Nothing Special   »   [go: up one dir, main page]

KR20190002013U - LiDAR 장치 - Google Patents

LiDAR 장치 Download PDF

Info

Publication number
KR20190002013U
KR20190002013U KR2020197000041U KR20197000041U KR20190002013U KR 20190002013 U KR20190002013 U KR 20190002013U KR 2020197000041 U KR2020197000041 U KR 2020197000041U KR 20197000041 U KR20197000041 U KR 20197000041U KR 20190002013 U KR20190002013 U KR 20190002013U
Authority
KR
South Korea
Prior art keywords
lidar device
sipm
sipm detector
optical system
detector
Prior art date
Application number
KR2020197000041U
Other languages
English (en)
Inventor
살바토레 그네치
존 칼튼 잭슨
Original Assignee
센스엘 테크놀로지스 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/377,263 external-priority patent/US10422862B2/en
Application filed by 센스엘 테크놀로지스 엘티디. filed Critical 센스엘 테크놀로지스 엘티디.
Publication of KR20190002013U publication Critical patent/KR20190002013U/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/936
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

레이저 펄스를 방출하는 레이저 소스를 포함하는 LiDAR 장치. SiPM 검출기는 반사 광자를 검출하기 위해 구비된다. 광학계와 구경 조리개가 구비된다. SiPM 검출기의 시야각을 제한하기 위해 구경 조리개가 SiPM 검출기와 광학계의 중간에 구비된다.

Description

LiDAR 장치
본 발명은 LiDAR 장치에 관한 것이다. 특히, LiDAR 장치가 소형 환경에서 작동하기 적합하도록 초점 길이 요건을 최소화하기 위해 구경 조리개(aperture stop)를 갖는 광학부를 포함하는 LiDAR 장치에 관한 것이나, 이에 국한되는 것은 아니다.
실리콘 광전자 배증관(Silicon Photomultiplier, SiPM)은 단일 광자 감도의 고성능 고체 상태 센서이다. 이 센서는 집적된 퀀치 저항기(quench resistor)를 가지는 밀집 포장된 단일 광자 애벌랜치 포토 다이오드(Single Photon Avalanche Photodiode, SPAD) 센서의 합산된 어레이로 형성되며, ~30 V의 바이어스 전압에서 높은 게인(~1 × 106), 높은 검출 효율(> 50%), 및 빠른 타이밍(서브-ns 상승 시간)이 모두 달성된 소형 센서를 구현할 수 있다. 자동차 고급 운전 보조 시스템(Advanced Drivber Assistance System, ADAS), 3D 깊이 맵, 모바일, 소비자 및 산업 범위와 같은 아이-세이프 근적외선 파장을 사용하는 LiDAR(광 검출 및 범위 측정) 어플리케이션은 소형 환경에서 활용된다. LiDAR 시스템은 전형적으로 소형 환경에서 작동하기에 부적합하게 만드는 큰 초점 거리를 갖는 광학계를 필요로 한다.
따라서, SiPM 기술을 활용하고 종래 기술의 단점 중 적어도 일부를 해소하는 LiDAR 시스템을 제공할 필요가 있다.
실리콘 광전자 배증관(SiPM)은 검출기 데드 타임(dead time)으로 인해 높은 주변 광 조건에서의 포화 상태를 겪는다. 본 개시는 원하지 않은 노이즈, 즉, 비간섭성 주변 광을 수집하는 것을 피하기 위해 SiPM 검출기의 화각(AoV)을 제한함으로써 이 문제를 해결한다. 큰 센서에 대한 좁은 화각은 단일-렌즈 광학계 시스템에서 긴 초점 길이를 필요로 한다. 이러한 초점 길이는 소형 시스템에는 적합하지 않다. 본 해결책은 SiPM를 구경 조리개 요소를 갖는 수신기 렌즈와 쌍으로 한다. 구경 조리개 요소는 넓은 화각으로부터 오는 광을 차단하고, 초점 길이 렌즈 배치의 작동에 효과적으로 도달하도록 수집된 광을 SiPM의 전체 면적에 분산시킨다.
이에 따라, 본 발명은,
레이저 펄스를 방출하는 레이저 소스;
검출된 반사 광자에 대한 SiPM 검출기;
광학계; 및
상기 SiPM 검출기의 화각을 제한하기 위해 상기 SiPM 검출기와 상기 광학계 중간에 구비된 구경 조리개를 포함하는, LiDAR 장치를 제공한다.
일 양태에서, 광학계는 수신 렌즈를 포함한다.
또 다른 양태에서, 광학계는 송신 렌즈를 포함한다.
추가의 양태에서, 광학계는 단일 렌즈가 송신 및 수신에 활용되도록 빔 스플리터를 포함한다.
일 양태에서, 빔 스플리터는 단일 렌즈 및 SiPM 검출기의 중간에 위치된 편광 거울을 포함한다.
예시적인 양태에서, SiPM 검출기는 단일-광자 센서이다.
또 다른 양태에서, SiPM 검출기는 단일 광자 애벌랜치 포토 다이오드(Single Photon Avalanche Photodiode, SPAD) 센서의 합계된 어레이로 형성된다.
일 양태에서, 구경 조리개는 광학계의 초점에 위치된다.
또 다른 양태에서, 구경 조리개는 SiPM 검출기의 활성 면적의 크기에 기초하여 필요한 화각과 매칭되는 치수를 갖는다.
추가의 양태에서, 화각은 1도 보다 작다.
예시적인 양태에서, 수신기 광학계와 SiPM 검출기 사이의 총 길이는 10cm 이하이다.
또 다른 양태에서, 수신기 광학계와 SiPM 검출기 사이의 총 길이는 1cm 내지 6cm의 범위 내에 있다.
또 다른 양태에서, 수신기 광학계와 SiPM 검출기 사이의 총 길이는 5cm 미만이다.
일 예시에서, 구경 조리개의 크기는 센서 면적의 크기 및 광학계의 초점 길이에 기초하여 결정된다.
일 양태에서, 구경 조리개는 SiPM 검출기의 총 활성 면적에 걸쳐 광학계에 의해 수집된 광을 산란시킨다.
추가의 양태에서, 주어진 초점 길이 f에 대해, 치수 L x,y 를 가지고 초점에 위치된 SiPM 검출기의 화각
Figure ptm00001
은:
Figure ptm00002
으로 주어지고, 여기서
수신 렌즈의 초점 길이 : f
센서 수평 및 수직 길이 : L x , L y
센서 수평 및 수직 화각 :
Figure ptm00003
.
일 양태에서, 구경 조리개는
Figure ptm00004
에 따른
필요한 화각과 매칭하기 위한 치수를 가지며,
여기서:
수신 렌즈의 초점 길이 : f
센서 화각 :
Figure ptm00005
구경 조리개 크기 : P x,y .
추가의 양태에서, 레이저 소스는 아이-세이프 레이저 소스이다.
또 다른 양태에서, 레이저 소스는 저전력 레이저이다.
일 양태에서, SiPM 검출기는 마이크로-셀의 매트릭스를 포함한다.
또한, 본 발명은 LiDAR 장치를 포함하는 자동차 시스템에 관한 것으로, LiDAR 장치는:
레이저 펄스를 방출하는 레이저 소스;
검출된 반사 광자에 대한 SiPM 검출기;
광학계; 및
상기 SiPM 검출기의 화각을 제한하기 위해 상기 SiPM 검출기와 상기 광학계의 중간에 구비된 구경 조리개를 포함한다.
이들 및 다른 특징은 본 교시의 이해를 돕기 위해 제공되는 이하의 도면을 참조하여 더 잘 이해될 것이다.
본 교시는 첨부된 도면을 참조하여 이하에서 기술될 것이다.
도 1은 실리콘 광전자 배증관의 예시적인 구조를 도시한다.
도 2는 예시적인 실리콘 광전자 배증관의 개략적인 회로도이다.
도 3은 직접적인 ToF 범위 측정을 위한 예시적인 기술을 도시한다.
도 4는 예시적인 ToF 범위 측정 시스템을 도시한다.
도 5는 도 4의 ToF 범위 측정 시스템을 사용하여 생성된 히스토그램을 도시한다.
도 6은 SiPM 검출기가 통합된 예시적인 LiDAR 장치를 도시한다.
도 6a는 도 6의 LiDAR 장치를 상세하게 도시한다.
도 7은 본 발명의 교시에 따른 LiDAR 장치를 상세하게 도시한다.
도 8은 본 발명의 교시에 따른 LiDAR 장치를 상세하게 도시한다.
도 9는 또한 본 발명의 교시에 따른 또 다른 LiDAR 장치를 도시한다.
본 발명은 이제 SiPM 센서를 이용하는 예시적인 LiDAR 장치를 참조하여 기술될 것이다. 예시적인 LiDAR 장치는 교시의 이해를 돕기 위해 제공되는 것이며, 어떠한 방식으로도 제한하는 것으로 해석되어서는 안된다는 것이 이해될 것이다. 또한, 임의의 한 도면을 참조하여 기술된 회로 요소 또는 구성 요소는 본 발명의 교시의 사상을 벗어나지 않으면서 다른 도면 또는 다른 등가 회로 요소의 회로 요소 또는 구성 요소와 상호 교환될 수 있다. 설명의 간략화 및 명료화를 위해, 적절한 것으로 고려되는 경우에 대응하거나 유사한 요소를 나타내기 위해 도면들 사이에서 참조 부호가 반복될 수 있다는 것을 이해할 것이다.
처음에 도 1을 참조하면, 가이거 모드 포토 다이오드의 어레이를 포함하는 실리콘 광전자 배증관(100)이 도시된다. 도시된 바와 같이, 퀀치 저항기는 애벌랜치 전류를 제한하는데 사용될 수 있는 각각의 포토 다이오드에 인접하여 구비된다. 포토 다이오드는 알루미늄 또는 유사한 전도성 트랙킹(conductive tracking)에 의해 공통 바이어싱(common biasing) 및 접지 전극에 전기적으로 연결된다. 다이오드의 양단에 바이어스 전압을 인가하기 위해 포토 다이오드의 어레이의 애노드가 공통 접지 전극에 연결되고 어레이의 캐소드가 전류 제한 저항기를 통해 공통 바이어스 전극에 연결되는 종래의 실리콘 광전자 배증관(200)에 대한 개략적인 회로가 도 2에 도시되어 있다.
실리콘 광전자 배증관(100)은 작고, 전기적과 광학적으로 절연된 가이거 모드 포토 다이오드(215)의 고밀도 어레이를 통합한다. 각각의 포토 다이오드(215)는 퀀치 저항기(220)에 직렬로 결합된다. 각각의 포토 다이오드(215)는 마이크로 셀이라 불린다. 마이크로 셀의 개수는 전형적으로 mm2 당 100 내지 3000 개이다. 그 후, 모든 마이크로 셀의 신호가 합산되어서 SiPM(200)의 출력을 형성한다. 단순화된 전기 회로가 도 2의 개념을 설명하기 위해 제공된다. 각 마이크로 셀은 동일하고 독립적으로 광자를 검출한다. 이들 각각의 개별적인 2진수 검출기로부터의 방전 전류의 합은 유사한 아날로그 출력을 형성하기 위해 결합되기 때문에, 입사 광자 플럭스의 크기에 대한 정보를 제공할 수 있다.
각 마이크로 셀은 마이크로 셀이 가이거 항복을 겪을 때마다 매우 균일하고 양자화된 전하량을 생성한다. 마이크로 셀(및 따라서 검출기)의 이득은 전자의 전하에 대한 출력 전하의 비율로 정의된다. 출력 전하는 과전압 및 마이크로 셀 커패시턴스로부터 계산될 수 있다.
Figure ptm00006
G는 마이크로 셀의 이득이고,
C는 마이크로 셀의 커패시턴스이며,
△V는 과전압이고,
q는 전자의 전하이다.
LiDAR는 모바일 범위 검색, 자동차 고급 운전 보조 시스템(Advanced Drivber Assistance System, ADAS), 제스처 인식, 및 3D 매핑과 같은 어플리케이션에 점차 더 많이 채용되고 있는 다방면 기술이다. 포토 센서로서 SiPM 센서를 채용하는 것은, 특히나 모바일 및 대량 생산 제품의 경우에 애벌랜치 포토 다이오드(avalanche photodiode, APD), PIN 다이오드, 및 광전자 배증관 튜브(photomultiplier tube, PMT)와 같은 대안적인 센서 기술에 비해 많은 이점을 가진다. 직접 ToF 범위 측정 시스템에 전형적으로 사용되는 기본 구성 요소는 도 3에 도시되어 있다. 직접 ToF 기술에서, 주기적인 레이저 펄스(305)가 목표(307)에 지향된다. 목표(307)는 레이저 광자를 산란 및 반사시키고, 광자 중 일부는 검출기(315) 쪽으로 다시 반사된다. 검출기(315)는 검출된 레이저 광자 (및 노이즈로 인해 일부 검출된 광자)를 전기 신호로 변환하고, 이후 그 전기 신호는 타이밍 전자 장치(325)에 의해 타임 스탬핑(timestamped)된다.
전파 시간, t는 이하의 식으로부터 목표까지의 거리 D를 계산하는데 사용될 수 있다.
Figure ptm00007
식 1
여기서, c= 광의 속도;
△t= 비행 시간.
검출기(315)는 되돌아온 레이저 광자를 노이즈(주변 광)으로부터 구별해야만 한다. 레이저 펄스 당 적어도 하나의 타임 스탬프가 캡쳐된다. 이를 단일-샷(single-shot) 측정이라고 한다. 검출된 레이저 펄스의 타이밍이 높은 정밀도 및 정확도로 추출될 수 있는 범위 측정치를 생성하기 위해 많은 단일샷 측정치로부터의 데이터가 결합되는 경우 신호 대 노이즈 비율이 극적으로 개선될 수 있다.
이제 도 4를 참조하면, 감지 면적(405)을 정의하는 단일 광자 애벌랜치 포토 다이오드(SPAD)의 어레이를 포함하는 예시적인 SiPM 센서(400)가 도시되어 있다. 보정 광학계를 제공하기 위해 렌즈(410)가 제공된다. 렌즈 시스템의 주어진 초점 길이 f에 대해, L x , L y 치수를 가지고 초점에 위치된 센서의 화각
Figure ptm00008
Figure ptm00009
식 2
에 의해 주어지고,
여기서,
수신 렌즈의 초점 길이: f
센서 수평 및 수직 길이: L x , L y
센서 화각:
Figure ptm00010
즉, 짧은 초점 길이가 사용되는 경우 큰 센서는 큰 화각을 갖는다는 것을 의미한다. 렌즈 조리개가 넓어지면, 되돌아온 레이저 광자의 개수는 일정하게 유지되는 반면 더 많은 주변 광자가 검출된다. SiPM(400)은 도 5의 히스토그램 윈도우의 시작에서의 큰 오버슛으로부터 명백한 바와 같이 포화되는 경향이 있다. 센서(400)가 포화되는 경우, 레이저 광자는 SiPM(400)에 의해 더이상 검출될 수 없으며, 신호 검출율을 낮추고 전체적인 SNRH를 낮추는 것을 유도한다.
도 6은 송신 렌즈(604)를 통해 주기적인 레이저 펄스(607)를 송신하기 위해 레이저 소스(605)를 포함하는 예시적인 LiDAR 시스템(600)을 도시한다. 목표(608)는 레이저 광자(612)를 수신 렌즈(610)를 통해 산란 및 반사시키고, 일부 광자는 SiPM 센서(615)를 향해 다시 반사된다. SiPM 센서(615)는 노이즈로 인해 검출된 레이저 광자 및 일부 검출된 광자를 전기 신호로 변환하고, 이후 전기 신호는 타이밍 전자 장치에 의해 타임스탬핑된다. SiPM 센서(610)가 포화점에 도달하는 것을 피하기 위해, 초점 길이는 비교적 길게 유지될 필요가 있다. 렌즈 시스템의 주어진 초점 길이 f에 대해, 초점에 위치되고 길이 L을 가지는 SiPM 센서(615)의 화각
Figure ptm00011
은 식 2에 의해 주어진다. 따라서, 큰 센서는 도 6a에 도시된 바와 같이 짧은 초점 길이가 사용되는 경우 큰 화각을 필요로 한다. 수십도 정도, 최대 90°+까지의 넓은 화각(AoV)은 레이저가 전형적으로 각도 분해능을 위해 장면을 스캔하는 동안 검출기가 장면을 응시하는 최첨단 LiDAR 센서에서 사용된다. 이 센서는 전형적으로 주변 광 차단이 강한 PIN 및 애벌랜치 다이오드에 기초한다. 그러나, 신호 대 노이즈 비율 SNR은 노이즈 레벨이 LiDAR 시스템의 정확도를 제한하는 수신기 AoV에 의해 설정되기 때문에 넓은 화각에 의해 큰 영향을 받는다. 더욱이, 이들 디바이스는 되돌아온 광자의 개수가 단일 광자 검출 효율을 필요로 하는 장거리 범위 검출 LiDAR에 적합하지 않다.
SPAD 또는 SiPM 센서와 같은 좁은 화각을 사용하는 SiPM 검출기는 단일 광자 검출 효율 요건을 만족시킨다. 좁은 AoV 시스템, 즉 <1도는 스캐닝이나 동시 조명을 통해 원하는 더 큰 총 화각을 커버하기 위하여 보다 큰 총 AoV를 커버하거나 어레이로 배열되도록 스캐닝 시스템에서 단일 포인트 센서로서 사용될 수 있다. 그러나, SPAD/SiPM 센서는 센서의 필요한 복구/재충전 프로세스로 인한 제한된 동적 범위로 인해 어려움을 겪는다. SiPM의 마이크로 셀에서의 모든 광 검출에서, 애벌랜치 프로세스는, 예를 들어 광전류를 방전하고 다이오드를 항복 영역 밖으로 가져오는 저항기를 통해 퀀치될(quenched) 필요가 있다. 그 후, 수동 또는 능동 재충전 프로세스가 다음 광 검출을 위해 준비된 초기 조건을 복원하는 다이오드 바이어스 전압을 복원하기 시작한다. 퀀칭 및 재충전 프로세스가 발생하는 시간은 일반적으로 데드 타임(dead time) 또는 회복 시간이라고 한다. 다이오드의 바이어스 조건이 가이거 모드의 외부에 있기 때문에 이 시간 윈도우에서 더이상의 검출은 일어날 수 없다. SiPM에서 마이크로 셀이 데드 타임 윈도우에 진입하는 경우, 다른 마이크로 셀은 여전히 광자를 검출할 수 있다. 따라서, 마이크로 셀의 개수는 센서의 광자 동적 범위를 한정하여 단위 시간 당 더 많은 개수의 광자가 검출될 수 있도록 한다. 데드 타임으로 인해 어떠한 마이크로 셀도 가능하지 않은 경우, SiPM은 포화 영역에 있다고 한다. SiPM(마이크로셀) 내의 많은 개수의 다이오드는 검출기의 연관된 유닛을 억제하는 회복 프로세스를 보완하는데 필요하다. 큰 SiPM은 높은 동적 범위를 제공한다. 도 6a에 도시되고 식 2에서와 같이 수신된 초점 길이와 SiPM의 크기는 함께 화각을 설정한다.
SiPM 검출기는 검출기 데드 타임으로 인해 높은 주변 광 조건에서의 포화 상태로 인해 어려움을 겪는다. 본 개시는 원하지 않은 노이즈, 즉, 비간섭성 주변 광을 수집하는 것을 피하기 위해 SiPM 검출기의 화각(AoV)을 제한함으로써 이 문제를 해결한다. 큰 센서에 대한 좁은 화각은 단일-렌즈 광학계 시스템에서 긴 초점 길이를 필요로 한다. 이러한 초점 길이는 검출기가 수신 광학계로부터 10cm 또는 그보다 작은 소형 환경에서 작동해야 하는 LiDAR 시스템에는 적합하지 않다.
본 해결책은 SiPM 검출기와 AoV를 제한하고 초점 길이 요건을 감소시키는 구경 조리개 요소를 가지는 수신 렌즈를 쌍으로 묶어서, SiPM 검출기를 소형 환경에서 작동하는 LiDAR 시스템에 통합되는 것을 허용한다. 구경 조리개 요소는 넓은 화각으로부터 오는 광을 차단하고, 초점 길이 렌즈 배치의 검출 효율성에 효과적으로 도달하도록 수집된 광을 SiPM의 전체 면적에 분산시킨다. 소형 환경이란 용어는 수신 광학계로부터 10 cm 이하의 위치에 검출기가 있는 환경을 포함한다. 또한, 수신 광학계와 SiPM 검출기 사이의 총 길이가 1cm 내지 6cm 범위인 환경을 포함한다. 일 예시에서, 소형 환경이라는 용어는 수신 광학계와 SiPM 검출기 사이의 총 길이가 5 cm 미만인 환경을 나타낸다.
이제 도 7을 참조하면, 본 발명의 교시에 따라 LiDAR 장치에 통합될 수 있는 예시적인 SiPM 센서(700)가 도시되어 있다. SiPM 센서(700)는 감지 면적(705)을 정의하는 단일 광자 애벌랜치 포토 다이오드(SPAD)의 어레이를 포함한다. 렌즈(710)는 보정 광학계를 제공하기 위해 제공된다. 구경 조리개(715)는 렌즈(710)와 감지 면적(705)의 중간에 제공되는데, 이는 더 큰 각도로부터 오는 광을 차단하고 수집된 광을 감지 면적(705)으로 산란시켜 더 긴 초점 길이의 필요성을 극복한다. 조리개는, 이를 통한 광의 투과(transmission)를 촉진시키는 개구부 또는 구멍이다. 광학 장치의 초점 길이 및 조리개는 이미지 평면에서 초점에 도달하는 복수의 광선의 원추각을 결정한다. 조리개는 광선을 시준하고 이는 화질에 매우 중요하다. 조리개가 좁으면, 고도로 시준된 광선이 입사하여 이미지 평면에 날카로운 초점을 초래한다. 그러나, 조리개가 넓으면, 시준되지 않은 광선이 특정 거리로부터 도달하는 특정 광선에 대한 날카로운 초점을 제한하는 조리개를 통해 입사된다. 따라서, 넓은 조리개는 특정 거리의 물체에 대한 선명한 이미지를 초래한다. 들어오는 광선의 양은 또한 조리개의 크기에 의해 결정된다. 광학 장치는 광선 뭉치를 제한하는 요소를 가질 수 있다. 광학계에서, 이들 요소는 광학 장치에 의해 입사되는 광을 제한하는데 사용된다. 이러한 요소는 일반적으로 구경(stops)이라고 한다. 구경 조리개는 이미지 지점에서 광선 원추각과 밝기를 설정하는 구경이다. 구경 조리개(715)의 결과로서 SiPM(700)의 광학계의 초점 길이는 SiPM(400)의 광학계의 초점 길이보다 현저히 작을 수 있다.
주어진 정확도 및 범위 측정 정확도에 필요한 동적 범위를 유지하면서 화각을 감소시키기 위해, 큰 센서는 전형적으로 도 6a에 도시된 바와 같이 긴 초점 길이 렌즈 조리개와 쌍을 이룬다. 그러나, 긴 초점 길이 ~10+ cm는 검출기와 수신 광학계 사이의 최대 길이가 전형적으로 ~10cm 이하인 소형 시스템에 적합하지 않다. 소형 LiDAR 시스템을 필요로 하는 어플리케이션은 자율 자동차, 고급 운전 보조 시스템(Advanced Driver Assistance Systems, ADAS), 및 3D 이미징을 포함한다. 본 해결책은 SPAD/SiPM 기술에 대한 이점을 이용하는 LiDAR 장치(800)를 제공하며, 구경 조리개 요소(820)를 통합함으로써 소형 환경에 수용하기에 적합하다. 구경 조리개 요소(820)는 센서(815)와 짧은 초점 길이 렌즈(810) 사이에 위치된다. 구경 조리개(820)는 두 가지 주요 기능을 갖는다. 첫째로, 구경 조리개는 원래의 넓은 각도로부터 들어오는 광을 차단하는데 사용된다. 구경 조리개의 크기는 센서 면적의 크기와 초점 길이에 기초한다. 두번째로, 구경 조리개는 큰 센서 덕분에 사용 가능한 동적 범위를 활용하기 위해 수집된 광을 센서의 총 활성 면적에 산란시킨다.
구경 조리개의 치수 및 위치는 센서 면적의 크기 및 수신 렌즈의 원하는 시야각과 초점 길이와 관련된다. 치수
Figure ptm00012
는 이하에 따라 필요한 화각과 매치될 수 있다:
Figure ptm00013
식 3
총 활성 면적의 광의 산란을 보장하기 위해 센서가 특정 거리에 배치되는 동안:
Figure ptm00014
식 4
이고, 여기서: f는 수신 렌즈의 초점 길이;
Figure ptm00015
는 센서 화각;
Figure ptm00016
는 구경 조리개 치수;
Figure ptm00017
는 수신 렌즈의 직경.
광은 센서 활성 면적에 걸쳐 균일하게 분산되어야만 하나, 시스템이 단일 포인트 센서이므로 이미징 기능은 필요하지 않다. 주어진 식은 이론적인 최대값을 나타내며, 이는 예시로서만 제공되는 것임을 유의한다. 거리는 공차를 고려하는데에 조정할 필요가 있을 수 있다.
도 9를 참조하면, 본 발명의 교시에 따른 예시적인 LiDAR 장치(900)가 도시되어 있다. LiDAR 장치(900)는 LiDAR 장치(800)와 실질적으로 유사하며, 유사한 요소는 유사한 참조 번호로 표시된다. 주된 차이점은, LiDAR 장치(900)가 송신기(905) 및 수신기(910)를 위한 공유된 광학계를 포함한다는 것이다. 렌즈(810)와 구경 조리개(820)의 중간에는 편광 거울(920)에 의해 제공된 빔 스플리터가 제공된다. 편광 거울은 장면에 레이저 빔을 반사시키고, 반사된 광을 SiPM 센서(910) 상으로 향하게 한다.
구경 조리개를 이용함으로써, 1mm2 또는 그 이상의 크기의 큰 센서 면적을 이용하면서 LiDAR 시스템(800, 900)이 짧은 초점 길이를 가질 수 있게 한다는 것이 통상의 기술자에 의해 인식될 것이다. 본 발명의 LiDAR 장치는 짧은 초점 길이를 갖는 광학 시스템을 이용하기 때문에, LiDAR 시스템이 검출기와 수신기 광학계 사이의 길이가 10cm 이하인 소형 환경에 통합되는 것을 허용한다. 이하의 표는 본 발명에 따른 LiDAR 장치의 구성 요소에 대한 예시적인 치수를 제공한다. 예시적인 치수는 단지 예시로서 제공되는 것이며, 본 발명의 교시를 제공된 예시적인 치수로 제한하려는 것은 아니다.
SiPM 센서의 활성 면적 SiPM 센서로부터 구경 조리개까지의 거리 화각 구경 조리개 치수
1㎟ 0.197㎜ 0.1° 87.3㎛
3㎟ 0.59㎜ 0.5° 436㎛
6㎟ 1.18㎜ 873㎛
5㎝의 초점 길이를 가지는 1 인치 렌즈에 대한 예시
LiDAR 장치(900)는 알려진 시간에 레이저 펄스가 송신기(905)를 빠져나가도록 전파 시간(ToF) LiDAR 시스템으로서 동작할 수 있다. 레이저 펄스가 목표(925)를 타격한 후에, 반사된 광은 수신기(910)로 되돌아온다. 목표(925)가 거울과 같은 표면을 갖는다면, 정반사는 입사각과 동일한 각도로 광자를 반사할 것이다. 이는 수신기(910)에서 목표에 의해 반사된 광자의 최대 개수가 검출되도록 하는 것을 초래한다. 입사각에 상관없이 입사 경로를 따라 광을 다시 반사하는 역반사체(retroreflector)로부터의 광을 검출하기 위해 표준 애벌랜치 포토 다이오드(APD) 센서가 이용될 수 있다. 그러나, 실제 세계의 대부분의 표면은 비경면(non-specular) 목표이며, 입사광을 직접 반사하지 않는다. 이러한 비경면 표면은 전형적으로 램버트식 표면(Lambertian surface)으로 나타낼 수 있다. 램버트식 표면이 유한한 화각(AoV)을 갖는 수신기에 의해 관찰되는 경우, 수신된 광자의 양은 관찰되는 각도에서 불변하고, 광자는 2π 입체호도법 표면(steradian surface)에 분산된다. 램버트식 반사기의 순영향은 되돌아온 광자의 개수가 1/거리2에 비례한다는 것이다. 또한, 송신된 광자의 개수는 아이-세이프 한계에 의해 제한된다. 되돌아온 광자의 개수의 1/거리2 감소와 단순하게 소스 전력을 증가시키는 것은 불능이기 때문에, 검출된 모든 광자가 LiDAR 시스템(900)의 전체 정확도에 기여하는 것이 바람직하다.
통상의 기술자는 본 발명의 범위를 벗어나지 않으면서 상술한 실시예들에 대한 다양한 변형이 이루어질 수 있다는 것을 이해할 것이다. 이러한 방식으로, 본 발명의 교시는 첨부된 청구 범위에 비추어 필요하다고 판단되는 경우에만 제한된다는 것을 이해할 것이다. 반도체 광전자 배증관이라는 용어는 실리콘 광전자 배증관[SiPM], 마이크로 픽셀 광자 카운터[MPPC], 마이크로픽셀 애벌랜치 포토 다이오드[MAPD]와 같은 임의의 고체 상태 광전자 배증관 디바이스를 포함하나 이에 국한되지는 않는다.
이와 유사하게, 본원에서 사용되는 경우에 포함하는/포함하다는 언급된 특징, 정수(integer), 단계, 또는 구성 요소의 존재를 특정하기 위해서 사용되지만 하나 이상의 추가 특징, 정수, 단계, 구성 요소, 또는 그들의 집합의 존재 또는 추가를 배제하는 것은 아니다.

Claims (21)

  1. LiDAR 장치로서,
    레이저 펄스를 방출하는 레이저 소스;
    검출된 반사 광자에 대한 SiPM 검출기;
    광학계; 및
    상기 SiPM 검출기의 화각(angle of view)을 제한하기 위해 SiPM 검출기와 광학계의 중간에 구비된 구경 조리개(aperture stop)를 포함하는,
    LiDAR 장치.
  2. 제1항에 있어서,
    상기 광학계는 수신 렌즈를 포함하는,
    LiDAR 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 광학계는 송신 렌즈를 포함하는,
    LiDAR 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 광학계는 단일 렌즈가 송신 및 수신에 이용되도록 빔 스플리터(beam splitter)를 포함하는,
    LiDAR 장치.
  5. 제4항에 있어서,
    상기 빔 스플리터는 상기 단일 렌즈와 상기 SiPM 검출기의 중간에 위치된 편광 거울을 포함하는,
    LiDAR 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 SiPM 검출기는 단일-광자 센서인,
    LiDAR 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 SiPM 검출기는 단일 광자 애벌랜치 포토 다이오드(Single Photon Avalanche Photodiode, SPAD) 센서의 합계된 어레이로 형성되는,
    LiDAR 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 구경 조리개는 상기 광학계의 초점에 위치되는,
    LiDAR 장치.
  9. 제8항에 있어서,
    상기 구경 조리개는 상기 SiPM 검출기의 활성 면적의 크기에 기초하여 필요한 화각과 매칭되는 치수를 가지는,
    LiDAR 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 화각은 1도 보다 작은,
    LiDAR 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 SiPM 검출기와 상기 광학계 사이의 총 길이는 10cm 보다 작은,
    LiDAR 장치.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    LiDAR 시스템의 SiPM 검출기와 상기 광학계 사이의 총 길이는 1cm 내지 6cm인,
    LiDAR 장치.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 SiPM 검출기와 상기 광학계 사이의 총 길이는 5cm 보다 작은,
    LiDAR 장치.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 구경 조리개의 크기는 센서 면적의 크기 및 상기 광학계의 초점 길이에 기초하여 결정되는,
    LiDAR 장치.
  15. 제1항 내지 제14항 중 어느 한 항에 있어서,
    상기 구경 조리개는 상기 광학계에 의해 수집된 광을 상기 SiPM 검출기의 총 활성 면적에 걸쳐 산란시키는,
    LiDAR 장치.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,
    주어진 초점 길이 f에 대해, 치수 L을 가지고 초점에 위치된 SiPM 검출기의 화각
    Figure ptm00018
    은:
    Figure ptm00019

    으로 주어지고, 여기서,
    수신 렌즈의 초점 길이는 f이고,
    센서 수평 및 수직 길이는 L x , L y 이며,
    센서 화각은
    Figure ptm00020
    인,
    LiDAR 장치.
  17. 제1항 내지 제16항 중 어느 한 항에 있어서,
    상기 구경 조리개는
    Figure ptm00021
    에 따른
    필요한 화각과 매칭하기 위한 치수를 가지며, 여기서,
    수신 렌즈의 초점 길이는 f이고,
    센서 화각은
    Figure ptm00022
    이며,
    구경 조리개 크기는 P x,y 인,
    LiDAR 장치.
  18. 제1항 내지 제17항 중 어느 한 항에 있어서,
    상기 레이저 소스는 아이-세이프 레이저 소스(eye-safe laser source)인,
    LiDAR 장치.
  19. 제1항 내지 제18항 중 어느 한 항에 있어서,
    상기 레이저 소스는 저전력 레이저인,
    LiDAR 장치.
  20. 제1항 내지 제19항 중 어느 한 항에 있어서,
    상기 SiPM 검출기는 마이크로-셀의 매트릭스를 포함하는,
    LiDAR 장치.
  21. 제1항에 따른 LiDAR 장치를 포함하는 자동차 시스템.
KR2020197000041U 2016-12-13 2017-12-13 LiDAR 장치 KR20190002013U (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/377,263 US10422862B2 (en) 2016-12-13 2016-12-13 LiDAR apparatus
US15/377,263 2016-12-13
US15/383,310 2016-12-19
US15/383,310 US20180164414A1 (en) 2016-12-13 2016-12-19 LiDAR Apparatus
PCT/EP2017/082561 WO2018108980A1 (en) 2016-12-13 2017-12-13 A lidar apparatus

Publications (1)

Publication Number Publication Date
KR20190002013U true KR20190002013U (ko) 2019-08-07

Family

ID=60702749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020197000041U KR20190002013U (ko) 2016-12-13 2017-12-13 LiDAR 장치

Country Status (6)

Country Link
US (1) US20180164414A1 (ko)
JP (1) JP2020503506A (ko)
KR (1) KR20190002013U (ko)
CN (1) CN211014630U (ko)
DE (1) DE212017000248U1 (ko)
WO (1) WO2018108980A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502830B2 (en) 2016-10-13 2019-12-10 Waymo Llc Limitation of noise on light detectors using an aperture
JP7079753B2 (ja) 2019-06-11 2022-06-02 株式会社東芝 光検出装置、電子装置及び光検出方法
JP7133523B2 (ja) 2019-09-05 2022-09-08 株式会社東芝 光検出装置及び電子装置
US11131781B2 (en) * 2019-09-20 2021-09-28 Waymo Llc Programmable SiPM arrays
JP7434002B2 (ja) * 2020-03-17 2024-02-20 株式会社東芝 光検出器及び距離計測装置
JP7379230B2 (ja) * 2020-03-19 2023-11-14 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
US11982749B2 (en) 2020-07-13 2024-05-14 Aptiv Technologies AG Detection of pulse trains by time-of-flight lidar systems
WO2022041189A1 (zh) * 2020-08-31 2022-03-03 深圳市大疆创新科技有限公司 光电探测器件、探测方法和电子设备
US12117566B2 (en) 2021-03-29 2024-10-15 Beijing Voyager Technology Co., Ltd. Feed-forward equalization for enhanced distance resolution
CN115808693A (zh) * 2021-09-15 2023-03-17 上海禾赛科技有限公司 激光雷达
JP2024035389A (ja) * 2022-09-02 2024-03-14 株式会社デンソー 測距装置
CN115372950B (zh) * 2022-10-24 2023-01-20 北醒(北京)光子科技有限公司 硅光电倍增管标定装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2949808A (en) * 1956-07-03 1960-08-23 Gen Motors Corp Aerial gunsight
JPH01121782A (ja) * 1987-11-05 1989-05-15 Mitsubishi Electric Corp 受光装置
US5159412A (en) * 1991-03-15 1992-10-27 Therma-Wave, Inc. Optical measurement device with enhanced sensitivity
JP3654090B2 (ja) * 1999-10-26 2005-06-02 松下電工株式会社 距離計測方法およびその装置
US6593582B2 (en) * 2001-05-11 2003-07-15 Science & Engineering Services, Inc. Portable digital lidar system
US7301608B1 (en) * 2005-01-11 2007-11-27 Itt Manufacturing Enterprises, Inc. Photon-counting, non-imaging, direct-detect LADAR
US20080304012A1 (en) * 2007-06-06 2008-12-11 Kwon Young K Retinal reflection generation and detection system and associated methods
JP6230420B2 (ja) * 2011-03-17 2017-11-15 ウニベルジテート ポリテクニカ デ カタル−ニア 光ビームを受光するシステムと方法とコンピュータ・プログラム
DK2705350T3 (en) * 2011-06-30 2017-06-19 Univ Colorado Regents REMOVE LOW DEPTH IN SEMI-TRANSPARENT MEDIA
US10684362B2 (en) * 2011-06-30 2020-06-16 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US9176241B2 (en) * 2011-08-03 2015-11-03 Koninklijke Philips N.V. Position-sensitive readout modes for digital silicon photomultiplier arrays
DE102014100696B3 (de) * 2014-01-22 2014-12-31 Sick Ag Entfernungsmessender Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
DE102014102420A1 (de) * 2014-02-25 2015-08-27 Sick Ag Optoelektronischer Sensor und Verfahren zur Objekterfassung in einem Überwachungsbereich
DE202014100836U1 (de) * 2014-02-25 2015-05-28 Sick Ag Optoelektronischer Sensor zur Objekterfassung in einem Überwachungsbereich
US10520602B2 (en) * 2015-11-30 2019-12-31 Luminar Technologies, Inc. Pulsed laser for lidar system
US10502830B2 (en) * 2016-10-13 2019-12-10 Waymo Llc Limitation of noise on light detectors using an aperture

Also Published As

Publication number Publication date
US20180164414A1 (en) 2018-06-14
JP2020503506A (ja) 2020-01-30
CN211014630U (zh) 2020-07-14
WO2018108980A1 (en) 2018-06-21
DE212017000248U1 (de) 2019-06-18

Similar Documents

Publication Publication Date Title
CN211014630U (zh) 激光雷达设备及机动车系统
US10422862B2 (en) LiDAR apparatus
US10585174B2 (en) LiDAR readout circuit
CN211014629U (zh) 一种激光雷达装置
US11467286B2 (en) Methods and systems for high-resolution long-range flash lidar
US11592292B2 (en) Total station or theodolite having scanning functionality and settable receiving ranges of the receiver
CN110308451B (zh) 适用于远程飞行时间应用的双模式堆叠光电倍增管
US9069060B1 (en) Circuit architecture for optical receiver with increased dynamic range
US20180210084A1 (en) Optoelectronic sensor and method of determining the distance of an object in a monitored zone
US20180164410A1 (en) LiDAR Apparatus
US10247811B2 (en) Modulation of input to Geiger mode avalanche photodiode LIDAR using digital micromirror devices
KR20160142839A (ko) 고해상도, 고프레임률, 저전력 이미지 센서
Hao et al. Development of pulsed‐laser three‐dimensional imaging flash lidar using APD arrays
IL269455B2 (en) Time of flight sensor
Jahromi et al. A single chip laser radar receiver with a 9× 9 SPAD detector array and a 10-channel TDC
WO2023201159A1 (en) Photosensor having range parallax compensation
WO2023201160A1 (en) Detector having parallax compensation
US20230007979A1 (en) Lidar with photon-resolving detector
CN114137548A (zh) 光电探测装置、包括其的激光雷达及使用其的探测方法
CN207380239U (zh) 感光元件及tof距离传感器
Huntington et al. 512-element linear InGaAs APD array sensor for scanned time-of-flight lidar at 1550 nm
Mizuno et al. InGaAs Geiger‐mode three‐dimensional image sensor for flash LIDAR
CN107331723B (zh) 感光元件及测距系统
Shcherbakova 3D camera based on gain-modulated CMOS avalanche photodiodes
WO2023059766A1 (en) Hybrid lidar system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application