KR20180043191A - 도전 재료 및 접속 구조체 - Google Patents
도전 재료 및 접속 구조체 Download PDFInfo
- Publication number
- KR20180043191A KR20180043191A KR1020177021433A KR20177021433A KR20180043191A KR 20180043191 A KR20180043191 A KR 20180043191A KR 1020177021433 A KR1020177021433 A KR 1020177021433A KR 20177021433 A KR20177021433 A KR 20177021433A KR 20180043191 A KR20180043191 A KR 20180043191A
- Authority
- KR
- South Korea
- Prior art keywords
- conductive
- solder
- particles
- electrode
- conductive material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/06—Polythioethers from cyclic thioethers
- C08G75/08—Polythioethers from cyclic thioethers from thiiranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R11/00—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
- H01R11/01—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Epoxy Resins (AREA)
Abstract
경화물의 투명성이 우수하고, 경화물이 내열성이 우수하므로 변색되기 어려운 도전 재료를 제공한다. 본 발명에 따른 도전 재료는, 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 화합물과, 열경화제를 포함하고, 상기 열경화성 화합물이 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함한다.
Description
본 발명은 땜납을 갖는 도전성 입자를 포함하는 도전 재료에 관한 것이다. 또한, 본 발명은 상기 도전 재료를 사용한 접속 구조체에 관한 것이다.
이방성 도전 페이스트 및 이방성 도전 필름 등의 이방성 도전 재료가 널리 알려져 있다. 상기 이방성 도전 재료에는 바인더 중에 도전성 입자가 분산되어 있다.
상기 이방성 도전 재료는, 각종 접속 구조체를 얻기 위해서, 예를 들어 플렉시블 프린트 기판과 유리 기판의 접속(FOG(Film on Glass)), 반도체 칩과 플렉시블 프린트 기판의 접속(COF(Chip on Film)), 반도체 칩과 유리 기판의 접속(COG(Chip on Glass)), 및 플렉시블 프린트 기판과 유리 에폭시 기판의 접속(FOB(Film on Board)) 등에 사용되고 있다.
상기 이방성 도전 재료에 의해, 예를 들어 플렉시블 프린트 기판의 전극과 유리 에폭시 기판의 전극을 전기적으로 접속시킬 때는, 유리 에폭시 기판 상에, 도전성 입자를 포함하는 이방성 도전 재료를 배치한다. 이어서, 플렉시블 프린트 기판을 적층하여, 가열 및 가압한다. 이에 의해, 이방성 도전 재료를 경화시켜, 도전성 입자를 통해 전극간을 전기적으로 접속시켜, 접속 구조체를 얻는다.
상기 이방성 도전 재료의 일례로서, 하기 특허문헌 1에는, 도전성 입자와, 상기 도전성 입자의 융점에서 경화가 완료되지 않은 수지 성분을 포함하는 이방성 도전 재료가 기재되어 있다. 상기 도전성 입자로서는, 구체적으로는, 주석(Sn), 인듐(In), 비스무트(Bi), 은(Ag), 구리(Cu), 아연(Zn), 납(Pb), 카드뮴(Cd), 갈륨(Ga), 은(Ag) 및 탈륨(Tl) 등의 금속이나, 이들 금속의 합금이 예시되어 있다.
특허문헌 1에서는, 상기 도전성 입자의 융점보다도 높고, 또한 상기 수지 성분의 경화가 완료되지 않은 온도로, 이방성 도전 수지를 가열하는 수지 가열 스텝과, 상기 수지 성분을 경화시키는 수지 성분 경화 스텝을 거쳐, 전극간을 전기적으로 접속시키는 것이 기재되어 있다. 또한, 특허문헌 1에는, 특허문헌 1의 도 8에 나타낸 온도 프로파일로 실장을 행하는 것이 기재되어 있다. 특허문헌 1에서는, 이방성 도전 수지가 가열되는 온도에서 경화가 완료되지 않은 수지 성분 내에서, 도전성 입자가 용융된다.
하기 특허문헌 2에는, 열경화성 수지를 포함하는 수지층과, 땜납 분말과, 경화제를 포함하고, 상기 땜납 분말과 상기 경화제가 상기 수지층 중에 존재하는 접착 테이프가 개시되어 있다. 이 접착 테이프는, 필름 형상이며, 페이스트 형상이 아니다.
종래의 땜납 분말이나, 땜납층을 표면에 갖는 도전성 입자를 포함하는 이방성 도전 페이스트에서는, 경화물의 투명성이 낮은 경우가 있다. 또한, 경화물의 내열성이 낮아, 고온 하에 노출된 경화물이 변색되는 경우가 있다.
본 발명의 목적은, 경화물의 투명성이 우수하고, 경화물의 내열성이 우수하므로 변색되기 어려운 도전 재료를 제공하는 것이다. 또한, 본 발명의 목적은, 상기 도전 재료를 사용한 접속 구조체를 제공하는 것이다.
본 발명의 넓은 국면에 의하면, 도전부의 외표면 부분에 땜납을 갖는 복수의 도전성 입자와, 열경화성 화합물과, 열경화제를 포함하고, 상기 열경화성 화합물이 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함하는, 도전 재료가 제공된다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 융점이 140℃ 이상이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료는 티이란기 및 트리아진 골격을 갖는 열경화성 화합물과는 다른 열경화성 화합물을 포함한다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전성 입자의 산가가 0.1mg/KOH 이상, 10mg/KOH 이하이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료는 플럭스를 포함한다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 플럭스가, 아미드기와 방향족 골격을 갖는 플럭스이거나, 또는 아미드기를 갖고, 또한 카르복실산 또는 카르복실산 무수물과 pKa가 9.5 이하인 아미노기 함유 화합물의 반응물인 플럭스이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 플럭스가 25℃에서 고체이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료는 카르보디이미드 화합물을 포함한다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전성 입자는 땜납 입자이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료는 상기 도전성 입자의 표면에 부착되지 않은 절연성 입자를 포함한다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전성 입자의 평균 입자 직경이 1㎛ 이상, 40㎛ 이하이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료 100중량% 중, 상기 도전성 입자의 함유량이 10중량% 이상, 80중량% 이하이다.
본 발명에 따른 도전 재료의 어느 특정 국면에서는, 상기 도전 재료는, 25℃에서 액상이며, 도전 페이스트이다.
본 발명의 넓은 국면에 의하면, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와, 상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비하고, 상기 접속부의 재료가, 상술한 도전 재료이며, 상기 제1 전극과 상기 제2 전극이 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있는, 접속 구조체가 제공된다.
본 발명에 따른 접속 구조체의 어느 특정 국면에서는, 상기 제1 전극과 상기 접속부와 상기 제2 전극의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상에, 상기 접속부 중의 땜납부가 배치되어 있다.
본 발명에 따른 도전 재료는, 도전부의 외표면 부분에, 땜납을 갖는 복수의 도전성 입자와, 열경화성 화합물과, 열경화제를 포함하고, 상기 열경화성 화합물이 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함하므로, 경화물의 투명성이 우수하고, 경화물의 내열성이 우수하므로 변색되기 어렵다.
도 1은 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여 얻어지는 접속 구조체를 모식적으로 나타낸 단면도이다.
도 2의 (a) 내지 (c)는 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여, 접속 구조체를 제조하는 방법의 일례의 각 공정을 설명하기 위한 단면도이다.
도 3은 접속 구조체의 변형예를 나타낸 단면도이다.
도 4는 도전 재료에 사용 가능한 도전성 입자의 제1 예를 나타낸 단면도이다.
도 5는 도전 재료에 사용 가능한 도전성 입자의 제2 예를 나타낸 단면도이다.
도 6은 도전 재료에 사용 가능한 도전성 입자의 제3 예를 나타낸 단면도이다.
도 2의 (a) 내지 (c)는 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여, 접속 구조체를 제조하는 방법의 일례의 각 공정을 설명하기 위한 단면도이다.
도 3은 접속 구조체의 변형예를 나타낸 단면도이다.
도 4는 도전 재료에 사용 가능한 도전성 입자의 제1 예를 나타낸 단면도이다.
도 5는 도전 재료에 사용 가능한 도전성 입자의 제2 예를 나타낸 단면도이다.
도 6은 도전 재료에 사용 가능한 도전성 입자의 제3 예를 나타낸 단면도이다.
이하, 본 발명을 상세하게 설명한다.
(도전 재료)
본 발명에 따른 도전 재료는, 복수의 도전성 입자와, 바인더를 포함한다. 상기 도전성 입자는, 도전부를 갖는다. 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다. 땜납은, 도전부에 포함되고, 도전부의 일부 또는 전부이다. 상기 바인더는 상기 도전 재료에 포함되는 도전성 입자를 제외한 성분이다.
본 발명에 따른 도전 재료는, 상기 바인더로서, 열경화성 성분을 포함한다. 상기 열경화성 성분은, 열경화성 화합물과, 열경화제를 포함한다.
본 발명에 따른 도전 재료에서는, 상기 열경화성 화합물이, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함한다.
본 발명에서는, 상기 구성이 구비되어 있으므로, 경화물의 투명성을 높일 수 있고, 또한 경화물의 내열성이 우수하므로, 경화물이 고온 하에 노출되어도 변색되기 어렵게 할 수 있다.
또한, 본 발명에서는, 전극폭이 좁아도 도전성 입자에 있어서의 땜납을 전극 상에 효율적으로 배치할 수 있다. 전극폭이 좁을 경우에, 전극 상에 도전성 입자의 땜납을 모으기 어려운 경향이 있지만, 본 발명에서는, 전극폭이 좁아도, 전극 상에 땜납을 충분히 모을 수 있다. 본 발명에서는, 상기 구성이 구비되어 있으므로, 전극간을 전기적으로 접속시킨 경우에, 도전성 입자에 있어서의 땜납이, 상하의 대향된 전극 사이에 위치하기 쉬워, 도전성 입자에 있어서의 땜납을 전극(라인) 상에 효율적으로 배치할 수 있다. 또한, 본 발명에서는, 전극폭이 넓으면, 도전성 입자에 있어서의 땜납이 전극 상에 한층 더 효율적으로 배치된다.
또한, 도전성 입자에 있어서의 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어려워, 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 할 수 있다. 본 발명에서는, 대향하는 전극 사이에 위치하지 않은 땜납을, 대향하는 전극 사이에 효율적으로 이동시킬 수 있다. 따라서, 전극간의 도통 신뢰성을 높일 수 있다. 게다가, 접속되어서는 안되는 가로 방향으로 인접하는 전극간의 전기적인 접속을 방지할 수 있어, 절연 신뢰성을 높일 수 있다.
또한, 본 발명에서는, 도전 재료의 경화물의 내열성을 높일 수 있다. 특히, 광반도체 장치에 도전 재료를 사용한 경우에, 광조사시에 발열하여, 도전 재료의 경화물이 고온 하에 노출된다. 본 발명에 따른 도전 재료는, 경화물의 내열성이 우수하므로, 광반도체 장치에 적합하게 사용할 수 있다. 특히, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 사용하고 있으므로, 도전 재료의 경화물의 내열성이 높아진다.
또한, 본 발명에서는, 도전 재료의 경화물의 굴절률을 높일 수 있다. 특히, 본 발명에서는, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 사용하고 있으므로, 도전 재료의 경화물의 굴절률이 높아진다. 도전 재료의 경화물의 굴절률을 한층 더 높이는 관점에서는, 상기 열경화성 화합물은, 트리아진 골격을 갖는 열경화성 화합물을 포함하는 것이 바람직하고, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함하는 것이 보다 바람직하고, 본 발명에서는, 상기 열경화성 화합물은, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함한다. 상기 열경화성 화합물의 굴절률은, 바람직하게는 1.75 이상, 보다 바람직하게는 1.8 이상이며, 바람직하게는 1.9 이하, 보다 바람직하게는 1.85 이하이다. 상기 열경화성 화합물의 굴절률이, 상기 하한 이상이면, 도전 재료의 경화물의 굴절률을 한층 더 높일 수 있다.
상기 열경화성 화합물의 굴절률은, 칼뉴 정밀 굴절계를 사용하여 측정할 수 있다. 상기 칼뉴 정밀 굴절계로서는, 예를 들어 시마즈 세이사꾸쇼사제 「KPR-3000」이 사용된다.
또한, 본 발명에서는, 도전 재료의 경화물의 흡수율을 낮출 수 있다. 특히, 본 발명에서는, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 사용하고 있으므로, 도전 재료의 경화물의 흡수율이 낮아진다. 도전 재료의 경화물의 흡수율을 한층 더 낮추는 관점에서는, 상기 열경화성 화합물은, 트리아진 골격을 갖는 열경화성 화합물을 포함하는 것이 바람직하고, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함하는 것이 보다 바람직하고, 본 발명에서는, 상기 열경화성 화합물은, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함한다. 상기 열경화성 화합물의 흡수율은, 바람직하게는 2% 이하, 보다 바람직하게는 1.5% 이하이다. 상기 열경화성 화합물의 흡수율이, 상기 상한 이하이면, 도전 재료의 경화물의 흡수율을 한층 더 낮출 수 있다. 상기 열경화성 화합물의 흡수율 하한은, 특별히 한정되지 않는다. 상기 열경화성 화합물의 흡수율은, 0.1% 이상이어도 된다. 도전 재료의 경화물의 흡수율을 한층 더 낮추는 관점에서는, 상기 열경화성 화합물의 흡수율은, 낮은 것이 바람직하다.
상기 열경화성 화합물의 흡수율은, 이하와 같이 하여 측정할 수 있다.
열경화성 화합물 5g을 수분계에 넣고, 105℃에서 5시간 건조시킨 후의 중량을 측정함으로써, 흡수율을 산출할 수 있다. 상기 수분계로서는, 예를 들어 시마즈 세이사꾸쇼사제 「MOC63u」가 사용된다.
또한, 본 발명에서는, 전극간의 위치 어긋남을 방지할 수 있다. 본 발명에서는, 도전 재료를 상면에 배치한 제1 접속 대상 부재에, 제2 접속 대상 부재를 중첩시켰을 때, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극의 얼라인먼트가 어긋난 상태에서, 제1 접속 대상 부재와 제2 접속 대상 부재가 중첩된 경우에도, 그 어긋남을 보정하여, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극을 접속시킬 수 있다(셀프 얼라인먼트 효과).
땜납을 전극 상에 한층 더 효율적으로 배치하기 위해서, 상기 도전 재료는, 25℃에서 액상인 것이 바람직하고, 도전 페이스트인 것이 바람직하다. 땜납을 전극 상에 한층 더 효율적으로 배치하기 위해서, 상기 도전 재료의 25℃에서의 점도(η25)는 바람직하게는 10Pa·s 이상, 보다 바람직하게는 50Pa·s 이상, 더욱 바람직하게는 100Pa·s 이상이며, 바람직하게는 800Pa·s 이하, 보다 바람직하게는 600Pa·s 이하, 더욱 바람직하게는 500Pa·s 이하이다. 상기 점도(η25)는, 배합 성분의 종류 및 배합량에 의해 적절히 조정 가능하다. 또한, 필러의 사용에 의해, 점도를 비교적 높게 할 수 있다.
상기 점도(η25)는, 예를 들어 E형 점도계(도끼 산교사제 「TVE22L」) 등을 사용하여, 25℃ 및 5rpm의 조건에서 측정 가능하다.
상기 도전 재료는, 도전 페이스트 및 도전 필름 등으로서 사용될 수 있다. 상기 도전 페이스트는 이방성 도전 페이스트인 것이 바람직하고, 상기 도전 필름은 이방성 도전 필름인 것이 바람직하다. 도전성 입자에 있어서의 땜납을 전극 상에 한층 더 효율적으로 배치하는 관점에서는, 상기 도전 재료는, 도전 페이스트인 것이 바람직하다. 상기 도전 재료는, 전극의 전기적인 접속에 적합하게 사용된다. 상기 도전 재료는, 회로 접속 재료인 것이 바람직하다.
이하, 상기 도전 재료에 포함되는 각 성분을 설명한다.
(도전성 입자)
상기 도전성 입자는, 접속 대상 부재의 전극간을 전기적으로 접속시킨다. 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다. 상기 도전성 입자는, 땜납에 의해 형성된 땜납 입자여도 된다. 상기 땜납 입자는, 땜납을 도전부의 외표면 부분에 갖는다. 상기 땜납 입자는, 중심 부분 및 도전부의 외표면 부분이 모두 땜납에 의해 형성되어 있다. 상기 땜납 입자는, 상기 땜납 입자의 중심 부분 및 도전성의 외표면이 모두 땜납인 입자이다. 상기 도전성 입자는, 기재 입자와, 해당 기재 입자의 표면 상에 배치된 도전부를 갖고 있어도 된다. 이 경우에, 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는다.
또한, 상기 땜납 입자를 사용한 경우에 비해, 땜납에 의해 형성되지 않은 기재 입자와 기재 입자의 표면 상에 배치된 땜납부를 구비하는 도전성 입자를 사용한 경우에는, 전극 상에 도전성 입자가 모이기 어려워져, 도전성 입자끼리의 땜납 접합성이 낮기 때문에, 전극 상으로 이동한 도전성 입자가 전극 밖으로 이동하기 쉬워지는 경향이 있어, 전극간의 위치 어긋남의 억제 효과도 낮아지는 경향이 있다. 따라서, 상기 도전성 입자는, 땜납에 의해 형성된 땜납 입자인 것이 바람직하다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자의 외표면(땜납의 외표면)에, 카르복실기 또는 아미노기가 존재하는 것이 바람직하고, 카르복실기가 존재하는 것이 바람직하고, 아미노기가 존재하는 것이 바람직하다. 상기 도전성 입자의 외표면(땜납의 외표면)에, Si-O 결합, 에테르 결합, 에스테르 결합 또는 하기 식(X)로 표시되는 기를 통해, 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 것이 바람직하다. 카르복실기 또는 아미노기를 포함하는 기는, 카르복실기와 아미노기를 모두 포함하고 있어도 된다. 또한, 하기 식(X)에 있어서, 우측 단부 및 좌측 단부는 결합 부위를 나타낸다.
땜납 표면에 수산기가 존재한다. 이 수산기와 카르복실기를 포함하는 기를 공유 결합시킴으로써, 다른 배위 결합(킬레이트 배위) 등으로 결합시키는 경우보다도 강한 결합을 형성할 수 있기 때문에, 전극간의 접속 저항을 낮추고, 또한 보이드의 발생을 억제하는 것이 가능한 도전성 입자가 얻어진다.
상기 도전성 입자에서는, 땜납 표면과, 카르복실기를 포함하는 기의 결합 형태에, 배위 결합이 포함되지 않아도 되고, 킬레이트 배위에 의한 결합이 포함되지 않아도 된다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자는, 수산기와 반응 가능한 관능기와 카르복실기 또는 아미노기를 갖는 화합물(이하, 화합물 X라고 기재하는 경우가 있음)을 사용하여, 땜납 표면의 수산기에, 상기 수산기와 반응 가능한 관능기를 반응시킴으로써 얻어지는 것이 바람직하다. 상기 반응에서는, 공유 결합을 형성시킨다. 땜납 표면의 수산기와 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기를 반응시킴으로써, 땜납 표면에 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 용이하게 얻을 수 있고, 땜납 표면에 에테르 결합 또는 에스테르 결합을 통해 카르복실기 또는 아미노기를 포함하는 기가 공유 결합되어 있는 땜납 입자를 얻을 수도 있다. 상기 땜납 표면의 수산기에 상기 수산기와 반응 가능한 관능기를 반응시킴으로써, 땜납 표면에, 상기 화합물 X를 공유 결합의 형태로 화학 결합시킬 수 있다.
상기 수산기와 반응 가능한 관능기로서는, 수산기, 카르복실기, 에스테르기 및 카르보닐기 등을 들 수 있다. 수산기 또는 카르복실기가 바람직하다. 상기 수산기와 반응 가능한 관능기는, 수산기여도 되고, 카르복실기여도 된다.
수산기와 반응 가능한 관능기를 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 말산, 옥살산, 말론산, 아디프산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산, 4-페닐부티르산, 데칸산, 도데칸산, 테트라데칸산, 펜타데칸산, 헥사데칸산, 9-헥사데센산, 헵타데칸산, 스테아르산, 올레산, 박센산, 리놀산, (9,12,15)-리놀렌산, 노나데칸산, 아라키드산, 데칸디오산 및 도데칸디오산 등을 들 수 있다. 글루타르산 또는 글리콜산이 바람직하다. 상기 수산기와 반응 가능한 관능기를 갖는 화합물은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다. 상기 수산기와 반응 가능한 관능기를 갖는 화합물은, 카르복실기를 적어도 1개 갖는 화합물인 것이 바람직하다.
상기 화합물 X는, 플럭스 작용을 갖는 것이 바람직하고, 상기 화합물 X는, 땜납 표면에 결합된 상태에서 플럭스 작용을 갖는 것이 바람직하다. 플럭스 작용을 갖는 화합물은, 땜납 표면의 산화막 및 전극 표면의 산화막을 제거 가능하다. 카르복실기는 플럭스 작용을 갖는다.
플럭스 작용을 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산 및 4-페닐부티르산 등을 들 수 있다. 글루타르산 또는 글리콜산이 바람직하다. 상기 플럭스 작용을 갖는 화합물은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기가, 수산기 또는 카르복실기인 것이 바람직하다. 상기 화합물 X에 있어서의 상기 수산기와 반응 가능한 관능기는, 수산기여도 되고, 카르복실기여도 된다. 상기 수산기와 반응 가능한 관능기가 카르복실기일 경우에는, 상기 화합물 X는, 카르복실기를 적어도 2개 갖는 것이 바람직하다. 카르복실기를 적어도 2개 갖는 화합물의 일부의 카르복실기를, 땜납 표면의 수산기에 반응시킴으로써, 땜납 표면에 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자가 얻어진다.
상기 도전성 입자의 제조 방법은, 예를 들어 도전성 입자를 사용하여, 상기 도전성 입자, 수산기와 반응 가능한 관능기와 카르복실기를 갖는 화합물, 촉매 및 용매를 혼합하는 공정을 구비한다. 상기 도전성 입자의 제조 방법에서는, 상기 혼합 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 용이하게 얻을 수 있다.
또한, 상기 도전성 입자의 제조 방법에서는, 도전성 입자를 사용하여, 상기 도전성 입자, 상기 수산기와 반응 가능한 관능기와 카르복실기를 갖는 화합물, 상기 촉매 및 상기 용매를 혼합하여, 가열하는 것이 바람직하다. 혼합 및 가열 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 공유 결합되어 있는 도전성 입자를 한층 더 용이하게 얻을 수 있다.
상기 용매로서는, 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올 용매나, 아세톤, 메틸에틸케톤, 아세트산에틸, 톨루엔 및 크실렌 등을 들 수 있다. 상기 용매는 유기 용매인 것이 바람직하고, 톨루엔인 것이 보다 바람직하다. 상기 용매는, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 촉매로서는, p-톨루엔술폰산, 벤젠술폰산 및 10-캄포술폰산 등을 들 수 있다. 상기 촉매는, p-톨루엔술폰산인 것이 바람직하다. 상기 촉매는 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 혼합시에 가열하는 것이 바람직하다. 가열 온도는 바람직하게는 90℃ 이상, 보다 바람직하게는 100℃ 이상이고, 바람직하게는 130℃ 이하, 보다 바람직하게는 110℃ 이하이다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 도전성 입자는, 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시키는 공정을 거쳐 얻어지는 것이 바람직하다. 상기 반응에서는, 공유 결합을 형성시킨다. 땜납 표면의 수산기와 상기 이소시아네이트 화합물을 반응시킴으로써, 땜납 표면에, 이소시아네이트기에서 유래하는 기의 질소 원자가 공유 결합되어 있는 도전성 입자를 용이하게 얻을 수 있다. 상기 땜납 표면의 수산기에 상기 이소시아네이트 화합물을 반응시킴으로써, 땜납 표면에, 이소시아네이트기에서 유래하는 기를 공유 결합의 형태로 화학 결합시킬 수 있다.
또한, 이소시아네이트기에서 유래하는 기에는, 실란 커플링제를 용이하게 반응시킬 수 있다. 상기 도전성 입자를 용이하게 얻을 수 있으므로, 상기 카르복실기를 포함하는 기가, 카르복실기를 갖는 실란 커플링제를 사용한 반응에 의해 도입되어 있거나, 또는 실란 커플링제를 사용한 반응 후에, 실란 커플링제에서 유래하는 기에 카르복실기를 적어도 하나 갖는 화합물을 반응시킴으로써 도입되어 있는 것이 바람직하다. 상기 도전성 입자는, 상기 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 적어도 하나 갖는 화합물을 반응시킴으로써 얻어지는 것이 바람직하다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추고, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물이, 카르복실기를 복수 갖는 것이 바람직하다.
상기 이소시아네이트 화합물로서는, 디페닐메탄-4,4'-디이소시아네이트(MDI), 헥사메틸렌디이소시아네이트(HDI), 톨루엔디이소시아네이트(TDI) 및 이소포론디이소시아네이트(IPDI) 등을 들 수 있다. 이들 이외의 이소시아네이트 화합물을 사용해도 된다. 이 화합물을 땜납 표면에 반응시킨 후, 남은 이소시아네이트기와, 그 남은 이소시아네이트기와 반응성을 갖고, 또한 카르복실기를 갖는 화합물을 반응시킴으로써, 땜납 표면에 식(X)로 표시되는 기를 통해, 카르복실기를 도입할 수 있다.
상기 이소시아네이트 화합물로서는, 불포화 이중 결합을 갖고, 또한 이소시아네이트기를 갖는 화합물을 사용해도 된다. 예를 들어, 2-아크릴로일옥시에틸이소시아네이트 및 2-이소시아네이토에틸메타크릴레이트를 들 수 있다. 이 화합물의 이소시아네이트기를 땜납 표면에 반응시킨 후, 잔존하고 있는 불포화 이중 결합에 대하여 반응성을 갖는 관능기를 갖고, 또한 카르복실기를 갖는 화합물을 반응시킴으로써, 땜납 표면에 식(X)로 표시되는 기를 통해, 카르복실기를 도입할 수 있다.
상기 실란 커플링제로서는, 3-이소시아네이트프로필트리에톡시실란(신에쓰 실리콘사제 「KBE-9007」) 및 3-이소시아네이트프로필트리메톡시실란(MOMENTIVE사제 「Y-5187」) 등을 들 수 있다. 상기 실란 커플링제는, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 카르복실기를 적어도 하나 갖는 화합물로서는, 레불린산, 글루타르산, 글리콜산, 숙신산, 말산, 옥살산, 말론산, 아디프산, 5-케토헥산산, 3-히드록시프로피온산, 4-아미노부티르산, 3-머캅토프로피온산, 3-머캅토이소부틸산, 3-메틸티오프로피온산, 3-페닐프로피온산, 3-페닐이소부틸산, 4-페닐부티르산, 데칸산, 도데칸산, 테트라데칸산, 펜타데칸산, 헥사데칸산, 9-헥사데센산, 헵타데칸산, 스테아르산, 올레산, 박센산, 리놀산, (9,12,15)-리놀렌산, 노나데칸산, 아라키드산, 데칸디오산 및 도데칸디오산 등을 들 수 있다. 글루타르산, 아디프산 또는 글리콜산이 바람직하다. 상기 카르복실기를 적어도 하나 갖는 화합물은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 복수 갖는 화합물의 일부의 카르복실기를, 땜납 표면의 수산기와 반응시킴으로써, 카르복실기를 포함하는 기를 잔존시킬 수 있다.
상기 도전성 입자의 제조 방법에서는, 도전성 입자를 사용하거나, 또한 이소시아네이트 화합물을 사용하여, 땜납 표면의 수산기에, 상기 이소시아네이트 화합물을 반응시킨 후, 카르복실기를 적어도 하나 갖는 화합물을 반응시켜, 땜납 표면에, 상기 식(X)로 표시되는 기를 통해, 카르복실기를 포함하는 기가 결합되어 있는 도전성 입자를 얻는다. 상기 도전성 입자의 제조 방법에서는, 상기 공정에 의해, 땜납 표면에, 카르복실기를 포함하는 기가 도입된 도전성 입자를 용이하게 얻을 수 있다.
상기 도전성 입자의 구체적인 제조 방법으로서는, 이하의 방법을 들 수 있다. 유기 용매에 도전성 입자를 분산시키고, 이소시아네이트기를 갖는 실란 커플링제를 첨가한다. 그 후, 도전성 입자의 땜납 표면의 수산기와 이소시아네이트기의 반응 촉매를 사용하여, 땜납 표면에 실란 커플링제를 공유 결합시킨다. 이어서, 실란 커플링제의 규소 원자에 결합되어 있는 알콕시기를 가수 분해함으로써, 수산기를 생성시킨다. 생성된 수산기에, 카르복실기를 적어도 하나 갖는 화합물의 카르복실기를 반응시킨다.
또한, 상기 도전성 입자의 구체적인 제조 방법으로서는, 이하의 방법을 들 수 있다. 유기 용매에 도전성 입자를 분산시키고, 이소시아네이트기와 불포화 이중 결합을 갖는 화합물을 첨가한다. 그 후, 도전성 입자의 땜납 표면의 수산기와 이소시아네이트기의 반응 촉매를 사용하여, 공유 결합을 형성시킨다. 그 후, 도입된 불포화 이중 결합에 대하여 불포화 이중 결합 및 카르복실기를 갖는 화합물을 반응시킨다.
도전성 입자의 땜납 표면의 수산기와 이소시아네이트기의 반응 촉매로서는, 주석계 촉매(디부틸주석디라우레이트 등), 아민계 촉매(트리에틸렌디아민 등), 카르복실레이트 촉매(나프텐산납, 아세트산칼륨 등), 및 트리알킬포스핀 촉매(트리에틸포스핀 등) 등을 들 수 있다.
접속 구조체에 있어서의 접속 저항을 효과적으로 낮추어, 보이드의 발생을 효과적으로 억제하는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1)로 표시되는 화합물인 것이 바람직하다. 하기 식(1)로 표시되는 화합물은, 플럭스 작용을 갖는다. 또한, 하기 식(1)로 표시되는 화합물은, 땜납 표면에 도입된 상태에서 플럭스 작용을 갖는다.
상기 식(1) 중, X는, 수산기와 반응 가능한 관능기를 나타내고, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 해당 유기기는, 탄소 원자와 수소 원자와 산소 원자를 포함하고 있어도 된다. 해당 유기기는 탄소수 1 내지 5의 2가의 탄화수소기여도 된다. 상기 유기기의 주쇄는 2가의 탄화수소기인 것이 바람직하다. 해당 유기기에서는, 2가의 탄화수소기에 카르복실기나 수산기가 결합되어 있어도 된다. 상기 식(1)로 표시되는 화합물에는, 예를 들어 시트르산이 포함된다.
상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1A) 또는 하기 식(1B)로 표시되는 화합물인 것이 바람직하다. 상기 카르복실기를 적어도 하나 갖는 화합물은, 하기 식(1A)로 표시되는 화합물인 것이 바람직하고, 하기 식(1B)로 표시되는 화합물인 것이 보다 바람직하다.
상기 식(1A) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(1A) 중의 R은 상기 식(1) 중의 R과 동일하다.
상기 식(1B) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(1B) 중의 R은 상기 식(1) 중의 R과 동일하다.
땜납 표면에, 하기 식(2A) 또는 하기 식(2B)로 표시되는 기가 결합되어 있는 것이 바람직하다. 땜납 표면에, 하기 식(2A)로 표시되는 기가 결합되어 있는 것이 바람직하고, 하기 식(2B)로 표시되는 기가 결합되어 있는 것이 보다 바람직하다. 또한, 하기 식(2A) 및 하기 식(2B)에 있어서, 좌측 단부는 결합 부위를 나타낸다.
상기 식(2A) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(2A) 중의 R은 상기 식(1) 중의 R과 동일하다.
상기 식(2B) 중, R은, 탄소수 1 내지 5의 2가의 유기기를 나타낸다. 상기 식(2B) 중의 R은 상기 식(1) 중의 R과 동일하다.
땜납 표면의 습윤성을 높이는 관점에서는, 상기 카르복실기를 적어도 하나 갖는 화합물의 분자량은, 바람직하게는 10000 이하, 보다 바람직하게는 1000 이하, 더욱 바람직하게는 500 이하이다.
상기 분자량은, 상기 카르복실기를 적어도 하나 갖는 화합물이 중합체가 아닐 경우, 및 상기 카르복실기를 적어도 하나 갖는 화합물의 구조식을 특정할 수 있는 경우에는, 당해 구조식으로부터 산출할 수 있는 분자량을 의미한다. 또한, 상기 카르복실기를 적어도 하나 갖는 화합물이 중합체인 경우에는, 중량 평균 분자량을 의미한다.
도전 접속시에 도전성 입자의 응집성을 효과적으로 높일 수 있는 점에서, 상기 도전성 입자는, 도전성 입자 본체와, 상기 도전성 입자 본체의 표면 상에 배치된 음이온 중합체를 갖는 것이 바람직하다. 상기 도전성 입자는, 도전성 입자 본체를 음이온 중합체 또는 음이온 중합체가 되는 화합물로 표면 처리함으로써 얻어지는 것이 바람직하다. 상기 도전성 입자는, 음이온 중합체 또는 음이온 중합체가 되는 화합물에 의한 표면 처리물인 것이 바람직하다. 상기 음이온 중합체, 및 상기 음이온 중합체가 되는 화합물은 각각, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다. 상기 음이온 중합체는, 산성기를 갖는 중합체이다.
도전성 입자 본체를 음이온 중합체로 표면 처리하는 방법으로서는, 음이온 중합체로서, 예를 들어 (메트)아크릴산을 공중합한 (메트)아크릴 중합체, 디카르복실산과 디올로부터 합성되며 또한 양쪽 말단에 카르복실기를 갖는 폴리에스테르 중합체, 디카르복실산의 분자간 탈수 축합 반응에 의해 얻어지며 또한 양쪽 말단에 카르복실기를 갖는 중합체, 디카르복실산과 디아민으로부터 합성되며 또한 양쪽 말단에 카르복실기를 갖는 폴리에스테르 중합체, 및 카르복실기를 갖는 변성 포발(닛폰 고세이 가가꾸사제 「고세넥스 T」) 등을 사용하여, 음이온 중합체의 카르복실기와, 도전성 입자 본체의 표면의 수산기를 반응시키는 방법을 들 수 있다.
상기 음이온 중합체의 음이온 부분으로서는, 상기 카르복실기를 들 수 있고, 그 이외에는, 토실기(p-H3CC6H4S(=O)2-), 술폰산 이온기(-SO3 -) 및 인산 이온기(-PO4 -) 등을 들 수 있다.
또한, 표면 처리의 다른 방법으로서는, 도전성 입자 본체의 표면의 수산기와 반응하는 관능기를 갖고, 추가로 부가, 축합 반응에 의해 중합 가능한 관능기를 갖는 화합물을 사용하여, 이 화합물을 도전성 입자 본체의 표면 상에서 중합체화하는 방법을 들 수 있다. 도전성 입자 본체의 표면의 수산기와 반응하는 관능기로서는, 카르복실기 및 이소시아네이트기 등을 들 수 있고, 부가, 축합 반응에 의해 중합하는 관능기로서는, 수산기, 카르복실기, 아미노기 및 (메트)아크릴로일기를 들 수 있다.
상기 음이온 중합체의 중량 평균 분자량은 바람직하게는 2000 이상, 보다 바람직하게는 3000 이상이며, 바람직하게는 10000 이하, 보다 바람직하게는 8000 이하이다. 상기 중량 평균 분자량이 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자의 표면에 충분한 양의 전하, 및 플럭스성을 도입할 수 있다. 이에 의해, 도전 접속시에 도전성 입자의 응집성을 효과적으로 높일 수 있으며, 또한 접속 대상 부재의 접속시에, 전극 표면의 산화막을 효과적으로 제거할 수 있다.
상기 중량 평균 분자량이 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자 본체의 표면 상에 음이온 중합체를 배치하는 것이 용이하고, 도전 접속시에 도전성 입자의 응집성을 효과적으로 높일 수 있으며, 전극 상에 도전성 입자를 한층 더 효율적으로 배치할 수 있다.
상기 중량 평균 분자량은, 겔 투과 크로마토그래피(GPC)에 의해 측정된 폴리스티렌 환산으로의 중량 평균 분자량을 나타낸다.
도전성 입자 본체를 음이온 중합체가 되는 화합물로 표면 처리함으로써 얻어진 중합체의 중량 평균 분자량은, 도전성 입자 중의 땜납을 용해시키고, 중합체의 분해를 일으키지 않는 희염산 등에 의해, 도전성 입자를 제거한 후, 잔존하고 있는 중합체의 중량 평균 분자량을 측정함으로써 구할 수 있다.
이어서, 도면을 참조하면서, 도전성 입자의 구체예를 설명한다.
도 4는, 도전 재료에 사용 가능한 도전성 입자의 제1 예를 나타낸 단면도이다.
도 4에 나타낸 도전성 입자(21)는 땜납 입자이다. 도전성 입자(21)는, 전체가 땜납에 의해 형성되어 있다. 도전성 입자(21)는 기재 입자를 코어에 갖지 않으며, 코어 셸 입자가 아니다. 도전성 입자(21)는, 중심 부분 및 도전부의 외표면 부분이 모두 땜납에 의해 형성되어 있다.
도 5는, 도전 재료에 사용 가능한 도전성 입자의 제2 예를 나타낸 단면도이다.
도 5에 나타낸 도전성 입자(31)는, 기재 입자(32)와, 기재 입자(32)의 표면 상에 배치된 도전부(33)를 구비한다. 도전부(33)는 기재 입자(32)의 표면을 피복하고 있다. 도전성 입자(31)는, 기재 입자(32)의 표면이 도전부(33)에 의해 피복된 피복 입자이다.
도전부(33)는, 제2 도전부(33A)와, 땜납부(33B)(제1 도전부)를 갖는다. 도전성 입자(31)는, 기재 입자(32)와, 땜납부(33B) 사이에, 제2 도전부(33A)를 구비한다. 따라서, 도전성 입자(31)는, 기재 입자(32)와, 기재 입자(32)의 표면 상에 배치된 제2 도전부(33A)와, 제2 도전부(33A)의 외표면 상에 배치된 땜납부(33B)를 구비한다.
도 6은, 도전 재료에 사용 가능한 도전성 입자의 제3 예를 나타낸 단면도이다.
상기한 바와 같이 도전성 입자(31)에 있어서의 도전부(33)는, 2층 구조를 갖는다. 도 6에 나타낸 도전성 입자(41)는 단층의 도전부로서, 땜납부(42)를 갖는다. 도전성 입자(41)는, 기재 입자(32)와, 기재 입자(32)의 표면 상에 배치된 땜납부(42)를 구비한다.
상기 기재 입자로서는, 수지 입자, 금속 입자를 제외한 무기 입자, 유기 무기 하이브리드 입자 및 금속 입자 등을 들 수 있다. 상기 기재 입자는, 금속을 제외한 기재 입자인 것이 바람직하고, 수지 입자, 금속 입자를 제외한 무기 입자 또는 유기 무기 하이브리드 입자인 것이 바람직하다. 상기 기재 입자는, 구리 입자여도 된다. 상기 기재 입자는, 코어와, 해당 코어의 표면 상에 배치된 셸을 갖고 있어도 되고, 코어 셸 입자여도 된다. 상기 코어가 유기 코어여도 되고, 상기 셸이 무기 셸이어도 된다.
상기 수지 입자를 형성하기 위한 수지로서, 다양한 유기물이 적합하게 사용된다. 상기 수지 입자를 형성하기 위한 수지로서는, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 폴리염화비닐리덴, 폴리이소부틸렌, 폴리부타디엔 등의 폴리올레핀 수지; 폴리메틸메타크릴레이트 및 폴리메틸아크릴레이트 등의 아크릴 수지; 폴리카르보네이트, 폴리아미드, 페놀포름알데히드 수지, 멜라민포름알데히드 수지, 벤조구아나민포름알데히드 수지, 요소포름알데히드 수지, 페놀 수지, 멜라민 수지, 벤조구아나민 수지, 요소 수지, 에폭시 수지, 불포화 폴리에스테르 수지, 포화 폴리에스테르 수지, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리페닐렌옥사이드, 폴리아세탈, 폴리이미드, 폴리아미드이미드, 폴리에테르에테르케톤, 폴리에테르술폰, 디비닐벤젠 중합체, 및 디비닐벤젠계 공중합체 등을 들 수 있다. 상기 디비닐벤젠계 공중합체 등으로서는, 디비닐벤젠-스티렌 공중합체 및 디비닐벤젠-(메트)아크릴산에스테르 공중합체 등을 들 수 있다. 상기 수지 입자의 경도를 적합한 범위로 용이하게 제어할 수 있으므로, 상기 수지 입자를 형성하기 위한 수지는, 에틸렌성 불포화기를 갖는 중합성 단량체를 1종 또는 2종 이상 중합시킨 중합체인 것이 바람직하다.
상기 수지 입자를, 에틸렌성 불포화기를 갖는 중합성 단량체를 중합시켜 얻는 경우에는, 해당 에틸렌성 불포화기를 갖는 중합성 단량체로서는, 비가교성 단량체와 가교성 단량체를 들 수 있다.
상기 비가교성 단량체로서는, 예를 들어 스티렌, α-메틸스티렌 등의 스티렌계 단량체; (메트)아크릴산, 말레산, 무수 말레산 등의 카르복실기 함유 단량체; 메틸(메트)아크릴레이트, 에틸(메트)아크릴레이트, 프로필(메트)아크릴레이트, 부틸(메트)아크릴레이트, 2-에틸헥실(메트)아크릴레이트, 라우릴(메트)아크릴레이트, 세틸(메트)아크릴레이트, 스테아릴(메트)아크릴레이트, 시클로헥실(메트)아크릴레이트, 이소보르닐(메트)아크릴레이트 등의 알킬(메트)아크릴레이트 화합물; 2-히드록시에틸(메트)아크릴레이트, 글리세롤(메트)아크릴레이트, 폴리옥시에틸렌(메트)아크릴레이트, 글리시딜(메트)아크릴레이트 등의 산소 원자 함유 (메트)아크릴레이트 화합물; (메트)아크릴로니트릴 등의 니트릴 함유 단량체; 메틸비닐에테르, 에틸비닐에테르, 프로필비닐에테르 등의 비닐에테르 화합물; 아세트산비닐, 부티르산비닐, 라우르산비닐, 스테아르산비닐 등의 산비닐에스테르 화합물; 에틸렌, 프로필렌, 이소프렌, 부타디엔 등의 불포화 탄화수소; 트리플루오로메틸(메트)아크릴레이트, 펜타플루오로에틸(메트)아크릴레이트, 염화비닐, 불화비닐, 클로로스티렌 등의 할로겐 함유 단량체 등을 들 수 있다.
상기 가교성 단량체로서는, 예를 들어 테트라메틸올메탄테트라(메트)아크릴레이트, 테트라메틸올메탄트리(메트)아크릴레이트, 테트라메틸올메탄디(메트)아크릴레이트, 트리메틸올프로판트리(메트)아크릴레이트, 디펜타에리트리톨헥사(메트)아크릴레이트, 디펜타에리트리톨펜타(메트)아크릴레이트, 글리세롤트리(메트)아크릴레이트, 글리세롤디(메트)아크릴레이트, (폴리)에틸렌글리콜디(메트)아크릴레이트, (폴리)프로필렌글리콜디(메트)아크릴레이트, (폴리)테트라메틸렌글리콜디(메트)아크릴레이트, 1,4-부탄디올디(메트)아크릴레이트 등의 다관능 (메트)아크릴레이트 화합물; 트리알릴(이소)시아누레이트, 트리알릴트리멜리테이트, 디비닐벤젠, 디알릴프탈레이트, 디알릴아크릴아미드, 디알릴에테르, γ-(메트)아크릴옥시프로필트리메톡시실란, 트리메톡시실릴스티렌, 비닐트리메톡시실란 등의 실란 함유 단량체 등을 들 수 있다.
「(메트)아크릴레이트」라는 용어는, 아크릴레이트와 메타크릴레이트를 나타낸다. 「(메트)아크릴」라는 용어는, 아크릴과 메타크릴을 나타낸다. 「(메트)아크릴로일」라는 용어는, 아크릴로일과 메타크릴로일을 나타낸다.
상기 에틸렌성 불포화기를 갖는 중합성 단량체를, 공지된 방법에 의해 중합시킴으로써, 상기 수지 입자를 얻을 수 있다. 이 방법으로서는, 예를 들어 라디칼 중합 개시제의 존재 하에서 현탁 중합하는 방법, 및 비가교의 종입자를 사용하여 라디칼 중합 개시제와 함께 단량체를 팽윤시켜 중합하는 방법 등을 들 수 있다.
상기 기재 입자가 금속을 제외한 무기 입자 또는 유기 무기 하이브리드 입자일 경우에는, 기재 입자를 형성하기 위한 무기물로서는, 실리카, 알루미나, 티타늄산바륨, 지르코니아 및 카본 블랙 등을 들 수 있다. 상기 무기물은, 금속이 아닌 것이 바람직하다. 상기 실리카에 의해 형성된 입자로서는 특별히 한정되지 않지만, 예를 들어 가수 분해성 알콕시실릴기를 2개 이상 갖는 규소 화합물을 가수 분해하여 가교 중합체 입자를 형성한 후에, 필요에 따라서 소성을 행함으로써 얻어지는 입자를 들 수 있다. 상기 유기 무기 하이브리드 입자로서는, 예를 들어 가교된 알콕시실릴 중합체와 아크릴 수지에 의해 형성된 유기 무기 하이브리드 입자 등을 들 수 있다.
상기 유기 무기 하이브리드 입자는, 코어와, 해당 코어의 표면 상에 배치된 셸을 갖는 코어 셸형의 유기 무기 하이브리드 입자인 것이 바람직하다. 상기 코어가 유기 코어인 것이 바람직하다. 상기 셸이 무기 셸인 것이 바람직하다. 전극간의 접속 저항을 효과적으로 낮추는 관점에서는, 상기 기재 입자는, 유기 코어와 상기 유기 코어의 표면 상에 배치된 무기 셸을 갖는 유기 무기 하이브리드 입자인 것이 바람직하다.
상기 유기 코어를 형성하기 위한 재료로서는, 상술한 수지 입자를 형성하기 위한 수지 등을 들 수 있다.
상기 무기 셸을 형성하기 위한 재료로서는, 상술한 기재 입자를 형성하기 위한 무기물을 들 수 있다. 상기 무기 셸을 형성하기 위한 재료는, 실리카인 것이 바람직하다. 상기 무기 셸은, 상기 코어의 표면 상에서, 금속 알콕시드를 졸겔법에 의해 셸 형상물로 한 후, 해당 셸 형상물을 소결시킴으로써 형성되어 있는 것이 바람직하다. 상기 금속 알콕시드는 실란알콕시드인 것이 바람직하다. 상기 무기 셸은 실란알콕시드에 의해 형성되어 있는 것이 바람직하다.
상기 코어의 입자 직경은, 바람직하게는 0.5㎛ 이상, 보다 바람직하게는 1㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 50㎛ 이하, 더욱 바람직하게는 40㎛ 이하, 특히 바람직하게는 30㎛ 이하, 가장 바람직하게는 15㎛ 이하이다. 상기 코어의 입자 직경이 상기 하한 이상 및 상기 상한 이하이면, 전극간의 전기적인 접속에 한층 더 적합한 도전성 입자가 얻어지고, 기재 입자를 도전성 입자의 용도에 적합하게 사용 가능해진다. 예를 들어, 상기 코어의 입자 직경이 상기 하한 이상 및 상기 상한 이하이면, 상기 도전성 입자를 사용하여 전극간을 접속시킨 경우에, 도전성 입자와 전극의 접촉 면적이 충분히 커지고, 또한 기재 입자의 표면에 도전부를 형성할 때, 응집된 도전성 입자가 형성되기 어려워진다. 또한, 도전성 입자를 통해 접속된 전극간의 간격이 너무 커지지 않고, 또한 도전부가 기재 입자의 표면으로부터 박리되기 어려워진다.
상기 코어의 입자 직경은, 상기 코어가 진구 형상일 경우에는 직경을 의미하고, 상기 코어가 진구 형상 이외의 형상일 경우에는, 최대 직경을 의미한다. 또한, 코어의 입자 직경은, 코어를 임의의 입자 직경 측정 장치에 의해 측정한 평균 입자 직경을 의미한다. 예를 들어, 레이저광 산란, 전기 저항값 변화, 촬상 후의 화상 해석 등의 원리를 사용한 입도 분포 측정기를 이용할 수 있다.
상기 셸의 두께는, 바람직하게는 100nm 이상, 보다 바람직하게는 200nm 이상이며, 바람직하게는 5㎛ 이하, 보다 바람직하게는 3㎛ 이하이다. 상기 셸의 두께가 상기 하한 이상 및 상기 상한 이하이면, 전극간의 전기적인 접속에 한층 더 적합한 도전성 입자가 얻어지고, 기재 입자를 도전성 입자의 용도에 적합하게 사용 가능해진다. 상기 셸의 두께는, 기재 입자 1개당 평균 두께이다. 졸겔법의 제어에 의해, 상기 셸의 두께를 제어 가능하다.
상기 기재 입자가 금속 입자일 경우에, 해당 금속 입자를 형성하기 위한 금속으로서는, 은, 구리, 니켈, 규소, 금 및 티타늄 등을 들 수 있다. 상기 기재 입자가 금속 입자일 경우에, 해당 금속 입자는 구리 입자인 것이 바람직하다. 단, 상기 기재 입자는 금속 입자가 아닌 것이 바람직하다.
상기 기재 입자의 입자 직경은, 바람직하게는 0.1㎛ 이상, 보다 바람직하게는 1㎛ 이상, 더욱 바람직하게는 1.5㎛ 이상, 특히 바람직하게는 2㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 50㎛ 이하, 한층 더 바람직하게는 40㎛ 이하, 더욱 바람직하게는 20㎛ 이하, 한층 더 바람직하게는 10㎛ 이하, 특히 바람직하게는 5㎛ 이하, 가장 바람직하게는 3㎛ 이하이다. 상기 기재 입자의 입자 직경이 상기 하한 이상이면, 도전성 입자와 전극의 접촉 면적이 커지기 때문에, 전극간의 도통 신뢰성을 한층 더 높일 수 있고, 도전성 입자를 통해 접속된 전극간의 접속 저항을 한층 더 낮출 수 있다. 상기 기재 입자의 입자 직경이 상기 상한 이하이면, 도전성 입자가 충분히 압축되기 쉽고, 전극간의 접속 저항을 한층 더 낮출 수 있으며, 또한 전극간의 간격을 의해 작게 할 수 있다.
상기 기재 입자의 입자 직경은, 기재 입자가 진구 형상일 경우에는, 직경을 나타내고, 기재 입자가 진구 형상이 아닐 경우에는, 최대 직경을 나타낸다.
상기 기재 입자의 입자 직경은, 2㎛ 이상, 5㎛ 이하인 것이 특히 바람직하다. 상기 기재 입자의 입자 직경이 2㎛ 이상, 5㎛ 이하의 범위 내이면, 전극간의 간격을 보다 작게 할 수 있으며, 또한 도전층의 두께를 두껍게 해도, 작은 도전성 입자를 얻을 수 있다.
상기 기재 입자의 표면 상에 도전부를 형성하는 방법, 및 상기 기재 입자의 표면 상 또는 상기 제2 도전부의 표면 상에 땜납부를 형성하는 방법은 특별히 한정되지 않는다. 상기 도전부 및 상기 땜납부를 형성하는 방법으로서는, 예를 들어 무전해 도금에 의한 방법, 전기 도금에 의한 방법, 물리적인 충돌에 의한 방법, 메카노케미컬 반응에 의한 방법, 물리적 증착 또는 물리적 흡착에 의한 방법, 및 금속 분말 또는 금속 분말과 바인더를 포함하는 페이스트를 기재 입자의 표면에 코팅하는 방법 등을 들 수 있다. 무전해 도금, 전기 도금 또는 물리적인 충돌에 의한 방법이 적합하다. 상기 물리적 증착에 의한 방법으로서는, 진공 증착, 이온 플레이팅 및 이온 스퍼터링 등의 방법을 들 수 있다. 또한, 상기 물리적인 충돌에 의한 방법에서는, 예를 들어 세타 컴포저(도쿠주 고사꾸쇼사제) 등이 사용된다.
상기 기재 입자의 융점은, 상기 도전부 및 상기 땜납부의 융점보다도 높은 것이 바람직하다. 상기 기재 입자의 융점은, 바람직하게는 160℃를 초과하고, 보다 바람직하게는 300℃를 초과하고, 더욱 바람직하게는 400℃를 초과하고, 특히 바람직하게는 450℃를 초과한다. 또한, 상기 기재 입자의 융점은, 400℃ 미만이어도 된다. 상기 기재 입자의 융점은, 160℃ 이하이어도 된다. 상기 기재 입자의 연화점은 260℃ 이상인 것이 바람직하다. 상기 기재 입자의 연화점은 260℃ 미만이어도 된다.
상기 도전성 입자는, 단층의 땜납부를 갖고 있어도 된다. 상기 도전성 입자는, 복수층의 도전부(땜납부, 제2 도전부)를 갖고 있어도 된다. 즉, 상기 도전성 입자에서는, 도전부를 2층 이상 적층해도 된다. 상기 도전부가 2층 이상인 경우, 상기 도전성 입자는, 도전부의 외표면 부분에 땜납을 갖는 것이 바람직하다.
상기 땜납은, 융점이 450℃ 이하인 금속(저융점 금속)인 것이 바람직하다. 상기 땜납부는, 융점이 450℃ 이하인 금속층(저융점 금속층)인 것이 바람직하다. 상기 저융점 금속층은, 저융점 금속을 포함하는 층이다. 상기 도전성 입자에 있어서의 땜납은, 융점이 450℃ 이하인 금속 입자(저융점 금속 입자)인 것이 바람직하다. 상기 저융점 금속 입자는, 저융점 금속을 포함하는 입자이다. 해당 저융점 금속이란, 융점이 450℃ 이하인 금속을 나타낸다. 저융점 금속의 융점은 바람직하게는 300℃ 이하, 보다 바람직하게는 160℃ 이하이다. 또한, 상기 도전성 입자에 있어서의 땜납은 주석을 포함하는 것이 바람직하다. 상기 땜납부에 포함되는 금속 100중량% 중 및 상기 도전성 입자에 있어서의 땜납에 포함되는 금속 100중량% 중, 주석의 함유량은 바람직하게는 30중량% 이상, 보다 바람직하게는 40중량% 이상, 더욱 바람직하게는 70중량% 이상, 특히 바람직하게는 90중량% 이상이다. 상기 도전성 입자에 있어서의 땜납에 포함되는 주석의 함유량이 상기 하한 이상이면, 도전성 입자와 전극의 도통 신뢰성이 한층 더 높아진다.
또한, 상기 주석의 함유량은, 고주파 유도 결합 플라즈마 발광 분광 분석 장치(호리바 세이사꾸쇼사제 「ICP-AES」), 또는 형광 X선 분석 장치(시마즈 세이사꾸쇼사제 「EDX-800HS」) 등을 사용하여 측정 가능하다.
상기 땜납을 도전부의 외표면 부분에 갖는 도전성 입자를 사용함으로써, 땜납이 용융되어 전극에 접합되고, 땜납이 전극간을 도통시킨다. 예를 들어, 땜납과 전극이 점 접촉이 아니라 면 접촉되기 쉽기 때문에, 접속 저항이 낮아진다. 또한, 땜납을 도전부의 외표면 부분에 갖는 도전성 입자의 사용에 의해, 땜납과 전극의 접합 강도가 높아지는 결과, 땜납과 전극의 박리가 한층 더 발생하기 어려워져, 도통 신뢰성이 효과적으로 높아진다.
상기 땜납부 및 상기 땜납 입자를 구성하는 저융점 금속은 특별히 한정되지 않는다. 해당 저융점 금속은, 주석, 또는 주석을 포함하는 합금인 것이 바람직하다. 해당 합금은, 주석-은 합금, 주석-구리 합금, 주석-은-구리 합금, 주석-비스무트 합금, 주석-아연 합금, 주석-인듐 합금 등을 들 수 있다. 전극에 대한 습윤성이 우수한 점에서, 상기 저융점 금속은, 주석, 주석-은 합금, 주석-은-구리 합금, 주석-비스무트 합금, 주석-인듐 합금인 것이 바람직하다. 주석-비스무트 합금, 주석-인듐 합금인 것이 보다 바람직하다.
상기 땜납(땜납부)을 구성하는 재료는, JIS Z3001: 용접 용어에 기초하여, 액상선이 450℃ 이하인 용가재인 것이 바람직하다. 상기 땜납의 조성으로서는, 예를 들어 아연, 금, 은, 납, 구리, 주석, 비스무트, 인듐 등을 포함하는 금속 조성을 들 수 있다. 저융점이며 납 프리인 주석-인듐계(117℃ 공정(共晶)), 또는 주석-비스무트계(139℃ 공정)가 바람직하다. 즉, 상기 땜납은, 납을 포함하지 않는 것이 바람직하고, 주석과 인듐을 포함하는 땜납, 또는 주석과 비스무트를 포함하는 땜납인 것이 바람직하다.
상기 땜납과 전극의 접합 강도를 한층 더 높이기 위해서, 상기 도전성 입자에 있어서의 땜납은, 니켈, 구리, 안티몬, 알루미늄, 아연, 철, 금, 티타늄, 인, 게르마늄, 텔루륨, 코발트, 비스무트, 망간, 크롬, 몰리브덴, 팔라듐 등의 금속을 포함하고 있어도 된다. 또한, 땜납과 전극의 접합 강도를 한층 더 높이는 관점에서는, 상기 도전성 입자에 있어서의 땜납은, 니켈, 구리, 안티몬, 알루미늄 또는 아연을 포함하는 것이 바람직하다. 땜납부 또는 도전성 입자에 있어서의 땜납과 전극의 접합 강도를 한층 더 높이는 관점에서는, 접합 강도를 높이기 위한 이들 금속의 함유량은, 상기 도전성 입자에 있어서의 땜납 100중량% 중, 바람직하게는 0.0001중량% 이상, 바람직하게는 1중량% 이하이다.
상기 제2 도전부의 융점은, 상기 땜납부의 융점보다도 높은 것이 바람직하다. 상기 제2 도전부의 융점은 바람직하게는 160℃를 초과하고, 보다 바람직하게는 300℃를 초과하고, 더욱 바람직하게는 400℃를 초과하고, 한층 더 바람직하게는 450℃를 초과하고, 특히 바람직하게는 500℃를 초과하고, 가장 바람직하게는 600℃를 초과한다. 상기 땜납부는 융점이 낮기 때문에 도전 접속시에 용융된다. 상기 제2 도전부는 도전 접속시에 용융되지 않는 것이 바람직하다. 상기 도전성 입자는, 땜납을 용융시켜 사용되는 것이 바람직하고, 상기 땜납부를 용융시켜 사용되는 것이 바람직하며, 상기 땜납부를 용융시키며 또한 상기 제2 도전부를 용융시키지 않고 사용되는 것이 바람직하다. 상기 제2 도전부의 융점이 상기 땜납부의 융점보다도 높은 것으로 인해, 도전 접속시에, 상기 제2 도전부를 용융시키지 않고, 상기 땜납부만을 용융시킬 수 있다.
상기 땜납부의 융점과 상기 제2 도전부의 융점의 차의 절댓값은, 0℃를 초과하고, 바람직하게는 5℃ 이상, 보다 바람직하게는 10℃ 이상, 더욱 바람직하게는 30℃ 이상, 특히 바람직하게는 50℃ 이상, 가장 바람직하게는 100℃ 이상이다.
상기 제2 도전부는, 금속을 포함하는 것이 바람직하다. 상기 제2 도전부를 구성하는 금속은, 특별히 한정되지 않는다. 해당 금속으로서는, 예를 들어 금, 은, 구리, 백금, 팔라듐, 아연, 납, 알루미늄, 코발트, 인듐, 니켈, 크롬, 티타늄, 안티몬, 비스무트, 게르마늄 및 카드뮴, 및 이들의 합금 등을 들 수 있다. 또한, 상기 금속으로서, 주석 도프 산화인듐(ITO)을 사용해도 된다. 상기 금속은 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 제2 도전부는, 니켈층, 팔라듐층, 구리층 또는 금층인 것이 바람직하고, 니켈층 또는 금층인 것이 보다 바람직하고, 구리층인 것이 더욱 바람직한다. 도전성 입자는, 니켈층, 팔라듐층, 구리층 또는 금층을 갖는 것이 바람직하고, 니켈층 또는 금층을 갖는 것이 보다 바람직하고, 구리층을 갖는 것이 더욱 바람직한다. 이들 바람직한 도전부를 갖는 도전성 입자를 전극간의 접속에 사용함으로써, 전극간의 접속 저항이 한층 더 낮아진다. 또한, 이들 바람직한 도전부의 표면에는, 땜납부를 한층 더 용이하게 형성할 수 있다.
상기 땜납부의 두께는, 바람직하게는 0.005㎛ 이상, 보다 바람직하게는 0.01㎛ 이상이며, 바람직하게는 10㎛ 이하, 보다 바람직하게는 1㎛ 이하, 더욱 바람직하게는 0.3㎛ 이하이다. 땜납부의 두께가 상기 하한 이상 및 상기 상한 이하이면, 충분한 도전성이 얻어지고, 또한 도전성 입자가 지나치게 단단해지지 않으며, 전극간의 접속시에 도전성 입자가 충분히 변형된다.
상기 도전성 입자의 평균 입자 직경은, 바람직하게는 0.5㎛ 이상, 보다 바람직하게는 1㎛ 이상, 더욱 바람직하게는 3㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 50㎛ 이하, 더욱 바람직하게는 40㎛ 이하, 특히 바람직하게는 30㎛ 이하이다. 상기 도전성 입자가 상기 하한 이상 및 상기 상한 이하이면, 전극 상에 도전성 입자에 있어서의 땜납을 한층 더 효율적으로 배치할 수 있고, 전극간에 도전성 입자에 있어서의 땜납을 많이 배치하는 것이 용이하여, 도통 신뢰성이 한층 더 높아진다.
상기 도전성 입자의 「평균 입자 직경」은, 수평균 입자 직경을 나타낸다. 도전성 입자의 평균 입자 직경은, 예를 들어 임의의 도전성 입자 50개를 전자 현미경 또는 광학 현미경으로 관찰하고, 평균값을 산출함으로써 구해진다.
상기 도전성 입자의 입자 직경의 변동 계수는, 바람직하게는 5% 이상, 보다 바람직하게는 10% 이상이며, 바람직하게는 40% 이하, 보다 바람직하게는 30% 이하이다. 상기 입자 직경의 변동 계수가 상기 하한 이상 및 상기 상한 이하이면, 전극 상에 도전성 입자에 있어서의 땜납을 한층 더 효율적으로 배치할 수 있다. 단, 상기 도전성 입자의 입자 직경의 변동 계수는, 5% 미만이어도 된다.
상기 변동 계수(CV값)는 하기 식으로 표현된다.
CV값(%)=(ρ/Dn)×100
ρ: 도전성 입자의 입자 직경의 표준 편차
Dn: 도전성 입자의 입자 직경의 평균값
상기 도전성 입자의 형상은 특별히 한정되지 않는다. 상기 도전성 입자의 형상은, 구 형상이어도 되고, 편평 형상 등의 구형상 이외의 형상이어도 된다.
상기 도전성 입자의 산가는 바람직하게는 0.1mg/KOH 이상, 보다 바람직하게는 1mg/KOH 이상, 바람직하게는 10mg/KOH 이하, 보다 바람직하게는 7mg/KOH 이하이다. 상기 산가가 상기 하한 이상 및 상기 상한 이하이면, 경화물의 내열성이 한층 더 높아지고, 경화물의 변색이 한층 더 억제된다.
상기 산가는 이하와 같이 하여 측정할 수 있다. 에탄올에 페놀프탈레인을 넣고, 0.1N-KOH로 중화시킨 용액 50ml에 대하여, 도전성 입자 1g을 넣어, 초음파 처리로 분산시킨 후, 0.1N-KOH로 적정한다.
상기 도전 재료 100중량% 중, 상기 도전성 입자의 함유량은 바람직하게는 1중량% 이상, 보다 바람직하게는 2중량% 이상, 더욱 바람직하게는 10중량% 이상, 특히 바람직하게는 20중량% 이상, 가장 바람직하게는 30중량% 이상이며, 바람직하게는 80중량% 이하, 보다 바람직하게는 60중량% 이하, 더욱 바람직하게는 50중량% 이하이다. 상기 도전성 입자의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 전극 상에 도전성 입자에 있어서의 땜납을 한층 더 효율적으로 배치할 수 있고, 전극간에 도전성 입자에 있어서의 땜납을 많이 배치하는 것이 용이하여, 도통 신뢰성이 한층 더 높아진다. 도통 신뢰성을 한층 더 높이는 관점에서는, 상기 도전성 입자의 함유량은 많은 것이 바람직하다.
(열경화성 화합물)
상기 열경화성 화합물은, 가열에 의해 경화 가능한 화합물이다. 상기 열경화성 화합물로서는, 옥세탄 화합물, 에폭시 화합물, 에피술피드 화합물, (메트)아크릴 화합물, 페놀 화합물, 아미노 화합물, 불포화 폴리에스테르 화합물, 폴리우레탄 화합물, 실리콘 화합물 및 폴리이미드 화합물 등을 들 수 있다. 도전 재료의 경화성 및 점도를 한층 더 양호하게 하며, 접속 신뢰성을 한층 더 높이는 관점에서, 에폭시 화합물 또는 에피술피드 화합물이 바람직하다. 상기 열경화성 화합물은, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
본 발명에서는, 상기 열경화성 화합물은, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함한다. 이러한 특정 열경화성의 사용에 의해, 경화물의 투명성이 높아지고, 경화물의 내열성이 높아진다. 또한, 상기 열경화성 화합물이 트리아진 골격을 가짐으로써, 경화물의 유전율이 효과적으로 낮아진다.
트리아진 골격을 갖는 열경화성 화합물로서는, 트리아진트리글리시딜에테르 등을 들 수 있고, 닛산 가가꾸 고교사제 TEPIC 시리즈(TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, TEPIC-PAS, TEPIC-VL, TEPIC-UC) 등을 들 수 있다. 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물은, 예를 들어 상기 트리아진 골격을 갖는 열경화성 화합물의 에폭시기를 티이란기로 변환함으로써 얻을 수 있다. 에폭시기를 티이란기로 변환하는 방법은, 공지되어 있다.
상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 융점은, 바람직하게는 140℃ 이상, 보다 바람직하게는 150℃ 이상이다. 상기 융점이 상기 하한 이상이면, 전극간에 도전성 입자가 한층 더 효율적으로 배치된다. 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 융점은, 상기 도전성 입자에 있어서의 땜납의 융점 이상인 것이 바람직하다.
상기 열경화성 화합물은, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물과는 다른 열경화성 화합물을 포함하고 있어도 된다. 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물과는 다른 열경화성 화합물은, 티이란기를 갖지 않는 열경화성 화합물이어도 되고, 트리아진 골격을 갖지 않는 열경화성 화합물이어도 되고, 에폭시 화합물이어도 된다.
상기 에폭시 화합물로서는, 방향족 에폭시 화합물을 들 수 있다. 레조르시놀형 에폭시 화합물, 나프탈렌형 에폭시 화합물, 비페닐형 에폭시 화합물, 벤조페논형 에폭시 화합물 등의 결정성 에폭시 화합물이 바람직하다. 상온(23℃)에서 고체이며, 또한 용융 온도가 땜납의 융점 이하인 에폭시 화합물이 바람직하다. 용융 온도는 바람직하게는 100℃ 이하, 보다 바람직하게는 80℃ 이하이고, 바람직하게는 40℃ 이상이다. 상기 바람직한 에폭시 화합물을 사용함으로써, 접속 대상 부재를 접합시킨 단계에서는, 점도가 높고, 반송 등의 충격에 의해 가속도가 부여되었을 때, 제1 접속 대상 부재와 제2 접속 대상 부재의 위치 어긋남을 억제할 수 있고, 게다가, 경화시의 열에 의해, 도전 재료의 점도를 크게 저하시킬 수 있어, 땜납의 응집을 효율적으로 진행시킬 수 있다.
상기 도전 재료 100중량% 중, 상기 열경화성 화합물의 전체 함유량은, 바람직하게는 20중량% 이상, 보다 바람직하게는 40중량% 이상, 더욱 바람직하게는 50중량% 이상이며, 바람직하게는 99중량% 이하, 보다 바람직하게는 98중량% 이하, 더욱 바람직하게는 90중량% 이하, 특히 바람직하게는 80중량% 이하이다. 상기 열경화성 화합물의 함유량이, 상기 하한 이상 및 상기 상한 이하이면, 도전성 입자에 있어서의 땜납을 전극 상에 한층 더 효율적으로 배치하고, 전극간의 위치 어긋남을 한층 더 억제하여, 전극간의 도통 신뢰성을 한층 더 높일 수 있다. 내충격성을 한층 더 높이는 관점에서는, 상기 열경화성 화합물의 함유량은 많은 것이 바람직하다.
상기 도전 재료 100중량% 중, 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 함유량은, 바람직하게는 10중량% 이상, 보다 바람직하게는 20중량% 이상이며, 바람직하게는 90중량% 이하, 보다 바람직하게는 80중량% 이하이다. 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 경화물의 투명성 및 내열성이 효과적으로 높아진다.
(열경화제)
상기 열경화제는, 상기 열경화성 화합물을 열경화시킨다. 상기 열경화제로서는, 이미다졸 경화제, 페놀 경화제, 티올 경화제, 아민 경화제, 산 무수물 경화제, 열 양이온 개시제(열 양이온 경화제) 및 열 라디칼 발생제 등이 있다. 상기 열경화제는, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
도전 재료를 저온에서 한층 더 빠르게 경화 가능하게 하는 관점에서는, 상기 열경화제는, 이미다졸 경화제, 티올 경화제, 또는 아민 경화제인 것이 바람직하다. 또한, 상기 열경화성 화합물과 상기 열경화제를 혼합했을 때의 보존 안정성을 높이는 관점에서는, 상기 열경화제는, 잠재성 경화제인 것이 바람직하다. 잠재성 경화제는, 잠재성 이미다졸 경화제, 잠재성 티올 경화제 또는 잠재성 아민 경화제인 것이 바람직하다. 또한, 상기 열경화제는, 폴리우레탄 수지 또는 폴리에스테르 수지 등의 고분자 물질로 피복되어 있어도 된다.
상기 이미다졸 경화제로서는, 특별히 한정되지 않고, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-시아노에틸-2-페닐이미다졸, 1-시아노에틸-2-페닐이미다졸륨 트리멜리테이트, 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진 및 2,4-디아미노-6-[2'-메틸이미다졸릴-(1')]-에틸-s-트리아진이소시아누르산 부가물 등을 들 수 있다.
상기 티올 경화제로서는, 특별히 한정되지 않고, 트리메틸올프로판트리스-3-머캅토프로피오네이트, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 및 디펜타에리트리톨헥사-3-머캅토프로피오네이트 등을 들 수 있다.
상기 티올 경화제의 용해도 파라미터는, 바람직하게는 9.5 이상, 바람직하게는 12 이하이다. 상기 용해도 파라미터는, Fedors법으로 계산된다. 예를 들어, 트리메틸올프로판트리스-3-머캅토프로피오네이트의 용해도 파라미터는 9.6, 디펜타에리트리톨헥사-3-머캅토프로피오네이트의 용해도 파라미터는 11.4이다.
상기 아민 경화제로서는, 특별히 한정되지 않고 헥사메틸렌디아민, 옥타메틸렌디아민, 데카메틸렌디아민, 3,9-비스(3-아미노프로필)-2,4,8,10-테트라스피로[5.5]운데칸, 비스(4-아미노시클로헥실)메탄, 메타페닐렌디아민 및 디아미노디페닐술폰 등을 들 수 있다.
상기 열 양이온 개시제(열 양이온 경화제)로서는, 요오도늄계 양이온 경화제, 옥소늄계 양이온 경화제 및 술포늄계 양이온 경화제 등을 들 수 있다. 상기 요오도늄계 양이온 경화제로서는, 비스(4-tert-부틸페닐)요오도늄헥사플루오로포스페이트 등을 들 수 있다. 상기 옥소늄계 양이온 경화제로서는, 트리메틸옥소늄테트라플루오로보레이트 등을 들 수 있다. 상기 술포늄계 양이온 경화제로서는, 트리-p-톨릴술포늄헥사플루오로포스페이트 등을 들 수 있다.
상기 열 라디칼 발생제로서는, 특별히 한정되지 않고, 아조 화합물 및 유기 과산화물 등을 들 수 있다. 상기 아조 화합물로서는, 아조비스이소부티로니트릴(AIBN) 등을 들 수 있다. 상기 유기 과산화물로서는, 디-tert-부틸퍼옥시드 및 메틸에틸케톤퍼옥시드 등을 들 수 있다.
상기 열경화제의 반응 개시 온도는, 바람직하게는 50℃ 이상, 보다 바람직하게는 70℃ 이상, 더욱 바람직하게는 80℃ 이상이고, 바람직하게는 250℃ 이하, 보다 바람직하게는 200℃ 이하, 더욱 바람직하게는 150℃ 이하, 특히 바람직하게는 140℃ 이하이다. 상기 열경화제의 반응 개시 온도가 상기 하한 이상 및 상기 상한 이하이면, 땜납이 전극 상에 한층 더 효율적으로 배치된다. 상기 열경화제의 반응 개시 온도는 80℃ 이상, 140℃ 이하인 것이 특히 바람직하다.
땜납을 전극 상에 한층 더 효율적으로 배치하는 관점에서는, 상기 열경화제의 반응 개시 온도는, 상기 도전성 입자에 있어서의 땜납의 융점보다도, 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하고, 10℃ 이상 높은 것이 더욱 바람직한다.
상기 열경화제의 반응 개시 온도는, DSC에서의 발열 피크의 상승 개시의 온도를 의미한다.
상기 열경화제의 함유량은 특별히 한정되지 않는다. 상기 열경화성 화합물의 전체 100중량부에 대하여, 상기 열경화제의 함유량은, 바람직하게는 0.01중량부 이상, 보다 바람직하게는 1중량부 이상이며, 바람직하게는 200중량부 이하, 보다 바람직하게는 100중량부 이하, 더욱 바람직하게는 75중량부 이하이다. 열경화제의 함유량이 상기 하한 이상이면, 도전 재료를 충분히 경화시키는 것이 용이하다. 열경화제의 함유량이 상기 상한 이하이면, 경화 후에 경화에 관여하지 않은 잉여의 열경화제가 잔존하기 어려워지며, 또한 경화물의 내열성이 한층 더 높아진다.
(플럭스)
상기 도전 페이스트는, 플럭스를 포함하는 것이 바람직하다. 플럭스의 사용에 의해, 땜납을 전극 상에 한층 더 효과적으로 배치할 수 있다. 해당 플럭스는 특별히 한정되지 않는다. 플럭스로서, 땜납의 접합 등에 일반적으로 사용되고 있는 플럭스를 사용할 수 있다.
상기 플럭스로서는, 예를 들어 염화아연, 염화아연과 무기 할로겐화물의 혼합물, 염화아연과 무기산의 혼합물, 용융염, 인산, 인산의 유도체, 유기 할로겐화물, 히드라진, 유기산 및 송지 등을 들 수 있다. 상기 플럭스는 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
상기 용융염으로서는, 염화암모늄 등을 들 수 있다. 상기 유기산으로서는, 락트산, 시트르산, 스테아르산, 글루탐산 및 글루타르산 등을 들 수 있다. 상기 송지로서는, 활성화 송지 및 비활성화 송지 등을 들 수 있다. 상기 플럭스는, 카르복실기를 2개 이상 갖는 유기산, 송지인 것이 바람직하다. 상기 플럭스는, 카르복실기를 2개 이상 갖는 유기산이어도 되고, 송지이어도 된다. 카르복실기를 2개 이상 갖는 유기산, 송지의 사용에 의해, 전극간의 도통 신뢰성이 한층 더 높아진다.
상기 송지는 아비에트산을 주성분으로 하는 로진류이다. 플럭스는, 로진류인 것이 바람직하고, 아비에트산인 것이 보다 바람직하다. 이 바람직한 플럭스의 사용에 의해, 전극간의 도통 신뢰성이 한층 더 높아진다.
상기 플럭스는, 아미드기와 방향족 골격을 갖는 플럭스이거나, 또는 아미드기를 갖고, 또한 카르복실산 또는 카르복실산 무수물과 pKa가 9.5 이하인 아미노기 함유 화합물의 반응물인 플럭스인 것이 바람직하다. 이 경우에는, 도전 재료의 보존 안정성이 높아지고, 전극간의 접속시에 도전성 입자를 제외한 성분이 과도하게 흐르기 어려워, 접착력을 높여서 도통 신뢰성을 높일 수 있다.
상기 플럭스는, 아미드기와 방향족 골격을 갖는 플럭스인 것이 바람직하고, 아미드기를 갖고, 또한 카르복실산 또는 카르복실산 무수물과 pKa가 9.5 이하인 아미노기 함유 화합물의 반응물인 플럭스인 것도 바람직하다. 상기 플럭스는, 1종만이 사용되어도 되고, 2종 이상이 병용되어도 된다.
또한, 상기 플럭스가, 카르복실산 또는 카르복실산 무수물과 pKa가 9.5 이하인 아미노기 함유 화합물의 반응물일 경우에, pKa가 특정 범위에 있는 아미노기 함유 화합물을 사용하고 있는 반응물의 범위를 구조 또는 특성에 의해 직접 특정하는 것은 불가능하다.
도전 재료의 보존 안정성을 효과적으로 높이고, 전극간의 접속시에 도전성 입자를 제외한 성분을 한층 더 흐르기 어렵게 하는 관점에서는, 상기 플럭스는, 25℃에서 고체인 것이 바람직하다.
상기 플럭스는, 예를 들어 카르복실산 또는 카르복실산 무수물과 아미노기 함유 화합물을 반응시킴으로써 얻을 수 있다.
상기 카르복실산 또는 카르복실산 무수물로서는, 숙신산, 글루타르산, 아디프산, 피멜산, 수베르산 및 말산 등을 들 수 있다.
상기 아미노기 함유 화합물로서는, 벤질아민, 아닐린 및 디페닐아민 등을 들 수 있다. 도전 재료의 보존 안정성을 효과적으로 높이고, 전극간의 접속시에 도전성 입자를 제외한 성분을 한층 더 흐르기 어렵게 하는 관점에서는, 상기 아미노기 함유 화합물은, 방향족 아민 화합물인 것이 바람직하다.
상기 플럭스의 활성 온도(융점)는, 바람직하게는 50℃ 이상, 보다 바람직하게는 70℃ 이상, 더욱 바람직하게는 80℃ 이상이고, 바람직하게는 200℃ 이하, 보다 바람직하게는 190℃ 이하, 한층 더 바람직하게는 160℃ 이하, 더욱 바람직하게는 150℃ 이하, 한층 더 바람직하게는 140℃ 이하이다. 상기 플럭스의 활성 온도가 상기 하한 이상 및 상기 상한 이하이면, 플럭스 효과가 한층 더 효과적으로 발휘되어, 땜납이 전극 상에 한층 더 효율적으로 배치된다. 상기 플럭스의 활성 온도(융점)는 80℃ 이상 190℃ 이하인 것이 바람직하다. 상기 플럭스의 활성 온도(융점)는 80℃ 이상 140℃ 이하인 것이 특히 바람직하다.
플럭스의 활성 온도(융점)가 80℃ 이상 190℃ 이하인 상기 플럭스로서는, 숙신산(융점 186℃), 글루타르산(융점 96℃), 아디프산(융점 152℃), 피멜산(융점 104℃), 수베르산(융점 142℃) 등의 디카르복실산, 벤조산(융점 122℃), 말산(융점 130℃) 등을 들 수 있다.
또한, 상기 플럭스의 비점은 200℃ 이하인 것이 바람직하다.
땜납을 전극 상에 한층 더 효율적으로 배치하는 관점에서는, 상기 플럭스의 융점은, 상기 도전성 입자에 있어서의 땜납의 융점보다도, 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하고, 10℃ 이상 높은 것이 더욱 바람직한다.
땜납을 전극 상에 한층 더 효율적으로 배치하는 관점에서는, 상기 플럭스의 융점은, 상기 열경화제의 반응 개시 온도보다도, 높은 것이 바람직하고, 5℃ 이상 높은 것이 보다 바람직하고, 10℃ 이상 높은 것이 더욱 바람직한다.
상기 플럭스는, 도전 재료 중에 분산되어 있어도 되고, 도전성 입자의 표면 상에 부착되어 있어도 된다.
플럭스의 융점이, 땜납의 융점보다 높음으로써, 전극 부분에 땜납을 효율적으로 응집시킬 수 있다. 이것은, 접합시에 열을 부여한 경우, 접속 대상 부재 상에 형성된 전극과, 전극 주변의 접속 대상 부재의 부분을 비교하면, 전극 부분의 열전도율이 전극 주변의 접속 대상 부재 부분의 열전도율보다도 높음으로써, 전극 부분의 승온이 빠른 것에 기인한다. 도전성 입자에 있어서의 땜납의 융점을 초과한 단계에서는, 도전성 입자에 있어서의 땜납은 용해되지만, 표면에 형성된 산화 피막은, 플럭스의 융점(활성 온도)에 도달해있지 않으므로, 제거되지 않는다. 이 상태에서, 전극 부분의 온도가 먼저, 플럭스의 융점(활성 온도)에 도달하기 위해서, 우선적으로 전극 상에 도달한 도전성 입자에 있어서의 땜납의 표면의 산화 피막이 제거되는 것이나, 활성화된 플럭스에 의해 도전성 입자에 있어서의 땜납의 표면의 전하가 중화됨으로써, 땜납이 전극의 표면 상에 번질 수 있다. 이에 의해, 전극 상에 효율적으로 땜납을 응집시킬 수 있다.
상기 도전 재료 100중량% 중, 상기 플럭스의 함유량은 바람직하게는 0.5중량% 이상이며, 바람직하게는 30중량% 이하, 보다 바람직하게는 25중량% 이하이다. 상기 도전 재료는, 플럭스를 포함하고 있지 않아도 된다. 플럭스의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 땜납 및 전극의 표면에 산화 피막이 한층 더 형성되기 어려워지며, 또한 땜납 및 전극의 표면에 형성된 산화 피막을 한층 더 효과적으로 제거할 수 있다.
(절연성 입자)
도전 재료의 경화물에 의해 접속되는 접속 대상 부재간의 간격, 및 도전성 입자에 있어서의 땜납에 의해 접속되는 접속 대상 부재간의 간격을 고정밀도로 제어하는 관점에서는, 상기 도전 재료는, 절연성 입자를 포함하는 것이 바람직하다. 상기 도전 재료에 있어서, 상기 절연성 입자는, 도전성 입자의 표면에 부착되지 않아도 된다. 상기 도전 재료 중에서, 상기 절연성 입자는 상기 도전성 입자와 이격되어 존재하는 것이 바람직하다.
상기 절연성 입자의 평균 입자 직경은, 바람직하게는 10㎛ 이상, 보다 바람직하게는 20㎛ 이상, 더욱 바람직하게는 25㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 75㎛ 이하, 더욱 바람직하게는 50㎛ 이하이다. 상기 기재 입자의 평균 입자 직경이 상기 하한 이상 및 상기 상한 이하이면, 도전 재료의 경화물에 의해 접속되는 접속 대상 부재간의 간격, 및 도전성 입자에 있어서의 땜납에 의해 접속되는 접속 대상 부재간의 간격이 한층 더 적당해진다.
상기 절연성 입자의 재료로서는, 절연성 수지 및 절연성 무기물 등을 들 수 있다. 상기 절연성 수지로서는, 기재 입자로서 사용하는 것이 가능한 수지 입자를 형성하기 위한 수지로서 열거된 상기 수지를 들 수 있다. 상기 절연성 무기물로서는, 기재 입자로서 사용하는 것이 가능한 무기 입자를 형성하기 위한 무기물로서 열거된 상기 무기물을 들 수 있다.
상기 절연성 입자의 재료인 절연성 수지의 구체예로서는, 폴리올레핀류, (메트)아크릴레이트 중합체, (메트)아크릴레이트 공중합체, 블록 중합체, 열가소성 수지, 열가소성 수지의 가교물, 열경화성 수지 및 수용성 수지 등을 들 수 있다.
상기 폴리올레핀류로서는, 폴리에틸렌, 에틸렌-아세트산비닐 공중합체 및 에틸렌-아크릴산에스테르 공중합체 등을 들 수 있다. 상기 (메트)아크릴레이트 중합체로서는, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트 및 폴리부틸(메트)아크릴레이트 등을 들 수 있다. 상기 블록 중합체로서는, 폴리스티렌, 스티렌-아크릴산에스테르 공중합체, SB형 스티렌-부타디엔 블록 공중합체 및 SBS형 스티렌-부타디엔 블록 공중합체, 및 이들의 수소 첨가물 등을 들 수 있다. 상기 열가소성 수지로서는, 비닐 중합체 및 비닐 공중합체 등을 들 수 있다. 상기 열경화성 수지로서는, 에폭시 수지, 페놀 수지 및 멜라민 수지 등을 들 수 있다. 상기 수용성 수지로서는, 폴리비닐알코올, 폴리아크릴산, 폴리아크릴아미드, 폴리비닐피롤리돈, 폴리에틸렌옥시드 및 메틸셀룰로오스 등을 들 수 있다. 수용성 수지가 바람직하고, 폴리비닐알코올이 보다 바람직하다.
상기 절연성 입자의 재료인 절연성 무기물의 구체예로서는, 실리카 및 유기 무기 하이브리드 입자 등을 들 수 있다. 상기 실리카에 의해 형성된 입자로서는 특별히 한정되지 않지만, 예를 들어 가수 분해성 알콕시실릴기를 2개 이상 갖는 규소 화합물을 가수 분해하여 가교 중합체 입자를 형성한 후에, 필요에 따라서 소성을 행함으로써 얻어지는 입자를 들 수 있다. 상기 유기 무기 하이브리드 입자로서는, 예를 들어 가교된 알콕시실릴 중합체와 아크릴 수지에 의해 형성된 유기 무기 하이브리드 입자 등을 들 수 있다.
상기 도전 재료 100중량% 중, 상기 절연성 입자의 함유량은 바람직하게는 0.1중량% 이상, 보다 바람직하게는 0.5중량% 이상이며, 바람직하게는 10중량% 이하, 보다 바람직하게는 5중량% 이하이다. 상기 도전 재료는, 절연성 입자를 포함하고 있지 않아도 된다. 절연성 입자의 함유량이 상기 하한 이상 및 상기 상한 이하이면, 도전 재료의 경화물에 의해 접속되는 접속 대상 부재간의 간격, 및 도전성 입자에 있어서의 땜납에 의해 접속되는 접속 대상 부재간의 간격이 한층 더 적당해진다.
(카르보디이미드 화합물)
경화물의 투명성 및 내열성을 효과적으로 높이는 관점에서는, 상기 도전 재료는 카르보디이미드 화합물을 포함하는 것이 바람직하다.
상기 카르보디이미드 화합물로서는, 1,3-디이소프로필카르보디이미드, 비스(2,6-디이소프로필페닐)카르보디이미드, 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드염산염, 1-(3-(디메틸아미노)프로필)-3-에틸카르보디이미드, N,N'-디시클로헥실카르보디이미드, N,N'-디이소프로필카르보디이미드, N-시클로헥실-N'-(2-모르폴리노에틸)카르보디이미드메트-p-톨루엔술폰산염, 말단 이소시아네이트기 변성의 폴리카르보디이미드 화합물, 환상 카르보디이미드 화합물, 카르보디이미드화 촉매의 존재 하에서 디이소시아네이트를 중합시켜 얻어지는 폴리카르보디이미드 화합물 등을 들 수 있다. 분자량이 커서 아웃 가스가 발생하기 어려운 점에서, 폴리카르보디이미드 화합물이 바람직하다.
상기 폴리카르보디이미드 화합물의 시판품으로서는, 예를 들어 카르보딜라이트 V02B, 카르보딜라이트 V04K, 카르보딜라이트 V05(모두 닛신보사제) 등을 들 수 있다.
경화물의 투명성 및 내열성을 효과적으로 높이는 관점에서는, 상기 도전 재료 100중량% 중, 상기 카르보디이미드 화합물의 함유량은, 바람직하게는 0.01중량% 이상, 보다 바람직하게는 0.1중량% 이상이며, 바람직하게는 5중량% 이하, 보다 바람직하게는 3중량% 이하이다.
(다른 성분)
상기 도전 재료는, 필요에 따라서, 예를 들어 커플링제, 차광제, 반응성 희석제, 소포제, 레벨링제, 충전제, 증량제, 연화제, 가소제, 중합 촉매, 경화 촉매, 착색제, 산화 방지제, 열안정제, 광안정제, 자외선 흡수제, 활제, 대전 방지제 및 난연제 등의 각종 첨가제를 포함하고 있어도 된다.
(접속 구조체 및 접속 구조체의 제조 방법)
본 발명에 따른 접속 구조체는, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와, 상기 제1 접속 대상 부재와, 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비한다. 본 발명에 따른 접속 구조체에서는, 상기 접속부의 재료가, 상술한 도전 재료이다. 상기 접속부가, 상술한 도전 재료의 경화물이다. 상기 접속부가, 상술한 도전 재료에 의해 형성되어 있다. 본 발명에 따른 접속 구조체에서는, 상기 제1 전극과 상기 제2 전극이, 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있다.
상기 접속 구조체의 제조 방법은, 상술한 도전 재료를 사용하여, 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재의 표면 상에, 상기 도전 재료를 배치하는 공정과, 상기 도전 재료의 상기 제1 접속 대상 부재측과는 반대의 표면 상에, 적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재를, 상기 제1 전극과 상기 제2 전극이 대향하도록 배치하는 공정과, 상기 도전성 입자에 있어서의 땜납의 융점 이상으로 상기 도전 재료를 가열함으로써, 상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를, 상기 도전 재료에 의해 형성하고, 또한 상기 제1 전극과 상기 제2 전극을, 상기 접속부 중의 땜납부에 의해 전기적으로 접속하는 공정을 구비한다. 바람직하게는, 상기 열경화성 성분, 열경화성 화합물의 경화 온도 이상으로 상기 도전 재료를 가열한다.
본 발명에 따른 접속 구조체 및 상기 접속 구조체의 제조 방법에서는, 특정한 도전 재료를 사용하고 있으므로, 복수의 도전성 입자에 있어서의 땜납이 제1 전극과 제2 전극 사이에 모이기 쉽고, 땜납을 전극(라인) 상에 효율적으로 배치할 수 있다. 또한, 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어려워, 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 할 수 있다. 따라서, 제1 전극과 제2 전극 사이의 도통 신뢰성을 높일 수 있다. 게다가, 접속되어서는 안되는 가로 방향으로 인접하는 전극간의 전기적인 접속을 방지할 수 있어, 절연 신뢰성을 높일 수 있다.
또한, 복수의 도전성 입자에 있어서의 땜납을 전극 상에 효율적으로 배치하고, 또한 전극이 형성되지 않은 영역에 배치되는 땜납의 양을 상당히 적게 하기 위해서는, 상기 도전 재료로서, 도전 필름이 아니라, 도전 페이스트를 사용하는 것이 바람직하다.
전극간에 있어서의 땜납부의 두께는, 바람직하게는 10㎛ 이상, 보다 바람직하게는 20㎛ 이상이며, 바람직하게는 100㎛ 이하, 보다 바람직하게는 80㎛ 이하이다. 전극 표면 상의 땜납의 습윤 면적(전극의 노출된 면적 100% 중의 땜납이 접하고 있는 면적)은, 바람직하게는 50% 이상, 보다 바람직하게는 70% 이상이며, 바람직하게는 100% 이하이다.
본 발명에 따른 접속 구조체의 제조 방법에서는, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 가압을 행하지 않고, 상기 도전 재료에는, 상기 제2 접속 대상 부재의 중량이 더해지는 것이 바람직하고, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 상기 도전 재료에는, 상기 제2 접속 대상 부재의 중량의 힘을 초과하는 가압 압력은 가해지지 않는 것이 바람직하다. 이들의 경우에는, 복수의 땜납부에 있어서, 땜납량의 균일성을 한층 더 높일 수 있다. 또한, 땜납부의 두께를 한층 더 효과적으로 두껍게 할 수 있고, 복수의 도전성 입자에 있어서의 땜납이 전극간에 많이 모이기 쉬워지며, 복수의 도전성 입자에 있어서의 땜납을 전극(라인) 상에 한층 더 효율적으로 배치할 수 있다. 또한, 복수의 도전성 입자에 있어서의 땜납의 일부가, 전극이 형성되지 않은 영역(스페이스)에 배치되기 어렵고, 전극이 형성되지 않은 영역에 배치되는 도전성 입자에 있어서의 땜납의 양을 한층 더 적게 할 수 있다. 따라서, 전극간의 도통 신뢰성을 한층 더 높일 수 있다. 게다가, 접속되어서는 안되는 가로 방향으로 인접하는 전극간의 전기적인 접속을 한층 더 방지할 수 있어, 절연 신뢰성을 한층 더 높일 수 있다.
또한, 상기 제2 접속 대상 부재를 배치하는 공정 및 상기 접속부를 형성하는 공정에 있어서, 가압을 행하지 않고, 상기 도전 재료에, 상기 제2 접속 대상 부재의 중량이 더해지면, 접속부가 형성되기 전에 전극이 형성되지 않은 영역(스페이스)에 배치되어 있던 땜납이 제1 전극과 제2 전극 사이에 한층 더 모이기 쉬워져, 복수의 도전성 입자에 있어서의 땜납을 전극(라인) 상에 한층 더 효율적으로 배치할 수 있는 것도, 알아내었다. 본 발명에서는, 도전 필름이 아니라, 도전 페이스트를 사용한다는 구성과, 가압을 행하지 않고, 상기 도전 페이스트에는, 상기 제2 접속 대상 부재의 중량이 더해지도록 한다는 구성을 조합하여 채용하는 것은, 본 발명의 효과를 한층 더 높은 레벨로 얻기 위해 큰 의미가 있다.
또한, WO2008/023452A1에서는, 땜납 분말을 전극 표면에 흘러가게 하여 효율적으로 이동시키는 관점에서는, 접착시에 소정의 압력으로 가압하면 되는 것이 기재되어 있으며, 가압 압력은, 땜납의 영역을 더욱 확실하게 형성하는 관점에서는, 예를 들어 0MPa 이상, 바람직하게는 1MPa 이상으로 하는 것이 기재되어 있고, 또한 접착 테이프에 의도적으로 가하는 압력이 0MPa이어도, 접착 테이프 상에 배치된 부재의 자중에 의해, 접착 테이프에 소정의 압력이 가해져도 되는 것이 기재되어 있다. WO2008/023452A1에서는, 접착 테이프에 의도적으로 가하는 압력이 0MPa이어도 되는 것은 기재되어 있지만, 0MPa를 초과하는 압력을 부여한 경우와 0MPa로 한 경우의 효과의 차이에 대해서는, 전혀 기재되어 있지 않다. 또한, WO2008/023452A1에서는, 필름 형상이 아니라, 페이스트 형상의 도전 페이스트를 사용하는 것에 대한 중요성에 대해서도 전혀 인식되어 있지 않다.
또한, 도전 필름이 아니라, 도전 페이스트를 사용하면, 도전 페이스트의 도포량에 의해, 접속부 및 땜납부의 두께를 조정하는 것이 용이해진다. 한편, 도전 필름에서는, 접속부의 두께를 변경하거나, 조정하거나 하기 위해서는, 다른 두께의 도전 필름을 준비하거나, 소정 두께의 도전 필름을 준비하거나 해야 한다는 문제가 있다. 또한, 도전 필름에서는, 도전 페이스트와 비교하여, 땜납의 용융 온도에서, 도전 필름의 용융 점도를 충분히 낮출 수 없고, 땜납의 응집이 저해되기 쉬운 경향이 있다.
이하, 도면을 참조하면서, 본 발명의 구체적인 실시 형태를 설명한다.
도 1은, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여 얻어지는 접속 구조체를 모식적으로 나타낸 단면도이다.
도 1에 나타낸 접속 구조체(1)는, 제1 접속 대상 부재(2)와, 제2 접속 대상 부재(3)와, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)를 접속하고 있는 접속부(4)를 구비한다. 접속부(4)는 상술한 도전 재료에 의해 형성되어 있다. 본 실시 형태에서는, 상기 도전 재료는 도전성 입자와 바인더를 포함한다. 본 실시 형태에서는, 도전 재료는 도전성 입자로서 땜납 입자를 포함한다. 본 실시 형태에서는, 바인더는 열경화성 화합물과 열경화제를 포함한다. 상기 열경화성 화합물과 상기 열경화제를, 열경화성 성분이라 칭한다.
접속부(4)는, 복수의 땜납 입자가 모여 서로 접합된 땜납부(4A)와, 열경화성 성분이 열경화된 경화물부(4B)를 갖는다.
제1 접속 대상 부재(2)는 표면(상면)에, 복수의 제1 전극(2a)을 갖는다. 제2 접속 대상 부재(3)는 표면(하면)에, 복수의 제2 전극(3a)을 갖는다. 제1 전극(2a)과 제2 전극(3a)이, 땜납부(4A)에 의해 전기적으로 접속되어 있다. 따라서, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)가, 땜납부(4A)에 의해 전기적으로 접속되어 있다. 또한, 접속부(4)에 있어서, 제1 전극(2a)과 제2 전극(3a) 사이에 모인 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에는, 땜납은 존재하지 않는다. 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에는, 땜납부(4A)와 이격된 땜납은 존재하지 않는다. 또한, 소량이라면, 제1 전극(2a)과 제2 전극(3a) 사이에 모인 땜납부(4A)와는 상이한 영역(경화물부(4B) 부분)에, 땜납이 존재하고 있어도 된다.
도 1에 나타낸 바와 같이, 접속 구조체(1)에서는, 제1 전극(2a)과 제2 전극(3a) 사이에, 복수의 땜납 입자가 모이고, 복수의 땜납 입자가 용융된 후, 땜납 입자의 용융물이 전극의 표면에서 번진 후에 고화되어, 땜납부(4A)가 형성되어 있다. 이 때문에, 땜납부(4A)와 제1 전극(2a), 및 땜납부(4A)와 제2 전극(3a)의 접속 면적이 커진다. 즉, 땜납 입자를 사용함으로써, 도전부의 외표면 부분이 니켈, 금 또는 구리 등의 금속인 도전성 입자를 사용한 경우와 비교하여, 땜납부(4A)와 제1 전극(2a), 및 땜납부(4A)와 제2 전극(3a)의 접촉 면적이 커진다. 이 때문에, 접속 구조체(1)에 있어서의 도통 신뢰성 및 접속 신뢰성이 높아진다.
또한, 도 1에 나타낸 접속 구조체(1)에서는, 땜납부(4A)가 모두, 제1, 제2 전극(2a, 3a)간의 대향하고 있는 영역에 위치하고 있다. 도 3에 나타낸 변형예의 접속 구조체(1X)는, 접속부(4X)만이, 도 1에 나타낸 접속 구조체(1)와 상이하다. 접속부(4X)는, 땜납부(4XA)와 경화물부(4XB)를 갖는다. 접속 구조체(1X)와 같이, 땜납부(4XA)의 대부분이, 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역에 위치하고 있으며, 땜납부(4XA)의 일부가 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역으로부터 측방으로 비어져 나와 있어도 된다. 제1, 제2 전극(2a, 3a)의 대향하고 있는 영역으로부터 측방으로 비어져 나와 있는 땜납부(4XA)는, 땜납부(4XA)의 일부이며, 땜납부(4XA)로부터 이격된 땜납이 아니다. 또한, 본 실시 형태에서는, 땜납부로부터 이격된 땜납의 양을 적게 할 수 있지만, 땜납부로부터 이격된 땜납이 경화물부 중에 존재하고 있어도 된다.
땜납 입자의 사용량을 적게 하면, 접속 구조체(1)를 얻는 것이 용이해진다. 땜납 입자의 사용량을 많게 하면, 접속 구조체(1X)를 얻는 것이 용이해진다.
도통 신뢰성을 한층 더 높이는 관점에서는, 접속 구조체(1, 1X)에는, 제1 전극(2a)과 접속부(4, 4X)와 제2 전극(3a)의 적층 방향으로 제1 전극(2a)과 제2 전극(3a)의 서로 대향하는 부분을 보았을 때, 제1 전극(2a)과 제2 전극(3a)의 서로 대향하는 부분의 면적 100% 중의 50% 이상에, 접속부(4, 4X) 중의 땜납부(4A, 4XA)가 배치되어 있는 것이 바람직하다.
도통 신뢰성을 한층 더 높이는 관점에서는, 상기 제1 전극과 상기 접속부와 상기 제2 전극의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상(보다 바람직하게는 60% 이상, 더욱 바람직하게는 70% 이상, 특히 바람직하게는 80% 이상, 가장 바람직하게는 90% 이상)으로, 상기 접속부 중의 땜납부가 배치되어 있는 것이 바람직하다.
도통 신뢰성을 한층 더 높이는 관점에서는, 상기 제1 전극과 상기 접속부와 상기 제2 전극의 적층 방향과 직교하는 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분에, 상기 접속부 중의 땜납부의 60% 이상(보다 바람직하게는 70% 이상, 더욱 바람직하게는 90% 이상, 특히 바람직하게는 95% 이상, 가장 바람직하게는 99% 이상)이 배치되어 있는 것이 바람직하다.
이어서, 본 발명의 일 실시 형태에 따른 도전 재료를 사용하여, 접속 구조체(1)를 제조하는 방법의 일례를 설명한다.
우선, 제1 전극(2a)을 표면(상면)에 갖는 제1 접속 대상 부재(2)를 준비한다. 이어서, 도 2의 (a)에 나타낸 바와 같이, 제1 접속 대상 부재(2)의 표면 상에, 열경화성 성분(11B)과, 복수의 땜납 입자(11A)를 포함하는 도전 재료(11)를 배치한다(제1 공정). 사용된 도전 재료는, 열경화성 성분(11B)으로서, 열경화성 화합물과 열경화제를 포함한다.
제1 접속 대상 부재(2)의 제1 전극(2a)이 설치된 표면 상에, 도전 재료(11)를 배치한다. 도전 재료(11)의 배치 후에, 땜납 입자(11A)는, 제1 전극(2a)(라인) 상과, 제1 전극(2a)이 형성되지 않은 영역(스페이스) 상의 양쪽에 배치되어 있다.
도전 재료(11)의 배치 방법으로서는, 특별히 한정되지 않지만, 디스펜서에 의한 도포, 스크린 인쇄 및 잉크젯 장치에 의한 토출 등을 들 수 있다.
또한, 제2 전극(3a)을 표면(하면)에 갖는 제2 접속 대상 부재(3)를 준비한다. 이어서, 도 2의 (b)에 나타낸 바와 같이, 제1 접속 대상 부재(2)의 표면 상의 도전 재료(11)에 있어서, 도전 재료(11)의 제1 접속 대상 부재(2)측과는 반대측 표면 상에, 제2 접속 대상 부재(3)를 배치한다(제2 공정). 도전 재료(11)의 표면 상에, 제2 전극(3a)측으로부터, 제2 접속 대상 부재(3)를 배치한다. 이 때, 제1 전극(2a)과 제2 전극(3a)을 대향시킨다.
이어서, 땜납 입자(11A)의 융점 이상으로 도전 재료(11)를 가열한다(제3 공정). 바람직하게는, 열경화성 성분(11B)(열경화성 화합물)의 경화 온도 이상으로 도전 재료(11)를 가열한다. 이 가열시에는, 전극이 형성되지 않은 영역에 존재하고 있던 땜납 입자(11A)는, 제1 전극(2a)과 제2 전극(3a) 사이에 모인다(자기 응집 효과). 도전 필름이 아니라, 도전 페이스트를 사용한 경우에는, 땜납 입자(11A)가, 제1 전극(2a)과 제2 전극(3a) 사이에 효과적으로 모인다. 또한, 땜납 입자(11A)는 용융되어, 서로 접합된다. 또한, 열경화성 성분(11B)은 열경화된다. 이 결과, 도 2의 (c)에 나타낸 바와 같이, 제1 접속 대상 부재(2)와 제2 접속 대상 부재(3)를 접속하고 있는 접속부(4)를, 도전 재료(11)에 의해 형성한다. 도전 재료(11)에 의해 접속부(4)가 형성되고, 복수의 땜납 입자(11A)가 접합됨으로써 땜납부(4A)가 형성되고, 열경화성 성분(11B)이 열경화됨으로써 경화물부(4B)가 형성된다. 땜납 입자(11A)가 충분히 이동하면, 제1 전극(2a)과 제2 전극(3a) 사이에 위치하지 않은 땜납 입자(11A)의 이동이 개시하고 나서, 제1 전극(2a)과 제2 전극(3a) 사이에 땜납 입자(11A)의 이동이 완료될 때까지, 온도를 일정하게 유지하지 않아도 된다.
본 실시 형태에서는, 상기 제2 공정 및 상기 제3 공정에 있어서, 가압을 행하지 않는 것이 바람직하다. 이 경우에는, 도전 재료(11)에는, 제2 접속 대상 부재(3)의 중량이 더해진다. 이 때문에, 접속부(4)의 형성시에, 땜납 입자(11A)가, 제1 전극(2a)과 제2 전극(3a) 사이에 효과적으로 모인다. 또한, 상기 제2 공정 및 상기 제3 공정 중 적어도 한쪽에 있어서, 가압을 행하면, 땜납 입자(11A)가 제1 전극(2a)과 제2 전극(3a) 사이에 모이려고 하는 작용이 저해되는 경향이 높아진다.
또한, 본 실시 형태에서는, 가압을 행하고 있지 않기 문에, 도전 재료를 도포한 제1 접속 대상 부재에, 제2 접속 대상 부재를 중첩시켰을 때, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극의 얼라인먼트가 어긋난 상태에서, 제1 접속 대상 부재와 제2 접속 대상 부재가 중첩된 경우에도, 그 어긋남을 보정하여, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극을 접속시킬 수 있다(셀프 얼라인먼트 효과). 이것은, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극 사이에 자기 응집된 용융 땜납이, 제1 접속 대상 부재의 전극과 제2 접속 대상 부재의 전극 사이의 땜납과 도전 재료의 그 외의 성분이 접하는 면적이 최소가 되는 쪽이 에너지적으로 안정해지므로, 그 최소 면적이 되는 접속 구조인 얼라인먼트의 접속 구조로 하는 힘이 작용하기 때문이다. 이 때, 도전 재료가 경화되지 않은 것, 및 그 온도, 시간에서, 도전 재료의 도전성 입자 이외의 성분의 점도가 충분히 낮은 것이 바람직하다.
이와 같이 하여, 도 1에 나타낸 접속 구조체(1)가 얻어진다. 또한, 상기 제2 공정과 상기 제3 공정은 연속해서 행해져도 된다. 또한, 상기 제2 공정을 행한 후에, 얻어지는 제1 접속 대상 부재(2)와 도전 재료(11)와 제2 접속 대상 부재(3)의 적층체를, 가열부로 이동시켜, 상기 제3 공정을 행해도 된다. 상기 가열을 행하기 위해서, 가열 부재 상에 상기 적층체를 배치해도 되고, 가열된 공간 내에 상기 적층체를 배치해도 된다.
상기 제3 공정에 있어서의 상기 가열 온도는, 바람직하게는 140℃ 이상, 보다 바람직하게는 160℃ 이상이고, 바람직하게는 450℃ 이하, 보다 바람직하게는 250℃ 이하, 더욱 바람직하게는 200℃ 이하이다.
상기 제3 공정에 있어서의 가열 방법으로서는, 땜납의 융점 이상 및 열경화성 화합물의 경화 온도 이상으로, 접속 구조체 전체를, 리플로우로를 사용하여 또는 오븐을 사용하여 가열하는 방법이나, 접속 구조체의 접속부만을 국소적으로 가열하는 방법을 들 수 있다.
상기 제1, 제2 접속 대상 부재는, 특별히 한정되지 않는다. 상기 제1, 제2 접속 대상 부재로서는, 구체적으로는, 반도체 칩, 반도체 패키지, LED 칩, LED 패키지, 콘덴서 및 다이오드 등의 전자 부품, 및 수지 필름, 프린트 기판, 플렉시블 프린트 기판, 플렉시블 플랫 케이블, 리지드 플렉시블 기판, 유리 에폭시 기판 및 유리 기판 등의 회로 기판 등의 전자 부품 등을 들 수 있다. 상기 제1, 제2 접속 대상 부재는, 전자 부품인 것이 바람직하다.
상기 제1 접속 대상 부재 및 상기 제2 접속 대상 부재 중 적어도 한쪽이, 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판인 것이 바람직하다. 상기 제2 접속 대상 부재가, 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판인 것이 바람직하다. 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 및 리지드 플렉시블 기판은, 유연성이 높고, 비교적 경량이라는 성질을 갖는다. 이러한 접속 대상 부재의 접속에 도전 필름을 사용한 경우에는, 땜납이 전극 상에 모이기 어려운 경향이 있다. 이에 비해, 도전 페이스트를 사용함으로써, 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판을 사용하였다고 해도, 땜납을 전극 상에 효율적으로 모음으로써, 전극간의 도통 신뢰성을 충분히 높일 수 있다. 수지 필름, 플렉시블 프린트 기판, 플렉시블 플랫 케이블 또는 리지드 플렉시블 기판을 사용하는 경우에, 반도체 칩 등의 다른 접속 대상 부재를 사용한 경우에 비해, 가압을 행하지 않는 것에 의한 전극간의 도통 신뢰성의 향상 효과가 한층 더 효과적으로 얻어진다.
상기 접속 대상 부재에 설치되어 있는 전극으로서는, 금 전극, 니켈 전극, 주석 전극, 알루미늄 전극, 구리 전극, 몰리브덴 전극, 은 전극, SUS 전극 및 텅스텐 전극 등의 금속 전극을 들 수 있다. 상기 접속 대상 부재가 플렉시블 프린트 기판일 경우에는, 상기 전극은 금 전극, 니켈 전극, 주석 전극, 은 전극 또는 구리 전극인 것이 바람직하다. 상기 접속 대상 부재가 유리 기판일 경우에는, 상기 전극은 알루미늄 전극, 구리 전극, 몰리브덴 전극, 은 전극 또는 텅스텐 전극인 것이 바람직하다. 또한, 상기 전극이 알루미늄 전극일 경우에는, 알루미늄만으로 형성된 전극이어도 되고, 금속 산화물층의 표면에 알루미늄층이 적층된 전극이어도 된다. 상기 금속 산화물층의 재료로서는, 3가의 금속 원소가 도핑된 산화인듐 및 3가의 금속 원소가 도핑된 산화아연 등을 들 수 있다. 상기 3가의 금속 원소로서는, Sn, Al 및 Ga 등을 들 수 있다.
이하, 실시예 및 비교예를 들어, 본 발명을 구체적으로 설명한다. 본 발명은, 이하의 실시예만으로 한정되지 않는다.
(1) 티이란기 및 트리아진 골격을 갖는 열경화성 화합물 A의 합성:
교반기, 냉각기 및 온도계를 구비한 용기 내에, 메탄올 1100mL와, 트리메틸티오요소 400g을 첨가하여 용기 내에 제1 용액을 제조하였다. 그 후, 용기 내의 온도를 60℃로 유지하였다.
이어서, 60℃로 유지된 제1 용액을 교반하면서, 해당 제1 용액 중에, TEPIC-VL(닛산 가가꾸 고교사제) 600g과 톨루엔 3600ml를 넣은 후, 30분간 더 교반하여, 에폭시 화합물 함유 용액을 얻었다.
이어서, 상기 에폭시 화합물 함유 용액을 교반하면서, 질소 플로우 하, 60℃에서 5시간 반응시켰다. 그 후, 용기 내의 용액을 분액 깔때기로 옮기고, 2시간 정치하여, 용액을 분리시켰다. 분액 깔때기 내의 하방의 용액을 배출하고, 상청액을 취출하였다. 취출된 상청액에 톨루엔 950mL를 첨가하여, 교반하고, 2시간 정치하였다.
이어서, 톨루엔이 첨가된 상청액에 순수를 넣고, 교반, 하방의 용액 배출을 반복함으로써 세정을 행하였다.
그 후, 상청액에, 황산마그네슘 200g을 추가하고, 5분간 교반하였다. 교반 후, 여과지에 의해 황산마그네슘을 제거하여, 용액을 분리하였다. 진공 건조기를 사용하여, 감압 건조시킴으로써, 잔존하고 있는 용제를 제거하였다. 이와 같이 하여, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물 A를 얻었다.
클로로포름을 용매로 하여, 얻어진 열경화성 화합물 A의 1H-NMR의 측정을 행하였다. 이 결과, 에폭시기가 에피술피드기로 변환되어 있는 것을 확인하였다.
(2) 티이란기 및 트리아진 골격을 갖는 열경화성 화합물 B의 합성:
TEPIC-VL(닛산 가가꾸 고교사제)을 TEPIC-HP(닛산 가가꾸 고교사제)로 변경하고, 용기 내 온도를 80℃로 변경한 것 이외에는, 열경화성 화합물 A와 동일하게 하여, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물 B를 얻었다.
클로로포름을 용매로 하여, 얻어진 열경화성 화합물 B의 1H-NMR의 측정을 행하였다. 이 결과, 에폭시기가 에피술피드기로 변환되어 있는 것을 확인하였다. 얻어진 열경화성 화합물 B의 융점은 150℃였다.
열경화성 화합물 1: 에폭시 화합물, 아데카사제 「EP-3300」, 에폭시 당량 160g/eq
열경화성 화합물 2: 에폭시 화합물, 닛산 가가꾸 고교사제 「TEPIC-SS」, 에폭시 당량 100g/eq
열경화성 화합물 3: 에폭시 화합물, 닛산 가가꾸 고교사제 「TEPIC-VL」, 에폭시 당량 135g/eq
열경화제 1: 트리메틸올프로판트리스(3-머캅토프로피네이트), SC 유끼 가가꾸사제 「TMMP」
잠재성 에폭시 열경화제 1: T&K TOKA사제 「후지큐어 7000」
잠재성 에폭시 열경화제 2: 아사히 가세이 이머티리얼즈사제 「HXA-3922HP」
플럭스 1의 합성:
글루타르산 25중량부, 글루타르산모노메틸 25중량부를 3구 플라스크에 넣고, 질소 플로우 하에서, 80℃에서 용해시켰다. 그 후, 벤질아민 57중량부를 첨가하고, 150℃에서 감압 하에 2시간 반응시킴으로써, 25℃에서 고체인, 아미드기를 갖는 플럭스 1을 얻었다.
플럭스 2: 글루타르산모노메틸, 와코 쥰야꾸 고교사제
절연성 입자: 평균 입자 직경 30㎛, CV값 5%, 연화점 330℃, 세끼스이 가가꾸 고교사제, 디비닐벤젠 가교 입자
카르보디이미드 화합물 1: 카르보딜라이트 V02B(닛신보사제)
땜납 입자 1의 제작 방법:
SnBi 땜납 입자(미츠이 긴조쿠사제 「DS-10」, 평균 입자 직경(메디안 직경 12㎛)) 200g, 이소시아네이트기를 갖는 실란 커플링제(신에쓰 실리콘사제 「KBE-9007」) 20g 및 아세톤 70g을 3구 플라스크에 칭량하였다. 실온에서 교반하면서, 땜납 입자의 표면의 수산기와 이소시아네이트기의 반응 촉매인 디부틸주석라우레이트 0.25g을 첨가하고, 교반 하, 질소 분위기 하에서 100℃에서 2시간 가열하였다. 그 후, 메탄올 120g 및 아세트산 0.05g 첨가하고, 교반 하, 질소 분위기 하에서, 60℃에서 1시간 가열하였다.
그 후, 실온까지 냉각시키고, 여과지로 땜납 입자를 여과하며, 진공 건조로써 실온에서 1시간 탈용제를 행하여, 땜납 입자를 얻었다.
상기 땜납 입자를, 3구 플라스크에 넣고, 아세톤 45g, 아디프산모노에틸 40g 및 디메시틸암모늄펜타플루오로벤젠술포네이트 0.2g을 첨가하고, 교반 하, 질소 분위기 하에서 65℃에서 1시간 반응시킨 후, 진공 건조시킴으로써 탈용제를 행하였다.
그 후, 상기 땜납 입자를, 3구 플라스크에 넣고, 아세톤 85g, 아디프산 40g 및 란탄이소프로폭시드 0.5g을 첨가하고, 65℃에서 1시간 반응시킨 후, 실온까지 냉각시키고, 여과지로 땜납 입자를 여과하며, 여과지 상에서 땜납 입자를 아세톤으로 2회, 헥산으로 1회 세정한 후, 진공 건조로써 실온에서 1시간 탈용제를 행하였다.
얻어진 땜납 입자를 볼 밀로 해쇄한 후, 소정의 CV값이 되도록 체를 선택하였다.
이에 의해, 땜납 입자 1을 얻었다. 얻어진 땜납 입자 1에서는, CV값 20%, 산가: 0.5mg/KOH였다.
땜납 입자 2의 제작 방법:
여과지 상에서 땜납 입자를 헥산으로 1회 세정한 것 이외에는, 땜납 입자 1과 동일하게 하여, 땜납 입자 2를 제작하였다. 얻어진 땜납 입자 2에서는, CV값 20%, 산가: 13mg/KOH였다.
땜납 입자 A(SnBi 땜납 입자, 융점 139℃, 미츠이 긴조쿠사제 「DS-10」, 평균 입자 직경(메디안 직경 12㎛)), 산가: 0.2mg/KOH
(땜납 입자의 CV값)
CV값을, 레이저 회절식 입도 분포 측정 장치(호리바 세이사꾸쇼사제 「LA-920」)로 측정하였다.
(땜납 입자의 산가)
에탄올에 페놀프탈레인을 넣고, 0.1N-KOH로 중화시킨 용액 50ml에 대하여, 도전성 입자(땜납 입자) 1g을 넣고, 초음파 처리로 분산시킨 후, 0.1N-KOH로 적정함으로써, 산가를 구하였다.
(실시예 1 내지 5 및 비교예 1 내지 3)
(1) 이방성 도전 페이스트의 제작
하기 표 1에 나타낸 성분을 하기 표 1에 나타낸 배합량으로 배합하여, 이방성 도전 페이스트를 얻었다.
접속 구조체를 하기와 같이 하여 제작하였다.
(2) 접속 구조체(L/S=75㎛/75㎛)의 제작
L/S가 75㎛/75㎛, 전극 길이 3mm의 구리 전극 패턴(구리 전극의 두께 12㎛)을 상면에 갖는 유리 에폭시 기판(FR-4 기판, 두께 0.6mm)(제1 접속 대상 부재)을 준비하였다. 또한, L/S가 75㎛/75㎛, 전극 길이 3mm의 구리 전극 패턴(구리 전극의 두께 12㎛)을 하면에 갖는 플렉시블 프린트 기판(폴리이미드에 의해 형성되어 있는 제2 접속 대상 부재, 두께 0.1mm)을 준비하였다.
유리 에폭시 기판과 플렉시블 프린트 기판의 중첩 면적은, 1.5cm×3mm로 하고, 접속된 전극수는 75쌍으로 하였다.
상기 유리 에폭시 기판의 상면에, 제작 직후의 이방성 도전 페이스트를, 유리 에폭시 기판의 전극 상에서 두께 100㎛가 되도록 도공하여, 이방성 도전 페이스트층을 형성하였다. 이어서, 이방성 도전 페이스트층의 상면에 상기 플렉시블 프린트 기판을, 전극끼리가 대향하도록 적층하고, 플렉시블 프린트 기판의 상면에 가열 헤드를 놓고, 실온으로부터 180℃까지 승온시키는 동안, 가로 방향의 전극간의 땜납 입자를 응집시키며, 또한 상하의 전극간에 땜납 입자를 응집, 용융시킨 후, 추가로 180℃에서 10초 가열하여, 이방성 도전 페이스트층을 경화시켜, 접속 구조체를 얻었다. 이 때, 이방성 도전 페이스트층에는, 상기 플렉시블 프린트 기판의 중량과, 플렉시블 프린트 기판이 휘지 않을 정도의 압력이 가해진다.
(평가)
(1) 점도
제작 직후의 이방성 도전 페이스트의 25℃에서 점도(η25)를, E형 점도계(도끼 산교사제 「TVE22L」)를 사용하여, 25℃ 및 5rpm의 조건에서 측정하였다.
(2) 보존 안정성
이방성 도전 페이스트를 23℃에서 24간 보관하였다. 보관 후에, 이방성 도전 페이스트의 25℃에서의 점도(η25)를, E형 점도계(도끼 산교사제 「TVE22L」)를 사용하여, 25℃ 및 5rpm의 조건에서 측정하였다. 보존 안정성을 하기 기준으로 판정하였다.
[보존 안정성의 판정 기준]
○○: 보관 후의 점도/보관 전의 점도가 1.2배 미만
○: 보관 후의 점도/보관 전의 점도가 1.2배 이상 1.5배 미만
△: 보관 후의 점도/보관 전의 점도가 1.5배 이상 2배 미만
×: 보관 후의 점도/보관 전의 점도가 2배 이상
(3) 도전성 입자를 제외한 성분의 유출 방지성
얻어진 접속 구조체에 있어서, 전극으로부터 비어져 나온 부분의 길이를 현미경으로 관찰, 측정함으로써, 도전성 입자를 제외한 성분의 유출 방지성을 평가하였다. 도전성 입자를 제외한 성분의 유출 방지성을 하기의 기준으로 판정하였다.
[도전성 입자를 제외한 성분의 유출 방지성의 판정 기준]
○○: 전극으로부터 비어져 나온 부분의 길이가 150㎛ 미만
○: 전극으로부터 비어져 나온 부분의 길이가 150㎛ 이상 200㎛ 미만
△: 전극으로부터 비어져 나온 부분의 길이가 200㎛ 이상 300㎛ 미만
×: 전극으로부터 비어져 나온 부분의 길이가 300㎛ 이상
(4) 땜납부의 두께
얻어진 접속 구조체를 단면 관찰함으로써, 상하의 전극 사이에 위치하고 있는 땜납부의 두께를 평가하였다.
(5) 전극 상의 땜납의 배치 정밀도 1
얻어진 접속 구조체에 있어서, 제1 전극과 접속부와 제2 전극의 적층 방향으로 제1 전극과 제2 전극의 서로 대향하는 부분을 보았을 때, 제1 전극과 제2 전극의 서로 대향하는 부분의 면적 100% 중의, 접속부 중의 땜납부가 배치되어 있는 면적의 비율 X를 평가하였다. 전극 상의 땜납의 배치 정밀도 1을 하기의 기준으로 판정하였다.
[전극 상의 땜납의 배치 정밀도 1의 판정 기준]
○○: 비율 X가 70% 이상
○: 비율 X가 60% 이상 70% 미만
△: 비율 X가 50% 이상 60% 미만
×: 비율 X가 50% 미만
(6) 전극 상의 땜납의 배치 정밀도 2
얻어진 접속 구조체에 있어서, 제1 전극과 접속부와 제2 전극의 적층 방향과 직교하는 방향으로 제1 전극과 제2 전극의 서로 대향하는 부분을 보았을 때, 접속부 중의 땜납부 100% 중, 제1 전극과 제2 전극의 서로 대향하는 부분에 배치되어 있는 접속부 중의 땜납부의 비율 Y를 평가하였다. 전극 상의 땜납의 배치 정밀도 2를 하기의 기준으로 판정하였다.
[전극 상의 땜납의 배치 정밀도 2의 판정 기준]
○○: 비율 Y가 99% 이상
○: 비율 Y가 90% 이상 99% 미만
△: 비율 Y가 70% 이상 90% 미만
×: 비율 Y가 70% 미만
(7) 상하 전극간의 도통 신뢰성
얻어진 접속 구조체(n=15개)에 있어서, 상하 전극간의 1 접속 개소당 접속 저항을, 각각 4단자법에 의해 측정하였다. 접속 저항의 평균값을 산출하였다. 또한, 전압=전류×저항의 관계로부터, 일정한 전류를 흘렸을 때의 전압을 측정함으로써 접속 저항을 구할 수 있다. 도통 신뢰성을 하기의 기준으로 판정하였다.
[도통 신뢰성의 판정 기준]
○○: 접속 저항의 평균값이 50mΩ 이하
○: 접속 저항의 평균값이 50mΩ을 초과하고, 70mΩ 이하
△: 접속 저항의 평균값이 70mΩ을 초과하고, 100mΩ 이하
×: 접속 저항의 평균값이 100mΩ을 초과하고, 또는 접속 불량이 발생하고 있음
(8) 가로 방향으로 인접하는 전극간의 절연 신뢰성
얻어진 접속 구조체(n=15개)에 있어서, 85℃, 습도 85%의 분위기 중에 100시간 방치 후, 가로 방향으로 인접하는 전극간에, 15V를 인가하여, 저항값을 25군데에서 측정하였다. 절연 신뢰성을 하기의 기준으로 판정하였다.
[절연 신뢰성의 판정 기준]
○○○: 접속 저항의 평균값이 1014Ω 이상
○○: 접속 저항의 평균값이 108Ω 이상 1014Ω 미만
○: 접속 저항의 평균값이 106Ω 이상 108Ω 미만
△: 접속 저항의 평균값이 105Ω 이상 106Ω 미만
×: 접속 저항의 평균값이 105Ω 미만
(9) 상하 전극간의 위치 어긋남
얻어진 접속 구조체에 있어서, 제1 전극과 접속부와 제2 전극의 적층 방향으로 제1 전극과 제2 전극의 서로 대향하는 부분을 보았을 때, 제1 전극의 중심선과 제2 전극의 중심선이 정렬되어 있는지 여부, 및 위치 어긋남의 거리를 평가하였다. 상하 전극간의 위치 어긋남을 하기의 기준으로 판정하였다.
[상하 전극간의 위치 어긋남의 판정 기준]
○○: 위치 어긋남이 15㎛ 미만
○: 위치 어긋남이 15㎛ 이상 25㎛ 미만
△: 위치 어긋남이 25㎛ 이상 40㎛ 미만
×: 위치 어긋남이 40㎛ 이상
(10) 내열성(내열 황변성)
하기 표 1에 나타낸 배합 성분에 있어서, 도전 페이스트 중의 땜납 입자를 제외한 성분을 배합한 배합물을 준비하고, 두께 0.6mm의 경화물 시트를 제작하였다. 150℃, 2000시간 보관한 후, 측정 파장 400nm에서의 투과율을 측정함으로써, 내열성(내열 황변성)을 평가하였다. 내열성을 하기의 기준으로 판정하였다.
[내열성의 판정 기준]
○○: 고온 보관 후의 투과율이 93% 이상
○: 고온 보관 후의 투과율이 90% 이상 93% 미만
△: 고온 보관 후의 투과율이 87% 이상 90% 미만
×: ○○, ○ 및 △의 기준에 상당하지 않음
결과를 하기 표 1에 나타낸다.
플렉시블 프린트 기판 대신에, 수지 필름, 플렉시블 플랫 케이블 및 리지드 플렉시블 기판을 사용한 경우에도, 동일한 경향이 보였다.
1, 1X…접속 구조체
2…제1 접속 대상 부재
2a…제1 전극
3…제2 접속 대상 부재
3a…제2 전극
4, 4X…접속부
4A, 4XA…땜납부
4B, 4XB…경화물부
11…도전 재료
11A…땜납 입자(도전성 입자)
11B…열경화성 성분
21…도전성 입자(땜납 입자)
31…도전성 입자
32…기재 입자
33…도전부(땜납을 갖는 도전부)
33A…제2 도전부
33B…땜납부
41…도전성 입자
42…땜납부
2…제1 접속 대상 부재
2a…제1 전극
3…제2 접속 대상 부재
3a…제2 전극
4, 4X…접속부
4A, 4XA…땜납부
4B, 4XB…경화물부
11…도전 재료
11A…땜납 입자(도전성 입자)
11B…열경화성 성분
21…도전성 입자(땜납 입자)
31…도전성 입자
32…기재 입자
33…도전부(땜납을 갖는 도전부)
33A…제2 도전부
33B…땜납부
41…도전성 입자
42…땜납부
Claims (15)
- 도전부의 외표면 부분에 땜납을 갖는 복수의 도전성 입자와,
열경화성 화합물과,
열경화제를 포함하고,
상기 열경화성 화합물이 티이란기 및 트리아진 골격을 갖는 열경화성 화합물을 포함하는, 도전 재료. - 제1항에 있어서, 상기 티이란기 및 트리아진 골격을 갖는 열경화성 화합물의 융점이 140℃ 이상인, 도전 재료.
- 제1항 또는 제2항에 있어서, 티이란기 및 트리아진 골격을 갖는 열경화성 화합물과는 다른 열경화성 화합물을 포함하는, 도전 재료.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 도전성 입자의 산가가 0.1mg/KOH 이상 10mg/KOH 이하인, 도전 재료.
- 제1항 내지 제4항 중 어느 한 항에 있어서, 플럭스를 포함하는, 도전 재료.
- 제5항에 있어서, 상기 플럭스가, 아미드기와 방향족 골격을 갖는 플럭스이거나, 또는 아미드기를 갖고, 또한 카르복실산 또는 카르복실산 무수물과 pKa가 9.5 이하인 아미노기 함유 화합물의 반응물인 플럭스인, 도전 재료.
- 제5항 또는 제6항에 있어서, 상기 플럭스가 25℃에서 고체인, 도전 재료.
- 제1항 내지 제7항 중 어느 한 항에 있어서, 카르보디이미드 화합물을 포함하는, 도전 재료.
- 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 도전성 입자는 땜납 입자인, 도전 재료.
- 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 도전성 입자의 표면에 부착되지 않은 절연성 입자를 포함하는, 도전 재료.
- 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 도전성 입자의 평균 입자 직경이 1㎛ 이상 40㎛ 이하인, 도전 재료.
- 제1항 내지 제11항 중 어느 한 항에 있어서, 도전 재료 100중량% 중, 상기 도전성 입자의 함유량이 10중량% 이상 80중량% 이하인, 도전 재료.
- 제1항 내지 제12항 중 어느 한 항에 있어서, 25℃에서 액상이며, 도전 페이스트인, 도전 재료.
- 적어도 하나의 제1 전극을 표면에 갖는 제1 접속 대상 부재와,
적어도 하나의 제2 전극을 표면에 갖는 제2 접속 대상 부재와,
상기 제1 접속 대상 부재와 상기 제2 접속 대상 부재를 접속하고 있는 접속부를 구비하고,
상기 접속부의 재료가, 제1항 내지 제13항 중 어느 한 항에 기재된 도전 재료이며,
상기 제1 전극과 상기 제2 전극이 상기 접속부 중의 땜납부에 의해 전기적으로 접속되어 있는, 접속 구조체. - 제14항에 있어서, 상기 제1 전극과 상기 접속부와 상기 제2 전극의 적층 방향으로 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분을 보았을 때, 상기 제1 전극과 상기 제2 전극의 서로 대향하는 부분의 면적 100% 중의 50% 이상에, 상기 접속부 중의 땜납부가 배치되어 있는, 접속 구조체.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015162196 | 2015-08-19 | ||
JPJP-P-2015-162196 | 2015-08-19 | ||
PCT/JP2016/072776 WO2017029993A1 (ja) | 2015-08-19 | 2016-08-03 | 導電材料及び接続構造体 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180043191A true KR20180043191A (ko) | 2018-04-27 |
Family
ID=58052169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177021433A KR20180043191A (ko) | 2015-08-19 | 2016-08-03 | 도전 재료 및 접속 구조체 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2017029993A1 (ko) |
KR (1) | KR20180043191A (ko) |
CN (1) | CN107251163A (ko) |
TW (1) | TW201717215A (ko) |
WO (1) | WO2017029993A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202018006912U1 (de) | 2017-04-14 | 2024-05-16 | Lg Energy Solution, Ltd. | Sekundärbatterie und Herstellung |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7014998B2 (ja) * | 2018-01-18 | 2022-02-02 | 味の素株式会社 | 樹脂組成物 |
JP7020378B2 (ja) * | 2018-11-20 | 2022-02-16 | 味の素株式会社 | 樹脂組成物 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458472B1 (en) * | 2001-01-08 | 2002-10-01 | Henkel Loctite Corporation | Fluxing underfill compositions |
KR101538820B1 (ko) * | 2008-03-21 | 2015-07-22 | 세키스이가가쿠 고교가부시키가이샤 | 경화성 조성물, 이방성 도전 재료 및 접속 구조체 |
KR20100073848A (ko) * | 2008-12-23 | 2010-07-01 | 제일모직주식회사 | 전기전자용 접착필름 조성물 및 이를 이용한 전기전자용 접착필름 |
CN102484326B (zh) * | 2009-08-26 | 2014-12-10 | 积水化学工业株式会社 | 各向异性导电材料、连接结构体及连接结构体的制造方法 |
JP5547931B2 (ja) * | 2009-09-02 | 2014-07-16 | 積水化学工業株式会社 | 電子部品接合用接着剤 |
CN104541333A (zh) * | 2012-12-06 | 2015-04-22 | 积水化学工业株式会社 | 导电材料、连接结构体及连接结构体的制造方法 |
WO2014109042A1 (ja) * | 2013-01-11 | 2014-07-17 | 株式会社 日立製作所 | 有機発光素子 |
KR20150109322A (ko) * | 2013-01-17 | 2015-10-01 | 세키스이가가쿠 고교가부시키가이샤 | 전자 부품용 경화성 조성물, 접속 구조체 및 접속 구조체의 제조 방법 |
KR101579712B1 (ko) * | 2013-05-23 | 2015-12-22 | 세키스이가가쿠 고교가부시키가이샤 | 도전 재료 및 접속 구조체 |
JPWO2015083587A1 (ja) * | 2013-12-06 | 2017-03-16 | 積水化学工業株式会社 | 半導体接合用接着剤、半導体装置の製造方法、及び、半導体装置 |
-
2016
- 2016-08-03 JP JP2016551862A patent/JPWO2017029993A1/ja not_active Ceased
- 2016-08-03 WO PCT/JP2016/072776 patent/WO2017029993A1/ja active Application Filing
- 2016-08-03 KR KR1020177021433A patent/KR20180043191A/ko unknown
- 2016-08-03 CN CN201680010595.6A patent/CN107251163A/zh active Pending
- 2016-08-15 TW TW105125970A patent/TW201717215A/zh unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202018006912U1 (de) | 2017-04-14 | 2024-05-16 | Lg Energy Solution, Ltd. | Sekundärbatterie und Herstellung |
DE202018006927U1 (de) | 2017-04-14 | 2024-08-02 | Lg Energy Solution, Ltd. | Sekundärbatterie |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017029993A1 (ja) | 2018-05-31 |
TW201717215A (zh) | 2017-05-16 |
WO2017029993A1 (ja) | 2017-02-23 |
CN107251163A (zh) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6630284B2 (ja) | 導電材料及び接続構造体 | |
JP7425824B2 (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
WO2017179532A1 (ja) | 導電材料及び接続構造体 | |
KR20180043191A (ko) | 도전 재료 및 접속 구조체 | |
KR20180043193A (ko) | 도전 재료 및 접속 구조체 | |
JP6734141B2 (ja) | 導電材料及び接続構造体 | |
JP2021185579A (ja) | 導電材料及び接続構造体 | |
JP2017224602A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP2017195180A (ja) | 導電材料及び接続構造体 | |
JP2018006084A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
KR102569944B1 (ko) | 도전 재료 및 접속 구조체 | |
JP2018045906A (ja) | 導電材料、導電材料の製造方法及び接続構造体 | |
WO2018174065A1 (ja) | 導電材料及び接続構造体 | |
KR20180043192A (ko) | 도전 재료 및 접속 구조체 | |
JP2018060786A (ja) | 導電材料及び接続構造体 | |
WO2017033933A1 (ja) | 導電材料及び接続構造体 | |
JP2018006085A (ja) | 導電材料、接続構造体及び接続構造体の製造方法 | |
JP2018046004A (ja) | 導電材料及び接続構造体 | |
JP2017191685A (ja) | 導電材料及び接続構造体 | |
JP6294973B2 (ja) | 導電材料及び接続構造体 | |
JP2018046003A (ja) | 導電材料及び接続構造体 |