Nothing Special   »   [go: up one dir, main page]

KR20170097825A - Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same - Google Patents

Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same Download PDF

Info

Publication number
KR20170097825A
KR20170097825A KR1020160019218A KR20160019218A KR20170097825A KR 20170097825 A KR20170097825 A KR 20170097825A KR 1020160019218 A KR1020160019218 A KR 1020160019218A KR 20160019218 A KR20160019218 A KR 20160019218A KR 20170097825 A KR20170097825 A KR 20170097825A
Authority
KR
South Korea
Prior art keywords
oxide
shell
solution
quantum dot
precursor
Prior art date
Application number
KR1020160019218A
Other languages
Korean (ko)
Inventor
김수규
이경구
김해식
유정환
강병호
김태윤
윤현지
Original Assignee
시노코 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시노코 유한회사 filed Critical 시노코 유한회사
Priority to KR1020160019218A priority Critical patent/KR20170097825A/en
Priority to CN201610217470.2A priority patent/CN105778889B/en
Publication of KR20170097825A publication Critical patent/KR20170097825A/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention proposes a semiconductor nanoparticle surrounded by a nanometal or semiconductor oxide particle, that is, a quantum dot structure and a manufacturing method thereof. In the quantum dot structure according to the present invention, oxide surrounded by quantum dots shows excellent reliability by blocking an external environment and has high optical affinity due to high electron affinity so that it can be used for the manufacture of devices requiring high reliability such as a photo conversion device and an electroluminescent device. The manufacturing method includes a step of forming the structure of a shell, and a step of forming the outermost shell of metal oxide or semiconductor oxide.

Description

나노 금속 또는 반도체 산화물로 캡핑된 양자점 구조 및 그 제조방법{Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum dot structure capped with a nano metal or a semiconductor oxide,

본 발명은 양자점 구조에 관한 것으로, 보다 상세하게는 4성분의 성분비에 의해 파장이 조절된 코어에 그 에너지를 가두어 둘 수 있는 쉘로 구성된 양자점에 산화물 나노입자를 최외각 쉘로 결합시켜 공기 중의 산소 및 수분과 열에 우수하며, 4성분의 함량비로 인해 파장조절이 용이한 코어로 인해 양산성을 확보할 수 있는 양자점 구조에 관한 것이다.The present invention relates to a quantum dot structure, and more particularly, to a quantum dot structure composed of a shell capable of confining its energy to a core whose wavelength is controlled by the composition ratio of four components, and oxide nanoparticles are bonded to the outermost shell, The present invention relates to a quantum dot structure capable of securing mass productivity due to a core which is excellent in heat and heat, and can be easily controlled in wavelength due to the content ratio of the four components.

양자점은 반도체 나노입자의 사이즈를 조절함에 따라 다양한 파장의 빛이 여기되어 좁은 발광 선폭으로 고순도의 색을 재현할 수 있으며, 단일 소재를 사용하여 가시광 영역의 다양한 파장을 여기 할 수 있다. 이로 인해 양자점 기술은 자연색을 재현하기 위한 기술 중 가장 이상적인 기술이며, 천연의 색을 화면에 구현하기 위해 디스플레이 분야에서 많은 관심을 가지는 기술이다. Quantum dots can regulate the size of semiconductor nanoparticles so that light of various wavelengths can be excited to reproduce high purity colors with a narrow emission line width. A single material can excite various wavelengths of the visible light region. As a result, quantum dot technology is the most ideal technology to reproduce natural colors, and is a technology that has a lot of interest in the display field in order to realize a natural color on a screen.

이러한 반도체 나노입자 즉, 양자점은 UV 파장 영역의 빛을 조사하면 빛을 여기하는 포토루미네선스(Photoluminescence, PL), 전계를 가하면 빛을 여기하는 전기루미네선스(Electroluminescence, EL) 두 가지 방법이 있으며, 의료, 조명, 디스플레이 등 다양한 분야에서 응용이 가능하다.These semiconductor nanoparticles, that is, quantum dots, can be classified into two types: photoluminescence (PL) that excites light when light is irradiated in the UV wavelength region, and electroluminescence (EL) that excites light when an electric field is applied It can be applied in various fields such as medical, lighting, and display.

양자점의 구조로는 수 나노의 크기를 가지는 입자들로 인해 여기 파장을 결정하는 코어(Core), 좁은 밴드 갭(Energy bandgap)을 가지는 코어의 에너지를 넓은 밴드 갭을 가지는 물질로 감싸주는 쉘(Shell)을 구비한다. 또한, 쉘은 코어의 에너지를 가두는 역할을 하여 코어의 입자가 발광할 수 있는 에너지 구조를 형성시켜 주며, 이로 인해 발광 효율을 증대시켜 준다. 그리고 외부로 에너지 전달 및 용재와 분산을 용이하게 하기 위한 리간드(Ligand)로 이루어져 있다.The structure of the quantum dot includes a core for determining excitation wavelength due to particles having a size of several nanometers, a shell for covering energy of a core having a narrow band gap with a material having a wide band gap ). In addition, the shell serves to confine the energy of the core, thereby forming an energy structure in which the particles of the core can emit light, thereby increasing the luminous efficiency. And a ligand for facilitating energy transfer to the outside and for facilitating the dispersion and the dispersion.

현재 양자점 구조에 따른 연구들 중, 코어-쉘(Core-shell) 구조의 에너지 밴드갭을 설계하는 방향으로 열이나 외부 환경에 취약한 유기 리간드를 무기물을 결합시키거나, 무기 소재로 치환하는 등 신뢰성을 높이는 방향으로 많은 연구가 진행 중이며, 그 중 유기 리간드의 경우는 산화 안정성이 매우 떨어지고, 여기 광에 의해 발생하는 전자를 포획함으로써 광변환 효율을 떨어뜨리는 문제점이 있다.Among the studies based on the QD structure, the design of the energy bandgap of the core-shell structure is based on the assumption that the organic ligands, which are vulnerable to heat or the external environment, Many researches are proceeding in the height direction. Among them, the oxidation stability of the organic ligand is very poor and capturing electrons generated by the excitation light deteriorates the light conversion efficiency.

이를 해결하는 선행기술로 한국특허공개 10-2005-0074779(II-VI 반도체 화합물로 이루어진 고발광성 I형 적층구조 코어/2중 쉘 양자점 및 이의 제조 방법)에 따르면, II-VI 화합물 코어; 상기 II-VI 화합물 코어의 표면에 형성되며, 상기 II-VI 화합물 코어의 밴드 갭보다 큰 밴드 갭을 갖는 II-VI 화합물 제1쉘; 및 상기 II-VI 화합물 제1쉘의 표면에 형성되며, 상기 II-VI 화합물 제1쉘의 밴드 갭보다 큰 밴드 갭을 갖는 II-VI 화합물 제2쉘을 갖는, I형 적층 구조 코어/2중 쉘 양자점 및 습식 화학법을 이용한 이의 제조 방법을 제공한다. As a prior art to solve this problem, according to Korean Patent Laid-Open Publication No. 10-2005-0074779 (Highly luminous I type laminated structure core / double shell quantum dot made of II-VI compound semiconductor and its production method), II-VI compound core; A II-VI compound first shell formed on the surface of the II-VI compound core and having a band gap larger than the band gap of the II-VI compound core; And a II-VI compound second shell formed on the surface of the II-VI compound first shell and having a band gap larger than the band gap of the II-VI compound first shell, the I-type laminated structure core / Shell quantum dots and wet chemical methods.

그러나, 양자점의 코어는 여기 파장을 결정하게 되는데, 상기 코어를 제작하기 위한 공정은 빠른 반응속도로 인해 공정제어가 까다롭고, 코어 및 쉘 합성에 필요한 공정 설비 및 공정 시간이 많이 소모되므로 양산성이 떨어지는 문제점이 있다.However, the core of the quantum dots determines the excitation wavelength. Since the process for fabricating the core has a high reaction speed, it is difficult to control the process, and the process equipment and process time required for core and shell synthesis are consumed. There is a falling problem.

한국공개특허 10-2005-0074779(2005년 7월 19일 공개)Korean Patent Laid-Open No. 10-2005-0074779 (published on July 19, 2005)

본 발명은 전술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 4성분 코어/쉘/산화물 최외각 쉘 구조를 가지는 양자점을 제작함에 따라 양산성 확보 및 대량생산을 용이하게 하고, 외부 환경에 취약한 양자점의 최외각 쉘을 산화물구조의 양자점으로 제작하여 수분 및 열에 대한 안정성을 가지는 양자점을 제작하여 신뢰성 또한 확보하는데 그 목적이 있다.DISCLOSURE Technical Problem Accordingly, the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a method of manufacturing a quantum dot having a four-component core / shell / oxide outermost shell structure, The outer shell of the outer shell is made of quantum dots of an oxide structure and quantum dots having stability against moisture and heat are fabricated to secure reliability.

상기 과제를 해결하기 위해, 본 발명은 4성분 코어/쉘/산화물 최외각 쉘로 이루어진 양자점 및 이를 이용한 광촉매, 광변환 소자 및 전계발광소자를 제공한다.In order to solve the above problems, the present invention provides a quantum dot comprising a four-component core / shell / oxide outermost shell, and a photocatalyst, a photoconversion device and an electroluminescent device using the same.

이에 따라, (a) 11족 내지 17족 중에서 선택된 전구체 용액을 280 ~ 320℃ 온도에서 반응시켜 4성분 코어와 상기 코어의 표면에 형성된 쉘의 구조를 형성하는 단계; 및 (b) 상기 (a) 단계에서 4성분 코어/쉘의 양자점 나노 입자를 금속 또는 반도체 산화물이 용해된 용액과 혼합하고, 혼합된 용액을 수산화 용액과 50℃ ~ 80℃의 온도에서 반응시켜 금속산화물 또는 반도체산화물의 최외각 쉘을 형성하는 단계를 포함하는 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 제조방법을 제공한다.(A) reacting a precursor solution selected from group 11 to 17 at a temperature of from 280 to 320 ° C to form a structure of a four-component core and a shell formed on the surface of the core; And (b) mixing the quantum dot nanoparticles of the four-component core / shell with the solution in which the metal or semiconductor oxide is dissolved in step (a), and reacting the mixed solution with the hydroxide solution at a temperature of 50 ° C to 80 ° C, And forming an outermost shell of an oxide or a semiconductor oxide on the surface of the quartz-based core / shell / oxide outermost shell structure.

바람직하게, 상기 (a) 단계에서, (a-1) 불포화 지방산에 11족 내지 14족 원소 중에서 2개 이상을 선택하여 혼합하고 에틸렌계 탄화수소 유기 용매를 첨가하여 양이온 전구체를 합성하는 단계; (a-2) 알킬포스핀 계열, 산화알킬포스핀 계열, 트리알킬포스핀 계열 중에서 선택된 어느 하나의 용매에 14족 내지 17족 원소 중에서 2개 이상을 선택하여 혼합하여 음이온 전구체를 합성하는 단계; (a-3) 알킬포스핀 계열, 산화알킬포스핀 계열, 트리알킬포스핀 계열 중에서 선택된 어느 하나의 용매에 상기 (a-2) 단계에서 선택된 2개 이상의 원소 중에서 어느 하나의 원소를 선택하고 혼합하여, 쉘 성분의 음이온 전구체를 합성하는 단계; 및 (a-4) 상기 (a-1) 단계에서 합성한 양이온 전구체와 상기 (a-2) 단계에서 합성한 음이온 전구체를 소정 부피비로 혼합하고, 상기 (a-3) 단계에서 합성된 쉘 성분의 음이온 전구체를 첨가하는 단계;를 포함할 수 있다.Preferably, in the step (a), (a-1) synthesizing a cation precursor by mixing two or more elements selected from group 11 to group 14 elements with an unsaturated fatty acid and adding an ethylenic hydrocarbon organic solvent thereto; (a-2) synthesizing an anion precursor by selectively mixing at least two elements selected from Group 14 to Group 17 in a solvent selected from the group consisting of alkylphosphine series, alkylphosphine series and trialkylphosphine series; (a-3) at least one element selected from the two or more elements selected in the step (a-2) is selected and mixed in any one solvent selected from the group consisting of an alkylphosphine series, an alkyloxphosphine series and a trialkylphosphine series, Thereby synthesizing an anion precursor of the shell component; And (a-4) mixing the cation precursor synthesized in the step (a-1) and the anion precursor synthesized in the step (a-2) in a predetermined volume ratio, Of an anionic precursor of the anion precursor.

바람직하게, 상기 (b) 단계에서, (b-1) 상기 (a) 단계에서 형성된 4성분 코어/쉘의 양자점을 소수성 용매에 분산시키는 단계; (b-2) 극성 용매에 금속 또는 반도체 산화물 전구체를 용해시켜 전구체 용액을 형성하는 단계; (b-3) 상기 (b-1) 단계에서 형성된 양자점 용액과 상기 (b-2) 단계에서 형성된 전구체 용액을 소정 부피비로 혼합하는 단계; 및 (b-4) 상기 (b-3) 단계에서 혼합된 용액과 수산화 용액을 소정 부피비로 혼합하고 반응시켜 상기 최외각 쉘로 금속 또는 반도체 산화물을 캡핑하는 단계; 포함할 수 있다.Preferably, in the step (b), (b-1) dispersing the quantum dots of the four-component core / shell formed in the step (a) in a hydrophobic solvent; (b-2) dissolving a metal or semiconductor oxide precursor in a polar solvent to form a precursor solution; (b-3) mixing the quantum dot solution formed in the step (b-1) and the precursor solution formed in the step (b-2) at a predetermined volume ratio; And (b-4) mixing the solution mixed in step (b-3) with the hydroxide solution in a predetermined volume ratio and reacting to cap the metal or semiconductor oxide into the outermost shell; .

바람직하게, 상기 금속산화물 또는 반도체산화물은, 아연산화물(ZnOx), 바나듐산화물(V2Ox), 니켈산화물(NiO), 주석산화물(SnO2), 인듐산화물(In2O3), 몰리브덴산화물(MoO3), 텅스텐산화물(WO3), 티타늄산화물(TiO2), 알루미나(Al2O3), 실리카(SiO2) 등으로 이루어진 군 중에서 어느 하나가 선택될 수 있다.Preferably, the metal oxide or semiconductor oxide, zinc oxide (ZnOx), vanadium oxide (V 2 Ox), nickel oxide (NiO), tin oxide (SnO 2), indium oxide (In 2 O 3), molybdenum oxide ( MoO 3 ), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), silica (SiO 2 ), and the like.

본 발명은 4성분 코어/쉘/산화물 최외각 쉘의 양자점 구조를 형성한다. The present invention forms the quantum dot structure of a four component core / shell / oxide outermost shell.

이에 따라, 4성분 코어의 합성은 4 원소의 성분비에 의해 파장이 결정되므로 2성분 코어 합성에 비해 반응 온도, 시간에 지배적이지 않으며, 이로 인해 양산에 적용 시 공정오차를 줄일 수 있어 대량생산에 용이하다.As a result, the synthesis of the four-component core is not dominant over the reaction temperature and time as compared with the synthesis of the two-component core since the wavelength is determined by the composition ratio of the four elements. Do.

또한, 산화물 최외각 쉘은 수분 및 열에 의한 양자점의 열화를 방지하여 신뢰성 향상 및 리간드에 지배적이지 않은 양자점 특성을 확보할 수 있다.In addition, the oxide outermost shell can prevent deterioration of quantum dots due to moisture and heat, thereby improving reliability and ensuring quantum dot characteristics not dominant in the ligand.

또한, 산화물로 캡핑된 양자점은 우수한 내열성 및 내화학성을 가지며 친수성 표면을 제공함으로써 극성용제들과 혼합이 용이하고 용제 내에서 우수한 분산 안정성을 가진다.In addition, the oxide-capped quantum dot has excellent heat resistance and chemical resistance, and is easily mixed with polar solvents by providing a hydrophilic surface, and has excellent dispersion stability in solvent.

또한, 양자점을 감싸고 있는 산화물은 높은 굴절률과 투과도를 가짐으로 높은 광추출이 가능하며 전자친화도가 높아 금속 및 반도체 산화물로 캡핑된 양자점을 사용하여 고효율의 전계발광 디바이스 소자로 적용 가능하다.The oxide surrounding the quantum dots has a high refractive index and a high transmittance and thus can extract light with high electron affinity and can be applied to a high efficiency electroluminescent device using quantum dots capped with a metal and a semiconductor oxide.

본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는 첨부도면은 본 발명에 따른 실시예를 제공하고, 상세한 설명과 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점을 나타낸 도면,
도 2는 도 1의 4성분 코어/쉘/산화물 최외각 쉘 구조를 갖는 양자점의 제조과정을 나타낸 모식도, 각각 도 2a는 제1단계로 11족~17족 전구체를 이용한 4성분 코어/쉘의 양자점 구조의 합성에 대한 모식도이며, 도 2b는 제2단계로 도 2a의 제1단계에서 제조된 양자점에 산화물 최외각 쉘을 형성하는 과정을 나타낸 제작 순서의 모식도,
도 3은 본 발명의 바람직한 실시에에 따른 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 투과전자현미경 사진이며, 각각 도 3a는 실시예1에 따른 4성분 코어/쉘의 양자점 투과전자현미경(FE-TEM) 사진이며, 도 3b는 실시예2에 따른 산화아연의 최외각 쉘이 둘러싸인 양자점의 FE-TEM 사진,
도 4는 본 발명의 실시예3에 따른 금속산화물이 캡핑된 양자점(210)과 일반적인 유기리간드 양자점(220)을 이용한 시트를 제작하여 90℃의 챔버에서 시간에 따라 본 발명에 따른 산화물이 캡핑된 양자점(210)의 PL Intensity를 측정, 그리고 일반적인 유기리간드 양자점(220)의 PL Intensity 대비 퍼센트 값을 나타낸 비교 그래프이다.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
1 illustrates quantum dots of a four-component core / shell / oxide outermost shell structure according to a preferred embodiment of the present invention,
FIG. 2 is a schematic view showing a manufacturing process of a quantum dot having the four-component core / shell / oxide outermost shell structure of FIG. 1, FIG. 2B is a schematic view of a fabrication sequence showing a process of forming an outermost shell of an oxide on a quantum dot prepared in the first step of FIG. 2A in a second step, FIG.
FIG. 3 is a transmission electron microscope image of a four-component core / shell / oxide outermost shell structure according to a preferred embodiment of the present invention. FIG. 3A is a transmission electron microscope FIG. 3B is a FE-TEM image of the quantum dots surrounded by the outermost shell of zinc oxide according to Example 2,
FIG. 4 is a graph showing the results of a comparison between a metal oxide-capped quantum dot 210 and a general organic ligand quantum dot 220 according to Example 3 of the present invention. A PL intensity of the quantum dot 210, and a percentage value of the PL intensity of a general organic ligand quantum dot 220.

이하, 첨부된 도면을 참조하여, 본 발명의 바람직한 실시예에 따른 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 및 그 제조방법을 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.

도 1은 본 발명의 바람직한 실시예에 따른 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점을 나타낸 도면, 도 2는 도 1의 4성분 코어/쉘/산화물 최외각 쉘의 구조를 갖는 양자점의 제조과정을 나타낸 모식도, 각각 도 2a는 단계 1로서 11족~17족 전구체를 이용한 4성분 코어/쉘의 양자점 구조의 합성에 대한 모식도이며, 도 2b는 단계 2로서 도 2a의 제1단계에서 제조된 양자점에 산화물 최외각 쉘을 형성하는 과정을 나타낸 제작 순서의 모식도이다.FIG. 1 is a view showing quantum dots of a four-component core / shell / oxide outermost shell structure according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional view of a quantum dot having a structure of a four- 2A is a schematic diagram for the synthesis of a quantum dot structure of a four-component core / shell using Group 11 to Group 17 precursors as Step 1, and FIG. 2B is a schematic diagram for the synthesis of a quantum dot structure of a four- FIG. 2 is a schematic view showing a process of forming an outermost shell of an oxide on a quantum dot. FIG.

도 1 및 도 2를 참조하여, 본 발명의 바람직한 실시예에 따른 양자점 구조의 제조방법을 살펴본다.1 and 2, a method of manufacturing a quantum dot structure according to a preferred embodiment of the present invention will be described.

도 2a에 도시된 바와 같이, 먼저 단계 1은 11족 내지 14족 원소 중에서 선택된 2개 이상의 금속 전구체 용액으로서 제1 용액(Solution1)에 14족 내지 17족 원소 중에서 선택된 2개 이상의 전구체 용액으로서 제2 용액(Solution2)을 첨가하여 4성분 코어(110, 도 1 참조)를 합성한다.As shown in FIG. 2A, first, Step 1 is a step of preparing a solution of at least two precursors selected from Elements 11 through 14 as a solution of two or more precursors selected from Elements 14 through 17 in a first solution (Solution 1) Solution (Solution 2) is added to synthesize the four-component core 110 (see FIG. 1).

이어, 제2 용액(Solution2)의 14족 내지 17족 원소 중에서 선택된 2개 이상의 원소 중에서 어느 하나의 원소의 성분이 용해된 전구체 용액으로서 제3 용액(Solution3)을 첨가하여 쉘(120, 도 1참조)를 합성한다. 이때, 단계 1의 반응 온도는 280℃ ~ 320℃의 범위에서 사용할 수 있으며, 비활성 기체 분위기 상태로 반응시키며, 코어에 사용되는 원소의 함량비율에 따라 광학적 특성을 조절할 수 있다.Next, a third solution (Solution 3) is added as a precursor solution in which a component of any one element among two or more elements selected from the elements of Groups 14 to 17 of the second solution (Solution 2) is dissolved to form a shell 120 ). At this time, the reaction temperature of step 1 may be in the range of 280 ° C. to 320 ° C., reacted in an inert gas atmosphere, and the optical characteristics may be controlled according to the content ratio of elements used in the core.

또한, 상기 Solution1의 쉘 성분의 금속전구체는 코어 합성에 참여하기 위한 함량 대비 과량의 양을 첨가하는 것이 바람직하며, 첨가된 Solution3의 성분과 반응하여 2성분 쉘을 조성하는 것이 바람직하다.The metal precursor of the shell component of Solution 1 is preferably added in an excess amount relative to the content for participating in the core synthesis, and it is preferable to react with the added Solution 3 component to form a two-component shell.

또한, 상기 Solution1의 용매는 에틸렌계 탄화수소 유기 용매와 불포화 지방산을 포함하는 혼합물이다. 이때, 에틸렌계 유기 용매는 CnH2n으로써 펜텐(pentene), 헥센(hexene), 헵텐(heptene), 옥타데센(octadecene), 노넨(nonene), 데켄(decene), 운데켄(undecene), 도데켄(dodecene), 트리데켄(tridecene), 테트라데켄(tetradecene), 펜타데켄(pentadecene) 중 적어도 1개 이상을 혼합 사용할 수 있다. 또한, 불포화 지방산은 반응성이 우수한 아세틸렌형 지방산을 사용할 수 있으며, 미리스톨레인산(Myristoleic acid), 팔미톨레인산(Palmitoleic acid), 올레산( Oleic acid), 리놀레인산(Linoleic acid), 에이코사펜타에노인산(Eicosapentaenoic acid), 도코사펜타에노인산(Docosapentaenoic acid) 중 적어도 1개 이상의 지방산을 혼합 사용할 수 있다.The solvent of Solution 1 is a mixture containing an ethylenic hydrocarbon organic solvent and an unsaturated fatty acid. At this time, the ethylenic organic solvent may be C n H 2n, and may be selected from the group consisting of pentene, hexene, heptene, octadecene, nonene, decene, undecene, At least one of dodecene, tridecene, tetradecene, and pentadecene may be used in combination. The unsaturated fatty acid may be an acetylenic fatty acid having excellent reactivity and may be selected from the group consisting of myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, At least one fatty acid among eicosapentaenoic acid, docosapentaenoic acid, and the like can be mixed and used.

또한, 상기 Solution2와 Solution3의 용매는 트리알킬포스핀 계열인 메틸포스핀, 에틸포스핀, 프포필포스핀 등을 포함하는 알킬포스핀 계열, 산화디아밀포스핀 (Diamylphosphine oxide), 산화디헥실포스핀(Dihexyphosphine oxide), 산화트리프로필포스틴(Tripropylphosphine oxide) 등을 포함하는 산화알킬포스핀 계열, 트리프로필포스핀(Tripropylphosphine), 트리부필포스핀(Tributylephosphien), 트리펜틸포스핀(Tripentylphosphine) 등을 포함한다.The solvent of Solution 2 and Solution 3 may be an alkylphosphine series including trialkylphosphine methylphosphine, ethylphosphine, and triphenylphosphine, diamylphosphine oxide, Tripropylphosphine, tributylphosphien, tripentylphosphine, and the like, which include diethylphosphine oxide, tripropylphosphine oxide, and the like, .

이에 따라, 제1 용액(Solution1), 제2 용액(Solution2), 제3 용액(Solution3)이 혼합되어 반응이 종결된 제4 용액(Solution4)에서 반응 종결된 나노입자를 획득한다. 이를 위해, 소수성 용매 및 친수성 용매를 혼합한 후, 6000rpm에서 15분간 원심분리를 2~4회 진행하여 정제된 나노입자(220)를 수득하였다. 이때, 소수성 용매는 헥산(Hexane), 톨루엔(Toluene), 클로로포름(Chloroform) 등을 포함할 수 있으며, 친수성 용매는 에탄올(Ethanol), 메탄올(Methanol), 아세톤(Acetone), 이소프로필알콜(Isopropyl alcohol) 등을 포함할 수 있다. 여기서, 상기 정제된 나노입자(220)은 4성분계 코어/쉘로 이루어진 양자점 구조이다.Thus, the first solution (Solution 1), the second solution (Solution 2), and the third solution (Solution 3) are mixed to obtain reaction-terminated nanoparticles in the fourth solution (Solution 4). For this, the hydrophobic solvent and the hydrophilic solvent were mixed, and centrifugation was carried out 2 to 4 times at 6000 rpm for 15 minutes to obtain purified nanoparticles (220). In this case, the hydrophobic solvent may include hexane, toluene, chloroform and the like. The hydrophilic solvent may include ethanol, methanol, acetone, isopropyl alcohol, ), And the like. Here, the purified nanoparticles 220 are quantum dot structures composed of a four-component core / shell.

이하, 도 2b를 참조하여, 단계 2에 대해 설명한다.Hereinafter, step 2 will be described with reference to FIG. 2B.

상기 단계 2는 단계 1에서 수득한 양자점 나노입자(220)를 소수성 용매인 헥산, 톨루엔, 클로로포름 등에 용해시켜 제5 용액(Solution5)을 제조하고, 극성용매에 용해된 11족 내지 14족 원소 중에서 선택된 금속 또는 반도체 산화물의 전구체 용액으로서 제6 용액(Solution6)을 제조하고, 제5 용액(Solution5)과 제6 용액(Solution6)을 7:1의 부피비로 혼합한 제7 용액(Solution7)을 제조한다.In step 2, a fifth solution (Solution 5) is prepared by dissolving the quantum dot nanoparticles 220 obtained in step 1 in hexane, toluene, chloroform or the like, which is a hydrophobic solvent, and the fifth solution A sixth solution (Solution 6) is prepared as a precursor solution of a metal or a semiconductor oxide and a seventh solution (Solution 7) in which the fifth solution (Solution 5) and the sixth solution (Solution 6) are mixed at a volume ratio of 7: 1.

이어, 제7 용액(Solution7)과 수산화 용액으로서 제8 용액(Solution8)을 8:11의 부피비로 혼합하여, 50℃ ~ 80℃의 온도에서 한시간 가량 반응시켜 금속산화물이 둘러싼 나노입자 용액으로서 제9 용액(Solution9)을 제조한다.Then, the seventh solution (Solution 7) and the eighth solution (Solution 8) as a hydroxide solution were mixed at a volume ratio of 8:11 and reacted at a temperature of 50 ° C to 80 ° C for about one hour to form a nano- Solution (Solution 9).

상기 제9 용액(Solution9)에서 금속산화물이 둘러싼 나노입자를 정제하기 위해 도 2a의 단계1의 정제과정과 같이 원심분리를 하여 수득하였다. 이때, 제9 용액(Solution9)에서 반응 종결된 나노입자를 획득한다. 이를 위해, 소수성 용매 및 친수성 용매를 혼합한 후, 6000rpm에서 15분간 원심분리를 2~4회 진행하여 정제된 나노입자(210)를 수득하였다. 이때, 소수성 용매는 헥산(Hexane), 톨루엔(Toluene), 클로로포름(Chloroform) 등을 포함할 수 있으며, 친수성 용매는 에탄올(Ethanol), 메탄올(Methanol), 아세톤(Acetone), 이소프로필알콜(Isopropyl alcohol) 등을 포함할 수 있다. 여기서, 상기 정제된 나노입자(210)은 유기리간드가 결합된 양자점으로서, 4성분 코어(110)/쉘(120)/최외각 쉘(130)로 이루어진 양자점 구조이다.In order to purify the nanoparticles surrounding the metal oxide in the ninth solution (Solution 9), centrifugation was performed as in the purification process of Step 1 of FIG. At this time, reaction-terminated nanoparticles are obtained in the ninth solution (Solution 9). To this end, the hydrophobic solvent and the hydrophilic solvent were mixed, followed by centrifugation at 6000 rpm for 15 minutes for 2 to 4 times to obtain purified nanoparticles (210). In this case, the hydrophobic solvent may include hexane, toluene, chloroform and the like. The hydrophilic solvent may include ethanol, methanol, acetone, isopropyl alcohol, ), And the like. Here, the purified nanoparticles 210 are quantum dots having an organic ligand bound thereto, and are a quantum dot structure composed of a four-component core 110 / shell 120 / outermost shell 130.

상기 단계 2의 제6 용액(Solution6)와 제8 용액(Solution8)에서 사용된 극성 용매는 단계 1의 친수성 용매와 동일하므로, 상기 친수성 용매는 에탄올(Ethanol), 메탄올(Methanol), 아세톤(Acetone), 이소프로필알콜(Isopropyl alcohol) 등을 포함할 수 있다. The polar solvent used in the sixth solution (Solution 6) and the eighth solution (Solution 8) in Step 2 is the same as the hydrophilic solvent in Step 1, and thus the hydrophilic solvent may be ethanol, methanol, acetone, , Isopropyl alcohol, and the like.

또한, 제9 용액(Solution9)의 산화물은 아연산화물(ZnOx), 바나듐산화물(V2Ox), 니켈산화물(NiO), 주석산화물(SnO2), 인듐산화물(In2O3), 몰리브덴산화물 (MoO3), 텅스텐산화물(WO3), 티타늄산화물(TiO2), 알루미나(Al2O3), 실리카(SiO2) 등의 금속 또는 반도체 산화물을 이용할 수 있다.In addition, an oxide of a ninth solution (Solution9) is zinc oxide (ZnOx), vanadium oxide (V 2 Ox), nickel oxide (NiO), tin oxide (SnO 2), indium oxide (In 2 O 3), molybdenum oxide ( MoO 3 , tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), alumina (Al 2 O 3 ), and silica (SiO 2 ).

또한, 제8 용액(Soluion8)은 알칼리족 원소과 결합된 수산화물을 포함할 수 있으며, 상기 예로 수산화칼륨(KOH), 수산화리튬(LiOH)을 포함 할 수 있다.In addition, the eighth solution (Soluion 8) may include a hydroxide combined with an alkaline element, and examples thereof may include potassium hydroxide (KOH) and lithium hydroxide (LiOH).

또한, 단계 2의 반응 온도는 양자점에 열적 손상을 가하지 않는 80℃ 미만의 온도를 사용할 수 있으며, 단계 1에서 수득한 유기 리간드가 결합된 양자점의 유기물의 특성에 의해 온도와 습도에 취약하여 양자점의 신뢰성 확보가 어려웠다.In addition, the reaction temperature of step 2 can be a temperature of less than 80 캜, which does not cause thermal damage to the quantum dots, and is susceptible to temperature and humidity due to the characteristics of organic matters of the quantum dots to which the organic ligands obtained in step 1 are bonded. It was difficult to secure reliability.

또한, 비활성 분위기는 단계 1 및 단계 2에서 모두 조성하는 것이 바람직하므로, 비활성 기체는 질소(Nitrogen) 가스, 아르곤(Argon) 가스, 네온(Neon) 가스, 헬륨(Helium) 가스 등을 사용할 수 있다. In addition, it is preferable to form the inert atmosphere in both step 1 and step 2. Therefore, the inert gas may be a nitrogen gas, an argon gas, a Neon gas, a helium gas, or the like.

이와 같이, 종래에는 양자점에 무기물을 고온에 캡핑을 하여 양자효율 손실을 가져왔으나, 본 발명은 양자점에 금속산화물 또는 반도체산화물을 낮은 온도에서 제조함으로써, 양자 효율을 잃지 않으며, 굴절률이 높은 금속산화물을 사용하여 높은 광추출로 인한 높은 광특성 확보 및 외부환경에 영향을 받지 않는 양자점 제조할 수 있다.As described above, conventionally, an inorganic material is capped at a high temperature to cause a loss of quantum efficiency. However, the present invention can produce a metal oxide or a semiconductor oxide having a high refractive index without losing quantum efficiency by producing a metal oxide or a semiconductor oxide at a low temperature. It is possible to obtain high optical characteristics due to high light extraction and to manufacture quantum dots which are not affected by the external environment.

이에 따라, 상기 단계 2에서 수득한 4성분 코어/쉘/산화물 최외각 쉘의 구조의 양자점은 금속산화물 또는 반도체 산화물 나노입자의 최외각 쉘(130)로 인해 외부 환경을 차단 및 열적 내구성이 우수하여 고온의 환경이 요구되는 기기에서 응용할 수 있다.Thus, the quantum dots of the structure of the four-component core / shell / oxide outermost shell obtained in the step 2 are shielded from the external environment due to the outermost shell 130 of the metal oxide or semiconductor oxide nanoparticles, It can be applied to devices requiring a high temperature environment.

<실시예 1>&Lt; Example 1 >

먼저, 올레산에 카드뮴(Cadmium) 1mmol과 아연(Zinc) 4mmol을 100℃~150℃ 온도에서 충분히 용해 시켜가며, 반응 부산물인 아세트산(Acetic acid)을 제거한 뒤, 옥타데신을 올레산의 3의 부피비 만큼 첨가하여 양이온 전구체를 준비한다.First, 1 mmol of cadmium (Cadmium) and 4 mmol of zinc (Zinc) were sufficiently dissolved in oleic acid at a temperature of 100 ° C to 150 ° C. After removing acetic acid as a reaction by-product, octadecyne was added in an amount of 3 parts by volume of oleic acid To prepare a cation precursor.

이어, 트리옥틸포스핀에 셀레늄(Selenium) 0.1mmol과 황(Sulfur) 4mmol을 혼합하여 충분히 용해 가능한 온도까지 가열하여 음이온 전구체를 준비한다.Next, 0.1 mmol of selenium and 4 mmol of sulfur are mixed with trioctylphosphine, and the mixture is heated to a sufficiently soluble temperature to prepare an anion precursor.

이어, 트리옥틸포스핀에 황 10mmol을 혼합하여 충분히 용해 가능한 온도까지 가열하여 쉘성분의 음이온 전구체를 준비한다.Subsequently, 10 mmol of sulfur was mixed with trioctylphosphine and heated to a temperature at which it was sufficiently soluble to prepare an anion precursor of the shell component.

상기 방법에 따라 합성한 양이온 전구체와 음이온 전구체를 10:1 부피비로 혼합하여 비활성 기체 분위기에서 250~300℃의 범위로 5분간 반응시키고, 쉘 성분의 음이온 전구체 용액을 첨가하여 180℃~250℃에서 30분간 반응 후, 상온으로 급냉하여 4성분 코어/쉘 구조를 가지는 양자점을 제조한다.The cation precursor and the anion precursor synthesized according to the above method were mixed at a ratio of 10: 1 by volume, reacted in an inert gas atmosphere at a temperature of 250 to 300 ° C for 5 minutes, an anion precursor solution of a shell component was added, After 30 minutes of reaction, quenching is carried out at room temperature to prepare a quantum dot having a four-component core / shell structure.

이후, 상기 반응용액과 메탄올, 클로로포름을 5:1:5의 부피비로 혼합하여 6000rpm에서 20분간 원심분리하여 정제한 양자점을 얻었다.Then, the reaction solution was mixed with methanol and chloroform in a volume ratio of 5: 1: 5, and centrifuged at 6000 rpm for 20 minutes to obtain a quantum dot.

<실시예2>&Lt; Example 2 >

실시예1에서 얻은 양자점을 톨루엔에 1 wt%로 분산하였으며, 메탄올에 5mM의 아연 아세테이트 이수화물(Zinc acetate dehydrate)을 메탄올에 용해한 다음, 양자점 용액과 아연 아세테이트 이수화물 용액을 35:5 부피비로 혼합하여 용액을 제조하였다.The quantum dots obtained in Example 1 were dispersed in toluene at 1 wt%, and 5 mM zinc acetate dehydrate was dissolved in methanol. Then, the quantum dot solution and the zinc acetate dihydrate solution were mixed in a 35: 5 volume ratio To prepare a solution.

상기 용액과 메탄올에 3mM의 수산화캄륨(KOH)이 용해된 용액을 4:1의 부피 비율로 혼합하고, 비활성 기체 분위기에서 60℃, 1시간 동안 반응시켜 아연산화물이 캡핑된 양자점을 제조하였다.A solution in which 3 mM of potassium hydroxide (KOH) was dissolved in the above solution and methanol was mixed at a volume ratio of 4: 1 and reacted in an inert gas atmosphere at 60 ° C for 1 hour to prepare a zinc oxide-capped quantum dot.

이후, 상기 반응용액와 헥산, 이소프로필알콜을 1:1:5의 부피비로 혼합하여 6000rpm에서 20분간 원심분리하여 정제한 양자점을 얻었다.Subsequently, the reaction solution was mixed with hexane and isopropyl alcohol in a volume ratio of 1: 1: 5 and centrifuged at 6000 rpm for 20 minutes to obtain a purified quantum dots.

이와 같이, 도 3a를 참조하면, 실시예1에 의해 합성된 양자점의 크기는 4nm~7nm이며, 도 3b를 참조하면, 실시예2은 6nm~11nm의 크기의 금속산화물(아연산화물)이 캡핑된 양자점이 형성되었음을 볼 수 있다.3A, the quantum dots synthesized according to Example 1 have a size of 4 nm to 7 nm. Referring to FIG. 3B, in Example 2, a metal oxide (zinc oxide) having a size of 6 nm to 11 nm is capped It can be seen that quantum dots are formed.

<실시예3>&Lt; Example 3 >

실시예1과 실시예2를 통해 얻은 양자점을 각각 모노머에 양자점을 분산시킨 다음 올리고머와 함께 15:85의 부피비로 혼합하였으며 PET 산란필름에 100㎛의 두께로 코팅하여 1000mJ 광량의 메탈 및 수은 램프로 경화하여 시트를 제작하였으며, 90℃ 오븐에 시간에 따른 PL Intensity를 측정하여 열적 요인에 의한 광학적 특성평가를 진행하였다. PL Intensity는 Ocean View사의 제품을 이용하여 측정하였다.The quantum dots obtained in Example 1 and Example 2 were dispersed in monomers, respectively, followed by mixing with oligomers at a volume ratio of 15:85. A PET scattering film was coated to a thickness of 100 μm, and a metal and mercury lamp The sheet was cured, and PL intensities were measured in an oven at 90 ° C over time to evaluate the optical characteristics by thermal factors. PL Intensity was measured using Ocean View products.

도 4를 참조하면, 본 발명의 실시예3에 따른 금속산화물이 캡핑된 양자점(210)을 이용한 시트가 일반적인 유기리간드 양자점(220)을 이용한 시트와 비교하여, 40시간 경과 후에도 PL Intensity 대비 퍼센트 값이 80% 이상을 유지하여 수명 연장 및 높은 신뢰성을 확인할 수 있다.Referring to FIG. 4, a sheet using a metal oxide-capped quantum dot 210 according to Example 3 of the present invention is compared with a sheet using a general organic ligand quantum dot 220. Even after 40 hours have elapsed, Is maintained at 80% or more, so that the life span and high reliability can be confirmed.

이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능하다는 것은 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims. Anyone with it will know easily.

110: 양자점의 4성분 코어
120: 양자점의 쉘
130: 산화물 나노입자의 최외각 쉘
210: 금속산화물이 캡핑된 양자점
220: 유기리간드가 결합된 양자점
110: Four-component core of a quantum dot
120: shell of the quantum dot
130: Outermost shell of oxide nanoparticles
210: metal oxide-capped quantum dot
220: Quantum dots combined with organic ligands

Claims (8)

(a) 11족 내지 17족 중에서 선택된 전구체 용액을 280 ~ 320℃ 온도에서 반응시켜 4성분 코어와 상기 코어의 표면에 형성된 쉘의 구조를 형성하는 단계; 및
(b) 상기 (a) 단계에서 4성분 코어/쉘의 양자점 나노 입자를 금속 또는 반도체 산화물이 용해된 용액과 혼합하고, 혼합된 용액을 수산화 용액과 50℃ ~ 80℃의 온도에서 반응시켜 금속산화물 또는 반도체산화물의 최외각 쉘을 형성하는 단계를 포함하는 것을 특징으로 하는 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 제조방법.
(a) reacting a precursor solution selected from Groups 11 to 17 at a temperature of 280 to 320 ° C to form a four-component core and a shell structure formed on the surface of the core; And
(b) mixing the quantum dot nanoparticles of the four-component core / shell with a solution in which the metal or semiconductor oxide is dissolved in step (a), and reacting the mixed solution with the hydroxide solution at a temperature of 50 ° C to 80 ° C, Or an outermost shell of a semiconductor oxide. &Lt; Desc / Clms Page number 20 &gt;
제1항에 있어서,
상기 (a) 단계에서,
(a-1) 불포화 지방산에 11족 내지 14족 원소 중에서 2개 이상을 선택하여 혼합하고 에틸렌계 탄화수소 유기 용매를 첨가하여 양이온 전구체를 합성하는 단계;
(a-2) 알킬포스핀 계열, 산화알킬포스핀 계열, 트리알킬포스핀 계열 중에서 선택된 어느 하나의 용매에 14족 내지 17족 원소 중에서 2개 이상을 선택하여 혼합하여 음이온 전구체를 합성하는 단계;
(a-3) 알킬포스핀 계열, 산화알킬포스핀 계열, 트리알킬포스핀 계열 중에서 선택된 어느 하나의 용매에 상기 (a-2) 단계에서 선택된 2개 이상의 원소 중에서 어느 하나의 원소를 선택하고 혼합하여, 쉘 성분의 음이온 전구체를 합성하는 단계; 및
(a-4) 상기 (a-1) 단계에서 합성한 양이온 전구체와 상기 (a-2) 단계에서 합성한 음이온 전구체를 소정 부피비로 혼합하고, 상기 (a-3) 단계에서 합성된 쉘 성분의 음이온 전구체를 첨가하는 단계; 를 포함하는 것을 특징으로 하는 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 제조방법.
The method according to claim 1,
In the step (a)
(a-1) synthesizing a cation precursor by mixing two or more elements selected from group 11 to group 14 elements with an unsaturated fatty acid and adding an ethylenic hydrocarbon organic solvent thereto;
(a-2) synthesizing an anion precursor by selectively mixing at least two elements selected from Group 14 to Group 17 in a solvent selected from the group consisting of alkylphosphine series, alkylphosphine series and trialkylphosphine series;
(a-3) at least one element selected from the two or more elements selected in the step (a-2) is selected and mixed in any one solvent selected from the group consisting of an alkylphosphine series, an alkyloxphosphine series and a trialkylphosphine series, Thereby synthesizing an anion precursor of the shell component; And
(a-4) mixing the cation precursor synthesized in the step (a-1) and the anion precursor synthesized in the step (a-2) in a predetermined volume ratio, and mixing the shell component synthesized in the step Adding an anion precursor; / RTI &gt; of the four-component core / shell / oxide outermost shell structure.
제1항에 있어서,
상기 (b) 단계에서,
(b-1) 상기 (a) 단계에서 형성된 4성분 코어/쉘의 양자점을 소수성 용매에 분산시키는 단계;
(b-2) 극성 용매에 금속 또는 반도체 산화물 전구체를 용해시켜 전구체 용액을 형성하는 단계;
(b-3) 상기 (b-1) 단계에서 형성된 양자점 용액과 상기 (b-2) 단계에서 형성된 전구체 용액을 소정 부피비로 혼합하는 단계; 및
(b-4) 상기 (b-3) 단계에서 혼합된 용액과 수산화 용액을 소정 부피비로 혼합하고 반응시켜 상기 최외각 쉘로 금속 또는 반도체 산화물을 캡핑하는 단계; 포함하는 것을 특징으로 하는 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 제조방법.
The method according to claim 1,
In the step (b)
(b-1) dispersing the quantum dots of the four-component core / shell formed in the step (a) in a hydrophobic solvent;
(b-2) dissolving a metal or semiconductor oxide precursor in a polar solvent to form a precursor solution;
(b-3) mixing the quantum dot solution formed in the step (b-1) and the precursor solution formed in the step (b-2) at a predetermined volume ratio; And
(b-4) mixing the solution mixed in the step (b-3) with the hydroxide solution in a predetermined volume ratio and reacting to cap the metal or semiconductor oxide into the outermost shell; / RTI &gt; of the four-component core / shell / oxide outermost shell structure.
제1항에 있어서,
상기 금속산화물 또는 반도체산화물은, 아연산화물(ZnOx), 바나듐산화물(V2Ox), 니켈산화물(NiO), 주석산화물(SnO2), 인듐산화물(In2O3), 몰리브덴산화물(MoO3), 텅스텐산화물(WO3), 티타늄산화물(TiO2), 알루미나(Al2O3), 실리카(SiO2) 등으로 이루어진 군 중에서 어느 하나가 선택되는 것을 특징으로 하는 4성분 코어/쉘/산화물 최외각 쉘 구조의 양자점 제조방법.
The method according to claim 1,
The metal oxide or semiconductor oxide, zinc oxide (ZnOx), vanadium oxide (V 2 Ox), nickel oxide (NiO), tin oxide (SnO 2), indium oxide (In 2 O 3), molybdenum oxide (MoO 3) , A ternary oxide (WO 3 ), a titanium oxide (TiO 2 ), an alumina (Al 2 O 3 ), a silica (SiO 2 ) Method for fabricating quantum dots of shell structure.
제1항 내지 제4항 중 어느 한 항의 방법에 의해 제조되어,
4성분 코어;
상기 코어의 표면에 형성된 쉘; 및
상기 쉘의 표면에 형성된 금속산화물 또는 반도체 산화물의 최외각 쉘을 포함하는 것을 특징으로 하는 양자점.
5. A process for the preparation of a compound according to any one of claims 1 to 4,
Four component cores;
A shell formed on a surface of the core; And
And an outermost shell of a metal oxide or a semiconductor oxide formed on the surface of the shell.
제5항 구조의 양자점을 포함하는 광촉매.A photocatalyst comprising a quantum dot of structure 5. 제5항 구조의 양자점을 포함하는 광변환 소자.A photoconversion device comprising quantum dots of structure 5. 제5항 구조의 양자점을 포함하는 전계발광 소자.An electroluminescent device comprising the quantum dot of Structure 5.
KR1020160019218A 2016-02-18 2016-02-18 Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same KR20170097825A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160019218A KR20170097825A (en) 2016-02-18 2016-02-18 Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same
CN201610217470.2A CN105778889B (en) 2016-02-18 2016-04-08 Method for producing quantum dots having an at least four-component core/shell/oxide outermost shell structure and quantum dots produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160019218A KR20170097825A (en) 2016-02-18 2016-02-18 Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same

Publications (1)

Publication Number Publication Date
KR20170097825A true KR20170097825A (en) 2017-08-29

Family

ID=56395055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160019218A KR20170097825A (en) 2016-02-18 2016-02-18 Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same

Country Status (2)

Country Link
KR (1) KR20170097825A (en)
CN (1) CN105778889B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091690B2 (en) 2018-06-05 2021-08-17 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same
US12146086B2 (en) 2018-06-05 2024-11-19 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106497546B (en) * 2016-09-22 2018-12-28 纳晶科技股份有限公司 White light quanta point composition and preparation method thereof
KR20180097201A (en) * 2017-02-22 2018-08-31 시노코 유한회사 Synthesis method of quantum dot with metal oxide shell by continuous crystal growth and quantum dot at the same
KR102074436B1 (en) * 2017-03-15 2020-02-06 (주)디씨티 Method of manufacturing quantum dot and quantum dot manufactured by the method
CN108285792A (en) * 2017-03-30 2018-07-17 常州华威新材料有限公司 A kind of high stability quantum dot and preparation method thereof and purposes
CN108807608B (en) * 2017-05-02 2020-06-12 Tcl科技集团股份有限公司 Preparation method of oxide-coated quantum dot LED
CN109148703B (en) * 2017-06-19 2020-10-27 Tcl科技集团股份有限公司 Inorganic matter coated quantum dot mixed film and preparation method thereof, and QLED
CN109935675A (en) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 A kind of quantum dot illumination module
CN111788866B (en) * 2018-03-07 2023-05-23 夏普株式会社 Light emitting device
CN110616068A (en) * 2018-06-20 2019-12-27 Tcl集团股份有限公司 Particles and method for producing same
CN108913142B (en) * 2018-06-29 2022-04-19 纳晶科技股份有限公司 Quantum dot coated with metal oxide, and preparation method and application thereof
CN109749742A (en) * 2019-01-22 2019-05-14 深圳扑浪创新科技有限公司 A kind of preparation method of oxide coated by zinc quantum dot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523557A (en) * 2007-03-30 2010-07-15 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Encapsulation of hydrophobic quantum dots
CN101629076B (en) * 2008-07-16 2013-04-17 北京大学 Silicon dioxide coated fluorescent quantum dot nano-particle and preparation method thereof
CN102382640B (en) * 2011-08-30 2014-05-14 济南大学 High-fluorescent brightness quantum dot composite particle, immunological detection probe and preparation method of high-fluorescent brightness quantum dot composite particle
CN105295921A (en) * 2015-11-20 2016-02-03 北京北达聚邦科技有限公司 Preparation method of quaternary quantum dot CdSe@ZnS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091690B2 (en) 2018-06-05 2021-08-17 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same
US11674078B2 (en) 2018-06-05 2023-06-13 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same
US12146086B2 (en) 2018-06-05 2024-11-19 Samsung Electronics Co., Ltd. Quantum dots, a composition or composite including the same, and an electronic device including the same

Also Published As

Publication number Publication date
CN105778889A (en) 2016-07-20
CN105778889B (en) 2018-08-31

Similar Documents

Publication Publication Date Title
KR20170097825A (en) Quantum dot structure capped metal or semiconductor oxide nanoparticle and manufacturing method at the same
CN107108461B (en) Perovskite nanocrystal particle and photoelectric element using same
US8618528B2 (en) Quantum dot particles on the micron or nanometer scale and method of making the same
US20080230750A1 (en) Powdered quantum dots
CN111081816A (en) Perovskite nanocrystalline with alkali metal ion passivated surface defect and preparation and application thereof
Lin et al. All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: toward full-color display applications
JP2007223030A (en) Nanocomposite material and method for manufacturing the same
KR20170097824A (en) Method of manufacturing quantum dot using metal oxide nanoparticle with high specific surface area and quantum dot manufactured by the method
Qiu et al. Interfacial engineering of halide perovskites and two-dimensional materials
Zhu et al. Composition engineering of lead-free double perovskites towards efficient warm white light emission for health and well-being
JP2009161642A (en) Flexible fluorescent film containing clay as principal component
Yang et al. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices
Long et al. Carboxylic‐Free Synthesis of InP Quantum Dots for Highly Efficient and Bright Electroluminescent Device
WO2020029780A1 (en) Green quantum dot, preparation method and application thereof
Wang et al. Ultra-small α-CsPbI 3 perovskite quantum dots with stable, bright and pure red emission for Rec. 2020 display backlights
KR20180097201A (en) Synthesis method of quantum dot with metal oxide shell by continuous crystal growth and quantum dot at the same
JP7273992B2 (en) Quantum dot, wavelength conversion material, backlight unit, image display device, and method for manufacturing quantum dot
Cao et al. Synthesis and optical properties of Mn 2+-doped Cd–In–S colloidal nanocrystals
KR101203173B1 (en) Quantum dot and manufacturing method thereof
KR20190097410A (en) Blue light emitting ZnO-Graphene hybrid quantum dots and Method for the same and Light emitting diode using the same
KR20180052170A (en) Synthesis method of quantum dot with minimized lattice boundary defect by continuous crystal growth and quantum dot at the same
KR101958088B1 (en) Manufacturing method of core/shell multi-layered structure semiconductor nanoparticles
KR102093625B1 (en) Quantum rod and Method of fabricating the same
JP6283257B2 (en) Nanoparticle phosphor and method for producing the same
KR101492015B1 (en) Nano hybrid composite as phosphor of display and preparation method thereof