 저지층은 전자 수송 영역(230~235)으로부터 정공 수송 영역(210~215)으로의 전자 주입을 방지하는 역할을 하는 층이다. 전자 저지층은 정공 수송영역으로 이동하는 전자를 저지할 뿐 아니라 발광층(220)에서 형성된 엑시톤이 정공수송영역(210~215)으로 확산되지 않도록 높은 T1 값을 갖는 재료를 사용할 수 있다. 예를 들면 일반적으로 높은 T1값을 갖는 발광층(220)의 호스트 등을 전자저지층 재료로 사용할 수 있다.The electron blocking layer is a layer serving to prevent electron injection from the electron transport region 230 to 235 to the hole transport region 210 to 215 . The electron blocking layer may use a material having a high T1 value so that excitons formed in the light emitting layer 220 do not diffuse into the hole transport regions 210 to 215 as well as to block electrons moving to the hole transport region. For example, a host of the light emitting layer 220 having a generally high T 1 value may be used as the electron blocking layer material.

발광층(220)은 정공 수송 영역(210~215) 상에 제공된다. 발광층(220)은 예를 들어 약 100Å내지 약 1000Å 또는, 약 100Å내지 약 300Å의 두께를 갖는 것일 수 있다. 발광층(220)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The emission layer 220 is provided on the hole transport regions 210 to 215 . The light emitting layer 220 may have a thickness of, for example, about 100 Å to about 1000 Å, or about 100 Å to about 300 Å. The light emitting layer 220 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.

발광층(220)은 정공과 전자가 만나 엑시톤을 형성하는 영역으로 발광층(220)을 이루는 재료는 높은 발광 특성 및 원하는 발광색을 나타내도록 적절한 에너지밴드갭을 가져야 하며 일반적으로 호스트와 도판트 두가지 역할을 가지는 두 재료로 이루어지나, 이에 한정된 것은 아니다.The light emitting layer 220 is a region where holes and electrons meet to form excitons. The material constituting the light emitting layer 220 must have an appropriate energy band gap to exhibit high light emitting characteristics and a desired light emitting color, and generally serve as both a host and a dopant. It consists of two materials, but is not limited thereto.

상기 호스트는 하기 TPBi, TBADN, ADN("DNA"라고도 함), CBP, CDBP, TCP, mCP, 중 적어도 하나를 포함할 수 있고, 특성이 적절하다면 재료는 이에 한정된 것은 아니다.The host may include at least one of the following TPBi, TBADN, ADN (also referred to as “DNA”), CBP, CDBP, TCP, and mCP, and if the properties are appropriate, the material is not limited thereto.

Figure pat00037
Figure pat00037

Figure pat00038
Figure pat00038

일 실시예의 발광층(220)의 도판트는 유기 금속 착물일 수 있다. 일반적인 도판트의 함량은 0.01 내지 20%로 선택될 수 있으며, 경우에 따라 이에 한정되는 것은 아니다.The dopant of the light emitting layer 220 according to an embodiment may be an organometallic complex. The general dopant content may be selected from 0.01 to 20%, but in some cases, it is not limited thereto.

전자 수송 영역(230~235)은 발광층(220) 상에 제공된다. 전자 수송 영역(230~235)은, 정공 저지층, 전자 수송층(230) 및 전자 주입층(235) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.The electron transport regions 230 to 235 are provided on the emission layer 220 . The electron transport regions 230 to 235 may include at least one of a hole blocking layer, an electron transport layer 230 , and an electron injection layer 235 , but are not limited thereto.

전자 수송 영역(230~235)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The electron transport regions 230 to 235 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.

예를 들어, 전자 수송 영역(230~235)은 전자 주입층(235) 또는 전자 수송층(230)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(230~235)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 발광층(220)으로부터 차례로 적층된 전자 수송층(230)/전자 주입층(235), 정공 저지층/전자 수송층(230)/전자 주입층(235) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 전자 수송 영역(230~235)의 두께는 예를 들어, 약 1000Å내지 약 1500Å인 것일 수 있다.For example, the electron transport regions 230 to 235 may have a single-layer structure of the electron injection layer 235 or the electron transport layer 230 , or may have a single-layer structure including an electron injection material and an electron transport material. have. In addition, the electron transport regions 230 to 235 have a single layer structure made of a plurality of different materials, or the electron transport layer 230/electron injection layer 235 and hole blocking layer are sequentially stacked from the light emitting layer 220 . It may have a layer/electron transport layer 230/electron injection layer 235 structure, but is not limited thereto. The thickness of the electron transport regions 230 to 235 may be, for example, about 1000 Å to about 1500 Å.

전자 수송 영역(230~235)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.The electron transport regions 230 to 235 may include a vacuum deposition method, a spin coating method, a cast method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method. method can be used.

전자 수송 영역(230~235)이 전자 수송층(230)을 포함할 경우, 전자 수송 영역(230)은 안트라센계 화합물을 포함하는 것일 수 있다. 다만, 이에 한정되는 것은 아니며, 전자 수송 영역은 예를 들어, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum),Bebq2(berylliumbis(benzoquinolin-10-olate),ADN(9,10-di(naphthalene-2-yl)anthracene)및 이들의 혼합물을 포함하는 것일 수 있다. When the electron transport regions 230 to 235 include the electron transport layer 230 , the electron transport region 230 may include an anthracene-based compound. However, the present invention is not limited thereto, and the electron transport region is, for example, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10 -dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10- phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4 -(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1, 3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis(benzoquinolin-10-olate), ADN (9,10-di(naphthalene-2-yl)anthracene) and mixtures thereof may be included.

Figure pat00039
Figure pat00039

전자 수송층(230)은 유기 발광 소자 구조에 따라 빠른 전자이동도 혹은 느린 전자이동도의 재료로 선택되므로 다양한 재료의 선택이 필요하며, 경우에 따라서 하기 Liq나 Li이 도핑되기도 한다.Since the electron transport layer 230 is selected as a material having a fast electron mobility or a slow electron mobility according to the structure of the organic light emitting device, various materials need to be selected, and in some cases, Liq or Li may be doped.

전자 수송층(230)들의 두께는 약 100Å내지 약 1000Å, 예를 들어 약 150Å내지 약 500Å일 수 있다. 전자 수송층(230)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.The thickness of the electron transport layers 230 may be about 100 Å to about 1000 Å, for example, about 150 Å to about 500 Å. When the thickness of the electron transport layers 230 satisfies the above-described range, a satisfactory electron transport characteristic may be obtained without a substantial increase in driving voltage.

전자 수송 영역(230~235)이 전자 주입층(235)을 포함할 경우, 전자 수송 영역(230~235)은 전자의 주입을 용이하게 하는 금속재료를 선택하며, LiF, LiQ(Lithium quinolate), Li2O, BaO,NaCl,CsF,Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다. When the electron transport regions 230 to 235 include the electron injection layer 235 , the electron transport regions 230 to 235 select a metal material that facilitates electron injection, LiF, Lithium quinolate (LiQ), A lanthanide metal such as Li 2 O, BaO, NaCl, CsF, and Yb, or a metal halide such as RbCl or RbI may be used, but is not limited thereto.

전자 주입층(235)은 또한 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자 주입층(235)들의 두께는 약 1Å내지 약 100Å, 약 3Å내지 약 90Å일 수 있다. 전자 주입층(235)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.The electron injection layer 235 may also be made of a material in which an electron transport material and an insulating organo metal salt are mixed. The organometallic salt may be a material having an energy band gap of about 4 eV or more. Specifically, for example, the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate, or metal stearate. can The electron injection layers 235 may have a thickness of about 1 Å to about 100 Å, or about 3 Å to about 90 Å. When the thickness of the electron injection layers 235 satisfies the above-described range, a satisfactory electron injection characteristic may be obtained without a substantial increase in driving voltage.

전자 수송 영역(230~235)은 앞서 언급한 바와 같이, 정공 저지층을 포함할 수 있다. 정공 저지층은 예를 들어, BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline) 및 Balq 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.As described above, the electron transport regions 230 to 235 may include a hole blocking layer. The hole blocking layer includes, for example, at least one of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthroline (Bphen), and Balq. can, but is not limited thereto.

제2 전극(120)은 전자 수송 영역(230~235) 상에 제공된다. 제2 전극(120)은 공통 전극 또는 음극일 수 있다. 제2 전극(120)은 투과형 전극 또는 반투과형 전극 전극일 수 있다. 제2 전극(120)은 제1 전극(110)과 다르게 상대적으로 낮은 일함수를 갖는 금속, 전기전도성 화합물, 합금 등을 조합하여 사용할 수 있다.The second electrode 120 is provided on the electron transport regions 230 to 235 . The second electrode 120 may be a common electrode or a cathode. The second electrode 120 may be a transmissive electrode or a transflective electrode. Unlike the first electrode 110 , the second electrode 120 may use a combination of a metal, an electrically conductive compound, an alloy, etc. having a relatively low work function.

제2 전극(120)은 반투과형 전극 또는 반사형 전극이다. 제2 전극(120)은 Li(리튬), Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은) 또는 이들을 포함하는 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.The second electrode 120 is a transflective electrode or a reflective electrode. The second electrode 120 includes Li (lithium), Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium). -silver) or a compound or mixture containing them (eg, a mixture of Ag and Mg). Or a plurality of layer structures including a reflective or semi-transmissive film formed of the above material and a transparent conductive film formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. can be

도시하지는 않았으나, 제2 전극(120)은 보조 전극과 연결될 수 있다. 제2 전극(120)가 보조 전극과 연결되면, 제2 전극(120)의 저항을 감소시킬 수 있다.Although not shown, the second electrode 120 may be connected to the auxiliary electrode. When the second electrode 120 is connected to the auxiliary electrode, the resistance of the second electrode 120 may be reduced.

도시된 기판(100) 상에 전극 및 유기물층을 형성하며, 이때 기판(100) 재료는 경성 또는 연성 재료를 사용할 수 있으며, 예를 들어 경성 재료로는 소다라임 글래스, 무알칼리 글래스, 알루미노 실리케이트 글래스 등을 사용할 수 있으며, 연성 재료로는 PC(폴리카보네이트), PES(폴리에테르술폰), COC(싸이클릭올리펜코폴리머), PET(폴리에틸렌테레프탈레이트), PEN(폴리에틸렌나프탈레이트) 등을 사용할 수 있다.An electrode and an organic material layer are formed on the illustrated substrate 100. In this case, the substrate 100 may use a rigid or flexible material, for example, soda lime glass, alkali-free glass, aluminosilicate glass as the rigid material. PC (polycarbonate), PES (polyether sulfone), COC (cyclic oliphene copolymer), PET (polyethylene terephthalate), PEN (polyethylene naphthalate), etc. can be used as a soft material. .

유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다.In the organic light emitting device, as a voltage is applied to each of the first electrode 110 and the second electrode 120 , holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 to the emission layer The electrons are moved to 220 , and the electrons injected from the second electrode 120 are moved to the emission layer 220 through the electron transport regions 230 to 235 . Electrons and holes recombine in the emission layer 220 to generate excitons, and the excitons fall from the excited state to the ground state and emit light.

발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다.The optical path generated by the light emitting layer 220 may exhibit a very different tendency according to the refractive index of the organic/inorganic materials constituting the organic light emitting device. Light passing through the second electrode 120 may pass only light transmitted at an angle smaller than the critical angle of the second electrode 120 . Lights contacting the second electrode 120 larger than the other critical angles are totally reflected or reflected, so that they are not emitted to the outside of the organic light emitting diode.

캡핑층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다.When the refractive index of the capping layer 300 is high, it contributes to the improvement of luminous efficiency by reducing such total reflection or reflection, and also, when it has an appropriate thickness, it contributes to high efficiency improvement and color purity by maximizing the micro-cavity phenomenon. .

캡핑층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 캡핑층(300)은 유기 발광 소자의 내부 보호역할과 동시에 소자특성 향상 두가지 관점에서 모두 중요하다. 유기물질들은 특정파장영역의 광에너지를 흡수하며 이는 에너지밴드갭에 의존한다. 이 에너지밴드갭을 유기 발광 소자내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 캡핑층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다.The capping layer 300 is positioned at the outermost part of the organic light emitting device, and has a great influence on device characteristics without affecting the driving of the device at all. Therefore, the capping layer 300 is important both in terms of both an internal protection role of the organic light emitting device and improvement of device characteristics. Organic materials absorb light energy in a specific wavelength region, which depends on the energy band gap. If this energy bandgap is adjusted for the purpose of absorbing the UV region that can affect the organic materials inside the organic light emitting device, the capping layer 300 can be used for the purpose of protecting the organic light emitting device including improving optical properties. have.

본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present specification may be a top emission type, a back emission type, or a double side emission type depending on the material used.

이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be given to describe the present specification in detail. However, the embodiments according to the present specification may be modified in various other forms, and the scope of the present application is not to be construed as being limited to the embodiments described below. The embodiments of the present application are provided to more completely explain the present specification to those of ordinary skill in the art.

[실시예][Example]

중간체 intermediate 합성예Synthesis example 1: 중간체(3)의 합성 1: Synthesis of intermediate (3)

Figure pat00040
Figure pat00040

(중간체(1)의 합성)(Synthesis of Intermediate (1))

2구 1 L 플라스크에 2-(4-브로모페닐)벤조옥사졸(2-(4-bromophenyl)benzoxazole) 35.0 g(127.6 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 42.1 g(165.9 mmol), Pd(dppf)Cl2 -CH2Cl2 2.8 g(3.8 mmol), KOAc 25.1 g(255.3 mmol) 및 1,4-디옥산 350 mL을 혼합한 다음 18 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=5:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(1)) 33.9 g(수율: 82.8%)을 얻었다.In a 2-neck 1 L flask, 2- (4-bromophenyl) benzoxazole (2- (4-bromophenyl) benzoxazole) 35.0 g (127.6 mmol), bis (pinacolato) diboron (bis (pinacolato) diboron) 42.1 g (165.9 mmol), Pd (dppf) Cl 2 - CH 2 Cl 2 2.8 g (3.8 mmol), KOAc 25.1 g (255.3 mmol) and stirred under reflux in 1,4-dioxane, and then 18 hours a mixture of 350 mL did. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=5:1) and solidified with methanol to obtain 33.9 g (yield: 82.8%) of the compound as a white solid (intermediate (1)).

(중간체(2)의 합성)(Synthesis of Intermediate (2))

2구 500 mL 플라스크에 중간체(1) 14.7 g(45.7 mmol), 6-브로모-2-나프탈레놀(6-bromo-2-naphthalenol) 10.0 g(44.8 mmol), Pd(PPh3)4 2.6 g(2.2 mmol), K2CO3 13.6 g(98.6 mmol), 톨루엔 120 mL, 정제수 50 mL 및 에탄올 30 mL을 혼합한 다음 3 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(2)) 9.9 g(수율: 65.2%)을 얻었다. Intermediate (1) 14.7 g (45.7 mmol), 6-bromo-2-naphthalenol (6-bromo-2-naphthalenol) 10.0 g (44.8 mmol), Pd (PPh 3 ) 4 2.6 in a 2-neck 500 mL flask g (2.2 mmol), K 2 CO 3 13.6 g (98.6 mmol), toluene 120 mL, purified water 50 mL, and ethanol 30 mL were mixed and stirred under reflux for 3 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 9.9 g (yield: 65.2%) of the compound as a white solid (intermediate (2)).

(중간체(3)의 합성)(Synthesis of Intermediate (3))

2구 500 mL 플라스크에 중간체(2) 7.0 g(20.7 mmol), Tf2O 5.2 mL(31.1 mmol), TEA 3.5 mL(22.4 mmol) 및 다이클로로메탄 70 mL를 혼합한 다음, 2시간 동안 상온에서 교반하였다. 반응이 종결된 후 정제수를 넣고 추출한 후 감압 하에 용매를 제거하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(3)) 7.5 g (수율: 77.8%)얻었다.In a two-necked 500 mL flask, 7.0 g (20.7 mmol) of Intermediate (2), 5.2 mL (31.1 mmol) of Tf 2 O, 3.5 mL (22.4 mmol) of TEA and 70 mL of dichloromethane were mixed, and then, at room temperature for 2 hours. stirred. After the reaction was completed, purified water was added and extracted, and the solvent was removed under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 7.5 g (yield: 77.8%) of the compound as a white solid (intermediate (3)).

중간체 intermediate 합성예Synthesis example 2: 중간체(6)의 합성 2: Synthesis of intermediate (6)

Figure pat00041
Figure pat00041

(중간체(4)의 합성)(Synthesis of Intermediate (4))

2구 2 L 플라스크에 4-브로모페놀(4-bromophenol) 40.0 g(231.2 mmol), (4-플루오로페닐)보론산((4-fluorophenyl)boronic acid) 35.5 g(254.3 mmol), Pd(PPh3)4 13.4 g(11.5 mmol), K2CO3 79.9 g(578.0 mmol), 1,4-디옥산 400 Ml 및 정제수 160 mL를 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=3:1)로 정제하고 헥산으로 고체화하여, 흰색 고체의 화합물(중간체(4)) 38.8 g(수율: 89.1%)을 얻었다. In a 2-neck 2 L flask, 40.0 g (231.2 mmol) of 4-bromophenol, 35.5 g (254.3 mmol) of (4-fluorophenyl) boronic acid, and Pd ( PPh 3 ) 4 13.4 g (11.5 mmol), K 2 CO 3 79.9 g (578.0 mmol), 1,4-dioxane 400 Ml and purified water 160 mL were mixed and stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=3:1) and solidified with hexane to obtain 38.8 g (yield: 89.1%) of the compound as a white solid (intermediate (4)).

(중간체(5)의 합성)(Synthesis of Intermediate (5))

2구 500 mL 플라스크에 중간체(4) 37.7 g(200.6 mmol), Tf2O 47.3 mL(280.9 mmol), 피리딘(pyridine) 19.4 mL(240.7 mmol) 및 다이클로로메탄 380 mL를 혼합한 다음, 2시간 동안 상온에서 교반하였다. 반응이 종결된 후 정제수를 넣고 추출한 후 감압 하에 용매를 제거하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=1:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(5)) 36.5 g (수율: 56.8%)얻었다. 37.7 g (200.6 mmol) of intermediate (4), 47.3 mL (280.9 mmol) of Tf 2 O, 19.4 mL (240.7 mmol) of pyridine, and 380 mL of dichloromethane were mixed in a 2-neck 500 mL flask, followed by 2 hours while stirring at room temperature. After the reaction was completed, purified water was added and extracted, and the solvent was removed under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:EA=1:1) and solidified with methanol to obtain 36.5 g (yield: 56.8%) of the compound as a white solid (intermediate (5)).

(중간체(6)의 합성)(Synthesis of Intermediate (6))

2구 1 L 플라스크에 중간체(5) 36.5 g(114.1 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 34.8 g(136.9 mmol), Pd(dppf)Cl2 -CH2Cl2 8.4 g(11.4 mmol), KOAc 20.2 g(205.4 mmol) 및 1,4-디옥센 360 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=4:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(6)) 30.5 g(수율: 89.6%)을 얻었다.Intermediate (5) 36.5 g (114.1 mmol), bis(pinacolato)diboron (bis(pinacolato)diboron) 34.8 g (136.9 mmol), Pd(dppf)Cl 2 -CH 2 Cl 2 in a 2-neck 1 L flask 8.4 g (11.4 mmol), 20.2 g (205.4 mmol) of KOAc, and 360 mL of 1,4-dioxene were mixed and stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=4:1) and solidified with methanol to obtain 30.5 g (yield: 89.6%) of the compound (intermediate (6)) as a white solid.

중간체 intermediate 합성예Synthesis example 3: 중간체(8)의 합성 3: Synthesis of intermediate (8)

Figure pat00042
Figure pat00042

(중간체(7)의 합성)(Synthesis of Intermediate (7))

1구 2 L 플라스크에 1-브로모-4-클로로벤젠(1-bromo-4-chlorobenzene) 20.0 g(104.5 mmol), 3,5-비스트리플루오로메틸페닐보론산 ((3,5-bis(trifluoromethyl)phenyl) boronic acid) 26.9 g(104.5 mmol), Pd(PPh3)4 6.0 g(5.2 mmol), K2CO3 36.1 g(261.2 mmol), 톨루엔 500 mL, 에탄올 100 mL 및 물 100 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(7)) 27.3 g(수율: 84.1%)을 얻었다. In a 1-neck 2 L flask, 1-bromo-4-chlorobenzene (1-bromo-4-chlorobenzene) 20.0 g (104.5 mmol), 3,5-bistrifluoromethylphenylboronic acid ((3,5-bis( trifluoromethyl)phenyl)boronic acid) 26.9 g (104.5 mmol), Pd(PPh 3 ) 4 6.0 g (5.2 mmol), K 2 CO 3 36.1 g (261.2 mmol), toluene 500 mL, ethanol 100 mL, and water 100 mL After mixing, the mixture was stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Hex) to obtain 27.3 g (yield: 84.1%) of the compound as a white solid (intermediate (7)).

(중간체(8)의 합성)(Synthesis of Intermediate (8))

1구 250 mL 플라스크에 중간체(7) 5.0 g(15.4 mmol), Pd(dba) 442.8 mg(770.1 μmol), X-Phos 734.2 mg(1.5 mmol), KOAc 4.5 g(46.2 mmol) 및 톨루엔 80 mL를 혼합한 다음, 16시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Toluene:Hex=1:2)로 정제하여 흰색 고체의 화합물(중간체(8)) 4.61 g (수율: 71.9%)얻었다.5.0 g (15.4 mmol) of intermediate (7), Pd (dba) in a one-necked 250 mL flask 442.8 mg (770.1 μmol), 734.2 mg (1.5 mmol) of X-Phos, 4.5 g (46.2 mmol) of KOAc and 80 mL of toluene were mixed, followed by stirring under reflux for 16 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Toluene:Hex=1:2) to obtain 4.61 g (yield: 71.9%) of the compound (intermediate (8)) as a white solid.

중간체 intermediate 합성예Synthesis example 4: 중간체(9)의 합성 4: Synthesis of intermediate (9)

Figure pat00043
Figure pat00043

(중간체(9)의 합성)(Synthesis of Intermediate (9))

1구 2 L 플라스크에 4-브로모-바이페닐-4-카보나이트릴((4'-bromo-[1,1'-biphenyl]-4-carbonitrile)) 5.0 g(193.7 mol), 피나콜디보론(Bis(pinacolato)diboron) 73.8 g(290.6 mmol), Pd(dppf)Cl2-CH2Cl2 3.2 g(3.9 mmol), KOAc 57.0 g(581.1 mmol) 및 Dioxane 650 mL를 혼합한 후 16시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/MeOH)으로 고체화하여, 흰색 고체의 화합물(중간체(9)) 51.1 g (수율: 86.4%)얻었다.In a 1-neck 2 L flask, 4-bromo-biphenyl-4-carbonitrile ((4'-bromo-[1,1'-biphenyl]-4-carbonitrile)) 5.0 g (193.7 mol), pinacoldiboron (Bis(pinacolato)diboron) 73.8 g (290.6 mmol), Pd(dppf)Cl 2 -CH 2 Cl 2 3.2 g (3.9 mmol), KOAc 57.0 g (581.1 mmol) and 650 mL of Dioxane were mixed for 16 hours. It was stirred at reflux. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/MeOH) to obtain 51.1 g (yield: 86.4%) of the compound (intermediate (9)) as a white solid.

중간체 intermediate 합성예Synthesis example 5: 중간체(11)의 합성 5: Synthesis of intermediate (11)

Figure pat00044
Figure pat00044

(중간체(10)의 합성)(Synthesis of Intermediate (10))

1구 1 L 플라스크에 1-브로모-4-클로로벤젠(1-bromo-4-chlorobenzene) 10.0 g(52.2 mmol), 4-트리메틸실릴페닐보로릭 엑시드((4-(trimethylsilyl)phenyl)boronic acid) 10.1 g(52.2 mmol), Pd(PPh3)4 3.0 g(2.6 mmol), K2CO3 21.7 g(156.7 mmol), 톨루엔 160 mL, 에탄올 40 mL 및 물 40 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:CHCl3=10:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(10)) 9.8 g(수율: 71.9%)을 얻었다. In a 1-neck 1 L flask, 10.0 g (52.2 mmol) of 1-bromo-4-chlorobenzene, 4-trimethylsilylphenylboronic acid ((4-(trimethylsilyl)phenyl)boronic acid) 10.1 g (52.2 mmol), Pd(PPh 3 ) 4 3.0 g (2.6 mmol), K 2 CO 3 21.7 g (156.7 mmol), toluene 160 mL, ethanol 40 mL, and water 40 mL were mixed for 12 hours. while stirring at reflux. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 = 10:1) and solidified with methanol to obtain 9.8 g (yield: 71.9%) of the compound (intermediate (10)) as a white solid.

(중간체(11)의 합성)(Synthesis of intermediate (11))

1구 250 mL 플라스크에 중간체(10) 6.0 g(23.0 mmol), 피나콜디보론(Bis(pinacolato)diboron) 8.8 g(34.5 mmol), Pd(dba) 1.3 g(2.3 mmol), X-Phos 2.2 g(4.6 mmol), KOAc 6.8 g(69.0 mmol) 및 톨루엔 115 mL를 혼합한 다음, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 혼합용액(DCM/MeOH)으로 고체화하여, 흰색 고체의 화합물(중간체(11)) 6.9 g (수율: 85.1%)을 얻었다.Intermediate (10) 6.0 g (23.0 mmol), pinacol diboron (Bis(pinacolato)diboron) 8.8 g (34.5 mmol), Pd (dba) in a 1-neck 250 mL flask 1.3 g (2.3 mmol), 2.2 g (4.6 mmol) of X-Phos, 6.8 g (69.0 mmol) of KOAc, and 115 mL of toluene were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with a mixed solution (DCM/MeOH) to obtain 6.9 g of a white solid compound (intermediate (11)) (yield: 85.1%). got it

중간체 intermediate 합성예Synthesis example 6: 중간체(13)의 합성 6: Synthesis of intermediate (13)

Figure pat00045
Figure pat00045

(중간체(12)의 합성)(Synthesis of Intermediate (12))

1구 2 L 플라스크에 2-아미노-5-플루오로페놀(2-amino-5-fluorophenol) 13.7 g(108.1 mmol)과 4-브로모벤잘데하이드(4-bromobenzaldehyde) 20.0 g(108.1 mmol)을 에탄올 540 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(12)) 31.8 g(crude)을 얻었다. In a 1-neck 2 L flask, 13.7 g (108.1 mmol) of 2-amino-5-fluorophenol and 20.0 g (108.1 mmol) of 4-bromobenzaldehyde were mixed with ethanol. After mixing in 540 mL, the mixture was stirred at 70° C. for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the reaction mixture was distilled under reduced pressure to obtain 31.8 g (crude) of a brown solid compound (intermediate (12)).

(중간체(13)의 합성)(Synthesis of Intermediate (13))

1구 2 L 플라스크에 중간체(12) 31.8 g(108.1 mmol)을 다이클로로메탄(DCM) 540 mL에 녹였다. DDQ 43.9 g(129.7 mmol)을 넣어준 후. 상온에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트 패드(CHCl3)로 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 노란색 고체의 화합물(중간체(13)) 24.2 g(수율: 76.7%)을 얻었다.In a 1-neck 2 L flask, 31.8 g (108.1 mmol) of the intermediate (12) was dissolved in 540 mL of dichloromethane (DCM). After adding 43.9 g (129.7 mmol) of DDQ. The mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered through a pad of celite (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 24.2 g (yield: 76.7%) of the compound as a yellow solid (intermediate (13)).

중간체 intermediate 합성예Synthesis example 7: 중간체(15)의 합성 7: Synthesis of intermediate (15)

Figure pat00046
Figure pat00046

(중간체(14)의 합성)(Synthesis of Intermediate (14))

1구 1 L 플라스크에 2-아미노-5-트리플루오로페놀(2-amino-5-(trifluoromethyl)phenol) 10.0 g(56.5 mmol)과 4-브로모벤잘데하이드(4-bromobenzaldehyde) 10.5 g(56.5 mmol)을 에탄올 250 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(14)) 19.4 g(crude)을 얻었다. In a 1-neck 1 L flask, 10.0 g (56.5 mmol) of 2-amino-5-trifluorophenol (2-amino-5- (trifluoromethyl)phenol) and 10.5 g (56.5 of 4-bromobenzaldehyde) mmol) was mixed with 250 mL of ethanol, and then stirred at 70° C. for 12 hours. After completion of the reaction, it was cooled to room temperature, and the reaction mixture was distilled under reduced pressure to obtain 19.4 g (crude) of the compound (intermediate (14)) as a brown solid.

(중간체(15)의 합성)(Synthesis of Intermediate (15))

1구 1 L 플라스크에 중간체(14) 19.4 g(56.4 mmol)을 다이클로로메탄(DCM) 250 mL에 녹였다. DDQ 15.4 g(67.7 mmol)을 넣어준 후. 상온에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트 패드(CHCl3)로 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 노란색 고체의 화합물(중간체(15)) 15.3 g(수율: 79.3%)을 얻었다.In a 1-neck 1 L flask, 19.4 g (56.4 mmol) of the intermediate (14) was dissolved in 250 mL of dichloromethane (DCM). After adding 15.4 g (67.7 mmol) of DDQ. The mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered through a pad of celite (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 15.3 g (yield: 79.3%) of the compound (intermediate (15)) as a yellow solid.

중간체 intermediate 합성예Synthesis example 8: 중간체(17)의 합성 8: Synthesis of intermediate (17)

Figure pat00047
Figure pat00047

(중간체(16)의 합성)(Synthesis of Intermediate (16))

2구 2 L 플라스크에 4-아미노-3-브로모벤조나이트릴(4-amino-3-bromobenzonitrile) 100.0 g(507.5 mmol)을 NMP 800 mL에 녹인다. 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride) 117.0 g(532.9 mmol)을 NMP 200 mL에 희석시킨 후 상온에서 천천히 적가하고, 12 시간 동안 반응하였다. 물 500 mL을 넣고 고체가 석출되면 여과하고, 물과 메탄올로 씻어서 흰색 고체의 화합물(중간체(16)) 177.7 g(수율: 92.1%)을 얻었다.Dissolve 100.0 g (507.5 mmol) of 4-amino-3-bromobenzonitrile in 800 mL of NMP in a 2-neck 2 L flask. After diluting 117.0 g (532.9 mmol) of 4-bromobenzoyl chloride in 200 mL of NMP, it was slowly added dropwise at room temperature and reacted for 12 hours. 500 mL of water was added, and when a solid was precipitated, it was filtered and washed with water and methanol to obtain 177.7 g of a white solid compound (intermediate (16)) (yield: 92.1%).

(중간체(17)의 합성)(Synthesis of intermediate (17))

1구 3 L 플라스크에 중간체(16) 181.8 g(478.4 mmol), Cu 15.2 g(239.2 mmol), K2CO3 132.2 g(956.8 mmol), Na2SO4 135.9 g(956.8 mmol) 및 나이트로벤젠 1.5 L를 혼합한 다음 2일 동안 환류 교반하였다. 반응이 종결된 후 셀라이트 패드에 통과시킨 후 감압 농축하였고 혼합용액(DCM/MeOH)으로 고체화하여, 노란색 고체의 화합물(중간체(17)) 119.0 g(수율: 83.2%)을 얻었다.Intermediate (16) 181.8 g (478.4 mmol), Cu 15.2 g (239.2 mmol), K 2 CO 3 132.2 g (956.8 mmol), Na 2 SO 4 135.9 g (956.8 mmol) and nitrobenzene in a 1-neck 3 L flask 1.5 L was mixed and stirred at reflux for 2 days. After completion of the reaction, the mixture was passed through a celite pad, concentrated under reduced pressure, and solidified with a mixed solution (DCM/MeOH) to obtain 119.0 g of a yellow solid compound (Intermediate (17)) (yield: 83.2%).

중간체 intermediate 합성예Synthesis example 9: 중간체(19)의 합성 9: Synthesis of intermediate (19)

Figure pat00048
Figure pat00048

(중간체(18)의 합성)(Synthesis of Intermediate (18))

2구 1 L 플라스크에 1,3-디브로모-5-클로로벤젠(1,3-dibromo-5-chlorobenzene) 15.0 g(55.4 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 30.0 g(116.5 mmol), Pd(PPh3)4 6.4 g(5.5 mmol), K2CO3 23.0 g(166.4 mmol), 톨루엔 180 mL, 정제수 100 mL 및 에탄올 90 mL을 혼합한 다음 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:DCM=1:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(18)) 16.2 g(수율: 55.1%)을 얻었다. 1,3-dibromo-5-chlorobenzene (1,3-dibromo-5-chlorobenzene) 15.0 g (55.4 mmol), (3,5-bis (trifluoromethyl) phenyl) in a 2-neck 1 L flask Boronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 30.0 g (116.5 mmol), Pd(PPh 3 ) 4 6.4 g (5.5 mmol), K 2 CO 3 23.0 g (166.4 mmol), toluene 180 mL, 100 mL of purified water, and 90 mL of ethanol were mixed and stirred under reflux for 5 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:DCM=1:1) and solidified with methanol to obtain 16.2 g (yield: 55.1%) of the compound as a white solid (intermediate (18)).

(중간체(19)의 합성)(Synthesis of Intermediate (19))

2구 250 mL 플라스크에 중간체(18) 6.0 g(11.1 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 4.3 g(16.7 mmol), Pd(dba)2 600.0 mg(0.1 mmol), X-Phos 1.1 g(0.2 mmol), KOAc 3.3 g(33.5 mmol) 및 톨루엔 72 mL를 혼합한 다음 6 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:DCM=1:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(19)) 3.5 g(수율: 49.7%)을 얻었다. Intermediate (18) 6.0 g (11.1 mmol), bis (pinacolato) diboron (bis (pinacolato) diboron) 4.3 g (16.7 mmol), Pd (dba) 2 in a 2-neck 250 mL flask 600.0 mg (0.1 mmol), 1.1 g (0.2 mmol) of X-Phos, 3.3 g (33.5 mmol) of KOAc and 72 mL of toluene were mixed and stirred under reflux for 6 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:DCM=1:1) and solidified with methanol to obtain 3.5 g (yield: 49.7%) of the compound as a white solid (intermediate (19)).

중간체 intermediate 합성예Synthesis example 10: 중간체(20)의 합성 10: Synthesis of intermediate (20)

Figure pat00049
Figure pat00049

1구 500 mL 플라스크에 2-아미노피리딘-3-올(2-aminopyridin-3-ol) 20.0 g(181.6 mmol)과 4-아이오도벤조익엑시드(4-iodobenzoic acid) 45.0 g(181.6 mmol)을 잘 섞은 후, 0℃에서 POCl3 140 mL를 천천히 조심해서 넣어주며 교반하였다. 90℃로 승온한 후 12시간 동안 반응하였다. 반응이 종결된 후 상온으로 냉각하고 얼음에 반응물을 천천히 적가하였다. Na2CO3 수용액으로 중화시킨 후 고체를 여과하고 물과 메탄올로 씻어서 건조하여 흰색 고체의 화합물(중간체(20)) 43.0 g(수율: 73.5%)을 얻었다.In a 1-neck 500 mL flask, 20.0 g (181.6 mmol) of 2-aminopyridin-3-ol and 45.0 g (181.6 mmol) of 4-iodobenzoic acid were added. After mixing well, 140 mL of POCl 3 was slowly and carefully added at 0° C. and stirred. After raising the temperature to 90 °C, the reaction was carried out for 12 hours. After the reaction was completed, it was cooled to room temperature, and the reactant was slowly added dropwise to ice. After neutralization with Na 2 CO 3 aqueous solution, the solid was filtered, washed with water and methanol, and dried to obtain 43.0 g (yield: 73.5%) of the compound as a white solid (intermediate (20)).

중간체 intermediate 합성예Synthesis example 11: 중간체(22)의 합성 11: Synthesis of intermediate (22)

Figure pat00050
Figure pat00050

(중간체(21)의 합성)(Synthesis of Intermediate (21))

1구 2 L 플라스크에 2-아미노페놀(2-aminophenol) 20.0 g(183.3 mmol)과 6-브로모피콜린알데히드(6-bromopicolinaldehyde) 34.1 g(183.3 mmol)을 에탄올 900 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(21)) 50.8 g(crude)을 얻었다. In a 1-neck 2 L flask, 20.0 g (183.3 mmol) of 2-aminophenol and 34.1 g (183.3 mmol) of 6-bromopicolinaldehyde were mixed in 900 mL of ethanol, and then at 70°C. was stirred for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, and the reaction mixture was distilled under reduced pressure to obtain 50.8 g (crude) of the compound as a brown solid (intermediate (21)).

(중간체(22)의 합성)(Synthesis of Intermediate (22))

1구 2 L 플라스크에 중간체(21) 50.8 g(183.3 mmol)을 다이클로로메탄(DCM) 900 mL에 녹였다. DDQ 49.9 g(220.0 mmol)을 넣어준 후. 상온에서 12시간 동안 교반하였다. 반응혼합물을 셀라이트(CHCl3) 패드를 통하여 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 노란색 고체의 화합물(중간체(22)) 42.0 g(수율: 83.3%)을 얻었다.In a 1-neck 2 L flask, 50.8 g (183.3 mmol) of the intermediate (21) was dissolved in 900 mL of dichloromethane (DCM). After adding 49.9 g (220.0 mmol) of DDQ. The mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered through a pad of Celite (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 42.0 g (yield: 83.3%) of the compound (intermediate (22)) as a yellow solid.

중간체 intermediate 합성예Synthesis example 12: 중간체(24)의 합성 12: Synthesis of intermediate (24)

Figure pat00051
Figure pat00051

(중간체(23)의 합성)(Synthesis of intermediate (23))

1구 2 L 플라스크에 2-아미노페놀 (2-aminophenol) 17.6 g(161.3 mmol)과 5-브로모피콜린알데히드(5-bromopicolinaldehyde) 30.0 g(161.3 mmol)을 에탄올 800 mL에 혼합한 다음, 70℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 반응 혼합물을 감압 증류하여, 갈색 고체의 화합물(중간체(23)) 45.0 g(crude)을 얻었다. In a 1-neck 2 L flask, 17.6 g (161.3 mmol) of 2-aminophenol and 30.0 g (161.3 mmol) of 5-bromopicolinaldehyde were mixed with 800 mL of ethanol in 800 mL of ethanol, and then at 70°C. was stirred for 12 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the reaction mixture was distilled under reduced pressure to obtain 45.0 g (crude) of the compound (intermediate (23)) as a brown solid.

(중간체(24)의 합성)(Synthesis of Intermediate (24))

1구 2 L 플라스크에 중간체(23) 45.0 g(161.3 mmol)을 다이클로로메탄 800 mL에 녹였다. DDQ 43.9 g(193.5 mmol)을 넣어준 후. 40℃에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트(CHCl3)로 여과하고 혼합용액(DCM/EtOH)으로 고체화하여, 분홍색 고체의 화합물(중간체(24)) 36.2 g(수율: 81.6%)을 얻었다.In a 1-neck 2 L flask, 45.0 g (161.3 mmol) of the intermediate (23) was dissolved in 800 mL of dichloromethane. After adding 43.9 g (193.5 mmol) of DDQ. Stirred at 40° C. for 12 hours. The reaction mixture was filtered through celite (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 36.2 g (yield: 81.6%) of a pink solid compound (intermediate (24)).

중간체 intermediate 합성예Synthesis example 13: 중간체(26)의 합성 13: Synthesis of intermediate (26)

Figure pat00052
Figure pat00052

(중간체(25)의 합성)(Synthesis of Intermediate (25))

1구 250 mL 플라스크에 3-브로모-7-아이오도퀴놀린(3-bromo-7-iodoquinoline) 5.0 g(15.0 mmol), 중간체(8) 6.2 g(15.0 mmol), Pd(PPh3)4 519.0 mg(449.2 μmol), K2CO3 5.2 g(37.4 mmol), 톨루엔 40 mL, 에탄올 15 mL 및 물 15 mL을 혼합한 다음 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하였다. 얻어진 화합물을 혼합용액(DCM/EtOH)으로 고체화하여, 옅은 노란색 고체의 화합물 (중간체(25)) 3.8 g(수율: 51.1%)을 얻었다.In a 1-neck 250 mL flask, 3-bromo-7-iodoquinoline (3-bromo-7-iodoquinoline) 5.0 g (15.0 mmol), Intermediate (8) 6.2 g (15.0 mmol), Pd (PPh 3 ) 4 519.0 mg (449.2 μmol), K 2 CO 3 5.2 g (37.4 mmol), toluene 40 mL, ethanol 15 mL and water 15 mL were mixed and stirred under reflux for 5 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained mixture was purified by silica gel column chromatography (CHCl 3 ). The obtained compound was solidified with a mixed solution (DCM/EtOH) to obtain 3.8 g (yield: 51.1%) of the compound as a pale yellow solid (Intermediate (25)).

(중간체(26)의 합성)(Synthesis of Intermediate (26))

1구 250 mL 플라스크에 중간체(25) 3.8 g(7.7 mmol), 피나콜디보론(Bis(pinacolato)diboron) 2.9 g(11.5 mmol), Pd(dppf)Cl2-CH2Cl2 125.0 mg(153.2 μmol), KOAc 2.3 g(23.0 mmol) 및 1,4-디옥산 40 mL를 혼합한 다음, 100℃에서 5시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 혼합용액(DCM/MeOH)으로 고체화하여, 흰색 고체의 화합물(중간체(26)) 4.0 g (수율: 96.1%)얻었다.In a one-necked 250 mL flask, 3.8 g (7.7 mmol) of intermediate (25), 2.9 g (11.5 mmol) of pinacol diboron (Bis(pinacolato)diboron), Pd(dppf)Cl 2 -CH 2 Cl 2 125.0 mg (153.2) μmol), KOAc 2.3 g (23.0 mmol) and 1,4-dioxane 40 mL were mixed, and then stirred at 100° C. for 5 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with a mixed solution (DCM/MeOH) to obtain 4.0 g (yield: 96.1%) of the compound as a white solid (intermediate (26)). .

중간체 intermediate 합성예Synthesis example 14: 중간체(27)의 합성 14: Synthesis of intermediate (27)

Figure pat00053
Figure pat00053

(중간체(27)의 합성)(Synthesis of intermediate (27))

1구 250 mL 플라스크에 6-브로모-2-아이오도퀴녹살린(6-bromo-2-iodoquinoxaline) 5.2 g(15.6 mmol), 중간체(1) 5.0 g(15.6 mmol), Pd(PPh3)4 540.0 mg(467.0 μmol), K2CO3 6.5 g(46.7 mmol), 톨루엔 40 mL, 에탄올 15 mL 및 물 15 mL을 혼합한 다음 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하였다. 얻어진 화합물을 혼합용액(DCM/EtOH)으로 고체화하여, 옅은 노란색 고체의 화합물 (중간체(27)) 4.2 g(수율: 67.1%)을 얻었다.In a 1-neck 250 mL flask, 6-bromo-2-iodoquinoxaline (6-bromo-2-iodoquinoxaline) 5.2 g (15.6 mmol), Intermediate (1) 5.0 g (15.6 mmol), Pd (PPh 3 ) 4 540.0 mg (467.0 μmol), K 2 CO 3 6.5 g (46.7 mmol), toluene 40 mL, ethanol 15 mL, and water 15 mL were mixed and stirred under reflux for 5 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1). The obtained compound was solidified with a mixed solution (DCM/EtOH) to obtain 4.2 g (yield: 67.1%) of the compound as a pale yellow solid (Intermediate (27)).

중간체 intermediate 합성예Synthesis example 15: 중간체(29)의 합성 15: Synthesis of intermediate (29)

Figure pat00054
Figure pat00054

(중간체(28)의 합성)(Synthesis of Intermediate (28))

1구 1 L 플라스크에 4-브로모-4'-요오드디페닐(4-bromo-4'-iodo-biphenyl) 20.0 g(55.7 mmol), 3,5-비스(트리플루오로메틸)페닐보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 14.3 g(55.7 mmol), Pd(PPh3)4 1.9 g(1.6 mmol), K2CO3 19.2 g(138.9 mmol), 톨루엔 300 mL, 에탄올 150 mL 및 물 150 mL를 혼합한 다음 15 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 다이클로로메탄으로 추출한 후 감압 하에 용매를 제거하였다. 이렇게 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:DCM=10:1)로 정제하고 메탄올로 고체화하여, 오렌지색 고체의 화합물(중간체(28)) 17.1 g(수율: 68.9%)을 얻었다. 2-bromo-4'-iodo-biphenyl (4-bromo-4'-iodo-biphenyl) 20.0 g (55.7 mmol), 3,5-bis (trifluoromethyl) phenylboronic acid in a 1-neck 1 L flask ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 14.3 g (55.7 mmol), Pd(PPh 3 ) 4 1.9 g (1.6 mmol), K 2 CO 3 19.2 g (138.9 mmol), toluene 300 mL, After mixing 150 mL of ethanol and 150 mL of water, the mixture was stirred under reflux for 15 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with dichloromethane, and the solvent was removed under reduced pressure. The reaction mixture thus obtained was purified by silica gel column chromatography (Hex:DCM=10:1) and solidified with methanol to obtain 17.1 g (yield: 68.9%) of the compound (intermediate (28)) as an orange solid.

(중간체(29)의 합성)(Synthesis of Intermediate (29))

1구 500 mL 플라스크에 중간체(28) 10.0 g(22.5 mmol), 피나콜디보론(Bis(pinacolato)diboron) 11.4 g(44.9 mmol), Pd(dppf)Cl2-CH2Cl2 550.0 mg(6.7 mmol), KOAc 4.4 g(44.9 mmol) 및 Dioxane 300 mL를 혼합한 후 16시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(DCM)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(29)) 9.6 g (수율: 87.1%)얻었다.In a 1-neck 500 mL flask, 10.0 g (22.5 mmol) of intermediate (28), 11.4 g (44.9 mmol) of pinacol diboron (Bis(pinacolato)diboron), Pd(dppf)Cl 2 -CH 2 Cl 2 550.0 mg (6.7 mmol), 4.4 g (44.9 mmol) of KOAc and 300 mL of Dioxane were mixed and stirred under reflux for 16 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (DCM) and solidified with methanol to obtain 9.6 g (yield: 87.1%) of the compound (intermediate (29)) as a white solid.

중간체 intermediate 합성예Synthesis example 16: 중간체(30)의 합성 16: Synthesis of intermediate (30)

Figure pat00055
Figure pat00055

(중간체(30)의 합성)(Synthesis of intermediate (30))

1구 1 L 플라스크에 1-브로모-3,5-비스트리플루오로메틸벤젠(1-bromo-3,5-bis(trifluoromethyl)benzen 17.0 g(58.1 mmol), 4-클로로나프탈렌-1-일 보로닉엑시드(4-chloronaphthalen-1-yl)boronic acid) 10.0 g(48.4 mmol), Pd(PPh3)4 2.8 g(2.4 mmol), K2CO3 20.1 g(145.3 mmol), 톨루엔 160 mL, 에탄올 40 mL 및 물 40 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 클로로포름으로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:CHCl3=10:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(30)) 11.5 g(수율: 63.4%)을 얻었다. In a 1-neck 1 L flask, 1-bromo-3,5-bistrifluoromethylbenzene (1-bromo-3,5-bis(trifluoromethyl)benzen 17.0 g (58.1 mmol), 4-chloronaphthalen-1-yl Boronic acid (4-chloronaphthalen-1-yl)boronic acid) 10.0 g (48.4 mmol), Pd (PPh 3 ) 4 2.8 g (2.4 mmol), K 2 CO 3 20.1 g (145.3 mmol), 160 mL toluene, After mixing 40 mL of ethanol and 40 mL of water, the mixture was stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with chloroform, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 = 10:1) and solidified with methanol to obtain 11.5 g (yield: 63.4%) of the compound as a white solid (intermediate (30)).

중간체 intermediate 합성예Synthesis example 17: 중간체(31)의 합성 17: Synthesis of intermediate (31)

Figure pat00056
Figure pat00056

(중간체(31)의 합성)(Synthesis of intermediate (31))

1구 250 mL 플라스크에 중간체(3) 6.0 g(12.8 mmol), 피나콜디보론(Bis(pinacolato)diboron) 4.9 g(19.2 mmol), Pd(dba) 735.0 mg(1.3 mmol), X-Phos 1.2 g(2.6 mmol), KOAc 3.8 g(38.3 mmol) 및 톨루엔 65 mL를 혼합한 다음, 5시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 혼합용액(DCM/MeOH)으로 고체화하여, 흰색 고체의 화합물(중간체(31)) 4.4 g (수율: 76.6%)얻었다.Intermediate (3) 6.0 g (12.8 mmol), pinacol diboron (Bis(pinacolato)diboron) 4.9 g (19.2 mmol), Pd (dba) in a 1-neck 250 mL flask 735.0 mg (1.3 mmol), 1.2 g (2.6 mmol) of X-Phos, 3.8 g (38.3 mmol) of KOAc and 65 mL of toluene were mixed and stirred under reflux for 5 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with a mixed solution (DCM/MeOH) to obtain 4.4 g (yield: 76.6%) of the compound as a white solid (intermediate (31)). .

중간체 intermediate 합성예Synthesis example 18: 중간체(34)의 합성 18: Synthesis of intermediate (34)

Figure pat00057
Figure pat00057

(중간체(32)의 합성)(Synthesis of Intermediate (32))

1구 2 L 플라스크에 7-브로모나프틸렌-2-올(7-bromonaphthalen-2-ol) 50.0 g(224.2 mmol), 3,5-비스트리플루오로메틸페닐보론산 ((3,5-bis(trifluoromethyl)phenyl) boronic acid) 57.8 g(224.2 mmol), Pd(PPh3)4 7.8 g(6.7 mmol), K3PO4 142.7 g(672.5 mmol), 톨루엔 500 mL, 에탄올 150 mL 및 물 150 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3→CHCl3:EA=9:1)로 정제하여, 흰색 고체의 화합물(중간체(32)) 55.2 g(수율: 69.1%)을 얻었다.In a 1-neck 2 L flask, 50.0 g (224.2 mmol) of 7-bromonaphthalen-2-ol, 3,5-bistrifluoromethylphenylboronic acid ((3,5-bis (trifluoromethyl)phenyl)boronic acid) 57.8 g (224.2 mmol), Pd(PPh3) 4 7.8 g (6.7 mmol), K 3 PO 4 142.7 g (672.5 mmol), toluene 500 mL, ethanol 150 mL, and water 150 mL After mixing, the mixture was stirred under reflux for 12 hours. After completion of the reaction, the mixture was cooled to room temperature, added with water, extracted with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 →CHCl3:EA=9:1) to obtain 55.2 g (yield: 69.1%) of the compound (intermediate (32)) as a white solid.

(중간체(33)의 합성)(Synthesis of intermediate (33))

1구 2 L 플라스크에 중간체(32) 55.2 g(154.9 mmol)을 다이클로로메탄(DCM) 600 mL에 녹이고 피리딘(Pyridine) 37.5 mL(464.8 mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O 31.2 mL(185.9 mmol)를 천천히 적가 한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물(500 mL)에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼 크로마토그래피(CHCl3)로 정제하여 노란색 액체의 화합물(중간체(33)) 75.7 g(수율: 100 %)을 얻었다.In a 1-neck 2 L flask, 55.2 g (154.9 mmol) of the intermediate (32) was dissolved in 600 mL of dichloromethane (DCM), 37.5 mL (464.8 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. Tf 2 O 31.2 mL (185.9 mmol) was slowly added dropwise, and then the temperature was raised to room temperature, followed by reaction for 12 hours. The reaction product was washed with water (500 mL), and the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to form a yellow liquid compound (intermediate (33)) 75.7 g (yield) : 100%) was obtained.

(중간체(34)의 합성)(Synthesis of Intermediate (34))

1구 2 L 플라스크에 중간체(33) 45.7 g(154.9 mmol), 피나콜디보론(Bis(pinacolato)diboron) 59.0 g(232.4 mmol), Pd(dppf)Cl2 -CH2Cl2 2.5 g(3.1 mmol), KOAc 45.6 g(464.8 mmol) 및 1,4-디옥산 700 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 회색 고체의 화합물(중간체(34)) 61.1 g(수율: 83.2%)을 얻었다. 1 2 Intermediate 33 to L flask, 45.7 g (154.9 mmol), pinacol diboron (Bis (pinacolato) diboron) 59.0 g (232.4 mmol), Pd (dppf) Cl 2 - CH 2 Cl 2 2.5 g (3.1 mmol), 45.6 g (464.8 mmol) of KOAc and 700 mL of 1,4-dioxane were mixed, followed by stirring at 100° C. for 12 hours. After the reaction was completed, it was cooled to room temperature, and the reaction product was passed through a celite pad and concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (CHCl 3 ) to obtain 61.1 g (yield: 83.2%) of the compound (intermediate (34)) as a gray solid.

중간체 intermediate 합성예Synthesis example 19: 중간체(35)의 합성 19: Synthesis of intermediate (35)

Figure pat00058
Figure pat00058

(중간체(35)의 합성)(Synthesis of intermediate (35))

1구 250 mL 플라스크에 2-브로모-7-아이오도나프틸렌벤젠(2-bromo-7-iodophenanthrene)benzen 5.0 g(13.1 mmol), 3,5-비스트리플루오로메틸페닐보론산 ((3,5-bis(trifluoromethyl)phenyl) boronic acid) 3.8 g(13.1 mmol), Pd(PPh3)4 453.0 mg(391.62μmol), K2CO3 5.4 g(39.2 mmol), 톨루엔 40 mL, 에탄올 15 mL 및 물 15 mL을 혼합한 다음 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 에탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/EtOH)으로 고체화하여 흰색 고체의 화합물(중간체(35)) 4.9 g(수율: 80.0%)을 얻었다.2-bromo-7-iodophenanthrene (2-bromo-7-iodophenanthrene)benzen 5.0 g (13.1 mmol), 3,5-bistrifluoromethylphenylboronic acid ((3, 5-bis(trifluoromethyl)phenyl)boronic acid) 3.8 g (13.1 mmol), Pd(PPh 3 ) 4 453.0 mg (391.62 μmol), K 2 CO 3 5.4 g (39.2 mmol), toluene 40 mL, ethanol 15 mL and After mixing 15 mL of water, the mixture was stirred under reflux for 5 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and ethanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 4.9 g (yield: 80.0%) of the compound as a white solid (intermediate (35)).

중간체 intermediate 합성예Synthesis example 20: 중간체(37)의 합성 20: Synthesis of intermediate (37)

Figure pat00059
Figure pat00059

(중간체(36)의 합성)(Synthesis of Intermediate (36))

1구 500 mL 플라스크에 9-브로모안트라센(9-bromoanthracene) 10.0 g(38.9 mmol), 3,5-비스트리플루오로메틸페닐보론산 ((3,5-bis(trifluoromethyl)phenyl) boronic acid) 10.0 g(38.9 mmol), Pd(PPh3)4 2.3 g(1.9 mmol), K2CO3 13.4 g(97.2 mmol), 톨루엔 120 mL, 에탄올 40 mL 및 물 40 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 에탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/EtOH)으로 고체화하여 흰색 고체의 화합물(중간체(36)) 4.9 g(수율: 80.0%)을 얻었다.In a 1-neck 500 mL flask, 10.0 g (38.9 mmol) of 9-bromoanthracene, 3,5-bistrifluoromethylphenylboronic acid ((3,5-bis(trifluoromethyl)phenyl)boronic acid) 10.0 g (38.9 mmol), Pd(PPh 3 ) 4 2.3 g (1.9 mmol), K 2 CO 3 13.4 g (97.2 mmol), toluene 120 mL, ethanol 40 mL and water 40 mL were mixed and stirred under reflux for 12 hours. did. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and ethanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 4.9 g (yield: 80.0%) of the compound as a white solid (intermediate (36)).

(중간체(37)의 합성)(Synthesis of intermediate (37))

1구 250 mL 플라스크에 중간체(36) 4.9 g(12.6 mmol)을 DMF 65 mL에 녹인 후 0 ℃로 온도를 낮췄다. N-브로모썩시니마이드 (N-Bromosuccinimide) 2.2 g(12.6 mmol)을 넣고 0 ℃에서 30분간 교반한 후, 상온에서 5시간 반응하였다. 반응이 종결된 후 물을 넣고 교반한 후, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/EtOH)으로 고체화하여 흰색 고체의 화합물(중간체(37)) 4.1 g(수율: 71.3%)을 얻었다.After dissolving 4.9 g (12.6 mmol) of the intermediate (36) in 65 mL of DMF in a one-necked 250 mL flask, the temperature was lowered to 0 °C. 2.2 g (12.6 mmol) of N-Bromosuccinimide was added, stirred at 0° C. for 30 minutes, and then reacted at room temperature for 5 hours. After completion of the reaction, water was added and stirred, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 4.1 g (yield: 71.3%) of the compound as a white solid (intermediate (37)).

중간체 intermediate 합성예Synthesis example 21: 중간체(38)의 합성 21: Synthesis of intermediate (38)

Figure pat00060
Figure pat00060

(중간체(38)의 합성)(Synthesis of Intermediate (38))

2구 1 L 플라스크에 2-(4-브로모페닐)벤조티아졸(2-(4-bromophenyl)benzothiazole) 10.0 g(34.5 mmol), 비스(피나콜라토)디보론(bis(pinacolato)diboron) 13.1 g(51.7 mmol), Pd(dppf)Cl2 -CH2Cl2 1.3 g(1.7 mmol), KOAc 10.1 g(103.4 mmol) 및 1,4-디옥센 120 mL을 혼합한 다음 18 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=8:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(38)) 7.2 g(수율: 62.0%)을 얻었다.2- (4-bromophenyl) benzothiazole (2- (4-bromophenyl) benzothiazole) 10.0 g (34.5 mmol) in a 2-neck 1 L flask, bis (pinacolato) diboron (bis (pinacolato) diboron) 13.1 g (51.7 mmol), Pd (dppf) Cl 2 - CH 2 Cl 2 1.3 g (1.7 mmol), KOAc 10.1 g (103.4 mmol) and 1,4-oksen a mixture of 120 mL and then stirred under reflux for 18 hours did. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=8:1) and solidified with methanol to obtain 7.2 g (yield: 62.0%) of the compound as a white solid (intermediate (38)).

중간체 intermediate 합성예Synthesis example 22: 중간체(40)의 합성 22: Synthesis of intermediate (40)

Figure pat00061
Figure pat00061

(중간체(39)의 합성)(Synthesis of intermediate (39))

2구 500 mL 플라스크에 중간체(38) 15.1 g(44.8 mmol), 6-브로모-2-나프탈레놀(6-bromo-2-naphthalenol) 10.0 g(44.8 mmol), Pd(PPh3)4 2.6 g(2.2 mmol), K2CO3 18.5 g(134.4 mmol), 톨루엔 100 mL, 정제수 40 mL 및 에탄올 20 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(39)) 8.5 g(수율: 53.9%)을 얻었다. In a 2-neck 500 mL flask, 15.1 g (44.8 mmol) of intermediate (38), 10.0 g (44.8 mmol) of 6-bromo-2-naphthalenol, Pd (PPh 3 ) 4 2.6 g (2.2 mmol), K 2 CO 3 18.5 g (134.4 mmol), toluene 100 mL, purified water 40 mL, and ethanol 20 mL were mixed and stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 8.5 g (yield: 53.9%) of the compound as a white solid (intermediate (39)).

(중간체(40)의 합성)(Synthesis of intermediate (40))

2구 500 mL 플라스크에 중간체(39) 8.5 g(24.1 mmol), Tf2O 6.1 mL(36.2 mmol), TEA 4.4 mL(31.4 mmol) 및 다이클로로메탄 90 mL를 혼합한 다음, 2시간 동안 상온에서 교반하였다. 반응이 종결된 후 정제수를 넣고 추출한 후 감압 하에 용매를 제거하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(40)) 6.1 g (수율: 52.0%)을 얻었다.In a two-necked 500 mL flask, 8.5 g (24.1 mmol) of intermediate (39), 6.1 mL (36.2 mmol) of Tf 2 O, 4.4 mL (31.4 mmol) of TEA and 90 mL of dichloromethane were mixed, and then at room temperature for 2 hours. stirred. After the reaction was completed, purified water was added and extracted, and the solvent was removed under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 6.1 g (yield: 52.0%) of the compound as a white solid (intermediate (40)).

중간체 intermediate 합성예Synthesis example 23: 중간체(42)의 합성 23: Synthesis of intermediate (42)

Figure pat00062
Figure pat00062

(중간체(41)의 합성)(Synthesis of intermediate (41))

2구 250 mL 플라스크에 중간체(6) 10.8 g(36.2 mmol), 6-브로모-2-나프탈레놀(6-bromo-2-naphthalenol) 8.0 g(35.8 mmol), Pd(PPh3)4 2.1 g(1.8 mmol), K2CO3 14.9 g(107.5 mmol), 톨루엔 96 mL 및 정제수 40 mL을 혼합한 다음 하루 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 정제수를 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(41)) 3.2 g(수율: 27.9%)을 얻었다. Intermediate (6) 10.8 g (36.2 mmol), 6-bromo-2-naphthalenol (6-bromo-2-naphthalenol) 8.0 g (35.8 mmol), Pd (PPh 3 ) 4 2.1 in a 2-neck 250 mL flask g (1.8 mmol), K 2 CO 3 14.9 g (107.5 mmol), 96 mL of toluene and 40 mL of purified water were mixed and stirred under reflux for one day. After the reaction was completed, it was cooled to room temperature, purified water was added, and the mixture was extracted with ethyl acetate and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 3.2 g (yield: 27.9%) of the compound as a white solid (intermediate (41)).

(중간체(42)의 합성)(Synthesis of Intermediate (42))

2구 250 mL 플라스크에 중간체(41) 3.2 g(10.0 mmol), Tf2O 2.1 mL(12.0 mmol), TEA 1.7 mL(12.0 mmol) 및 다이클로로메탄 32 mL를 혼합한 다음, 2시간 동안 상온에서 교반하였다. 반응이 종결된 후 정제수를 넣고 추출한 후 감압 하에 용매를 제거하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:EA=2:1)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물(중간체(42)) 2.9 g (수율: 64.8%)얻었다.Intermediate (41) 3.2 g (10.0 mmol), Tf 2 O 2.1 mL (12.0 mmol), TEA 1.7 mL (12.0 mmol) and dichloromethane 32 mL were mixed in a two-necked 250 mL flask, and then at room temperature for 2 hours. stirred. After the reaction was completed, purified water was added and extracted, and the solvent was removed under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:EA=2:1) and solidified with methanol to obtain 2.9 g (yield: 64.8%) of the compound as a white solid (intermediate (42)).

상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 벤즈아졸 유도체를 합성하였다. Various benzazole derivatives were synthesized as follows using the synthesized intermediate compound.

실시예Example 1: 화합물 3-1(LT20-35-101)의 합성 1: Synthesis of compound 3-1 (LT20-35-101)

Figure pat00063
Figure pat00063

2구 250 mL 플라스크에 중간체(3) 3.7 g(8.3 mmol), 중간체(6) 2.5 g(8.3 mmol), Pd(PPh3)4 500.0 mg(0.5 mmol), K2CO3 2.2 g(16.6 mmol), 톨루엔 45 mL, 정제수 18 mL 및 에탄올 11 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물 3-1(LT20-35-101) 1.7 g(수율: 45.4%)을 얻었다.In a two-necked 250 mL flask, intermediate (3) 3.7 g (8.3 mmol), intermediate (6) 2.5 g (8.3 mmol), Pd(PPh 3 ) 4 500.0 mg (0.5 mmol), K 2 CO 3 2.2 g (16.6 mmol) ), toluene 45 mL, purified water 18 mL, and ethanol 11 mL were mixed, and then stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with methanol to obtain 1.7 g (yield: 45.4%) of compound 3-1 (LT20-35-101) as a white solid.

실시예Example 2: 화합물 3-6(LT20-30-114)의 합성 2: Synthesis of compound 3-6 (LT20-30-114)

Figure pat00064
Figure pat00064

1구 250 mL 플라스크에 중간체(3) 3.2 g(7.7 mmol), 중간체(8) 3.0 g(6.4 mmol), Pd(PPh3)4 221.5 mg(191.7 μmol), K2CO3 2.7 g(19.2 mmol), 톨루엔 32 mL, 에탄올 8 mL 및 물 8 mL을 혼합한 다음 90℃에서 4시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올, 에틸아세테이트로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 클로로포름으로 고체화하여, 흰색 고체의 화합물 3-6(LT20-30-114) 3.0 g(수율: 77.0%)을 얻었다. Intermediate (3) 3.2 g (7.7 mmol), Intermediate (8) 3.0 g (6.4 mmol), Pd(PPh 3 ) 4 221.5 mg (191.7 μmol), K 2 CO 3 2.7 g (19.2 mmol) in a 1-neck 250 mL flask ), toluene 32 mL, ethanol 8 mL, and water 8 mL were mixed and stirred at 90° C. for 4 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water, methanol, and ethyl acetate, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with chloroform to obtain 3.0 g (yield: 77.0%) of compound 3-6 (LT20-30-114) as a white solid.

실시예Example 3: 화합물 3-7(LT20-35-102)의 합성 3: Synthesis of compound 3-7 (LT20-35-102)

Figure pat00065
Figure pat00065

2구 250 mL 플라스크에 중간체(3) 3.7 g(7.9 mmol), 중간체(9) 2.4 g(7.9 mmol), Pd(PPh3)4 500.0 mg(0.4 mmol), K2CO3 2.2 g(15.9 mmol), 톨루엔 38 mL, 정제수 15 mL 및 에탄올 7 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물 3-7(LT20-35-102) 2.9 g(수율: 72.6%)을 얻었다.In a two-necked 250 mL flask, intermediate (3) 3.7 g (7.9 mmol), intermediate (9) 2.4 g (7.9 mmol), Pd(PPh 3 ) 4 500.0 mg (0.4 mmol), K 2 CO 3 2.2 g (15.9 mmol) ), toluene 38 mL, purified water 15 mL, and ethanol 7 mL were mixed and stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with methanol to obtain 2.9 g (yield: 72.6%) of compound 3-7 (LT20-35-102) as a white solid.

실시예Example 4: 화합물 3-8(LT20-35-103)의 합성 4: Synthesis of compound 3-8 (LT20-35-103)

Figure pat00066
Figure pat00066

2구 250 mL 플라스크에 중간체(3) 3.0 g(6.4 mmol), 중간체(11) 2.3 g(6.4 mmol), Pd(PPh3)4 369.0 mg(319.5 μmol), K2CO3 2.7 g(19.2 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/EtOH)으로 고체화하여, 흰색 고체의 화합물 3-8(LT20-35-103) 2.1 g(수율: 63.1%)을 얻었다.In a two-necked 250 mL flask, intermediate (3) 3.0 g (6.4 mmol), intermediate (11) 2.3 g (6.4 mmol), Pd(PPh 3 ) 4 369.0 mg (319.5 μmol), K 2 CO 3 2.7 g (19.2 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/EtOH) to obtain 2.1 g (yield: 63.1%) of compound 3-8 (LT20-35-103) as a white solid. .

실시예Example 5: 화합물 3-14(LT20-35-104)의 합성 5: Synthesis of compound 3-14 (LT20-35-104)

Figure pat00067
Figure pat00067

2구 250 mL 플라스크에 중간체(13) 2.5 g(8.6 mmol), 중간체(8) 3.6 g(8.6 mmol), Pd(PPh3)4 495.0 mg(427.9 μmol), K2CO3 2.6 g(25.7 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/AcOH)으로 고체화하여, 흰색 고체의 화합물 3-14(LT20-35-104) 3.2 g(수율: 59.6%)을 얻었다.2.5 g (8.6 mmol) of intermediate (13), 3.6 g (8.6 mmol) of intermediate (8), 495.0 mg (427.9 μmol) of Pd(PPh 3 ) 4 , 2.6 g (25.7 mmol) of K 2 CO 3 in a 2-neck 250 mL flask ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/AcOH) to obtain 3.2 g (yield: 59.6%) of compound 3-14 (LT20-35-104) as a white solid. .

실시예Example 6: 화합물 3-22(LT20-35-105)의 합성 6: Synthesis of compound 3-22 (LT20-35-105)

Figure pat00068
Figure pat00068

2구 250 mL 플라스크에 중간체(15) 2.5 g(7.3 mmol), 중간체(8) 3.0 g(7.3 mmol), Pd(PPh3)4 422.0 mg(365.4 μmol), K2CO3 3.0 g(21.9 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/AcOH)으로 고체화하여, 흰색 고체의 화합물 3-22(LT20-35-105) 3.4 g(수율: 68.7%)을 얻었다.In a 2-neck 250 mL flask, 2.5 g (7.3 mmol) of intermediate (15), 3.0 g (7.3 mmol) of intermediate (8), 422.0 mg (365.4 μmol) of Pd(PPh 3 ) 4 , 3.0 g (21.9 mmol ) of K 2 CO 3 ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/AcOH) to obtain 3.4 g (yield: 68.7%) of compound 3-22 (LT20-35-105) as a white solid. .

실시예Example 7: 화합물 3-30(LT20-35-106)의 합성 7: Synthesis of compound 3-30 (LT20-35-106)

Figure pat00069
Figure pat00069

2구 250 mL 플라스크에 중간체(17) 2.5 g(8.4 mmol), 중간체(8) 3.5 g(8.4 mmol), Pd(PPh3)4 483.0 mg(417.9 μmol), K2CO3 3.5 g(25.1 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/AcOH)으로 고체화하여, 흰색 고체의 화합물3-30(LT20-35-106) 2.9 g(수율: 54.7%)을 얻었다.In a two-necked 250 mL flask, intermediate (17) 2.5 g (8.4 mmol), intermediate (8) 3.5 g (8.4 mmol), Pd(PPh 3 ) 4 483.0 mg (417.9 μmol), K 2 CO 3 3.5 g (25.1 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/AcOH) to obtain 2.9 g (yield: 54.7%) of compound 3-30 (LT20-35-106) as a white solid. .

실시예Example 8: 화합물 3-33(LT20-30-110)의 합성 8: Synthesis of compound 3-33 (LT20-30-110)

Figure pat00070
Figure pat00070

2구 250 mL 플라스크에 중간체(3) 2.5 g(5.4 mmol), 중간체(19) 3.4 g(5.4 mmol), Pd(PPh3)4 300.0 mg(0.2 mmol), K2CO3 1.5 g(10.8 mmol), 톨루엔 30 mL, 정제수 15 mL 및 에탄올 10 mL을 혼합한 다음 4 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물3-33(LT20-35-110) 3.5 g(수율: 78.3%)을 얻었다.2.5 g (5.4 mmol) of intermediate (3), 3.4 g (5.4 mmol) of intermediate (19), 300.0 mg (0.2 mmol) of Pd(PPh 3 ) 4 , 1.5 g (10.8 mmol) of K 2 CO 3 in a 2-neck 250 mL flask ), toluene 30 mL, purified water 15 mL, and ethanol 10 mL were mixed and stirred under reflux for 4 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with methanol to obtain 3.5 g (yield: 78.3%) of compound 3-33 (LT20-35-110) as a white solid.

실시예Example 9: 화합물 3-42(LT20-35-107)의 합성 9: Synthesis of compound 3-42 (LT20-35-107)

Figure pat00071
Figure pat00071

2구 250 mL 플라스크에 중간체(20) 2.5 g(7.8 mmol), 중간체(8) 3.2 g(7.8 mmol), Pd(PPh3)4 448.0 mg(388.1 μmol), K2CO3 3.2 g(23.3 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-42(LT20-35-107) 2.8 g(수율: 59.1%)을 얻었다.2.5 g (7.8 mmol) of intermediate (20), 3.2 g (7.8 mmol) of intermediate (8), 448.0 mg (388.1 μmol) of Pd(PPh 3 ) 4 , 3.2 g (23.3 mmol) of K 2 CO 3 in a 2-neck 250 mL flask ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 2.8 g of compound 3-42 (LT20-35-107) as a white solid (yield: 59.1%) got

실시예Example 10: 화합물 3-50(LT20-35-108)의 합성 10: Synthesis of compound 3-50 (LT20-35-108)

Figure pat00072
Figure pat00072

2구 250 mL 플라스크에 중간체(22) 2.0 g(7.3 mmol), 중간체(8) 3.0 g(7.3 mmol), Pd(PPh3)4 420.0 mg(363.5 μmol), K2CO3 3.0 g(21.8 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-50(LT20-35-108) 1.9 g(수율: 42.8%)을 얻었다.In a 2-neck 250 mL flask, intermediate (22) 2.0 g (7.3 mmol), intermediate (8) 3.0 g (7.3 mmol), Pd(PPh 3 ) 4 420.0 mg (363.5 μmol), K 2 CO 3 3.0 g (21.8 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 1.9 g of compound 3-50 (LT20-35-108) as a white solid (yield: 42.8%) got

실시예Example 11: 화합물 3-58(LT20-35-109)의 합성 11: Synthesis of compound 3-58 (LT20-35-109)

Figure pat00073
Figure pat00073

2구 250 mL 플라스크에 중간체(24) 2.0 g(7.3 mmol), 중간체(8) 3.0 g(7.3 mmol), Pd(PPh3)4 420.0 mg(363.5 μmol), K2CO3 3.0 g(21.8 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-58(LT20-35-109) 2.1 g(수율: 47.3%)을 얻었다.In a 2-neck 250 mL flask, intermediate (24) 2.0 g (7.3 mmol), intermediate (8) 3.0 g (7.3 mmol), Pd(PPh 3 ) 4 420.0 mg (363.5 μmol), K 2 CO 3 3.0 g (21.8 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 2.1 g of compound 3-58 (LT20-35-109) as a white solid (yield: 47.3%) got

실시예Example 12: 화합물 3-66(LT20-35-110)의 합성 12: Synthesis of compound 3-66 (LT20-35-110)

Figure pat00074
Figure pat00074

2구 250 mL 플라스크에 2-(4-브로모페닐벤조옥사졸)(2-(4-bromophenyl)benzo[d]oxazole) 2.0 g(7.3 mmol), 중간체(26) 4.0 g(7.3 mmol), Pd(PPh3)4 422.0 mg(364.8 μmol), K2CO3 3.0 g(21.9 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-66(LT20-35-110) 2.2 g(수율: 49.4%)을 얻었다.In a 2-neck 250 mL flask, 2- (4-bromophenylbenzoxazole) (2- (4-bromophenyl) benzo [d] oxazole) 2.0 g (7.3 mmol), Intermediate (26) 4.0 g (7.3 mmol), Pd(PPh 3 ) 4 422.0 mg (364.8 μmol), K 2 CO 3 3.0 g (21.9 mmol), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 2.2 g of compound 3-66 (LT20-35-110) as a white solid (yield: 49.4%) got

실시예Example 13: 화합물 3-74(LT20-35-111)의 합성 13: Synthesis of compound 3-74 (LT20-35-111)

Figure pat00075
Figure pat00075

2구 250 mL 플라스크에 중간체(27) 2.8 g(7.0 mmol), 중간체(8) 2.9 g(7.0 mmol), Pd(PPh3)4 402.0 mg(348.0 μmol), K2CO3 2.9 g(20.9 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=5:1)로 정제하고 클로로포름으로 고체화하여, 흰색 고체의 화합물 3-74(LT20-35-111) 1.6 g(수율: 37.6%)을 얻었다.In a two-necked 250 mL flask, 2.8 g (7.0 mmol) of intermediate (27), 2.9 g (7.0 mmol) of intermediate (8), 402.0 mg (348.0 μmol) of Pd(PPh 3 ) 4 , 2.9 g (20.9 mmol ) of K 2 CO 3 ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=5:1) and solidified with chloroform to obtain 1.6 g (yield: 37.6%) of compound 3-74 (LT20-35-111) as a white solid. .

실시예Example 14: 화합물 3-82(LT20-35-112)의 합성 14: Synthesis of compound 3-82 (LT20-35-112)

Figure pat00076
Figure pat00076

중간체(3) 3.0 g(6.4 mmol), 중간체(29) 3.1 g(6.4 mmol), Pd(PPh3)4 221.5 mg(191.6 μmol), K2CO3 2.2 g(15.9 mmol), 톨루엔 100 mL, 에탄올 50 mL 및 물 50 mL을 혼합한 다음 15 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔/셀라이크 패드로 정제 후 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-82(LT20-35-112) 1.3 g(수율: 30.6%)을 얻었다. Intermediate (3) 3.0 g (6.4 mmol), intermediate (29) 3.1 g (6.4 mmol), Pd(PPh 3 ) 4 221.5 mg (191.6 μmol), K 2 CO 3 2.2 g (15.9 mmol), toluene 100 mL, After mixing 50 mL of ethanol and 50 mL of water, the mixture was stirred under reflux for 15 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel/Cellike pad and solidified with dichloromethane to obtain 1.3 g (yield: 30.6%) of compound 3-82 (LT20-35-112) as a white solid.

실시예Example 15: 화합물 3-90(LT20-30-122)의 합성 15: Synthesis of compound 3-90 (LT20-30-122)

Figure pat00077
Figure pat00077

중간체(31) 3.0 g(6.7 mmol), 중간체(30) 2.6 g(7.0 mmol), Pd(dba) 385.6 mg(670.6 μmol), X-Phos 639.4 mg(1.3 mmol), K3PO4 4.3 g(20.1 mmol) 및 자일렌 35 mL를 혼합한 다음, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Acetone)으로 고체화하여, 흰색 고체의 화합물 3-90(LT20-30-122) 1.7 g(수율: 39.3%)을 얻었다. Intermediate (31) 3.0 g (6.7 mmol), Intermediate (30) 2.6 g (7.0 mmol), Pd (dba) 385.6 mg (670.6 μmol), 639.4 mg (1.3 mmol) of X-Phos, 4.3 g (20.1 mmol) of K 3 PO 4 and 35 mL of xylene were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with a mixed solution (DCM/Acetone) to obtain 1.7 g (yield: 39.3%) of compound 3-90 (LT20-30-122) as a white solid. .

실시예Example 16: 화합물 3-98(LT20-35-113)의 합성 16: Synthesis of compound 3-98 (LT20-35-113)

Figure pat00078
Figure pat00078

중간체(31) 3.0 g(6.7 mmol), 중간체(33) 3.3 g(7.0 mmol), Pd(dba) 385.6 mg(670.6 μmol), X-Phos 639.4 mg(1.3 mmol), K3PO4 4.3 g(20.1 mmol) 및 자일렌 35 mL를 혼합한 다음, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-98(LT20-35-113) 2.3 g(수율: 52.0%)을 얻었다. 3.0 g (6.7 mmol) of intermediate (31), 3.3 g (7.0 mmol) of intermediate (33), Pd (dba) 385.6 mg (670.6 μmol), 639.4 mg (1.3 mmol) of X-Phos, 4.3 g (20.1 mmol) of K 3 PO 4 and 35 mL of xylene were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with dichloromethane to obtain 2.3 g (yield: 52.0%) of compound 3-98 (LT20-35-113) as a white solid.

실시예Example 17: 화합물 3-106(LT20-35-114)의 합성 17: Synthesis of compound 3-106 (LT20-35-114)

Figure pat00079
Figure pat00079

중간체(31) 2.8 g(6.3 mmol), 중간체(35) 2.9 g(6.3 mmol), Pd(PPh3)4 361.0 mg(313.0 μmol), K2CO3 2.6 g(18.8 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL을 혼합한 다음 15 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제 후 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-106(LT20-35-114) 1.9 g(수율: 42.8%)을 얻었다. Intermediate (31) 2.8 g (6.3 mmol), intermediate (35) 2.9 g (6.3 mmol), Pd(PPh 3 ) 4 361.0 mg (313.0 μmol), K 2 CO 3 2.6 g (18.8 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was stirred under reflux for 15 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and then solidified with dichloromethane to obtain 1.9 g (yield: 42.8%) of compound 3-106 (LT20-35-114) as a white solid.

실시예Example 18: 화합물 3-122(LT20-35-115)의 합성 18: Synthesis of compound 3-122 (LT20-35-115)

Figure pat00080
Figure pat00080

중간체(31) 2.8 g(6.3 mmol), 중간체(37) 2.9 g(6.3 mmol), Pd(PPh3)4 361.0 mg(313.0 μmol), K2CO3 2.6 g(18.8 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL을 혼합한 다음 15 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제 후 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 3-122(LT20-35-115) 2.4 g(수율: 54.0%)을 얻었다. Intermediate (31) 2.8 g (6.3 mmol), intermediate (37) 2.9 g (6.3 mmol), Pd(PPh 3 ) 4 361.0 mg (313.0 μmol), K 2 CO 3 2.6 g (18.8 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was stirred under reflux for 15 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and then solidified with dichloromethane to obtain 2.4 g (yield: 54.0%) of compound 3-122 (LT20-35-115) as a white solid.

실시예Example 19: 화합물 4-1(LT20-35-116)의 합성 19: Synthesis of compound 4-1 (LT20-35-116)

Figure pat00081
Figure pat00081

2구 250 mL 플라스크에 중간체(38) 2.2 g(6.4 mmol), 중간체(42) 2.9 g(6.4 mmol), Pd(PPh3)4 400.0 mg(0.3 mmol), K2CO3 1.8 g(12.9 mmol) 및 톨루엔 29 mL, 정제수 12 mL을 혼합한 다음 3 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물 4-1(LT20-35-116) 2.1 g(수율: 64.0%)을 얻었다.In a two-necked 250 mL flask, intermediate (38) 2.2 g (6.4 mmol), intermediate (42) 2.9 g (6.4 mmol), Pd(PPh 3 ) 4 400.0 mg (0.3 mmol), K 2 CO 3 1.8 g (12.9 mmol) ), 29 mL of toluene, and 12 mL of purified water were mixed and stirred under reflux for 3 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with methanol to obtain 2.1 g (yield: 64.0%) of compound 4-1 (LT20-35-116) as a white solid.

실시예Example 20: 화합물 4-6(LT20-35-117)의 합성 20: Synthesis of compound 4-6 (LT20-35-117)

Figure pat00082
Figure pat00082

2구 250 mL 플라스크에 중간체(40) 3.5 g(7.2 mmol), 중간체(8) 3.0 g(7.2 mmol), Pd(PPh3)4 416.5 mg(360.5 μmol), K2CO3 3.0 g(21.6 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 4-6(LT20-35-117) 1.8 g(수율: 39.9%)을 얻었다.In a 2-neck 250 mL flask, intermediate (40) 3.5 g (7.2 mmol), intermediate (8) 3.0 g (7.2 mmol), Pd(PPh 3 ) 4 416.5 mg (360.5 μmol), K 2 CO 3 3.0 g (21.6 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 1.8 g of compound 4-6 (LT20-35-117) as a white solid (yield: 39.9%) got

실시예Example 21: 화합물 4-7(LT20-35-118)의 합성 21: Synthesis of compound 4-7 (LT20-35-118)

Figure pat00083
Figure pat00083

2구 250 mL 플라스크에 중간체(40) 5.0 g(10.3 mmol), 중간체(9) 3.1 g(10.3 mmol), Pd(PPh3)4 600.0 mg(0.5 mmol), K2CO3 2.9 g(20.6 mmol), 톨루엔 60 mL, 정제수 30 mL 및 에탄올 20 mL을 혼합한 다음 5 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 메탄올로 고체화하여, 흰색 고체의 화합물 4-7(LT20-35-118) 3.6 g(수율: 68.8%)을 얻었다.In a two-necked 250 mL flask, 5.0 g (10.3 mmol) of intermediate (40), 3.1 g (10.3 mmol) of intermediate (9), 600.0 mg (0.5 mmol) of Pd(PPh 3 ) 4 , 2.9 g (20.6 mmol ) of K 2 CO 3 ), toluene 60 mL, purified water 30 mL, and ethanol 20 mL were mixed and stirred under reflux for 5 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 ) and solidified with methanol to obtain 3.6 g (yield: 68.8%) of compound 4-7 (LT20-35-118) as a white solid.

실시예Example 22: 화합물 4-98(LT20-35-119)의 합성 22: Synthesis of compound 4-98 (LT20-35-119)

Figure pat00084
Figure pat00084

2구 250 mL 플라스크에 중간체(40) 3.5 g(7.2 mmol), 중간체(34) 3.4 g(7.2 mmol), Pd(PPh3)4 416.5 mg(360.5 μmol), K2CO3 3.0 g(21.6 mmol), 톨루엔 30 mL, 정제수 10 mL 및 에탄올 10 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과한 후 물과 메탄올로 씻어서 건조하였다. 얻어진 고체 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3:EA=10:1)로 정제하고 다이클로로메탄으로 고체화하여, 흰색 고체의 화합물 4-98(LT20-35-119) 2.1 g(수율: 43.1%)을 얻었다.In a 2-neck 250 mL flask, intermediate (40) 3.5 g (7.2 mmol), intermediate (34) 3.4 g (7.2 mmol), Pd(PPh 3 ) 4 416.5 mg (360.5 μmol), K 2 CO 3 3.0 g (21.6 mmol) ), toluene 30 mL, purified water 10 mL, and ethanol 10 mL were mixed and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, the solid was filtered, washed with water and methanol, and dried. The obtained solid mixture was purified by silica gel column chromatography (CHCl 3 :EA=10:1) and solidified with dichloromethane, 2.1 g of compound 4-98 (LT20-35-119) as a white solid (yield: 43.1%) got

<시험예> <Test Example>

본 발명의 화합물에 대하여 J.A. WOOLLAM社 Ellipsometer 기기를 이용하여 광학 특성 평가용 단막의 n(refractive index)와 k(extinction coefficient)을 측정하였다.For compounds of the present invention J.A. The n (refractive index) and k (extinction coefficient) of the single film for optical property evaluation were measured using WOOLLAM's Ellipsometer instrument.

광학 특성 평가용 단막 제작 : Fabrication of single film for evaluation of optical properties:

화합물의 광학 특성 측정을 위해, 유리기판(0.7T)을 Ethanol, DI Water, Acetone에 각각 10분씩 세척한 후, 2×10- 2Torr에서 125 W로 2분간 산소 플라즈마 처리하고, 9×10- 7Torr의 진공도에서 1Å/sec의 속도로 유리기판 위에 화합물을 800Å증착하여 단막을 제작한다. To measure the optical properties of the compound, a glass substrate (0.7T) was washed in Ethanol, DI Water, and Acetone for 10 minutes each, and then treated with oxygen plasma at 2×10 - 2 Torr at 125 W for 2 minutes, and 9×10 - A single film is fabricated by depositing 800 Å of the compound on a glass substrate at a rate of 1 Å/sec in a vacuum of 7 Torr.

비교시험예: Comparative test example:

상기 광학 특성 평가용 단막 제작에서 화합물로 Alq3와 REF01을 각각 사용하였다. Alq 3 and REF01 were used as compounds in the production of the single film for evaluation of optical properties, respectively.

Figure pat00085
Figure pat00085

< 시험예 1 내지 22 >< Test Examples 1-22 >

상기 광학 특성 평가용 단막 제작에서 화합물로 하기 표 1에 나타낸 각각의 화합물을 각각 사용하였다. Each compound shown in Table 1 below was used as a compound in the production of the single film for evaluation of optical properties, respectively.

상기 비교시험예 및 시험예 1 내지 22에 의한 화합물의 광학 특성을 표 1에 나타냈다.The optical properties of the compounds according to the Comparative Test Examples and Test Examples 1 to 22 are shown in Table 1.

광학 특성은 460nm 및 620nm 파장에서 굴절률 상수이다.The optical properties are refractive index constants at 460 nm and 620 nm wavelengths.

구분division 화합물compound n(460nm)n (460 nm) n(620nm)n (620 nm) 비교시험예 1Comparative test example 1 Alq3 Alq 3 1.8081.808 1.6901.690 비교시험예 2Comparative test example 2 REF01REF01 1.9861.986 1.8461.846 시험예 1Test Example 1 3-1
(LT20-35-101)
3-1
(LT20-35-101)
1.4681.468 1.4431.443
시험예 2Test Example 2 3-6
(LT20-30-114)
3-6
(LT20-30-114)
1.4401.440 1.4271.427
시험예 3Test Example 3 3-7
(LT20-35-102)
3-7
(LT20-35-102)
1.7141.714 1.6371.637
시험예 4Test Example 4 3-8
(LT20-35-103)
3-8
(LT20-35-103)
1.4701.470 1.4441.444
시험예 5Test Example 5 3-14
(LT20-35-104)
3-14
(LT20-35-104)
1.4321.432 1.4251.425
시험예 6Test Example 6 3-22
(LT20-35-105)
3-22
(LT20-35-105)
1.4281.428 1.4141.414
시험예 7Test Example 7 3-30
(LT20-35-106)
3-30
(LT20-35-106)
1.5921.592 1.5721.572
시험예 8Test Example 8 3-33
(LT20-30-110)
3-33
(LT20-30-110)
1.6921.692 1.6511.651
시험예 9Test Example 9 3-42
(LT20-35-107)
3-42
(LT20-35-107)
1.4461.446 1.4391.439
시험예 10Test Example 10 3-50
(LT20-35-108)
3-50
(LT20-35-108)
1.4401.440 1.4311.431
시험예 11Test Example 11 3-58
(LT20-35-109)
3-58
(LT20-35-109)
1.4411.441 1.4351.435
시험예 12Test Example 12 3-66
(LT20-35-110)
3-66
(LT20-35-110)
1.4681.468 1.4431.443
시험예 13Test Example 13 3-74
(LT20-35-111)
3-74
(LT20-35-111)
1.4741.474 1.4491.449
시험예 14Test Example 14 3-82
(LT20-35-112)
3-82
(LT20-35-112)
1.4591.459 1.4411.441
시험예 15Test Example 15 3-90
(LT20-30-122)
3-90
(LT20-30-122)
1.5791.579 1.5371.537
시험예 16Test Example 16 3-98
(LT20-35-113)
3-98
(LT20-35-113)
1.6921.692 1.6751.675
시험예 17Test Example 17 3-106
(LT20-35-114)
3-106
(LT20-35-114)
1.7141.714 1.6371.637
시험예 18Test Example 18 3-122
(LT20-35-115)
3-122
(LT20-35-115)
1.7581.758 1.6681.668
시험예 19Test Example 19 4-1
(LT20-35-116)
4-1
(LT20-35-116)
1.4741.474 1.4491.449
시험예 20Test Example 20 4-6
(LT20-35-117)
4-6
(LT20-35-117)
1.4401.440 1.4311.431
시험예 21Test Example 21 4-7
(LT20-35-118)
4-7
(LT20-35-118)
1.6921.692 1.6511.651
시험예 22Test Example 22 4-98
(LT20-35-119)
4-98
(LT20-35-119)
1.4741.474 1.4491.449

상기 표 1에서 알 수 있는 바와 같이, 비교시험예(Alq3)의 청색영역(460nm)과 적색영역(620nm)에서의 n값이 각각 1.808, 1.690이었고, 이에 반해 대부분의 본 발명에 따른 화합물들은 대체적으로 청색영역, 녹색영역 및 적색영역에서 비교시험예 화합물(Alq3) 보다 낮은 굴절률(n<1.69 @620nm)을 갖는 것으로 확인되었다. 이것은 청색영역에서의 높은 시야각을 확보하기 위해 필요한 낮은 굴절률 값에 만족한다. As can be seen from Table 1, the n values in the blue region (460 nm) and the red region (620 nm) of the comparative test example (Alq 3 ) were 1.808 and 1.690, respectively, whereas most of the compounds according to the present invention were In general, it was confirmed to have a lower refractive index (n<1.69 @620nm) than the comparative test example compound (Alq 3 ) in the blue region, the green region and the red region. This satisfies the low refractive index value required to secure a high viewing angle in the blue region.

<실시예><Example>

소자 제작device fabrication

소자 제작을 위해 투명 전극인 ITO는 양극 층으로 사용하였고, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Pyrene-CN은 청색 형광 도판트, Alq3는 전자 수송층, Liq는 전자 주입층, Mg:Ag은 음극으로 사용하였다. 이 화합물들의 구조는 하기의 화학식과 같다.For device fabrication, ITO, a transparent electrode, was used as the anode layer, 2-TNATA was a hole injection layer, NPB was a hole transport layer, αβ-ADN was a host of the light emitting layer, Pyrene-CN was a blue fluorescent dopant, and Alq 3 was an electron transport layer. , Liq was used as an electron injection layer, and Mg:Ag was used as a cathode. The structures of these compounds are as follows.

Figure pat00086
Figure pat00086

비교실시예 1(캡핑층을 없음): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) Comparative Example 1 (without capping layer): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq ( 2 nm) / Mg:Ag (1:9, 10 nm)

비교실시예 2(캡핑층을 1층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) /Alq3(80nm) Comparative Example 2 (Capping layer consists of one layer): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) /Alq 3 (80 nm)

실시예 (캡핑층을 2층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / 본 발명의 화합물(20nm, 저굴절 화합물) / REF01(60nm, 고굴절 화합물) Example (Capping layer consists of two layers): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / compound of the present invention (20 nm, low refractive compound) / REF01 (60 nm, high refractive compound)

청색 형광 유기발광소자는 ITO(180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / 캡핑층 순으로 증착하여 소자를 제작하였다. Blue fluorescence organic light emitting device is ITO (180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / capping layer was deposited in the order to fabricate a device.

유기물을 증착하기 전에 ITO 전극은 2 × 10- 2Torr에서 125W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 × 10- 7Torr의 진공도에서 증착하였으며, Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 Pyrene-CN는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다. Before depositing the organic material, the ITO electrode was subjected to oxygen plasma treatment at 2 × 10 - 2 Torr at 125 W for 2 minutes. The organic material was deposited at a vacuum of 9 × 10 - 7 Torr, Liq was 0.1 Å/sec, αβ-ADN was 0.18 Å/sec, and Pyrene-CN was simultaneously deposited at 0.02 Å/sec, and the remaining organic materials were all 1 Deposited at a rate of Å/sec.

소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.After the device was fabricated, it was encapsulated in a glove box filled with nitrogen gas to prevent the device from contacting air and moisture. After forming the barrier with 3M's adhesive tape, barium oxide, a moisture absorbent that can remove moisture, was added and a glass plate was attached.

Figure pat00087
Figure pat00087

< 실시예 1 내지 22 >< Examples 1-22 >

상기 실시예에서, 캡핑층으로서 저굴절 층(20nm) 위에 고굴절 층(60nm)이 형성된 복층을 구비하고, 고굴절 층에 REF01 화합물을 저굴절 층에 하기 표 2에 나타낸 각각의 화합물을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 소자를 제작하였다.In the above embodiment, as a capping layer, a multi-layer having a high refractive layer (60 nm) formed on a low refractive layer (20 nm), REF01 compound in the high refractive layer, and each compound shown in Table 2 below in the low refractive layer was used except that fabricated the device in the same manner as in Example 1.

상기 비교실시예 1, 비교실시예 2 및 실시예 1 내지 22에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타냈다.Table 2 shows the electroluminescence characteristics of the organic light emitting diodes prepared in Comparative Examples 1, 2, and 1 to 22.

구분division 화합물compound 구동전압
[V]
drive voltage
[V]
효율
[cd/A]
efficiency
[cd/A]
수명
(%)
life span
(%)
비교실시예 1Comparative Example 1 -- 4.514.51 4.224.22 89.2189.21 비교실시예 2Comparative Example 2 Alq3 단독Alq 3 Sole 4.504.50 4.834.83 88.9288.92 실시예 1Example 1 3-1
(LT20-35-101)
3-1
(LT20-35-101)
4.424.42 6.116.11 97.5497.54
실시예 2Example 2 3-6
(LT20-30-114)
3-6
(LT20-30-114)
4.474.47 6.326.32 98.1398.13
실시예 3Example 3 3-7
(LT20-35-102)
3-7
(LT20-35-102)
4.494.49 5.535.53 95.6195.61
실시예 4Example 4 3-8
(LT20-35-103)
3-8
(LT20-35-103)
4.414.41 6.236.23 97.5597.55
실시예 5Example 5 3-14
(LT20-35-104)
3-14
(LT20-35-104)
4.404.40 6.256.25 97.4297.42
실시예 6Example 6 3-22
(LT20-35-105)
3-22
(LT20-35-105)
4.424.42 6.656.65 98.0098.00
실시예 7Example 7 3-30
(LT20-35-106)
3-30
(LT20-35-106)
4.404.40 5.815.81 97.3297.32
실시예 8Example 8 3-33
(LT20-30-110)
3-33
(LT20-30-110)
4.494.49 5.435.43 95.5595.55
실시예 9Example 9 3-42
(LT20-35-107)
3-42
(LT20-35-107)
4.404.40 6.256.25 97.4297.42
실시예 10Example 10 3-50
(LT20-35-108)
3-50
(LT20-35-108)
4.414.41 6.236.23 97.5597.55
실시예 11Example 11 3-58
(LT20-35-109)
3-58
(LT20-35-109)
4.504.50 6.226.22 95.6795.67
실시예 12Example 12 3-66
(LT20-35-110)
3-66
(LT20-35-110)
4.454.45 6.136.13 97.4597.45
실시예 13Example 13 3-74
(LT20-35-111)
3-74
(LT20-35-111)
4.404.40 6.006.00 98.1198.11
실시예 14Example 14 3-82
(LT20-35-112)
3-82
(LT20-35-112)
4.424.42 6.116.11 97.5497.54
실시예 15Example 15 3-90
(LT20-30-122)
3-90
(LT20-30-122)
4.404.40 5.815.81 97.3297.32
실시예 16Example 16 3-98
(LT20-35-113)
3-98
(LT20-35-113)
4.494.49 5.535.53 95.6195.61
실시예 17Example 17 3-106
(LT20-35-114)
3-106
(LT20-35-114)
4.494.49 5.435.43 95.5595.55
실시예 18Example 18 3-122
(LT20-35-115)
3-122
(LT20-35-115)
4.514.51 5.315.31 95.6195.61
실시예 19Example 19 4-1
(LT20-35-116)
4-1
(LT20-35-116)
4.414.41 6.236.23 97.5597.55
실시예 20Example 20 4-6
(LT20-35-117)
4-6
(LT20-35-117)
4.474.47 6.326.32 98.1398.13
실시예 21Example 21 4-7
(LT20-35-118)
4-7
(LT20-35-118)
4.494.49 5.535.53 95.6195.61
실시예 22Example 22 4-98
(LT20-35-119)
4-98
(LT20-35-119)
4.414.41 6.236.23 97.5597.55

상기 표 2의 결과로부터 알 수 있듯이, 캡핑층(Capping Layer, 광효율 개선층)이 있는 소자(비교실시예2)와 없는 소자(비교실시예1)의 결과를 보면 캡핑층(Capping Layer, 광효율 개선층)으로 효율을 상승시킬 수 있음을 확인할 수 있다.As can be seen from the results of Table 2, when looking at the results of the device (Comparative Example 2) and the device without (Comparative Example 1) with the capping layer (Capping Layer, light efficiency improvement layer), the capping layer (Capping Layer, light efficiency improvement) layer), it can be seen that the efficiency can be increased.

상기 표 2의 결과로부터, 본 발명에 따른 특정의 벤즈아졸 유도체 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 저굴절 캡핑층의 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다. From the results of Table 2 above, a specific benzazole derivative compound according to the present invention can be used as a material for a low refractive index capping layer of an organic electronic device including an organic light emitting device, and an organic electronic device including an organic light emitting device using the same is effective , it can be seen that it exhibits excellent characteristics in driving voltage, stability, etc.

캡핑층(Capping Layer, 광효율 개선층)으로 고굴절(n>1.69 @620nm) 화합물로 단일층만 사용하고 있는 소자와 고굴절(n>1.69 @620nm) 화합물과 저굴절(n<1.69 @620 nm) 화합물로 복층으로 사용하고 있는 소자의 결과를 보면 복층으로 사용한 캡핑층(Capping Layer, 광효율 개선층)이 효율을 상승시킬 수 있음을 확인할 수 있으며, 캡핑층(Capping Layer, 광효율 개선층)으로 Alq3를 사용한 소자(비교실시예2) 보다 본 발명의 재료를 복층으로 사용하였을 경우에 효율이 개선됨을 알 수 있다.A device that uses only a single layer as a high refractive index (n> 1.69 @620 nm) compound as a capping layer, a high refractive index (n> 1.69 @ 620 nm) compound, and a low refractive index (n < 1.69 @ 620 nm) compound If you look at the results of the device using multiple layers, it can be confirmed that the capping layer (light efficiency improvement layer) used as a multilayer can increase the efficiency, and Alq 3 is used as the capping layer (light efficiency improvement layer). It can be seen that the efficiency is improved when the material of the present invention is used in multiple layers than the device used (Comparative Example 2).

이는 굴절률로 설명할 수 있는데, 고굴절률을 가지는 REF01 단일층 보다 높은 굴절률(고굴절)과 낮은 굴절률(저굴절)을 가지는 본 발명의 화합물을 복층으로 사용한 유기 전기발광소자가 높은 효율을 가지는 것은 자명한 일이다.This can be explained by the refractive index, and it is obvious that the organic electroluminescent device using the compound of the present invention having a higher refractive index (high refractive index) and a lower refractive index (low refractive index) than a REF01 single layer having a high refractive index has high efficiency. it's a thing

따라서 화학식 1의 화합물은 OLED에서 저굴절 캡핑층으로 사용하기 위한 의외의 바람직한 특성을 가지고 있다. Therefore, the compound of Formula 1 has unexpectedly desirable properties for use as a low refractive index capping layer in an OLED.

본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다.The compound of the present invention can be applied to industrial organic electronic device products due to these properties.

다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다.However, the above-described synthesis example is an example, and the reaction conditions may be changed as necessary. In addition, the compound according to an embodiment of the present invention may be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents into the core structure represented by Formula 1, it may have properties suitable for use in an organic electroluminescent device.

100: 기판, 110: 제1 전극, 120: 제2 전극, 200: 유기물층, 210: 정공주입층, 215: 정공수송층, 220: 발광층, 230: 전자수송층, 235: 전자주입층, 300: 캡핑층100: substrate, 110: first electrode, 120: second electrode, 200: organic material layer, 210: hole injection layer, 215: hole transport layer, 220: light emitting layer, 230: electron transport layer, 235: electron injection layer, 300: capping layer

Claims (7)

하기 화학식 1로 표시되는, 유기전계발광소자 용 벤즈아졸 유도체.
[화학식 1]
Figure pat00088

상기 화학식 1에 있어서,
Z1는 O, S 또는 NR이고(단, R은 페닐임),
X1, X2, X3, X 4 및 X5는 서로 독립적으로 CH 또는 N이고,
Ar1는 H, 메틸기, tert-부틸기, F, CF3, CN 및 Si(CH3)3 중에서 선택되고,
L1는 직접결합; 이거나 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기;이며,
n 은 0 내지 5의 정수이고,
R1 내지 R5는 각각 독립적으로 알킬기, H, F, CF3, CN, 및 Si(CH3)3 중에서 선택되는 어느 하나이며,
m 은 1 내지 2의 정수이다.
A benzazole derivative for an organic light emitting device, represented by the following formula (1).
[Formula 1]
Figure pat00088

In Formula 1,
Z 1 is O, S or NR with the proviso that R is phenyl;
X 1 , X 2 , X 3 , X 4 and X 5 are each independently CH or N,
Ar 1 is selected from H, a methyl group, a tert-butyl group, F, CF 3 , CN and Si(CH 3 ) 3 ,
L 1 is a direct bond; or a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group;
n is an integer from 0 to 5,
R 1 to R 5 are each independently any one selected from an alkyl group, H, F, CF 3 , CN, and Si(CH 3 ) 3 ,
m is an integer of 1 to 2.
제 1항에 있어서,
L1는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 피리딜기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라센기; 치환 또는 비치환된 페난트린기; 및 치환 또는 비치환된 페난트리딘기 중에서 선택되는 것인 유기전계발광소자 용 벤즈아졸 유도체.
The method of claim 1,
L 1 is a substituted or unsubstituted phenyl group; a substituted or unsubstituted pyridyl group; a substituted or unsubstituted naphthyl group; a substituted or unsubstituted anthracene group; a substituted or unsubstituted phenanthrine group; and a substituted or unsubstituted phenanthridine group. A benzazole derivative for an organic electroluminescent device.
제 1항에 있어서,
상기 화학식 1은 하기 화학식 2 또는 화학식 3의 화합물 중에서 선택되는 유기전계발광소자 용 벤즈아졸 유도체.
[화학식 2]
Figure pat00089

Figure pat00090

Figure pat00091

Figure pat00092

Figure pat00093

Figure pat00094

Figure pat00095

Figure pat00096

Figure pat00097

Figure pat00098

Figure pat00099

Figure pat00100

Figure pat00101

Figure pat00102

Figure pat00103

Figure pat00104

Figure pat00105

Figure pat00106

Figure pat00107

[화학식 3]
Figure pat00108

Figure pat00109

Figure pat00110

Figure pat00111

Figure pat00112

Figure pat00113

Figure pat00114

Figure pat00115

Figure pat00116

Figure pat00117

Figure pat00118

Figure pat00119
The method of claim 1,
Formula 1 is a benzazole derivative for an organic light emitting device selected from compounds of Formula 2 or Formula 3 below.
[Formula 2]
Figure pat00089

Figure pat00090

Figure pat00091

Figure pat00092

Figure pat00093

Figure pat00094

Figure pat00095

Figure pat00096

Figure pat00097

Figure pat00098

Figure pat00099

Figure pat00100

Figure pat00101

Figure pat00102

Figure pat00103

Figure pat00104

Figure pat00105

Figure pat00106

Figure pat00107

[Formula 3]
Figure pat00108

Figure pat00109

Figure pat00110

Figure pat00111

Figure pat00112

Figure pat00113

Figure pat00114

Figure pat00115

Figure pat00116

Figure pat00117

Figure pat00118

Figure pat00119
제 1항에 있어서,
상기 벤즈아졸 유도체는 굴절률 상수가 1.69(@620nm) 미만인 것을 특징으로 하는 유기전계발광소자 용 벤즈아졸 유도체.
The method of claim 1,
The benzazole derivative is a benzazole derivative for an organic light emitting device, characterized in that the refractive index constant is less than 1.69 (@620nm).
제1 전극;
상기 제1 전극 상에 배치된, 복수의 유기물층으로 구성된 유기물층;
상기 유기물층 상에 배치된 제2 전극; 및
상기 제2 전극 상에 배치된 캡핑층;을 포함하고,
상기 유기물층 또는 캡핑층은 상기 제 1항 내지 제 4항 중 어느 한 항에 따른 벤즈아졸 유도체를 포함하는 유기전계발광소자.
a first electrode;
an organic material layer formed of a plurality of organic material layers disposed on the first electrode;
a second electrode disposed on the organic material layer; and
a capping layer disposed on the second electrode; and
The organic material layer or the capping layer is an organic electroluminescent device comprising the benzazole derivative according to any one of claims 1 to 4.
제 5항에 있어서,
상기 캡핑층은 굴절률이 상이한 복수개의 층을 포함하여 이루어진 것을 특징으로 하는 유기전계발광소자.
6. The method of claim 5,
The capping layer is an organic electroluminescent device comprising a plurality of layers having different refractive indices.
제5 항에 있어서,
상기 유기물층은 발광층과 전자수송층을 포함하고, 상기 전자수송층은 상기 벤즈아졸 유도체를 포함하는 유기전계발광소자.
6. The method of claim 5,
The organic material layer includes an emission layer and an electron transport layer, and the electron transport layer includes the benzazole derivative.
KR1020200057310A 2020-05-13 2020-05-13 Benzazole derivatives and organic electroluminescent device including the same KR20210141825A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200057310A KR20210141825A (en) 2020-05-13 2020-05-13 Benzazole derivatives and organic electroluminescent device including the same
CN202180032238.0A CN115697977A (en) 2020-05-13 2021-04-19 Benzopyrrole derivative and organic electroluminescent element comprising same
PCT/KR2021/004881 WO2021230512A1 (en) 2020-05-13 2021-04-19 Benzazole derivative, and organic electroluminescent device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200057310A KR20210141825A (en) 2020-05-13 2020-05-13 Benzazole derivatives and organic electroluminescent device including the same

Publications (1)

Publication Number Publication Date
KR20210141825A true KR20210141825A (en) 2021-11-23

Family

ID=78525200

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200057310A KR20210141825A (en) 2020-05-13 2020-05-13 Benzazole derivatives and organic electroluminescent device including the same

Country Status (3)

Country Link
KR (1) KR20210141825A (en)
CN (1) CN115697977A (en)
WO (1) WO2021230512A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220106864A (en) * 2021-01-22 2022-08-01 주식회사 랩토 Organic compounds and organic electroluminescent device including the same
WO2024019444A1 (en) * 2022-07-22 2024-01-25 주식회사 랩토 Organic compound, and organic electroluminescent device comprising same
WO2024167142A1 (en) * 2023-02-07 2024-08-15 주식회사 랩토 Organic compound and organic electroluminescent device comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (en) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 Organic light emitting diode display compring capping layer having high refractive index

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940412B2 (en) * 2008-12-26 2015-01-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and organic electroluminescent element
KR101995920B1 (en) * 2013-04-17 2019-10-02 삼성디스플레이 주식회사 Organic light emitting diode display
KR20170030427A (en) * 2015-09-09 2017-03-17 주식회사 엘지화학 Organoluminescent device
KR102523619B1 (en) * 2016-11-25 2023-04-20 엘티소재주식회사 Hetero-cyclic compound and organic light emitting device using the same
KR102420809B1 (en) * 2019-05-02 2022-07-14 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising same
KR102252493B1 (en) * 2019-12-26 2021-05-14 (주)랩토 Benzazole derivatives and organic electroluminescent device including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (en) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 Organic light emitting diode display compring capping layer having high refractive index

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220106864A (en) * 2021-01-22 2022-08-01 주식회사 랩토 Organic compounds and organic electroluminescent device including the same
WO2024019444A1 (en) * 2022-07-22 2024-01-25 주식회사 랩토 Organic compound, and organic electroluminescent device comprising same
WO2024167142A1 (en) * 2023-02-07 2024-08-15 주식회사 랩토 Organic compound and organic electroluminescent device comprising same

Also Published As

Publication number Publication date
CN115697977A (en) 2023-02-03
WO2021230512A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
KR102060645B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102099171B1 (en) Aryl amine derivatieves and organic electroluminescent device including the same
KR102059550B1 (en) Tribenzazole amine derivatives and organic electroluminescent device including the same
KR102517278B1 (en) Triazine or Pyrimidine derivatives, and organic electroluminescent device including the same
KR102252493B1 (en) Benzazole derivatives and organic electroluminescent device including the same
EP4282861A1 (en) Organic compound and organic electroluminescent device comprising same
EP4129964A1 (en) Organic compound and organic electroluminescent device comprising same
KR20210141825A (en) Benzazole derivatives and organic electroluminescent device including the same
CN115667232A (en) Benzopyrrole derivative and organic electroluminescent element comprising same
KR102517277B1 (en) Cyano-group substituted aryl or heteroaryl derivatives and organic electroluminescent device including the same
KR20230028821A (en) Heteroaryl amine derivatives substituted with cyano group and organic electroluminescent device including the same
KR102470622B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR20220030385A (en) Anthracene, Triphenylene derivatives and organic electroluminescent device including the same
KR102460493B1 (en) Dibenzo five-membered ring compounds and organic electroluminescent device including the same
KR102274482B1 (en) Heteroaryl derivatives and organic electroluminescent device including the same
KR102443601B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102417622B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102261704B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR20230025723A (en) cyano group-substituted carbazole derivatives and organic electroluminescent device including the same
KR20230020069A (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR20230028648A (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102561396B1 (en) Diamine derivatives and organic electroluminescent device including the same
KR102256222B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR20190082052A (en) Aryl amine derivatieves and organic electroluminescent device including the same
KR20240013989A (en) Organic compounds and organic electroluminescent device including the same