KR20190077321A - LIB 애노드용 밸브 금속 기판상의 나노-스케일/나노 구조화된 Si 코팅 - Google Patents
LIB 애노드용 밸브 금속 기판상의 나노-스케일/나노 구조화된 Si 코팅 Download PDFInfo
- Publication number
- KR20190077321A KR20190077321A KR1020197009289A KR20197009289A KR20190077321A KR 20190077321 A KR20190077321 A KR 20190077321A KR 1020197009289 A KR1020197009289 A KR 1020197009289A KR 20197009289 A KR20197009289 A KR 20197009289A KR 20190077321 A KR20190077321 A KR 20190077321A
- Authority
- KR
- South Korea
- Prior art keywords
- valve metal
- tantalum
- niobium
- microns
- metal substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/72—Grids
- H01M4/74—Meshes or woven material; Expanded metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Silicon Compounds (AREA)
Abstract
나노-스케일 및 나노 구조화된 Si 입자의 개선된 구조가 리튬 이온 배터리용 애노드 재료로 이용하기 위해 제공된다. Si 입자는 MgO로 코팅되고 전도성 내화 밸브 금속 지지 구조체(conductive refractory valve metal support structure) 위에 야금 결합된 복합재로서 제조된다.
Description
본 발명은 리튬 이온 배터리에 이용하기 위한 애노드 재료의 개선에 관한 것이고, 다른 유용성들도 고려될 수 있으나, 이러한 유용성과 관련되어 기술될 것이다.
규소(Silicon)는 리튬 이온 배터리(lithium ion battery, LIB)에서 고용량 애노드(high capacity anode)에 대한 유망한 재료이다. 리튬과 합금된 경우에, 규소(silicon)의 비용량(specific capacity)(mAh/g)은 통상의 흑연 애노드 재료보다 10배 더 크다. 그러나, 규소는 리튬화 (충전) 및 탈리튬화 (방전) 동안에, 각각 큰 부피 변화(최대 400% 팽창 및 수축)를 보인다. 벌크 규소(bulk silicon)에 관하여, 이는 규소(silicon) 내에 구조 응력 구배(structural stress gradient)를 생성하고, 균열 및 기계 응력 파괴(mechanical stress failure) [미분화 (pulverization)]를 야기함으로써, 규소(silicon) 애노드의 수명 및 유효한 전기 접촉(effective electrical contact)을 감소시킨다.
규소(silicon) 입자의 크기를, 규소(silicon)가 균열할 가능성이 적은 크기 미만, 약 50nm로 제한하고 형태를 제어함으로써, 이러한 본질적인 문제점을 극복하기 위한 상당한 노력이 있어 왔다.
규소(silicon)의 팽창/수축에 의해 야기된 물리적 손상을 피하기 위한 다양한 시도는 박막; 나노와이어; 나노튜브; 나노입자; 메조포러스 재료(mesoporous material); 및 나노복합재와 같은 형태의 나노 스케일 및 나노 구조화된 규소(silicon)를 포함해왔다. 이러한 접근법들 대부분은 실행 가능한, 비용 효과적인 해결책을 제공하지 않는다.
한 유망한 방법은 하기 반응에 따라서, SiO2 및 마그네슘의 기계적 합금화(mechanical alloying)/고상 반응(solid phase reaction)에 의해 형성된 Si-MgO 복합재를 활용한다:
[반응식 I]
2Mg (s) + SiO2 (s) → 2MgO (s) + Si (s)
MgO 매트릭스는 체적 변화 효과를 완충시키는 것으로 나타났으나, 이러한 복합재는, 이들을 애노드 재료로서 불충분하게 효과적인 상태로 만드는 상대적으로 낮은 전기 전도도를 가진다.
전도성 기판 및 지지체 상에 분산된 서브-마이크론 스케일(Sub-micron scale)의 전기화학적 활성 입자는 연료 전지 및 배터리를 포함하는 전기화학 전지에 오랫동안 사용되었다. 이 지지 구조체는 전지 효율 및 수명에 관한 중요한 구성 요소이다. 밸브 (또는 내화성) 금속(구체적으로: 티타늄, 니오븀, 탄탈륨, 및 이들의 합금)은 특히, 화학적 처리 및 캐소드 보호(cathodic protection)의 적용에서, 70년이 넘는 동안에 전기화학적 활성 재료에 대한 기판으로 사용되어 왔다. 이러한 적용은 활성 재료에 대한 전도성이며 전기화학적으로 안정한 지지 구조체를 형성하는 수단으로서, 노출된 밸브 금속 영역 위에 패시베이팅 산화물 필름(passivating oxide film)의 형성을 활용한다.
Mg는 내화성 금속의 정제를 위한 마그네시오써믹 환원제(magnesiothermic reducing agent)로서 오랫동안 이용되어 왔다. 이 과정은, 하기의 기체상/고상 반응을 통해 발생하는 커패시터(capacitor) 적용을 위한 고용량, 고표면적(high surface) 탄탈륨 파우더의 생산에서 통상적이다:
[반응식 II]
5Mg (g) + Ta2O5 (s) → 5MgO (s) + 2Ta (s)
생성되는 산화 마그네슘은 호스트 Ta 입자(host Ta particle) 위의 표면 코팅을 형성하고, 무기산(mineral acid)을 이용해 제거된다.
한 측면에서, 본 발명은 리튬 이온 전지와 사용하기 위한 전기적 활성 전극 재료(electrically active electrode material)를 제공하며, 전기화학적 활성 재료 전극 재료(electrochemically active material electrode material)는 단면이 약 10 마이크론(micron) 이하인 밸브 금속(valve metal)의 입자 또는 필라멘트로 형성되고, 야금 결합된 규소 입자(metallurgically bonded silicon particle)로 코팅된 밸브 금속 기판 재료를 포함한다.
바람직한 양태에서, 상기 밸브 금속은 탄탈륨(tantalum), 니오븀(niobium), 탄탈륨 합금, 니오븀 합금, 하프늄(hafnium), 티타늄 및 알루미늄으로 이루어진 군으로부터 선택된다.
다른 바람직한 양태에서, 상기 밸브 금속 필라멘트는 약 5-10 마이크론 미만의 두께, 바람직하게는 약 1 마이크론 미만의 두께를 가진다.
한 측면에서, 규소 코팅은 나노스케일 나노입자(nanoscaled nanoparticle)로 이루어진다.
다른 측면에서, 상기 규소 입자는 안정화 MgO 매트릭스 내의 상기 밸브 금속 기판상에 코팅된다.
또 다른 측면에서, 상기 기술된 전기적 활성 전극 재료는 애노드(anode)로 형성된다.
본 발명은 (a)
단면이 약 10 마이크론 이하인 밸브 금속의 입자 또는 필라멘트로 형성된 밸브 금속 기판 재료를 제공하는 단계; 및 (b)
마그네슘과 실리카 및 밸브 금속과의 마그네시오써믹 반응(magnesiothermic reaction)에 의해 형성된 야금 결합된(metallurgically bonded) 규소로 상기 밸브 금속 기판 재료를 코팅하는 단계;를 포함하는 리튬 이온 배터리의 형성에 유용한 전극 기판의 형성방법을 또한 제공한다.
상기 방법의 한 측면에서, 상기 마그네시오써믹 반응은, 상승된 온도에서, 바람직하게는 800-1200°C, 900-1100°C 및 950-1050°C로 이루어진 군으로부터 선택된 상승된 온도에서, 불활성 기체 또는 진공하에서 수행된다.
상기 방법의 다른 측면에서, 상기 마그네시오써믹 반응은 2-10 시간, 4-8 시간 및 5-6 시간으로부터 선택된 시간 동안에 수행된다.
상기 방법의 또 다른 측면에서, 상기 반응 후에, 산화 마그네슘의 적어도 일부를 산 에칭(acid etching)에 의해 제거하는 단계를 포함한다.
상기 방법의 한 바람직한 측면에서, 상기 밸브 금속은 탄탈륨(tantalum), 니오븀(niobium), 탄탈륨 합금, 니오븀 합금, 하프늄(hafnium), 티타늄 및 알루미늄으로 이루어진 군으로부터 선택된다.
상기 방법의 다른 바람직한 측면에서, 상기 필라멘트 또는 섬유는 약 5-10 마이크론 미만의 두께, 바람직하게는 약 1 마이크론 미만의 두께를 가진다.
상기 방법의 다른 측면에서, 전기화학적 활성 재료는 규소 나노 입자를 포함한다.
본 발명은 서로 분리되어 있는 애노드 및 캐소드, 및 전해질을 함유하는 케이스(case)를 포함하는 리튬 이온 배터리를 또한 제공하며, 상기 애노드는 하기 단계를 포함하는 전기적 활성 전극 재료로 형성된다: (a) 단면이 약 10 마이크론 이하인 밸브 금속의 입자 또는 필라멘트로 형성된 밸브 금속 기판 재료를 제공하는 단계; 및 (b)
마그네슘과 규소 및 밸브 금속과의 마그네시오써믹 반응(magnesiothermic reaction)에 의해 형성된 야금 결합된 규소로 상기 밸브 금속 기판 재료를 코팅하는 단계.
상기 전지의 또 다른 측면에서, 밸브 금속은 탄탈륨(tantalum), 니오븀(niobium), 탄탈륨 합금, 니오븀 합금, 하프늄(hafnium), 티타늄 및 알루미늄으로 이루어진 군으로부터 선택된다.
본 발명은 내화성 금속 기판(refractory metal substrate)의 Mg 탈산화(Mg de-oxidation)의 결합 반응(combination reaction 또는 co-reaction) 및 SiO2 (실리카)의 실질적인 동시 환원(substantially simultaneous reduction)을 제공하여 안정화 MgO 코팅 내부에 나노 구조화된 Si의 나노스케일 코팅을 생성하며, 이들 모두는 밸브 금속 기판에 야금 결합되어 있다. 밸브 금속 내의 산화물 불순물(oxide impurity) 및 SiO2는 실질적으로 동시에 반응하여, 밸브 금속 기판, 예를 들어, 탄탈륨(Ta)에 견고히 결합되어 있는 순수 Si(pure Si)의 나노스케일 나노구조체를 하기 반응을 통해 형성한다:
[반응식 III]
9Mg (g) + 2Ta2O5 (s) + 2SiO2 → 4Ta (s) + 2Si (s) + 9MgO (s)
전반적인 과정은 밸브 금속 입자, 예를 들어, 탄탈륨을 4 내지 200 마이크론 크기, 바람직하게는 10 내지 100 마이크론 크기, 더욱 바람직하게는 20 내지 50 마이크론 크기의 SiO2 나노입자와 수성계 용액(aqueous based solution) 또는 수성계 겔에서 혼합하는 단계를 수반한다. 한 방법에서, SiO2 입자는 탄탈륨 섬유의 미리 형성된(preformed), 다공성 매트(porous mat) 내로 수성겔의 SiO2 나노입자로서 함침된다. 다른 방법에서, 탄탈륨의 루스 입자(loose particle)는 SiO2 입자와 혼합된다. 이어서, 생성되는 혼합물은 반응식 III을 통해서, 진공하에서 또는 불활성 기체에서, 900-1100°C 사이의 온도에서, 2시간 내지 10시간 동안 마그네시오써믹 환원된다. 마그네슘은 실리카 및 탄탈륨 섬유 내의 산화물 불순물을 환원시키고, 이로써 규소가 탄탈륨 기판에 야금 결합하도록 허용한다. 생성되는 산화 마그네슘은 유지되거나, 예를 들어, 산 에칭(acid etching)에 의해 제거될 수 있다. 생성되는 구조체는 MgO 코팅 내 서브-마이크론 Si 입자의 복합재로 코팅된, 스폰지, 고표면적 전도성, 전기화학적으로 안정한 내화성 금속 기판(spongy, high surface area conductive, electrochemically stable refractory metal substrate)이다.
본 발명의 추가의 특징 및 이점은 첨부한 도면과 함께, 하기 상세한 설명으로부터 이해될 것이다.
도 1은 본 발명에 따른 애노드 재료를 제공하는 방법의 개략적 다이어그램이다.
도 2 및 도 3은 본 발명에 따른 Ta 지지 입자에 야금 결합된 Si 입자의 나노스케일 나노구조체를 나타내는 두 상이한 배율의 SEM 사진이다.
도 4는 본 발명에 따라 만들어진 애노드 재료의 시간에 따른 용량을 플로팅한다(plotting).
도 5는 본 발명에 따라 만들어진 애노드 재료의 시간에 따른 쿨롱 효율(coulomb efficiency)을 플로팅한다.
도 6은 본 발명에 따라 만들어진 리튬 이온 배터리 애노드에 대한 전지 전압에 따른 상이한 용량을 플로팅한다.
도 7은 본 발명에 따른 재충전 가능한 배터리(rechargeable battery)의 단면도(cross-sectional view)이다.
도 8은 본 발명에 따라 만들어진 배터리의 사시도(perspective view)이다.
도 1은 본 발명에 따른 애노드 재료를 제공하는 방법의 개략적 다이어그램이다.
도 2 및 도 3은 본 발명에 따른 Ta 지지 입자에 야금 결합된 Si 입자의 나노스케일 나노구조체를 나타내는 두 상이한 배율의 SEM 사진이다.
도 4는 본 발명에 따라 만들어진 애노드 재료의 시간에 따른 용량을 플로팅한다(plotting).
도 5는 본 발명에 따라 만들어진 애노드 재료의 시간에 따른 쿨롱 효율(coulomb efficiency)을 플로팅한다.
도 6은 본 발명에 따라 만들어진 리튬 이온 배터리 애노드에 대한 전지 전압에 따른 상이한 용량을 플로팅한다.
도 7은 본 발명에 따른 재충전 가능한 배터리(rechargeable battery)의 단면도(cross-sectional view)이다.
도 8은 본 발명에 따라 만들어진 배터리의 사시도(perspective view)이다.
본 발명의 한 양태에서, 내화성 금속은, 예를 들어, 본 발명자의 이전의 미국 특허 제9,155,601호, 미국 특허 제5,869,196호, 미국 특허 제7,146,709호, 및 PCT 국제특허공보 WO 제2016/187143 A1호-이들의 기재내용은 참고로 본원에 포함된다-에 기술된 바와 같이 형성된 마이크론 크기(예, 단면이 약 10 마이크론 이하)의 탄탈륨 입자로 형성된다.
도 1을 참조하면, 생산 방법은 탄탈륨의 와이어(wire) 또는 필라멘트를 구리와 같은 연성 재료(ductile material)와 결합(combining)함으로써, 밸브 금속 필라멘트, 바람직하게는 탄탈륨 필라멘트의 제조를 시작하여, 단계 (10)에서 빌렛(billet)을 형성한다. 이어서, 빌렛은 본 발명자의 '196 미국 특허의 교시에 따라서, 단계 (12)에서 압출 캔(extrusion can)에 밀봉되고, 단계 (14)에서 압출 및 인발된다(extruded and drawn). 다음에, 압출 및 인발된 필라멘트는 쵸핑 스테이션 (16)에서 통상적으로 1/16th - 1/4th 인치 길이의 짧은 단편들로 절단되거나 쵸핑된다(chopping). 바람직하게는, 절단된 필라멘트 모두는 대략적으로 같은 길이를 가진다. 사실, 필라멘트는 균일할수록 더 좋다. 이어서, 쵸핑된 필라멘트는 연성 금속이 적합한 산(acid)을 이용하여 침출되는(leached away) 에칭 스테이션 (18)으로 전달된다. 예를 들어, 구리가 연성 금속인 경우에, 에칭제(etchant)는 질산을 포함할 수 있다.
산에서 에칭은 탄탈륨 필라멘트 사이로부터 구리를 제거한다.
에칭 후에, 탄탈륨의 짧은 필라멘트 복수 개가 남는다. 이어서, 탄탈륨 필라멘트는 세척 스테이션 (20)에서, 물에서 세척되고, 세척수(wash water)는 부분적으로 디캔팅되어(decanting) 탄탈륨 필라멘트의 수중 슬러리를 남긴다. 수 중의 탄탈륨 입자의 슬러리는 이어서 코팅 스테이션 (22)에서, 미세한, 예를 들어, 4 내지 200 마이크론 크기의 실리카 입자와 물 안에서 혼합되어, 스폰지 덩어리(spongy mass)를 형성한다. 코팅된 스폰지 덩어리는 이어서 건조되고, 진공하에서 또는 불활성 기체에서, 800 내지 1200°C, 바람직하게는 900 내지 1100°C, 더욱 바람직하게는 950 내지 1050°C에서, 2시간 내지 10시간 동안, 바람직하게는 4시간 내지 8시간 동안, 더욱 바람직하게는 5시간 내지 6시간 동안, 반응 스테이션 (24)에서 처리함으로써 마그네시오써믹 반응되었다. 마그네슘은 탄탈륨 섬유 내의 산화물 불순물 및 실리카를 환원시키는데, 규소가 탄탈륨 섬유에 야금 결합하는 것을 동시에 허용한다. 생성되는 임의의 산화 마그네슘은 남아있을 수 있으나, 바람직하게는, 예를 들어, 산 에칭에 의해 제거된다. 반면에, 구리가 또한 규소에 야금 결합될 것이기 때문에, 압출 및 인발 단계로부터 남을 수 있는 임의의 구리를 완전히 제거하는 것은 필요하지 않다. 생성되는 구조체는 MgO 매트릭스로 코팅된 서브-마이크론 Si 입자의 복합재로 코팅된, 스폰지, 고표면적, 전도성, 전기화학적으로 안정한 탄탈륨 금속 기판 덩어리(spongy, high surface area, conductive, electrochemically stable tantalum metal substrate mass)이다. 생성되는 스폰지 덩어리는 이어서 물과 혼합될 수 있고, 롤링 스테이션 (26)에서 매트로 주조된다(cast). 생성되는 매트는, 건조 스테이션 (28)에서 추가로 압축 및 건조된다.
코팅 및 롤링에 대한 대안으로서, 얇은 시트(thin sheet)가 슬러리를 기판상에 분무 주조(spray casting)함으로써 형성될 수 있고, 과량의 물이 제거되고, 생성되는 매트가 전처럼 가압 및 건조된다.
두께가 실질적으로 균일한 Si 코팅된 탄탈륨 필라멘트 또는 Si/MgO 복합재의 고다공성 얇은 시트(highly porous thin sheet)가 생성된다.
본인의 앞서 언급한 PCT 출원에서 보고한 바와 같이, 섬유가 안정한 매트로 가압 및 건조될 수 있는 시트로 주조될 수 있도록, 쵸핑된 팔라멘트의 수성 슬러리(aqueous slurry)는 함께 충분히 부착할 것이다. 이는 금속 필라멘트 스스로가 물을 흡수하지 않는다는 점에서 놀랍다. 그럼에도 불구하고, 필라멘트가 약 10 마이크론 보다 실질적으로 두껍지 않는 한, 이들은 함께 부착할 것이다. 반면에, 필라멘트가 약 10 마이크론보다 훨씬 더 클 경우에, 이들은 안정한 매트 또는 시트를 형성하지 않을 것이다. 따라서, 필라멘트가 약 10 마이크론 미만의 두께를 가지는 것, 바람직하게는 1 마이크론 두께 미만인 것이 바람직하다. 필라멘트의 균일 분포(even distribution)를 보장하고, 이로써 균일한 매트의 생성을 보장하기 위해, 슬러리는 바람직하게는 기계적인 교반 또는 진동에 의해 강력하게 혼합(vigorous mixing)된다.
생성되는 탄탈륨 매트의 밀도 또는 다공성은 매트의 최종 두께를 변화시킴으로써 용이하게 달라질 수 있다.
또한, 필요한 경우에, 복수의 층(multiple layer)이 적층되어(stacking), 예를 들어, 고밀도 적용(high density application)에 필요할 수 있는 더 두꺼운 매트를 형성할 수 있다.
생성되는 탄탈륨 매트는 서로 접촉하고 있는 Si/MgO 복합재 코팅된 탄탈륨 필라멘트 또는 서브-마이크론 크기의 Si의 다공성 매트를 포함하여, 전도성 매트를 형성한다.
대안적으로는, 본 발명의 바람직한 양태에서, 원 탄탈륨 필라멘트(raw tantalum filament)는 상기 기술된 주조 및 롤링에 의해 전극 재료의 매트로 형성된 다음, 상기 기술된 마그네시오써믹 환원에 의해, 예를 들어, 탄탈륨 매트를 물에서 미세한 실리카를 함유하는 수성계 용액으로 디핑(dipping)한 다음에 상기 기술된 진공하에서 또는 불활성 기체에서 가열함으로써 규소 나노입자로 코팅될 수 있다.
도 2 및 도 3에 제시된 Si/Ta 구조체는 나노스케일 나노구조 Si 입자의 층으로 코팅된 밸브 금속 구조체의 Si/Ta 구조체이다. MgO는 LIB 애노드로서 사이클링(cycling)하는 동안에, Si의 분해에 대한 안정화 버퍼(stabilizing buffer)로 작용할 수 있다. MgO 매트릭스가 무기산을 이용해 제거되어 Ta 지지 입자에 야금 결합된 Si 입자의 나노스케일 나노구조체를 노출하는 것이 바람직하다.
생성되는 재료는 시간에 따른 용량, 시간에 따른 쿨롱 효율, 및 전지 전압에 따른 미분 용량(differential capacity)에 대해 테스트되고, 그 결과는 도 4 내지 도 6에 제시된다.
생성되는 Si 코팅된 내화성 재료는 전도성 탄소 첨가제(conductive carbon additive); 캘린더 직물(calendared fabric); 코인(coin) 등이 있거나 없는 집전체(current collector)에 구비된 얇은 습식-레이 방법(thin wet-lay method)을 포함하나, 이에 제한되는 것은 아닌 임의의 표준 제조 방법을 통해 유용한 LIB 애노드로 형성될 수 있다. 예를 들어, 도 7 및 도 8을 참조하면, 코팅된 매트는 이어서 분리막 시트 (36) 사이의 스택(stack)에서 어셈블링(assembling)되어 포지티브 전극 (애노드) 및 네거티브 전극(캐소드) (38, 40)을 형성한다. 전극 (38, 40) 및 분리막 시트 (36)는 젤리 롤(jelly roll)로 함께 와인딩되고(winding), 어셈블리 스테이션 (48)에서 젤리 롤로부터 연장된 포지티브 탭 (44) 및 네거티브 탭 (46)과 케이스 (42)에 삽입된다. 탭은 이어서, 전극 기판의 노출부에 용접될 수 있고, 케이스는 전해질로 채워지며, 케이스는 밀봉된다. 결과물은 전극 재료가 역효과 없이 반복적인 충전 및 소모가 가능한, 극히 연성인 미세한 금속 복합재 필라멘트(extremely ductile fine metal composite filament)를 포함하는 고용량의 재충전 가능한 배터리이다. 다른 방법들이 또한 고려된다.
다양한 변화가 상기 발명의 정신 및 범위를 벗어나지 않고 만들어질 수 있다. 예를 들어, 본 발명은 특히 규소와 관련되어 기술되었으나, 게르마늄과 같은 다른 재료들이 유리하게 이용될 수 있다. 또 다른 변화가 본 발명의 정신 및 범위를 벗어나지 않고 만들어질 수 있다.
Claims (15)
- 리튬 이온 전지와 사용하기 위한 전기적 활성 전극 재료(electrically active electrode material)로서, 전기화학적 활성 재료 전극 재료(electrochemically active material electrode material)는 단면이 약 10 마이크론(micron) 이하인 밸브 금속(valve metal)의 입자 또는 필라멘트로 형성되고, 야금 결합된 규소 입자(metallurgically bonded silicon particle)로 코팅된 밸브 금속 기판 재료;를 포함하는, 전기적 활성 전극 재료.
- 제1항에 있어서,
상기 밸브 금속은 탄탈륨(tantalum), 니오븀(niobium), 탄탈륨 합금, 니오븀 합금, 하프늄(hafnium), 티타늄 및 알루미늄으로 이루어진 군으로부터 선택되는 것인, 전기적 활성 전극 재료.
- 제1항 또는 제2항에 있어서,
상기 밸브 금속 필라멘트는 약 5-10 마이크론 미만의 두께, 바람직하게는 약 1 마이크론 미만의 두께를 가지는 것인, 전기적 활성 전극 재료.
- 제1항 내지 제3항 중 어느 한 항에 있어서,
규소 코팅은 나노스케일 나노입자(nanoscaled nanoparticle)로 이루어지는 것인, 전기적 활성 전극 재료.
- 제1항 내지 제4항 중 어느 한 항에 있어서,
상기 규소 입자는 안정화 MgO 매트릭스 내의 상기 밸브 금속 기판상에 코팅되는 것인, 전기적 활성 전극 재료.
- 제1항 내지 제5항 중 어느 한 항에 있어서,
상기 전기적 활성 전극 재료는 애노드(anode)로 형성되는 것인, 전기적 활성 전극 재료.
- 하기 단계를 포함하는, 리튬 이온 배터리의 형성에 유용한 전극 기판의 형성방법:
(a) 단면이 약 10 마이크론 이하인 밸브 금속의 입자 또는 필라멘트로 형성된 밸브 금속 기판 재료를 제공하는 단계; 및
(b) 마그네슘과 실리카 및 밸브 금속과의 마그네시오써믹 반응(magnesiothermic reaction)에 의해 형성된 야금 결합된 규소로 상기 밸브 금속 기판 재료를 코팅하는 단계.
- 제7항에 있어서,
상기 마그네시오써믹 반응은 상승된 온도에서, 불활성 기체 또는 진공하에서 수행되는 것인, 전극 기판의 형성방법.
- 제8항에 있어서,
상기 상승된 온도는 800-1200°C, 900-1100°C 및 950-1050oC로 이루어진 군으로부터 선택된 것이고/이거나, 상기 마그네시오써믹 반응은 2-10 시간, 4-8 시간 및 5-6 시간으로부터 선택된 시간 동안에 수행되는 것인, 전극 기판의 형성방법.
- 제7항 내지 제9항 중 어느 한 항에 있어서,
상기 방법은 상기 반응 후에, 산화 마그네슘의 적어도 일부를 산 에칭(acid etching)에 의해 제거하는 단계를 더 포함하는, 전극 기판의 형성방법.
- 제7항 내지 제10항 중 어느 한 항에 있어서,
상기 밸브 금속은 탄탈륨, 니오븀, 탄탈륨 합금, 니오븀 합금, 하프늄, 티타늄 및 알루미늄으로 이루어진 군으로부터 선택되는 것인, 전극 기판의 형성방법.
- 제7항 내지 제11항 중 어느 한 항에 있어서,
상기 필라멘트 또는 섬유는 약 5-10 마이크론 미만의 두께, 바람직하게는 약 1 마이크론 미만의 두께를 가지는 것인, 전극 기판의 형성방법.
- 제7항 내지 제12항 중 어느 한 항에 있어서,
전기화학적 활성 재료는 규소 나노 입자를 포함하는 것인, 전극 기판의 형성방법.
- 서로 분리되어 있는 애노드 및 캐소드, 및 전해질을 함유하는 케이스(case)를 포함하는 리튬 이온 배터리로서, 상기 애노드는 제1항 내지 제5항 중 어느 한 항에 기재된 전기적 활성 전극 재료로 형성되는 것인, 리튬 이온 배터리.
- 제14항에 있어서,
밸브 금속은 탄탈륨, 니오븀, 탄탈륨 합금, 니오븀 합금, 하프늄, 티타늄 및 알루미늄으로 이루어진 군으로부터 선택되는 것인, 리튬 이온 배터리.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662382696P | 2016-09-01 | 2016-09-01 | |
US62/382,696 | 2016-09-01 | ||
PCT/US2017/049950 WO2018045339A1 (en) | 2016-09-01 | 2017-09-01 | Nano-scale/nanostructured si coating on valve metal substrate for lib anodes |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20190077321A true KR20190077321A (ko) | 2019-07-03 |
Family
ID=61240735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197009289A KR20190077321A (ko) | 2016-09-01 | 2017-09-01 | LIB 애노드용 밸브 금속 기판상의 나노-스케일/나노 구조화된 Si 코팅 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10230110B2 (ko) |
EP (1) | EP3507242B1 (ko) |
JP (1) | JP6761899B2 (ko) |
KR (1) | KR20190077321A (ko) |
CN (1) | CN109562950B (ko) |
WO (1) | WO2018045339A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112531292B (zh) * | 2020-12-11 | 2023-03-31 | 宁波启新精合新能源研究院有限公司 | 一种使用无机有机复合材料制备的锂离子电池隔膜 |
Family Cites Families (218)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2310932A (en) | 1938-11-30 | 1943-02-16 | Brennan | Electrolytic device |
US2277687A (en) | 1939-05-24 | 1942-03-31 | Joseph B Brennan | Electrolytic device |
US2278161A (en) | 1939-10-02 | 1942-03-31 | Joseph B Brennan | Electrolytic device and method of making same |
US2299667A (en) | 1939-10-25 | 1942-10-20 | Aerovox Corp | Electrolytic cell |
US2616165A (en) | 1947-01-18 | 1952-11-04 | Everett D Mccurdy | Electrode for electrolytic devices and methods of making same |
US3141235A (en) | 1963-04-11 | 1964-07-21 | William H Lenz | Powdered tantalum articles |
US3394213A (en) | 1964-03-02 | 1968-07-23 | Roehr Prod Co Inc | Method of forming filaments |
US3277564A (en) | 1965-06-14 | 1966-10-11 | Roehr Prod Co Inc | Method of simultaneously forming a plurality of filaments |
US3379000A (en) | 1965-09-15 | 1968-04-23 | Roehr Prod Co Inc | Metal filaments suitable for textiles |
US3567407A (en) | 1966-06-27 | 1971-03-02 | Whittaker Corp | Composite materials |
US3540114A (en) | 1967-11-21 | 1970-11-17 | Brunswick Corp | Method of forming fine filaments |
US3418106A (en) | 1968-01-31 | 1968-12-24 | Fansteel Inc | Refractory metal powder |
US3557795A (en) | 1968-06-19 | 1971-01-26 | Weck & Co Inc Edward | Suture provided with wound healing coating |
US3473915A (en) | 1968-08-30 | 1969-10-21 | Fansteel Inc | Method of making tantalum metal powder |
US3742369A (en) | 1969-03-13 | 1973-06-26 | R Douglass | Capacitor with fibered valve metal anode |
US3677795A (en) | 1969-05-01 | 1972-07-18 | Gulf Oil Corp | Method of making a prosthetic device |
GB1267699A (en) | 1969-10-01 | 1972-03-22 | Norton Co | Improvements in or relating to porous masses and processes for the production thereof |
US3698863A (en) | 1970-01-29 | 1972-10-17 | Brunswick Corp | Fibrous metal filaments |
US3800414A (en) | 1970-05-13 | 1974-04-02 | Air Reduction | Method of fabricating a hollow composite superconducting structure |
US3740834A (en) | 1971-11-15 | 1973-06-26 | Norton Co | Capacitor with fibered valve metal anode |
US3817746A (en) | 1972-11-14 | 1974-06-18 | Atomic Energy Commission | Ductile superconducting alloys |
US4017302A (en) | 1976-02-04 | 1977-04-12 | Fansteel Inc. | Tantalum metal powder |
US4149277A (en) | 1977-06-22 | 1979-04-17 | General Atomic Company | Artificial tendon prostheses |
US4378330A (en) | 1979-03-12 | 1983-03-29 | The United States Of America As Represented By The Department Of Energy | Ductile alloy and process for preparing composite superconducting wire |
US4551220A (en) | 1982-08-03 | 1985-11-05 | Asahi Glass Company, Ltd. | Gas diffusion electrode material |
US4441927A (en) | 1982-11-16 | 1984-04-10 | Cabot Corporation | Tantalum powder composition |
US4534366A (en) | 1983-08-03 | 1985-08-13 | Soukup Thomas M | Carbon fiber pacing electrode |
US4502884A (en) | 1983-10-27 | 1985-03-05 | Cabot Corporation | Method for producing fiber-shaped tantalum powder and the powder produced thereby |
HUT37689A (en) | 1983-11-11 | 1986-01-23 | Zoltan Leszlauer | Anode structure for electrolytic fibre condensers and method for making thereof |
US5030233A (en) | 1984-10-17 | 1991-07-09 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
US4734827A (en) | 1985-12-23 | 1988-03-29 | Supercon, Inc. | Tantalum capacitor lead wire |
US4674009A (en) | 1985-12-23 | 1987-06-16 | Supercon, Inc. | Tantalum capacitor lead wire |
US4646197A (en) | 1985-12-23 | 1987-02-24 | Supercon, Inc. | Tantalum capacitor lead wire |
US4846834A (en) | 1986-05-27 | 1989-07-11 | Clemson University | Method for promoting tissue adhesion to soft tissue implants |
US4699763A (en) | 1986-06-25 | 1987-10-13 | Westinghouse Electric Corp. | Circuit breaker contact containing silver and graphite fibers |
US4722756A (en) | 1987-02-27 | 1988-02-02 | Cabot Corp | Method for deoxidizing tantalum material |
EP0312495A3 (de) | 1987-10-16 | 1989-08-30 | Institut Straumann Ag | Elektrisches Kabel für die Durchführung mindestens einer Stimulation und/oder Messung in einem menschlichen oder tierischen Körper |
EP0312494A3 (de) | 1987-10-16 | 1991-01-16 | Institut Straumann Ag | Alloplastisches Material für die Bildung eines künstlichen und/oder Verstärkung eines natürlichen Weichgewebeteils |
US5580367A (en) | 1987-11-30 | 1996-12-03 | Cabot Corporation | Flaked tantalum powder and method of using same flaked tantalum powder |
US4940490A (en) | 1987-11-30 | 1990-07-10 | Cabot Corporation | Tantalum powder |
US5211741A (en) | 1987-11-30 | 1993-05-18 | Cabot Corporation | Flaked tantalum powder |
DE3914662A1 (de) | 1989-05-03 | 1990-11-08 | Alt Eckhard | Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe |
US5245415A (en) | 1989-06-21 | 1993-09-14 | Canon Kabushiki Kaisha | Chroma encoder |
US5034857A (en) | 1989-10-06 | 1991-07-23 | Composite Materials Technology, Inc. | Porous electrolytic anode |
US5062025A (en) | 1990-05-25 | 1991-10-29 | Iowa State University Research Foundation | Electrolytic capacitor and large surface area electrode element therefor |
US5185218A (en) | 1990-12-31 | 1993-02-09 | Luz Electric Fuel Israel Ltd | Electrodes for metal/air batteries and fuel cells and metal/air batteries incorporating the same |
US5217526A (en) | 1991-05-31 | 1993-06-08 | Cabot Corporation | Fibrous tantalum and capacitors made therefrom |
US5231996A (en) | 1992-01-28 | 1993-08-03 | Medtronic, Inc. | Removable endocardial lead |
US5282861A (en) | 1992-03-11 | 1994-02-01 | Ultramet | Open cell tantalum structures for cancellous bone implants and cell and tissue receptors |
US5245514A (en) | 1992-05-27 | 1993-09-14 | Cabot Corporation | Extruded capacitor electrode and method of making the same |
US5284531A (en) | 1992-07-31 | 1994-02-08 | Cabot Corporation | Cylindrical metal fibers made from tantalum, columbium, and alloys thereof |
US5324328A (en) | 1992-08-05 | 1994-06-28 | Siemens Pacesetter, Inc. | Conductor for a defibrillator patch lead |
US5448447A (en) | 1993-04-26 | 1995-09-05 | Cabot Corporation | Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom |
US6780180B1 (en) | 1995-06-23 | 2004-08-24 | Gyrus Medical Limited | Electrosurgical instrument |
US5635151A (en) | 1995-11-22 | 1997-06-03 | Motorola, Inc. | Carbon electrode materials for lithium battery cells and method of making same |
US5910382A (en) | 1996-04-23 | 1999-06-08 | Board Of Regents, University Of Texas Systems | Cathode materials for secondary (rechargeable) lithium batteries |
US6007945A (en) | 1996-10-15 | 1999-12-28 | Electrofuel Inc. | Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide |
US5869196A (en) | 1996-12-20 | 1999-02-09 | Composite Material Technology, Inc. | Constrained filament electrolytic anode and process of fabrication |
US5926362A (en) | 1997-05-01 | 1999-07-20 | Wilson Greatbatch Ltd. | Hermetically sealed capacitor |
US5894403A (en) | 1997-05-01 | 1999-04-13 | Wilson Greatbatch Ltd. | Ultrasonically coated substrate for use in a capacitor |
US5920455A (en) | 1997-05-01 | 1999-07-06 | Wilson Greatbatch Ltd. | One step ultrasonically coated substrate for use in a capacitor |
US5908715A (en) | 1997-05-30 | 1999-06-01 | Hughes Electronics Corporation | Composite carbon materials for lithium ion batteries, and method of producing same |
US6143448A (en) | 1997-10-20 | 2000-11-07 | Mitsubishi Chemical Corporation | Electrode materials having carbon particles with nano-sized inclusions therewithin and an associated electrolytic and fabrication process |
JP3467200B2 (ja) * | 1998-01-23 | 2003-11-17 | 松下電器産業株式会社 | 電極金属材料、これを利用したキャパシタ及びそれらの製造方法 |
US7235096B1 (en) | 1998-08-25 | 2007-06-26 | Tricardia, Llc | Implantable device for promoting repair of a body lumen |
US6648903B1 (en) | 1998-09-08 | 2003-11-18 | Pierson, Iii Raymond H. | Medical tensioning system |
JP3620703B2 (ja) | 1998-09-18 | 2005-02-16 | キヤノン株式会社 | 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法 |
US6231993B1 (en) | 1998-10-01 | 2001-05-15 | Wilson Greatbatch Ltd. | Anodized tantalum pellet for an electrolytic capacitor |
EP1020944B1 (en) | 1999-01-14 | 2011-12-07 | Hitachi Chemical Company, Ltd. | Lithium secondary battery, and process for producing the same |
JP4540167B2 (ja) | 1999-02-16 | 2010-09-08 | 東邦チタニウム株式会社 | チタン酸リチウムの製造方法 |
SE9901032D0 (sv) | 1999-03-22 | 1999-03-22 | Pacesetter Ab | Medical electrode lead |
US6374141B1 (en) | 1999-10-08 | 2002-04-16 | Microhelix, Inc. | Multi-lead bioelectrical stimulus cable |
US6319459B1 (en) | 1999-10-18 | 2001-11-20 | Kemet Electronics Corporation | Removal of organic acid based binders from powder metallurgy compacts |
US7410728B1 (en) * | 1999-10-22 | 2008-08-12 | Sanyo Electric Co., Ltd. | Electrode for lithium batteries and rechargeable lithium battery |
WO2001037359A2 (en) | 1999-11-18 | 2001-05-25 | Proton Energy Systems, Inc. | High differential pressure electrochemical cell |
US6316143B1 (en) | 1999-12-22 | 2001-11-13 | The United States Of America As Represented By The Secretary Of The Army | Electrode for rechargeable lithium-ion battery and method of fabrication |
US7146709B2 (en) | 2000-03-21 | 2006-12-12 | Composite Materials Technology, Inc. | Process for producing superconductor |
JP3718412B2 (ja) | 2000-06-01 | 2005-11-24 | キャボットスーパーメタル株式会社 | ニオブまたはタンタル粉末およびその製造方法 |
EP1545705A4 (en) * | 2000-11-16 | 2010-04-28 | Microspherix Llc | FLEXIBLE AND / OR ELASTIC BRACHYTHERAPY SEED OR STRAND |
US8849403B2 (en) | 2001-04-13 | 2014-09-30 | Greatbatch Ltd. | Active implantable medical system having EMI shielded lead |
EP1313158A3 (en) | 2001-11-20 | 2004-09-08 | Canon Kabushiki Kaisha | Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof |
US6980865B1 (en) | 2002-01-22 | 2005-12-27 | Nanoset, Llc | Implantable shielded medical device |
US6687117B2 (en) | 2002-01-31 | 2004-02-03 | Wilson Greatbatch Technologies, Inc. | Electrolytes for capacitors |
US7158837B2 (en) | 2002-07-10 | 2007-01-02 | Oscor Inc. | Low profile cardiac leads |
AU2003272451A1 (en) | 2002-09-16 | 2004-04-30 | Lynntech Coatings, Ltd. | Anodically treated biocompatible implants |
US7342774B2 (en) | 2002-11-25 | 2008-03-11 | Medtronic, Inc. | Advanced valve metal anodes with complex interior and surface features and methods for processing same |
US6859353B2 (en) | 2002-12-16 | 2005-02-22 | Wilson Greatbatch Technologies, Inc. | Capacitor interconnect design |
US7485256B2 (en) | 2003-04-25 | 2009-02-03 | Cabot Corporation | Method of forming sintered valve metal material |
CN1813323B (zh) | 2003-04-28 | 2011-09-14 | 昭和电工株式会社 | 起阀作用的金属的烧结体、其制造方法和固体电解电容器 |
US7073559B2 (en) | 2003-07-02 | 2006-07-11 | Ati Properties, Inc. | Method for producing metal fibers |
US7256982B2 (en) | 2003-05-30 | 2007-08-14 | Philip Michael Lessner | Electrolytic capacitor |
US7094499B1 (en) | 2003-06-10 | 2006-08-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon materials metal/metal oxide nanoparticle composite and battery anode composed of the same |
CA2478004A1 (en) | 2003-08-18 | 2005-02-18 | Wilson Greatbatch Technologies, Inc. | Use of pad printing in the manufacture of capacitors |
US7020947B2 (en) | 2003-09-23 | 2006-04-04 | Fort Wayne Metals Research Products Corporation | Metal wire with filaments for biomedical applications |
US6965510B1 (en) | 2003-12-11 | 2005-11-15 | Wilson Greatbatch Technologies, Inc. | Sintered valve metal powders for implantable capacitors |
US7326204B2 (en) | 2004-01-16 | 2008-02-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Brush electrode and method for ablation |
US8460286B2 (en) | 2004-01-16 | 2013-06-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Conforming electrode |
US7280875B1 (en) | 2004-02-04 | 2007-10-09 | Pacesetter, Inc. | High strength, low resistivity electrode |
WO2005081681A2 (en) | 2004-02-11 | 2005-09-09 | Fort Wayne Metals Research Products Corporation | Drawn strand filled tubing wire |
EP1592031B1 (en) | 2004-04-19 | 2016-04-13 | Greatbatch Ltd. | Flat back case for an electrolytic capacitor |
US7286336B2 (en) | 2004-05-14 | 2007-10-23 | Greatbatch Ltd. | Plasma treatment of anodic oxides for electrolytic capacitors |
US9981063B2 (en) | 2004-11-24 | 2018-05-29 | Mayo Foundation For Medical Education And Research | Biosynthetic composite for osteochondral defect repair |
US7727372B2 (en) | 2004-12-06 | 2010-06-01 | Greatbatch Ltd. | Anodizing valve metals by self-adjusted current and power |
US7271994B2 (en) | 2005-06-08 | 2007-09-18 | Greatbatch Ltd. | Energy dense electrolytic capacitor |
KR20070005149A (ko) | 2005-07-05 | 2007-01-10 | 삼성에스디아이 주식회사 | 음극 활물질, 그의 제조방법 및 이를 채용한 리튬 전지 |
US8129052B2 (en) * | 2005-09-02 | 2012-03-06 | Polyplus Battery Company | Polymer adhesive seals for protected anode architectures |
WO2007025241A2 (en) | 2005-08-26 | 2007-03-01 | Tyco Healthcare Group Lp | Absorbable surgical materials |
US7092242B1 (en) | 2005-09-08 | 2006-08-15 | Greatbatch, Inc. | Polymeric restraints for containing an anode in an electrolytic capacitor from high shock and vibration conditions |
JP5197369B2 (ja) | 2005-09-29 | 2013-05-15 | ニンシア オリエント タンタル インダストリー カンパニー、 リミテッド | 金属粒子を球状に造粒し塊成化する方法 |
US20070093834A1 (en) | 2005-10-06 | 2007-04-26 | Stevens Peter M | Bone alignment implant and method of use |
US7612291B2 (en) | 2005-11-10 | 2009-11-03 | Cardiac Pacemakers, Inc. | Composite wire for implantable cardiac lead conductor cable and coils |
JP4666155B2 (ja) | 2005-11-18 | 2011-04-06 | ソニー株式会社 | リチウムイオン二次電池 |
US7879217B2 (en) | 2005-12-02 | 2011-02-01 | Greatbatch Ltd. | Method of forming valve metal anode pellets for capacitors using forced convection of liquid electrolyte during anodization |
US7603153B2 (en) | 2005-12-12 | 2009-10-13 | Sterling Investments Lc | Multi-element probe array |
US7906238B2 (en) | 2005-12-23 | 2011-03-15 | 3M Innovative Properties Company | Silicon-containing alloys useful as electrodes for lithium-ion batteries |
US7072171B1 (en) | 2006-02-13 | 2006-07-04 | Wilson Greatbatch Technologies, Inc. | Electrolytic capacitor capable of insertion into the vasculature of a patient |
US20070244548A1 (en) | 2006-02-27 | 2007-10-18 | Cook Incorporated | Sugar-and drug-coated medical device |
US20070214857A1 (en) | 2006-03-17 | 2007-09-20 | James Wong | Valve metal ribbon type fibers for solid electrolytic capacitors |
DE112007001100T5 (de) | 2006-05-05 | 2009-05-14 | Cabot Corp., Boston | Tantalpulver mit glatter Oberfläche und Verfahren zur Herstellung desselben |
WO2008039707A1 (en) | 2006-09-26 | 2008-04-03 | Composite Materials Technology, Inc. | Methods for fabrication of improved electrolytic capacitor anode |
US8224457B2 (en) | 2006-10-31 | 2012-07-17 | St. Jude Medical Ab | Medical implantable lead |
US9403213B2 (en) | 2006-11-13 | 2016-08-02 | Howmedica Osteonics Corp. | Preparation of formed orthopedic articles |
US7483260B2 (en) | 2006-12-22 | 2009-01-27 | Greatbatch Ltd. | Dual anode capacitor with internally connected anodes |
US8216712B1 (en) | 2008-01-11 | 2012-07-10 | Enovix Corporation | Anodized metallic battery separator having through-pores |
EP2110824A4 (en) | 2007-02-16 | 2015-02-25 | Panasonic Corp | CONDENSATE UNIT AND MANUFACTURING METHOD THEREFOR |
US7813107B1 (en) | 2007-03-15 | 2010-10-12 | Greatbatch Ltd. | Wet tantalum capacitor with multiple anode connections |
US8764764B2 (en) | 2007-03-21 | 2014-07-01 | The University Of North Carolina At Chapel Hill | Surgical plate puller devices and methods for use with surgical bone screw/plate systems |
WO2008154608A1 (en) | 2007-06-11 | 2008-12-18 | Nanovasc, Inc. | Stents |
US20090075863A1 (en) | 2007-07-10 | 2009-03-19 | Mayo Foundation For Medical Education And Research | Periosteal Tissue Grafts |
DE102007036653A1 (de) | 2007-07-25 | 2009-02-05 | Varta Microbattery Gmbh | Elektroden und Lithium-Ionen-Zellen mit neuartigem Elektrodenbinder |
US7837743B2 (en) | 2007-09-24 | 2010-11-23 | Medtronic, Inc. | Tantalum anodes for high voltage capacitors employed by implantable medical devices and fabrication thereof |
CN101808770A (zh) | 2007-10-15 | 2010-08-18 | 高温特殊金属公司 | 利用回收的废料作为源材料制备钽粉末的方法 |
US8081419B2 (en) | 2007-10-17 | 2011-12-20 | Greatbatch Ltd. | Interconnections for multiple capacitor anode leads |
WO2009082631A1 (en) | 2007-12-26 | 2009-07-02 | Composite Materials Technology, Inc. | Methods for fabrication of improved electrolytic capacitor anode |
US9564629B2 (en) | 2008-01-02 | 2017-02-07 | Nanotek Instruments, Inc. | Hybrid nano-filament anode compositions for lithium ion batteries |
US8435676B2 (en) * | 2008-01-09 | 2013-05-07 | Nanotek Instruments, Inc. | Mixed nano-filament electrode materials for lithium ion batteries |
US8172908B2 (en) | 2008-01-17 | 2012-05-08 | The University Of Hong Kong | Implant for tissue engineering |
US7852615B2 (en) | 2008-01-22 | 2010-12-14 | Avx Corporation | Electrolytic capacitor anode treated with an organometallic compound |
US7983022B2 (en) | 2008-03-05 | 2011-07-19 | Greatbatch Ltd. | Electrically connecting multiple cathodes in a case negative multi-anode capacitor |
US20090228021A1 (en) | 2008-03-06 | 2009-09-10 | Leung Jeffrey C | Matrix material |
JP4936142B2 (ja) | 2008-03-21 | 2012-05-23 | 福田金属箔粉工業株式会社 | 導電性ペースト組成物及び電子回路並びに電子部品 |
JP4844849B2 (ja) | 2008-04-23 | 2011-12-28 | ソニー株式会社 | リチウムイオン二次電池用負極およびリチウムイオン二次電池 |
US9786944B2 (en) | 2008-06-12 | 2017-10-10 | Massachusetts Institute Of Technology | High energy density redox flow device |
US8722226B2 (en) | 2008-06-12 | 2014-05-13 | 24M Technologies, Inc. | High energy density redox flow device |
JP5575757B2 (ja) | 2008-06-12 | 2014-08-20 | マサチューセッツ インスティテュート オブ テクノロジー | 高エネルギー密度レドックスフロー装置 |
JP2010033678A (ja) * | 2008-07-30 | 2010-02-12 | Toshiba Storage Device Corp | ディスク装置、回路基板およびエラーログ情報記録方法 |
WO2010033873A1 (en) | 2008-09-19 | 2010-03-25 | Fort Wayne Metals Research Products Corporation | Fatigue damage resistant wire and method of production thereof |
US8673025B1 (en) | 2008-12-11 | 2014-03-18 | Composite Materials Technology, Inc. | Wet electrolytic capacitor and method for fabricating of improved electrolytic capacitor cathode |
DE102009009557A1 (de) | 2009-02-19 | 2010-09-02 | W.C. Heraeus Gmbh | Elektrisch leitende Materialien, Zuleitungen und Kabel für Stimulationselektroden |
US20100255376A1 (en) | 2009-03-19 | 2010-10-07 | Carbon Micro Battery Corporation | Gas phase deposition of battery separators |
EP3240078A1 (en) | 2009-04-06 | 2017-11-01 | 24M Technologies, Inc. | Fuel system |
US8257866B2 (en) | 2009-05-07 | 2012-09-04 | Amprius, Inc. | Template electrode structures for depositing active materials |
JP2010265520A (ja) | 2009-05-15 | 2010-11-25 | Cabot Supermetal Kk | タンタル混合粉末及びその製造方法、並びにタンタルペレット及びその製造方法。 |
US8450012B2 (en) | 2009-05-27 | 2013-05-28 | Amprius, Inc. | Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries |
US10366802B2 (en) * | 2009-06-05 | 2019-07-30 | University of Pittsburgh—of the Commonwealth System of Higher Education | Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems |
US20110020701A1 (en) | 2009-07-16 | 2011-01-27 | Carbon Micro Battery Corporation | Carbon electrode structures for batteries |
CN102725006B (zh) | 2009-10-07 | 2014-10-22 | 百傲图科技有限公司 | 多孔性组织支架 |
US20120239162A1 (en) | 2009-10-07 | 2012-09-20 | Bio2 Technologies, Inc | Devices and Methods for Tissue Engineering |
KR101084077B1 (ko) | 2009-10-14 | 2011-11-16 | 삼성에스디아이 주식회사 | 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지 |
EP2494602A1 (en) | 2009-10-26 | 2012-09-05 | Trustees of Boston College | Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same |
WO2011060024A2 (en) | 2009-11-11 | 2011-05-19 | Amprius, Inc. | Open structures in substrates for electrodes |
WO2011069161A1 (en) | 2009-12-04 | 2011-06-09 | Composite Materials Technology, Inc. | Biocompatible tantalum fiber scaffolding for bone and soft tissue prosthesis |
US20140170498A1 (en) | 2010-01-18 | 2014-06-19 | Enevate Corporation | Silicon particles for battery electrodes |
JP6148012B2 (ja) | 2010-01-18 | 2017-06-14 | エネヴェート・コーポレーション | 電気化学的ストレージ用の複合材料 |
US20110189510A1 (en) * | 2010-01-29 | 2011-08-04 | Illuminex Corporation | Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same |
JP2013522859A (ja) | 2010-03-22 | 2013-06-13 | アンプリウス、インコーポレイテッド | 電気化学的活物質のナノ構造の相互接続 |
WO2011127384A1 (en) | 2010-04-09 | 2011-10-13 | Massachussetts Institute Of Technology | Energy transfer using electrochemically isolated fluids |
US20110311888A1 (en) | 2010-06-22 | 2011-12-22 | Basf Se | Electrodes and production and use thereof |
WO2012024499A1 (en) | 2010-08-18 | 2012-02-23 | Massachusetts Institute Of Technology | Stationary, fluid redox electrode |
US8598154B2 (en) | 2010-08-27 | 2013-12-03 | Corcept Therapeutics, Inc. | Pyridyl-amine fused azadecalin modulators |
US20120094192A1 (en) | 2010-10-14 | 2012-04-19 | Ut-Battelle, Llc | Composite nanowire compositions and methods of synthesis |
SG189157A1 (en) | 2010-10-15 | 2013-05-31 | Univ Nanyang Tech | A memristor comprising a protein and a method of manufacturing thereof |
JP2012109224A (ja) | 2010-10-27 | 2012-06-07 | Ube Ind Ltd | 導電性不織布、及びそれを用いた二次電池 |
WO2012083239A1 (en) | 2010-12-16 | 2012-06-21 | 24M Technologies, Inc. | Stacked flow cell design and method |
US9397338B2 (en) | 2010-12-22 | 2016-07-19 | Enevate Corporation | Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells |
EP2656428A4 (en) | 2010-12-23 | 2016-10-26 | 24M Technologies Inc | SEMI-FULL-FILLED BATTERY AND MANUFACTURING METHOD THEREFOR |
KR101806547B1 (ko) | 2011-04-06 | 2018-01-10 | 주식회사 제낙스 | 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법 |
WO2012138302A1 (en) | 2011-04-07 | 2012-10-11 | Nanyang Technological University | Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof |
US9065093B2 (en) | 2011-04-07 | 2015-06-23 | Massachusetts Institute Of Technology | Controlled porosity in electrodes |
SE535837C2 (sv) | 2011-04-14 | 2013-01-08 | Bae Systems Bofors Ab | Fenutfällningsmekanism |
RU2560912C2 (ru) | 2011-04-27 | 2015-08-20 | Колгейт-Палмолив Компани | Упаковка для устройств по уходу за полостью рта |
JP6301253B2 (ja) | 2011-09-07 | 2018-03-28 | 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. | 多孔質電流コレクタを有する半固体電極セル及び製造方法 |
KR101317812B1 (ko) * | 2011-09-26 | 2013-10-15 | 공주대학교 산학협력단 | 코어 쉘 구조를 갖는 나노 구조체, 이의 제조 방법 및 리튬 이온 전지 |
WO2013066963A2 (en) * | 2011-10-31 | 2013-05-10 | The Trustees Of Boston College | Hetero-nanostructure materials for use in energy-storage devices and methods of fabricating same |
JP6059941B2 (ja) * | 2011-12-07 | 2017-01-11 | 株式会社半導体エネルギー研究所 | リチウム二次電池用負極及びリチウム二次電池 |
WO2013130690A1 (en) | 2012-03-02 | 2013-09-06 | Cornell University | Lithium ion batteries comprising nanofibers |
US8849421B2 (en) | 2012-04-19 | 2014-09-30 | Medtronic, Inc. | Medical leads having forced strain relief loops |
US20130314844A1 (en) | 2012-05-23 | 2013-11-28 | Nanyang Technological University | Method of preparing reduced graphene oxide foam |
US8647770B2 (en) | 2012-05-30 | 2014-02-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Bismuth-tin binary anodes for rechargeable magnesium-ion batteries |
GB2502625B (en) * | 2012-06-06 | 2015-07-29 | Nexeon Ltd | Method of forming silicon |
US9484569B2 (en) | 2012-06-13 | 2016-11-01 | 24M Technologies, Inc. | Electrochemical slurry compositions and methods for preparing the same |
KR101825918B1 (ko) | 2012-08-24 | 2018-02-06 | 삼성에스디아이 주식회사 | 음극 및 이를 포함하는 리튬 전지 |
US8993159B2 (en) | 2012-12-13 | 2015-03-31 | 24M Technologies, Inc. | Semi-solid electrodes having high rate capability |
US20140234699A1 (en) | 2013-02-19 | 2014-08-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Anode materials for magnesium ion batteries |
US9012086B2 (en) | 2013-03-05 | 2015-04-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Active material for rechargeable magnesium ion battery |
KR102193268B1 (ko) | 2013-03-14 | 2020-12-23 | 에네베이트 코포레이션 | 전기화학 전지 스택을 위한 클램핑 디바이스 |
US9437864B2 (en) | 2013-03-15 | 2016-09-06 | 24M Technologies, Inc. | Asymmetric battery having a semi-solid cathode and high energy density anode |
JPWO2014147885A1 (ja) * | 2013-03-21 | 2017-02-16 | 国立大学法人京都大学 | 金属ナノワイヤー不織布、及び二次電池用電極 |
US9444094B2 (en) | 2013-04-25 | 2016-09-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Preparation of high energy-density electrode materials for rechargeable magnesium batteries |
KR101530963B1 (ko) | 2013-06-20 | 2015-06-25 | 국립대학법인 울산과학기술대학교 산학협력단 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지 |
KR101666699B1 (ko) | 2013-06-24 | 2016-10-14 | 주식회사 제낙스 | 이차 전지용 집전체 및 이를 이용한 전극 |
US9728777B2 (en) * | 2013-07-26 | 2017-08-08 | Nanoteck Instruments, Inc. | Methods for mass-producing silicon nano powder and graphene-doped silicon nano powder |
US20150044553A1 (en) | 2013-08-07 | 2015-02-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Cathode active material for non-aqueous rechargeable magnesium battery |
US9312075B1 (en) | 2013-09-06 | 2016-04-12 | Greatbatch Ltd. | High voltage tantalum anode and method of manufacture |
US9633796B2 (en) | 2013-09-06 | 2017-04-25 | Greatbatch Ltd. | High voltage tantalum anode and method of manufacture |
JP2016531839A (ja) | 2013-09-16 | 2016-10-13 | ナンヤン テクノロジカル ユニヴァーシティー | 長尺状チタネートナノチューブ、その合成方法、及びその使用 |
CN103633305B (zh) * | 2013-12-10 | 2015-09-23 | 苏州宇豪纳米材料有限公司 | 锂离子电池硅复合负极材料及其制备方法 |
CN103779534B (zh) * | 2014-01-21 | 2017-02-01 | 南京安普瑞斯有限公司 | 独立的一维共轴纳米结构 |
CN104009210B (zh) * | 2014-05-04 | 2016-06-08 | 昆明理工大学 | 一种多孔硅/碳复合材料、制备方法及用途 |
CN104009211B (zh) * | 2014-05-13 | 2017-04-12 | 昆明理工大学 | 一种多孔硅纳米纤维/碳复合材料的制备方法 |
US9498316B1 (en) | 2014-07-10 | 2016-11-22 | Composite Materials Technology, Inc. | Biocompatible extremely fine tantalum filament scaffolding for bone and soft tissue prosthesis |
US9155605B1 (en) | 2014-07-10 | 2015-10-13 | Composite Materials Technology, Inc. | Biocompatible extremely fine tantalum filament scaffolding for bone and soft tissue prosthesis |
CN107073575B (zh) | 2014-08-20 | 2020-03-31 | 宁夏东方钽业股份有限公司 | 一种复合钽粉及其制备方法及该钽粉制备的电容器阳极 |
CN104577045B (zh) * | 2014-12-20 | 2018-07-10 | 江西正拓新能源科技股份有限公司 | 一种锂离子电池硅-碳复合材料及其制备方法 |
CN107710474B (zh) | 2015-05-15 | 2021-06-29 | 复合材料技术公司 | 改进的高容量充电电池 |
US20170125178A1 (en) | 2015-10-30 | 2017-05-04 | Greatbatch Ltd. | High voltage dual anode tantalum capacitor with facing casing clamshells contacting an intermediate partition |
US9875855B2 (en) | 2015-10-30 | 2018-01-23 | Greatbatch Ltd. | High voltage tantalum capacitor with improved cathode/separator design and method of manufacture |
US9978528B2 (en) | 2015-11-20 | 2018-05-22 | Greatbatch Ltd. | High voltage capacitor having a dual tantalum anode/cathode current collector electrode assembly housed in a dual separator envelope design |
-
2017
- 2017-09-01 WO PCT/US2017/049950 patent/WO2018045339A1/en unknown
- 2017-09-01 JP JP2019511852A patent/JP6761899B2/ja active Active
- 2017-09-01 KR KR1020197009289A patent/KR20190077321A/ko not_active Application Discontinuation
- 2017-09-01 EP EP17847651.1A patent/EP3507242B1/en active Active
- 2017-09-01 US US15/694,575 patent/US10230110B2/en not_active Ceased
- 2017-09-01 CN CN201780050465.XA patent/CN109562950B/zh active Active
-
2019
- 2019-09-23 US US16/579,586 patent/USRE49419E1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109562950A (zh) | 2019-04-02 |
JP2019532466A (ja) | 2019-11-07 |
EP3507242B1 (en) | 2021-07-14 |
EP3507242A4 (en) | 2020-04-08 |
US20180062177A1 (en) | 2018-03-01 |
US10230110B2 (en) | 2019-03-12 |
JP6761899B2 (ja) | 2020-09-30 |
USRE49419E1 (en) | 2023-02-14 |
WO2018045339A1 (en) | 2018-03-08 |
EP3507242A1 (en) | 2019-07-10 |
CN109562950B (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101432509B1 (ko) | 실리콘 또는 실리콘-기재 물질로 이루어진 구조화된 입자의 제조 방법 및 리튬 재충전용 배터리에서의 그의 용도 | |
TWI625885B (zh) | 用於多孔性矽顆粒生產之經結合之電化學及化學蝕刻方法 | |
JP5535158B2 (ja) | リチウムイオン二次電池用負極、リチウムイオン二次電池、およびリチウムイオン二次電池用負極の製造方法 | |
US11165067B2 (en) | Porous current collector and electrode for an electrochemical battery | |
US20090186267A1 (en) | Porous silicon particulates for lithium batteries | |
JP5927710B2 (ja) | 負極活物質、負極、リチウム二次電池、および多孔性複合体の製造方法 | |
CN117203157A (zh) | 用在锂离子基二次电池中的纳米结构化硅材料及制造方法 | |
USRE49419E1 (en) | Nano-scale/nanostructured Si coating on valve metal substrate for lib anodes | |
WO2023202665A1 (en) | Positive electrode lithium-rich composite current collectors and methods for preparing the same | |
US10403902B2 (en) | High capacity rechargeable batteries | |
CN113745471B (zh) | 电极复合材料、电极复合材料的制作方法以及充电电池电极 | |
CN111261843B (zh) | 电极复合材料颗粒、电池电极以及充电电池 | |
TWI823005B (zh) | 電極複合材料、電極複合材料的製作方法以及電池電極 | |
EP3933973A1 (en) | Secondary battery negative electrode, secondary battery, and manufacturing method of secondary battery negative electrode | |
Iwamura et al. | SYNTHESIS OF SI/C COMPOSITES WITH NANOCAVITIES AROUND SI NANOPARTICLES AND THEIR PERFORMANCE FOR LI INSERTION/EXTRACTION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |