Nothing Special   »   [go: up one dir, main page]

KR20200074493A - 변성 공액디엔계 중합체의 제조방법 - Google Patents

변성 공액디엔계 중합체의 제조방법 Download PDF

Info

Publication number
KR20200074493A
KR20200074493A KR1020180162930A KR20180162930A KR20200074493A KR 20200074493 A KR20200074493 A KR 20200074493A KR 1020180162930 A KR1020180162930 A KR 1020180162930A KR 20180162930 A KR20180162930 A KR 20180162930A KR 20200074493 A KR20200074493 A KR 20200074493A
Authority
KR
South Korea
Prior art keywords
group
carbon atoms
conjugated diene
polymer
formula
Prior art date
Application number
KR1020180162930A
Other languages
English (en)
Other versions
KR102677554B1 (ko
Inventor
강석연
안정헌
박성호
김동희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180162930A priority Critical patent/KR102677554B1/ko
Publication of KR20200074493A publication Critical patent/KR20200074493A/ko
Application granted granted Critical
Publication of KR102677554B1 publication Critical patent/KR102677554B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/12Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of boron, aluminium, gallium, indium, thallium or rare earths
    • C08F4/14Boron halides or aluminium halides; Complexes thereof with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/20Concentration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 배합물성이 개선된 변성 공액디엔계 중합체의 제조방법에 관한 것이다. 이에 따른 제조방법은 pH 8 내지 10의 염기성 수용액을 사용하여 스트립핑함으로써 중합체 용액 내 용매 및 미반응 단량체를 용이하게 제거하면서도 가수분해를 원활하게 일어나게 하여 보호기를 용이하게 제거할 수 있고, 이에 충진제와의 친화성이 우수하여 배합물성이 개선된 변성 공액디엔계 중합체를 제조할 수 있다.

Description

변성 공액디엔계 중합체의 제조방법{Method for preparing modified conjugated diene polymer}
본 발명은 배합물성이 개선된 변성 공액디엔계 중합체의 제조방법에 관한 것이다.
최근 에너지 절약 및 환경 문제에 대한 관심이 높아짐에 따라 자동차의 저연비화가 요구되고 있으며, 이에 타이어용 고무 재료로서 주행저항이 적고, 내마모성, 인장특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌 고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에, 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다.
상기의 BR 또는 SBR을 타이어용 고무 재료로 이용하는 경우에는 타이어 요구 물성을 얻기 위하여 통상적으로 실리카나 카본블랙 등의 충진제를 함께 블렌딩하여 사용하고 있는데, 상기 BR 또는 SBR과 충진제의 친화성이 좋지 못하여 오히려 내마모성, 내크랙성 또는 가공성 등을 비롯한 물성이 저하되는 문제가 있다.
이와 같은 문제를 해결하기 위해, SBR과 실리카 또는 카본블랙 등의 무기 충진제의 분산성을 높이기 위한 방법으로 유기 리튬을 이용한 음이온 중합으로 얻어지는 공액디엔계 중합체의 중합활성 부위를 무기 충진제와 상호작용 가능한 관능기로 변성하는 방법이 개발되었다. 구체적으로는 공액디엔계 중합체의 중합활성 말단을 주석계 화합물로 변성하거나, 아미노기를 도입하는 방법 또는 알콕시실란 유도체로 변성하는 방법 등이 제안되었다.
또한, BR과 실리카 또는 카본블랙 등의 무기 충진제의 분산성을 높이기 위한 방법으로서 란탄 계열 희토류 원소 화합물을 포함하는 촉매 조성물을 이용한 배위 중합에 의해 얻어지는 리빙 중합체에 있어서, 리빙 활성 말단을 특정의 커플링제나 변성제로 변성하는 방법 등이 제안되었다.
일례로, BR은 탄화수소계 용매 중에서 란탄 계열 희토류 원소 화합물을 포함하는 촉매 조성물 존재 하에 공액디엔계 단량체를 중합하여 리빙 활성 말단을 갖는 중합체를 제조하고, 변성제와 반응시켜 말단에 상기 변성제 유래 관능기가 결합된 중합체를 제조하는 용액중합에 의해 제조된다. 이때, 리빙 활성 말단과 변성제 간의 용이한 반응을 위하여 변성제의 관능기는 보호기에 의해 보호되어 있고, 이후 변성된 중합체와 충진제 간의 상호작용을 위해서는 상기 보호기가 제거되어야 한다. 한편, 용액중합의 경우, 중합반응 이후에 중합체를 회수하기 위해서 중합체 용액을 탈휘발처리하며, 이러한 탈휘발처리 과정 중에 가수분해가 일어나 상기 보호기가 관능기로부터 제거되고, 이에 변성된 중합체와 충진제 간의 친화성이 증가될 수 있다.
이러한 탈휘발처리는 스트립핑 용액(예컨대, 스트립핑 스팀)을 중합체 용액에 접촉시켜 탈용매시키는 스팀 스트립핑과 같은 스트립핑에 의한 탈용매가 주로 이용되고 있다.
따라서, 변성된 중합체와 충진제 간의 우수한 친화성으로 배합물성을 개선시키기 위해서는 상기 탈휘발처리에 의해 가수분해가 원활히 진행되어 보호기 용이하게 제거되어야 하나, 일부 관능기와 보호기 간 결합의 경우에는 가수분해가 원활히 진행되지 않는 문제가 있다.
이에, 변성된 중합체와 충진제 간의 우수한 친화성을 유도하여 개선된 배합물성 효과를 나타내기 위해서는, 가수분해를 원활하게 일어나게 하는 탈휘발처리 방법의 개발이 필요한 실정이다.
KR 2005-0042131 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 용액중합으로 제조된 중합체 용액으로부터 용매를 효율적으로 제거함과 동시에 원활한 가수분해에 의한 보호기 제거가 용이하게 이루어짐으로써, 충진제와의 친화성이 우수한 배합물성이 개선된 중합체를 제조할 수 있는 변성 공액디엔계 중합체의 제조방법을 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위하여, 본 발명은 탄화수소계 용매 중에서, 네오디뮴 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시켜 상기 변성제 유래 관능기를 포함하는 중합체를 포함하는 중합체 용액을 제조하는 단계(단계 2); 및 상기 중합체 용액에 스프리핑 용액을 첨가하고 스트립핑하여 탈용매시키는 단계(단계 3)를 포함하고, 상기 스트립핑 용액은 pH가 8 내지 10인 것인 변성 공액디엔계 중합체의 제조방법을 제공한다:
[화학식 1]
Figure pat00001
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
본 발명에 따른 제조방법은 pH 8 내지 10의 염기성 수용액을 스트립핑 용액으로 사용하여 중합체 용액과 접촉시켜 스트립핑하여 탈용매시킴으로써 중합체 용액 내 용매 및 미반응 단량체를 용이하게 제거하면서도 가수분해를 원활하게 일어나게 하여 보호기를 용이하게 제거할 수 있고, 이에 충진제와의 친화성이 우수하여 배합물성이 개선된 변성 공액디엔계 중합체를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명에서 사용하는 용어 및 측정방법은 별도로 정의하지 않는 한 하기와 같이 정의될 수 있다.
본 발명에서 사용하는 용어 “치환”은 관능기, 원자단 또는 화합물의 수소가 특정 치환기로 치환된 것을 의미할 수 있으며, 관능기, 원자단 또는 화합물의 수소가 특정 치환기로 치환되는 경우 관능기, 원자단 또는 화합물 내에 존재하는 수소의 개수에 따라 1개 또는 2개 이상의 복수의 치환기가 존재할 수 있다. 또한, 복수의 치환기가 존재하는 경우에는 각각의 치환기는 서로 동일하거나, 상이할 수 있다.
본 발명에서 사용하는 용어 “알킬기(alkyl group)”는 1가의 지방족 포화 탄화수소를 의미할 수 있으며, 메틸, 에틸, 프로필 및 부틸 등의 선형 알킬기 및 이소프로필(isopropyl), 세크부틸(sec-butyl), 터셔리 부틸(tert-butyl) 및 네오펜틸(neo-pentyl) 등의 분지형 알킬기를 모두 포함할 수 있다.
본 발명에서 사용하는 용어 “알킬렌기(alkylene group)”는 메틸렌, 에틸렌, 프로필렌 및 부틸렌 등과 같은 2가의 지방족 포화 탄화수소를 의미할 수 있다.
본 발명에서 “시클로알킬기(cycloalkyl group)”는 환형의 포화 탄화수소를 의미할 수 있다.
본 발명에서 사용하는 용어 “아릴기(aryl group)”는 환형의 방향족 탄화수소를 의미할 수 있고, 또한 1개의 환이 형성된 단환 방향족 탄화수소(monocyclic aromatic hydrocarbon), 또는 2개 이상의 환이 결합된 다환 방향족 탄화수소(polycyclic aromatic hydrocarbon)을 모두 포함하는 의미일 수 있다.
본 발명은 충진제와의 친화성이 우수하여 배합물성이 개선된 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체의 제조방법은 탄화수소계 용매 중에서, 네오디뮴 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시켜 상기 변성제 유래 관능기를 포함하는 중합체를 포함하는 중합체 용액을 제조하는 단계(단계 2); 및 상기 중합체 용액에 스트립핑 용액을 첨가하고 스트립핑하여 탈용매시키는 단계를 포함하고(단계 3), 상기 스트립핑 용액은 pH 8 내지 10인 것을 특징으로 한다.
[화학식 1]
Figure pat00002
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
본 발명에서 달리 정의하지 않는 한, "치환기로 치환된 3가 탄화수소기"는 N원자를 포함하는 고리 내의 결합(2가) 및 상기 정의된 치환기와의 결합(1가)으로부터 총 3가로 치환된 탄화수소기를 의미할 수 있고, 상기 치환된 3가 탄화수소기는, 상기 정의된 치환기의 탄소수를 제외하고, N원자와 함께 고리를 이루는 탄소수가 1 내지 10인, 또는 1 내지 5인 3가 탄화수소기일 수 있다.
또한, 본 발명에서 달리 정의하지 않는 한, "단일 결합"은 별도의 원자 또는 분자단을 포함하지 않는, 단일 공유 결합 자체를 의미할 수 있다.
또한, 본 발명에서 달리 정의하지 않는 한, "탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기"는 비치환된 1가 실릴기와 상기 알킬기로 치환된 2가 내지 4가 실릴기로 이루어진 군으로부터 선택된 1종을 의미할 수 있다.
상기 단계 1은 공액디엔계 단량체를 중합하여 활성 중합체를 포함하는 중합체 용액을 제조하는 중합단계로, 탄화수소계 용매 중에서, 네오디뮴 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 수행할 수 있다.
상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 또는 2-에틸-1,3-부타디엔 등의 1,3-부타디엔 또는 그 유도체를 들 수 있고, 상기 1,3-부타디엔과 공중합 가능한 그 외의 공액디엔계 단량체로는 2-메틸-1,3-펜타디엔, 1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔, 1,3-헥사디엔 또는 2,4-헥사디엔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 사용될 수 있다.
또한, 상기 공액디엔계 단량체로 1,3-부타디엔 및 그 외의 공액디엔계 단량체를 같이 사용하는 경우에는, 제조된 공액디엔계 중합체 내 1,3-부타디엔 단량체 유래 반복단위가 80 내지 100 중량%로 포함하도록 비율을 조절하여 사용하는 것일 수 있다.
또한, 상기 탄화수소계 용매는 특별히 제한하는 것은 아니나, 예컨대 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.
또한, 상기 네오디뮴 촉매 조성물 네오디뮴 화합물, 유기금속 화합물 및 할로겐화합물을 포함하는 것일 수 있다.
이하, 상기 촉매 조성물을 각 성분들로 나누어 구체적으로 설명한다.
네오디뮴 화합물
상기 네오디뮴 화합물은 하기 화학식 3으로 표시되는 화합물일 수 있다:
[화학식 3]
Figure pat00003
상기 화학식 3에서, R1 내지 R3은 각각 독립적으로 수소원자이거나, 또는 탄소수 1 내지 12의 알킬기이다.
보다 구체적으로 상기 네오디뮴 화합물은 상기 화학식 3에서 R1이 탄소수 6 내지 12의 선형 또는 분지형 알킬기이고, R2 및 R3는 각각 독립적으로 수소원자이거나, 또는 탄소수 2 내지 6의 알킬기이되, 단 R2 및 R3이 동시에 수소 원자가 아닌 네오디뮴 화합물일 수 있으며, 보다 더 구체적으로는 상기 화학식 3에서 R1이 탄소수 6 내지 8의 선형 또는 분지형 알킬기이고, R2 및 R3는 각각 독립적으로 탄소수 2 내지 6의 알킬기인 네오디뮴 화합물일 수 있다.
이와 같이, 상기 화학식 3의 네오디뮴 화합물이 α 위치에 탄소수 2 이상의 다양한 길이의 알킬기를 치환기로 포함하는 카르복실레이트 리간드를 포함할 경우, 네오디뮴 중심 금속 주위에 입체적인 변화를 유도하여 화합물 간의 엉김 현상을 차단할 수 있으며, 그 결과, 올리고머화를 억제하여 활성종으로의 전환율이 높다. 이 같은 네오디뮴 화합물은 중합 용매에 대한 용해도가 높다.
보다 더 구체적으로 상기 네오디뮴 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, Nd(2,2-디옥틸 데카노에이트)3, Nd(2-에틸-2-프로필 데카노에이트)3, Nd(2-에틸-2-부틸 데카노에이트)3, Nd(2-에틸-2-헥실 데카노에이트)3, Nd(2-프로필-2-부틸 데카노에이트)3, Nd(2-프로필-2-헥실 데카노에이트)3, Nd(2-프로필-2-이소프로필 데카노에이트)3, Nd(2-부틸-2-헥실 데카노에이트)3, Nd(2-헥실-2-옥틸 데카노에이트)3, Nd(2,2-디에틸 옥타노에이트)3, Nd(2,2-디프로필 옥타노에이트)3, Nd(2,2-디부틸 옥타노에이트)3, Nd(2,2-디헥실 옥타노에이트)3, Nd(2-에틸-2-프로필 옥타노에이트)3, Nd(2-에틸-2-헥실 옥타노에이트)3, Nd(2,2-디에틸 노나노에티트)3, Nd(2,2-디프로필 노나노에이트)3, Nd(2,2-디부틸 노나노에이트)3, Nd(2,2-디헥실 노나노에이트)3, Nd(2-에틸-2-프로필 노나노에이트)3 및 Nd(2-에틸-2-헥실 노나노에이트)3로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물일 수 있다. 또, 올리고머화에 대한 우려 없이 중합 용매에 대한 우수한 용해도, 촉매 활성종으로의 전환율 및 이에 따른 촉매 활성 개선 효과의 우수함을 고려할 때, 상기 네오디뮴 화합물은 Nd(2,2-디에틸 데카노에이트)3, Nd(2,2-디프로필 데카노에이트)3, Nd(2,2-디부틸 데카노에이트)3, Nd(2,2-디헥실 데카노에이트)3, 및 Nd(2,2-디옥틸 데카노에이트)3로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물일 수 있다.
또, 상기 네오디뮴 화합물은 용해도가 상온(23±5℃)에서 비극성 용매 6g 당 약 4g 이상인 것일 수 있다. 본 발명에 있어서, 네오디뮴 화합물의 용해도는 탁한 현상 없이 맑게 용해되는 정도를 의미하는 것이다. 이와 같이 높은 용해도를 나타냄으로써 우수한 촉매 활성을 나타낼 수 있다.
유기금속 화합물
상기 유기금속 화합물은 히드로카르빌기를 다른 금속으로 전달할 수 있는 알킬화제로서 조촉매의 역할을 하는 것으로, 공액디엔계 중합체의 제조시 알킬화제로서 사용되는 것이라면 특별한 제한없이 사용가능하다.
구체적으로, 상기 유기금속 화합물은 비극성 용매, 구체적으로는 비극성 탄화수소계 용매에 가용성이며, 1족, 2족 또는 3족 금속 등의 양이온성 금속과 탄소와의 결합을 포함하는 유기 금속 화합물 또는 붕소 함유 화합물일 수 있다. 보다 구체적으로, 상기 유기금속 화합물은 유기 알루미늄 화합물, 유기 마그네슘 화합물 및 유기 리튬 화합물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다.
상기 유기 알루미늄 화합물은 일례로 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리펜틸알루미늄, 트리헥실알루미늄, 트리시클로헥실알루미늄, 트리옥틸알루미늄 등의 알킬알루미늄; 디에틸알루미늄 하이드라이드, 디-n-프로필알루미늄 하이드라이드, 디이소프로필알루미늄 하이드라이드, 디-n-부틸알루미늄 하이드라이드, 디이소부틸알루미늄 하이드라이드(DIBAH), 디-n-옥틸알루미늄 하이드라이드, 디페닐알루미늄 하이드라이드, 디-p-톨릴알루미늄 하이드라이드, 디벤질알루미늄 하이드라이드, 페닐에틸알루미늄 하이드라이드, 페닐-n-프로필알루미늄 하이드라이드, 페닐이소프로필알루미늄 하이드라이드, 페닐-n-부틸알루미늄 하이드라이드, 페닐이소부틸알루미늄 하이드라이드, 페닐-n-옥틸알루미늄 하이드라이드, p-톨릴에틸알루미늄 하이드라이드, p-톨릴-n-프로필알루미늄 하이드라이드, p-톨릴이소프로필알루미늄 하이드라이드, p-톨릴-n-부틸알루미늄 하이드라이드, p-톨릴이소부틸알루미늄 하이드라이드, p-톨릴-n-옥틸알루미늄 하이드라이드, 벤질에틸알루미늄 하이드라이드, 벤질-n-프로필알루미늄 하이드라이드, 벤질이소프로필알루미늄 하이드라이드, 벤질-n-부틸알루미늄 하이드라이드, 벤질이소부틸알루미늄 하이드라이드 또는 벤질-n-옥틸알루미늄 수소 등의 디히드로카르빌알루미늄 하이드라이드; 및 에틸알루미늄 디하이드라이드, n-프로필알루미늄 디하이드라이드, 이소프로필알루미늄 디하이드라이드, n-부틸알루미늄 디하이드라이드, 이소부틸알루미늄 디하이드라이드, 또는 n-옥틸알루미늄 디하이드라이드 등과 같은 히드로카르빌알루미늄 디하이드라이드로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 유기 마그네슘 화합물은 일례로 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘, 디부틸마그네슘, 디헥실마그네슘, 디페닐마그네슘 또는 디벤질마그네슘과 같은 알킬마그네슘 화합물 등일 수 있다.
상기 유리 리튬 화합물은 일례로 n-부틸리튬 등과 같은 알킬리튬 화합물일 수 있다.
상기 유기금속 화합물은 일례로 상기한 유기 알루미늄 화합물, 유기 마그네슘 화합물, 및 유기 리튬 화합물로 이루어진 군으로부터 선택된 1종 이상이 사용될 수 있고, 구체적인 예로 중합 반응 시 분자량 조절제로서의 역할을 할 수 있는 디이소부틸알루미늄 하이드라이드(DIBAH)가 사용될 수 있다. 또 다른 예로, 상기 알킬화제는 상기 네오디뮴 화합물 1 몰에 대하여 1 내지 100 몰, 또는 3 내지 20 몰로 사용될 수 있다.
할로겐 화합물
상기 할로겐 화합물은 그 종류가 특별히 한정되지 않지만, 통상 공액디엔계 중합체의 제조시 할로겐화제로서 사용되는 것이라면 특별한 제한없이 사용가능하다.
일례로 알루미늄할로겐 화합물; 상기 알루미늄할로겐 화합물에서 알루미늄을 보론, 실리콘, 주석 또는 티타늄으로 치환시킨 무기할로겐 화합물; 및 t-알킬할로겐 화합물(탄소수 4 내지 20의 알킬)과 같은 유기할로겐 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
구체적인 예로, 상기 무기할로겐 화합물은 디메틸알루미늄 클로라이드, 디에틸알루미늄클로라이드(DEAC), 디메틸알루미늄 브로마이드, 디에틸알루미늄 브로마이드, 디메틸알루미늄 플루오라이드, 디에틸알루미늄 플루오라이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 메틸알루미늄 디브로마이드, 에틸알루미늄 디브로마이드, 메틸알루미늄 디플루오라이드, 에틸알루미늄 디플루오라이드, 메틸알루미늄 세스퀴클로라이드, 에틸알루미늄 세스퀴클로라이드, 이소부틸알루미늄 세스퀴클로라이드, 메틸마그네슘 클로라이드, 메틸마그네슘 브로마이드, 메틸마그네슘 요오다이드, 에틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, 부틸마그네슘 클로라이드, 부틸마그네슘 브로마이드, 페닐마그네슘 클로라이드, 페닐마그네슘 브로마이드, 벤질마그네슘 클로라이드, 트리메틸주석 클로라이드, 트리메틸주석 브로마이드, 트리에틸주석 클로라이드, 트리에틸주석 브로마이드, 디-t-부틸주석 디클로라이드, 디-t-부틸주석 디브로마이드, 디부틸주석 디클로라이드, 디부틸주석 디브로마이드, 트리부틸주석 클로라이드 및 트리부틸주석 브로마이드 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
또 다른 예로, 상기 유기할로겐 화합물은 t-부틸 클로라이드, t-부틸 브로마이드, 알릴 클로라이드, 알릴 브로마이드, 벤질 클로라이드, 벤질 브로마이드, 클로로-디-페닐메탄, 브로모-디-페닐메탄, 트리페닐메틸 클로라이드, 트리페닐메틸브로마이드, 벤질리덴 클로라이드, 벤질리덴 브로마이드, 메틸트리클로로실란, 페닐트리클로로실란, 디메틸디클로로실란, 디페닐디클로로실란, 트리메틸클로로실란, 벤조일 클로라이드, 벤조일 브로마이드, 프로피오닐 클로라이드, 프로피오닐 브로마이드, 메틸 클로로포르메이트 및 메틸 브로모포르메이트 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 할로겐 화합물은 일례로 상기 무기할로겐 화합물 및 유기할로겐 화합물로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있고, 또 다른 예로, 상기 네오디뮴 화합물 1 몰에 대하여 1 내지 20 몰, 1 내지 5 몰, 또는 2 내지 3 몰로 사용될 수 있다.
또 다른 예로, 상기 알킬화제 및 상기 할로겐 화합물로 미리 알킬화 및 염소화된 네오디뮴 화합물을 포함할 수 있고, 이 경우 변성률이 더욱 높아지는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물은 본 중합 반응에 사용되는 공액디엔계 단량체를 더 포함할 수 있다.
이와 같이, 본 중합 반응에 사용되는 공액디엔계 단량체의 일부를 상기 촉매 조성물과 예비혼합(premix)하여 예비중합(preforming) 촉매 조성물의 형태로 사용하는 경우, 촉매 활성을 향상시키고, 나아가 제조된 공액디엔계 중합체를 안정화시키는 효과가 있다.
본 발명에 있어서, 상기 "예비중합(preforming)"이란, 네오디뮴 화합물, 알킬화제 및 할로겐 화합물을 포함하는 촉매 조성물, 즉 촉매 시스템에서 디이소부틸알루미늄 하이드라이드(DIBAH) 등을 포함하는 경우, 이와 함께 다양한 촉매 활성종의 생성 가능성을 줄이기 위해, 부타디엔 등의 공액디엔계 단량체를 소량 첨가하게 되며, 부타디엔 첨가와 함께 촉매 시스템 내에서 전(pre) 중합이 이루어지는 것을 의미할 수 있다. 또한, "예비혼합(premix)"이란 촉매 시스템에서 중합이 이루어지지 않고 각 화합물들이 균일하게 혼합된 상태를 의미할 수 있다.
구체적인 예로 상기 공액디엔계 단량체는 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 1,3-헥사디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 2-메틸-1,3-펜타디엔, 3-메틸-1,3-펜타디엔, 4-메틸-1,3-펜타디엔 및 2,4-헥사디엔 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 상기 촉매 조성물의 제조에 사용 가능한 공액디엔계 단량체는 상기 중합 반응에 사용되는 공액디엔계 단량체의 총 사용량 범위 내에서 일부의 양이 사용될 수 있으며, 구체적으로는 상기 네오디뮴 화합물 1 몰에 대하여 1 내지 100 몰, 10 내지 50 몰, 또는 20 내지 40 몰일 수 있다.
상기와 같은 촉매 조성물은 일례로 탄화수소계 용매 중에 상기한 네오디뮴 화합물, 알킬화제, 할로겐 화합물, 그리고 선택적으로 공액디엔계 단량체를 순차로 투입하여 혼합함으로써 제조될 수 있다. 이때, 상기 탄화수소계 용매는 상기한 촉매 조성물의 구성 성분들과 반응성이 없는 비극성 용매일 수 있다. 구체적으로 상기 탄화수소계 용매는 n-펜탄, n-헥산, n-헵탄, n-옥탄, n-노난, n-데칸, 이소펜탄, 이소헥산, 이소펜탄, 이소옥탄, 2,2-디메틸부탄, 시클로펜탄, 시클로헥산, 메틸시클로펜탄 또는 메틸시클로헥산 등과 같은 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소; 석유 에테르(petroleum ether) 또는 석유 주정제(petroleum spirits), 또는 케로센(kerosene) 등과 같은 탄소수 5 내지 20의 지방족 탄화수소의 혼합용매; 또는 벤젠, 톨루엔, 에틸벤젠, 크실렌 등과 같은 방향족 탄화수소계 용매 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로 상기 비극성 용매는 상기한 선형, 분지형 또는 환형의 탄소수 5 내지 20의 지방족 탄화수소 또는 지방족 탄화수소의 혼합용매일 수 있으며, 보다 더 구체적으로는 n-헥산, 시클로헥산, 또는 이들의 혼합물일 수 있다.
상기 단계 1의 중합은 라디칼 중합에 의해 실시될 수 있고, 구체적인 예로 벌크 중합, 용액 중합, 현탁 중합 또는 유화 중합일 수 있으며, 보다 구체적인 예로 용액 중합일 수 있다. 또 다른 예로, 상기 중합 반응은 회분식 및 연속식 중 어느 방법으로도 수행될 수 있다. 구체적인 예로, 상기 공액디엔계 중합체 제조를 위한 중합 반응은 탄화수소계 용매 중에서 상기 촉매 조성물에 대해 공액디엔계 단량체를 투입하여 반응시킴으로써 실시될 수 있다.
또 다른 예로, 상기 중합은 탄화수소계 용매 중에서 수행될 수 있다. 상기 탄화수소계 용매는 촉매 조성물을 제조하는데 사용될 수 있는 탄화수소계 용매의 양에 추가로 첨가될 수 있으며, 이때 상기 탄화수소계 용매는 앞서 설명한 바와 동일한 것일 수 있다. 또한, 상기 탄화수소계 용매의 사용 시 단량체의 농도는 3 내지 80 중량%, 또는 10 내지 30 중량%일 수 있다.
본 발명의 일 실시예에 따르면, 상기 활성 중합체 제조를 위한 중합 반응 시 폴리옥시에틸렌글리콜포스페이트 등과 같은 중합반응을 완료시키기 위한 반응정지제; 또는 2,6-디-t-부틸파라크레졸 등과 같은 산화방지제 등의 첨가제가 더 사용될 수 있다. 이외에도, 통상 용액 중합을 용이하도록 하는 첨가제, 구체적으로는 킬레이트제, 분산제, pH 조절제, 탈산소제 또는 산소포착제(oxygen scavenger)와 같은 첨가제가 선택적으로 더 사용될 수도 있다.
또 다른 예로, 상기 활성 중합체 제조를 위한 중합 반응은 20 내지 200℃, 또는 20 내지 100℃의 온도에서 15분 내지 3시간, 또는 30분 내지 2시간 동안 수행될 수 있고, 이 범위 내에서 반응 제어가 용이하고, 중합 반응 속도 및 효율이 우수하며, 제조된 활성 중합체의 시스-1,4 결합 함량이 높은 효과가 있다. 또한, 상기 중합 반응은 상기 네오디뮴 화합물을 포함하는 촉매 조성물 및 중합체를 실활시키지 않기 위해, 일례로 중합 반응계 내에 산소, 물, 탄산가스 등의 실활 작용이 있는 화합물의 혼입을 방지하는 것이 바람직할 수 있다.
상기와 같은 중합 반응의 결과로서, 상기 네오디뮴 화합물을 포함하는 촉매 조성물로부터 활성화된 유기 금속 부위를 포함하는 활성 중합체, 보다 구체적으로는 1,3-부타디엔 단량체 단위를 포함하는 네오디뮴 촉매화 공액디엔계 중합체가 생성되고, 상기 제조된 공액디엔계 중합체는 슈도 리빙 특성을 가질 수 있다.
상기 단계 2는 상기 활성 중합체를 변성제와 반응시켜 변성제 유래 관능기를 포함하는 중합체를 포함하는 중합체 용액을 제조하기 위한 변성반응 단계로, 상기 활성 중합체와 상기 화학식 1로 표시되는 변성제를 반응시켜 수행할 수 있다.
또한, 본 발명에 의한 변성제는 고리화 3급 아민 유도체를 포함함으로써, 공액디엔계 중합체, 구체적으로는 활성 유기 금속 부위를 갖는 공액디엔계 중합체에 있어서, 상기 활성 유기 금속 부위와의 치환 또는 부가 반응을 통해 공액디엔계 중합체에 관능기를 부여하여 상기 공액디엔계 중합체를 변성시킬 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 변성제는 분자 내에 충진제와 친화력을 높일 수 있는 관능기를 포함함으로써, 배합물성을 향상시킬 수 있고, 나아가, 상기한 바와 같이 고리화 3급 아민 유도체를 포함함으로써, 고무 조성물 내 충진제 간의 응집을 방지하여 충진제의 분산성을 향상시킬 수 있다. 일례로 충진제로서 무기 충진제의 일종인 실리카를 이용하는 경우, 실리카의 표면에 존재하는 수산화기 간의 수소 결합에 의해 응집이 발생하기 쉬운데, 상기 고리화된 3급 아미노기가 실리카의 수산화기 간의 수소 결합을 방해하여 실리카의 분산성을 향상시킬 수 있다. 이와 같이, 상기 변성제는 변성 공액디엔계 중합체의 배합물성을 최대화할 수 있는 구조를 가져, 고무 조성물의 내마모성 및 가공성 등의 기계적 물성의 밸런스가 우수한 변성 공액디엔계 중합체를 효율적으로 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, R1 내지 R3은 각각 독립적으로 -R6COOR7로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, 단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아닐 수 있으며, R4는 단일 결합, 또는 탄소수 1 내지 20의 알킬렌기일 수 있고, R5는 탄소수 1 내지 20의 알킬기로 치환된 실릴기; 할로겐; 시아노기; 또는 -COR8일 수 있으며, R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기일 수 있으며, R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물일 수 있다:
[화학식 2]
Figure pat00004
상기 화학식 2에서, R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, R2는 -R6COOR7로 치환된 3가 탄화수소기일 수 있으며, R4 및 R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기일 수 있으며, R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기일 수 있다.
또 다른 예로, 상기 화학식 2에서, R1 및 R3은 각각 독립적으로 비치환된 탄소수 1 내지 10의 2가 탄화수소기일 수 있고, R2는 -R6COOR7로 치환된 3가 탄화수소기일 수 있으며, R4 및 R6은 단일 결합일 수 있고, R7은 탄소수 1 내지 20의 알킬기일 수 있으며, R9 내지 R11은 각각 독립적으로 탄소수 1 내지 20의 알킬기일 수 있다.
구체적인 예로, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-3으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 2-1]
Figure pat00005
[화학식 2-2]
Figure pat00006
[화학식 2-3]
Figure pat00007
한편, 본 발명의 일 실시예에 있어서, 상기 변성제는 활성 중합체의 활성 유기금속 부위에 대하여 화학양론적 양 이상으로 사용할 수 있으며, 구체적으로는 네오디뮴 촉매 조성물 내 네오디뮴 화합물 1몰에 대하여 0.1 내지 20 몰, 또는 0.5 내지 10 몰로 사용할 수 있다.
다른 일례로, 상기 변성제는 상기 단계 1에서 사용된 공액디엔계 단량체 100 중량부 대비 0.03 중량부 내지 2.00 중량부, 또는 0.1 내지 1.00의 중량부로 사용할 수 있다.
또한, 상기 변성반응은 일례로 용액 반응 또는 고상 반응에 의해 수행될 수 있고, 구체적인 예로 용액 반응에 의해 수행될 수 있다. 또 다른 예로, 상기 변성 반응은 배치(batch)식 반응기를 이용하여 수행될 수도 있고, 다단 연속식 반응기나 인라인 믹서 등의 장치를 이용하여 연속식으로 수행될 수도 있다.
또 다른 예로, 상기 변성 반응은 통상 중합반응과 동일한 온도 및 압력 조건에서 수행될 수 있고, 구체적인 예로 20 내지 100℃의 온도에서 수행될 수 있으며, 이 범위 내에서 중합체의 점도가 상승하지 않고, 중합체의 활성화된 말단이 실활되지 않는 효과가 있다.
상기 단계 3은 변성제 유래 관능기를 포함하는 중합체를 포함하는 중합체 용액에서 용매를 제거하여 변성 공액디엔계 중합체를 제조하기 위한 탈용매 단계로, 상기 중합체 용액에 스트립핑 용액을 첨가하고 스트립핑(stripping)하여 수행할 수 있다. 여기에서, 상기 스트림핑 용액을 첨가한다는 것은 중합체 용액에 스트립핑 용액을 접촉시키는 것을 나타내는 것일 수 있으며, 상기 탈용매 단계는 탈용매와 함께 가수분해도 수행되는 단계일 수 있다.
또한, 상기 스트립핑 용액은 pH 8 내지 10일 수 있고, 구체적으로는 상기 pH 범위를 갖는 염기성 수용액일 수 있으며, 예컨대 증류수에 수산화나트륨을 혼합하여 제조한 것일 수 있다.
또한, 상기 스트립핑은 90℃ 내지 100℃의 상압조건에서 수행하는 것일 수 있다. 여기에서, 상기 상압조건은 별도로 압력을 줄이거나 높이지 않은 압력으로, 통상 1 기압(atm) 정도의 대기압을 나타내는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 제조방법은 중합체 용액에 pH 8 내지 10인 스티리핑 용액을 사용하여 스트립핑 함으로써 중합체 용액으로부터 용매를 용이하게 제거하면서 가수분해를 원활하게 유도하여 충진제와의 친화성이 우수하여 배합물성이 개선된 변성 공액디엔계 중합체를 제조할 수 있다.
구체적으로, 통상 변성제는 활성 말단을 갖는 중합체와의 용이한 반응을 위하여 변성제의 관능기는 보호기에 의해 보호되어 있는데, 변성제와 활성 말단이 반응하여 제조된 변성 중합체와 충진제 간의 상호작용을 위해서는 상기 보호기가 제거되어야 하고, 이에 변성제와 활성 중합체 간의 변성반응을 진행하여 변성제 유래 관능기를 포함하는 중합체를 제조한 후, 상기 관능기를 보호하고 있는 보호기를 제거하는 과정이 필요하다. 한편, 상기 중합 혹은 변성반응 이후 생성된 중합체를 중합체 용액으로부터 회수하기 위하여 탈휘발처리하며, 이러한 탈휘발처리 과정 중에 가수분해에 의하여 상기 보호기가 관능기로부터 제거되는데, 변성제에 따라서는 관능기-보호기 결합간 가수분해가 쉽게 일어나지 않아 결과적으로 변성 중합체와 충진제 간의 친화성이 개선되지 않을 수 있다. 예컨대, 상기 화학식 1로 표시되는 변성제의 일례와 같이 이론상으로는 N-Si 결합은 가수분해가 용이하다고 알려져 있으나, 실질적으로는 N-Si 결합의 가수분해가 쉽게 일어나지 않고, 이에 Si(보호기)가 관능기로부터 원활히 제거되지 못함으로 인해 변성 중합체와 충진제 간의 친화성 개선이 효과적으로 일어나지 않을 수 있다.
그러나, 본 발명에 따른 제조방법은 상기 탈휘발처리를 pH 8 내지 10의 염기성 수용액을 스트립핑 용액으로 사용하여 스트립핑하여 수행함으로써 관능기-보호기 결합의 가수분해를 빠르게 진행시킬 수 있고, 이에 관능기로부터 보호기를 원활하게 제거할 수 있으며, 결과적으로 충진제와 친환성이 우수하여 배합물성이 개선된 변성 공액디엔계 중합체를 제조할 수 있다.
또한, 본 발명은 상기의 제조방법으로 제조된 변성 공액디엔계 중합체를 포함하는 고무 조성물 및 상기 고무 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 0.1 중량% 이상 100 중량% 이하, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 0.1 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다. 구체적으로는 상기 변성 공액디엔계 공중합체 100 중량부에 대하여 1 중량부 내지 900 중량부로 포함되는 것일 수 있다.
상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 150 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계, 카본블랙 또는 이들 조합인 것일 수 있다. 구체적으로는, 상기 충진제는 카본블랙인 것일 수 있다.
상기 카본블랙계 충진제는 특별히 제한하는 것은 아니나, 예컨대 질소 흡착 비표면적(N2SA, JIS K 6217-2:2001에 준거해서 측정함)이 20 ㎡/g 내지 250 ㎡/g인 것일 수 있다. 또, 상기 카본블랙은 디부틸프탈레이트 흡유량(DBP)이 80 cc/100g 내지 200 cc/100g인 것일 수 있다. 상기 카본블랙의 질소흡착 비표면적이 250 m2/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 20 m2/g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다. 또한, 상기 카본블랙의 DBP 흡유량이 200 cc/100g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있고, 80 cc/100g 미만이면 카본블랙에 의한 보강 성능이 미미할 수 있다.
또한, 상기 실리카는 특별히 제한하는 것은 아니나, 예컨대 습식 실리카(함수규산), 건식 실리카(무수규산), 규산칼슘, 규산알루미늄 또는 콜로이드 실리카 등일 수 있다. 구체적으로는, 상기 실리카는 파괴 특성의 개량 효과 및 웨트 그립성(wet grip)의 양립 효과가 가장 현저한 습식 실리카일 수 있다. 또한, 상기 실리카는 질소흡착 비표면적(nitrogen surface area per gram, N2SA)이 120 ㎡/g 내지 180 ㎡/g이고, CTAB(cetyl trimethyl ammonium bromide) 흡착 비표면적이 100 ㎡/g 내지 200 ㎡/g일 수 있다. 상기 실리카의 질소흡착 비표면적이 120 ㎡/g 미만이면 실리카에 의한 보강 성능이 저하될 우려가 있고, 180 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다. 또한, 상기 실리카의 CTAB 흡착 비표면적이 100 ㎡/g 미만이면 충진제인 실리카에 의한 보강 성능이 저하될 우려가 있고, 200 ㎡/g을 초과하면 고무 조성물의 가공성이 저하될 우려가 있다.
한편, 상기 충진제로서 실리카가 사용될 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용될 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
상기 고무 조성물을 이용하여 제조된 성형품은 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예 1
질소 조건 하에서 헥산 용매 중에, 네오디뮴 베르사테이트(NdV)를 첨가하고, 디이소부틸알루미늄 하이드라이드(DIBAH) 및 염화디에틸알루미늄(DEAC)을 네오디뮴 베르사테이트:DIBAH:DEAC=1:9~10:2~3의 몰비가 되도록 순차 투입한 후 혼합하여 촉매 조성물을 제조하였다.
완전히 건조시킨 유기 반응기에 진공과 질소를 교대로 가한 뒤, 진공 상태의 반응기에 1,3-부탄디엔/헥산 혼합 용액을 4.7kg(1,3-부타디엔 함량=500g) 넣고, 상기에서 제조한 촉매 조성물을 첨가한 후, 70℃에서 60분간 중합반응을 실시하여 말단에 활성화된 알루미늄 부위를 포함하는 부타디엔 중합체를 포함하는 중합체 용액을 제조하였다.
상기 중합체 용액에 하기 화학식 2-2로 표시되는 변성제가 포함된 헥산 용액(1,3-부타디엔 100 중량부 대비 0.23 중량부)을 첨가하고, 70℃에서 30분간 반응시키고, 여기에 중합 정지제 1.0 g이 포함된 헥산 용액과 산화방지제 2.0 g이 포함된 헥산 용액을 첨가하여 반응을 종료한 후 pH 8의 스트립핑 용액을 첨가하고 스트립핑하여 변성 부타디엔 중합체를 제조하였다. 이때, 상기 스트립핑 용액은 증류수에 수산화나트륨을 혼합하여 pH 8로 제조한 것이다.
[화학식 2-2]
Figure pat00008
실시예 2
상기 실시예 1에서, 스트립핑 용액으로 pH 10의 스트립핑 용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 변성 부타디엔 중합체를 제조하였다. 이때, 상기 스트립핑 용액은 증류수에 수산화나트륨 혼합하여 pH 10으로 제조한 것이다.
실시예 3
상기 실시예 2에서, 변성제를 1,3-부타디엔 100 중량부 대비 0.15 중량부로 사용한 것을 제외하고는 상기 실시예 2과 동일한 방법으로 실시하여 변성 부타디엔 중합체를 제조하였다.
비교예 1
상기 실시예 1에서, 스트립핑 용액으로 통상의 pH 7의 스트립핑 용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 변성 부타디엔 중합체를 제조하였다. 이때, 상기 스트립핑 용액으로는 증류수를 사용하였다.
비교예 2
상기 실시예 1에서, 스트립핑 용액으로 pH 11의 스트립핑 용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여 부타디엔 중합체를 제조하였다. 이때, 상기 스트립핑 용액은 증류수에 수산화나트륨 혼합하여 pH 11로 제조한 것이다.
실험예
상기 실시예 및 비교예에서 제조한 변성 부타디엔 중합체를 이용하여 고무 조성물 및 고무 시편을 제조한 후, 하기와 같은 방법으로 300% 모듈러스, 인장응력, 신율 및 점탄성 특성을 각각 측정하였다. 그 결과를 하기 표 1에 나타내었다.
구체적으로, 상기 고무 조성물은 상기 각 중합체 100 중량부에 카본블랙 70 중량부, 공정오일(process oil) 22.5 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부를 배합하여 각각의 고무 조성물을 제조하였다. 이후, 상기 각 고무 조성물에 황 2 중량부, 가류 촉진제(CZ) 2 중량부 및 가류 촉진제(DPG) 0.5 중량부를 첨가하고 50℃에서 1.5분 동안 50 rpm으로 약하게 혼합한 후 50℃의 롤을 이용하여 시트 형태의 가황 배합물을 얻었다. 얻은 가황 배합물을 160℃에서 25분 동안 가류하여 고무시편을 제조하였다.
1) 300% 모듈러스(300% modulus, kg·f/cm2) 및 인장응력(kg·f/cm2) 및 신율
상기 각 고무 조성물을 150℃에서 t90분 가류 후 ASTM D412에 준하여 가류물의 인장응력, 300% 신장시의 모듈러스(M-300%)를 측정하였다.
2) 점탄성 특성(Tanδ @ 60℃)
저 연비 특성에 가장 중요한 Tan δ 물성은 독일 Gabo사 DMTS 500N을 사용하여 주파수 10㎐, Prestrain 3%, Dynamic Strain 3%로 60℃에서의 점탄성 계수(Tan δ)를 측정하였다. 이때, 고온 60℃ tan δ의 값이 낮은 것일수록 히스테리시스 손실이 적고, 저주행저항성(연비성능)이 우수함을 나타낸다.
구분 실시예 비교예
1 2 3 1 2
인장특성 M-300%(kgf/cm2) 112 108 107 105 103
인장응력(kgf/cm2) 182 182 186 180 181
점탄성 특성 Tan δat 60℃ 0.127 0.118 0.127 0.131 0.132
Index 103 119 103 100 99
여기에서, Index 값은 비교예 1의 값을 100으로 하여 하기 수학식 1로 계산하였다.
[수학식 1]
Figure pat00009
상기 표 1에 나타난 바와 같이, 실시예 1 내지 실시예 3이 비교예 1 및 2 대비 인장특성이 우수하면서 점탄성 특성이 개선된 것을 확인하였다.
상기 표 1에 나타난 바와 같이, 본 발명에 따른 제조방법에 의해 제조된 실시예 1 내지 3의 변성 부타디엔 중합체는 비교예 1 및 2의 변성 부타디엔 중합체 대비 인장특성 및 점탄성 특성이 모두 개선되었다.
구체적으로, 실시예 1 및 2는 비교예 1 및 2 대비 동등 이상의 인장응력을 나타내면서 300% 모듈러스는 3% 내지 9% 수준, 60℃ Tan δ 특성은 3% 내지 20% 수준으로 크게 향상된 특성을 나타내었다. 이때, 실시예 1 및 2와 비교예 1 및 2는 각각 pH가 다른 스트립핑 용액을 사용하여 스트립핑을 한 것을 제외하고는 동일한 조건에서 제조된 변성 부타디엔 중합체로, 실시예 1 및 2는 pH 8 및 10의 수산화나트륨 수용액을 스트립핑 용액으로 사용하고, 비교예 1 및 2는 pH 7 및 11의 수산화나트륨 수용액을 스트립핑 용액으로 사용하였다.
또한, 실시예 3은 변성제의 사용량을 줄인 것을 제외하고는 실시예 2과 동일한 조건으로 제조된 변성 부타디엔 중합체로, 비교예 1 및 2 대비 65% 수준으로 감소된 양의 변성제를 사용하였음에도 불구하고 인장특성 및 점탄성 특성이 비교예 1 및 2보다 향상된 특성을 나타내었다.
상기의 결과는, 변성 공액디엔 중합체를 제조함에 있어 중합반응 이후 탈용매처리 조건이 최종 제조되는 중합체의 충진제 친화성과 같은 물성에 영향을 주는 것임을 나타내는 것이고, 본 발명에 따른 제조방법은 이러한 탈용매처리 조건의 영향에 대해 인지하여 상기 탈용매처리를 특정범위의 염기성 조건으로 조절된 스트립핑 용액을 사용하여 스트립핑하여 수행함으로써 충진제와의 친화성이 향상된 중합체를 제조할 수 있다.

Claims (9)

  1. 탄화수소계 용매 중에서, 네오디뮴 촉매 조성물의 존재 하에 공액디엔계 단량체를 중합하여 활성 중합체를 제조하는 단계;
    상기 활성 중합체를 하기 화학식 1로 표시되는 변성제와 반응시켜 상기 변성제 유래 관능기를 포함하는 중합체를 포함하는 중합체 용액을 제조하는 단계; 및
    상기 중합체 용액에 스트립핑 용액을 첨가하고 스트립핑하여 탈용매시키는 단계를 포함하고,
    상기 스트립핑 용액은 pH가 8 내지 10인 것인 변성 공액디엔계 중합체의 제조방법:
    [화학식 1]
    Figure pat00010

    상기 화학식 1에서,
    R1 내지 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 및 -R6COOR7로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
    단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
    R4는 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
    R5는 탄소수 1 내지 20의 알킬기로 치환 또는 비치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
    R6은 단일 결합, 탄소수 1 내지 20의 알킬렌기, 또는 탄소수 3 내지 20의 시클로알킬렌기이고,
    R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
    R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R1 내지 R3은 각각 독립적으로 -R6COOR7로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
    단, R1 내지 R3이 모두 동시에 3가 탄화수소기; 또는 2가 탄화수소기는 아니며,
    R4는 단일 결합, 또는 탄소수 1 내지 20의 알킬렌기이고,
    R5는 탄소수 1 내지 20의 알킬기로 치환된 실릴기; 할로겐; 시아노기; 또는 -COR8이며,
    R6은 단일 결합이고,
    R7은 탄소수 1 내지 20의 알킬기이며,
    R8은 탄소수 1 내지 10의 알콕시기, 탄소수 6 내지 30의 아릴기, 탄소수 2 내지 30의 헤테로아릴기, 탄소수 2 내지 10의 헤테로시클로알킬기, 탄소수 2 내지 10의 헤테로아민기 및 탄소수 3 내지 10의 디실릴아미노기로 이루어진 군으로부터 선택된 1종인 것인 변성 공액디엔계 중합체의 제조방법.
  3. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 변성제는 하기 화학식 2로 표시되는 화합물인 것인 변성 공액디엔계 중합체의 제조방법:
    [화학식 2]
    Figure pat00011

    상기 화학식 2에서,
    R1 및 R3은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기 및 탄소수 6 내지 30의 아릴기로 이루어진 군으로부터 선택된 1종 이상의 치환기로 치환된 3가 탄화수소기; 또는 비치환된 탄소수 1 내지 10의 2가 탄화수소기이고,
    R2는 -R6COOR7로 치환된 3가 탄화수소기이며,
    R4 및 R6은 단일 결합이고,
    R7은 탄소수 1 내지 20의 알킬기, 또는 탄소수 3 내지 20의 시클로알킬기이며,
    R9 내지 R11은 각각 독립적으로 수소 또는, 탄소수 1 내지 20의 알킬기이다.
  4. 청구항 3에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-3로 표시되는 화합물로 이루어진 군으로부터 선택된 1종인 변성 공액디엔계 중합체의 제조방법:
    [화학식 2-1]
    Figure pat00012

    [화학식 2-2]
    Figure pat00013

    [화학식 2-3]
    Figure pat00014
    .
  5. 청구항 1에 있어서,
    상기 스트립핑 용액은 염기성 수용액인 것인 변성 공액디엔계 중합체의 제조방법.
  6. 청구항 1에 있어서,
    상기 스트립핑은 90℃ 내지 100℃의 온도 및 상압조건에 수행한 것인 변성 공액디엔계 중합체의 제조방법.
  7. 청구항 1에 있어서,
    상기 네오디뮴 촉매 조성물은 네오디뮴 화합물, 유기금속 화합물 및 할로겐 화합물을 포함하는 것인 변성 공액디엔계 중합체의 제조방법.
  8. 청구항 7에 있어서,
    상기 네오디뮴 화합물은 하기 화학식 3으로 표시되는 화합물인 것인 변성 공액디엔계 중합체 제조방법:
    [화학식 3]
    Figure pat00015

    상기 화학식 3에서,
    R1 내지 R3은 각각 독립적으로 수소, 또는 탄소수 1 내지 12의 알킬기이고,
    단, R1 내지 R3가 모두 동시에 수소는 아니다.
  9. 청구항 7에 있어서,
    상기 촉매 조성물은 공액디엔계 단량체 및 탄화수소계 용매로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 것인 공액디엔계 중합체의 제조방법.
KR1020180162930A 2018-12-17 2018-12-17 변성 공액디엔계 중합체의 제조방법 KR102677554B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180162930A KR102677554B1 (ko) 2018-12-17 2018-12-17 변성 공액디엔계 중합체의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180162930A KR102677554B1 (ko) 2018-12-17 2018-12-17 변성 공액디엔계 중합체의 제조방법

Publications (2)

Publication Number Publication Date
KR20200074493A true KR20200074493A (ko) 2020-06-25
KR102677554B1 KR102677554B1 (ko) 2024-06-24

Family

ID=71400564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180162930A KR102677554B1 (ko) 2018-12-17 2018-12-17 변성 공액디엔계 중합체의 제조방법

Country Status (1)

Country Link
KR (1) KR102677554B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050042131A (ko) 2002-07-03 2005-05-04 제이에스알 가부시끼가이샤 중합체 용액의 탈용매 방법 및 탈용매 장치
KR20090094139A (ko) * 2006-12-27 2009-09-03 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 및 고무 조성물
KR20180004636A (ko) * 2016-07-04 2018-01-12 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050042131A (ko) 2002-07-03 2005-05-04 제이에스알 가부시끼가이샤 중합체 용액의 탈용매 방법 및 탈용매 장치
KR20090094139A (ko) * 2006-12-27 2009-09-03 제이에스알 가부시끼가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 및 고무 조성물
KR20180004636A (ko) * 2016-07-04 2018-01-12 주식회사 엘지화학 변성제, 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물

Also Published As

Publication number Publication date
KR102677554B1 (ko) 2024-06-24

Similar Documents

Publication Publication Date Title
JP6616899B2 (ja) 変性剤、変性共役ジエン系重合体、およびそれを含むゴム組成物
KR102173756B1 (ko) 변성 공액디엔계 중합체의 제조방법
KR102122470B1 (ko) 변성제 및 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체
KR102109837B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
KR102123081B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
KR102295653B1 (ko) 공액디엔계 중합체 및 이의 제조방법
KR102132755B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
KR102122469B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
KR102154046B1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
JP7133092B2 (ja) 変性共役ジエン系重合体、この製造方法及びこれを含むゴム組成物
KR102123079B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
KR20170074681A (ko) 고무 조성물 및 이로부터 제조된 타이어
KR102039128B1 (ko) 변성제, 이의 제조방법 및 이를 포함하는 변성 공액디엔계 중합체
KR102213173B1 (ko) 연속식 중합에 의한 공액디엔계 중합체의 제조방법
KR102677554B1 (ko) 변성 공액디엔계 중합체의 제조방법
KR102677553B1 (ko) 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
KR20170074680A (ko) 고무 조성물 및 이로부터 제조된 타이어
KR20210033933A (ko) 변성 공액디엔계 중합체의 제조방법
KR102188725B1 (ko) 신규 화합물 및 이의 유래 작용기를 포함하는 변성 공액디엔계 중합체
KR102509140B1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
KR102666895B1 (ko) 변성 공액디엔계 중합체의 제조방법
KR102595111B1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
KR102685989B1 (ko) 신규 화합물, 이의 제조방법, 상기 화합물 유래 작용기를 포함하는 변성 공액디엔계 중합체 및 상기 중합체의 제조방법
KR102653221B1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
CN112074552B (zh) 催化剂组合物、其制备方法、由其制备共轭二烯类聚合物的方法和制备的共轭二烯类聚合物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant