KR20170052473A - 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 - Google Patents
비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 Download PDFInfo
- Publication number
- KR20170052473A KR20170052473A KR1020160139921A KR20160139921A KR20170052473A KR 20170052473 A KR20170052473 A KR 20170052473A KR 1020160139921 A KR1020160139921 A KR 1020160139921A KR 20160139921 A KR20160139921 A KR 20160139921A KR 20170052473 A KR20170052473 A KR 20170052473A
- Authority
- KR
- South Korea
- Prior art keywords
- license
- subframe
- information
- band
- exempt band
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000005540 biological transmission Effects 0.000 claims description 82
- 230000011664 signaling Effects 0.000 claims description 15
- 238000010586 diagram Methods 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 20
- 230000002776 aggregation Effects 0.000 description 16
- 238000004220 aggregation Methods 0.000 description 16
- 230000008569 process Effects 0.000 description 13
- 238000013468 resource allocation Methods 0.000 description 13
- 230000010267 cellular communication Effects 0.000 description 10
- 210000000678 band cell Anatomy 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/121—Wireless traffic scheduling for groups of terminals or users
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법이 개시된다. UE의 동작 방법은 비면허 대역에서 복수의 서브프레임들을 포함하는 비면허 대역 버스트를 기지국으로부터 수신하는 단계, 상기 비면허 대역 버스트로부터 제어 정보를 획득하는 단계, 및 상기 제어 정보를 기반으로 상기 비면허 대역 버스트로부터 데이터를 획득하는 단계를 포함한다. 따라서, 통신 네트워크의 성능이 향상될 수 있다.
Description
본 발명은 통신 네트워크를 위한 스케쥴링 기술에 관한 것으로, 더욱 상세하게는 비면허 대역을 지원하는 셀룰러 통신 네트워크(예를 들어, LTE(long term evolution) 네트워크)를 위한 스케쥴링 방법에 관한 것이다.
정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 무선 통신 기술은 사용 대역에 따라 크게 면허 대역(licensed band)을 사용하는 무선 통신 기술, 비면허 대역(unlicensed band)(예를 들어, ISM(industrial scientific medical) 대역)을 사용하는 무선 통신 기술 등으로 분류될 수 있다. 면허 대역의 사용권은 한 사업자(operator)에게 독점적으로 주어지므로, 면허 대역을 사용하는 무선 통신 기술은 비면허 대역을 사용하는 무선 통신 기술에 비해 더 나은 신뢰성과 통신 품질 등을 제공할 수 있다.
면허 대역을 사용하는 대표적인 무선 통신 기술로 3GPP(3rd generation partnership project) 표준에서 규정된 LTE(long term evolution), LTE-A(advanced) 등이 있으며, LTE(또는, LTE-A 등)를 지원하는 기지국 및 UE(user equipment) 각각은 면허 대역을 통해 신호를 송수신할 수 있다. 비면허 대역을 사용하는 대표적인 무선 통신 기술로 IEEE 802.11 표준에서 규정된 WLAN(wireless local area network) 등이 있으며, WLAN을 지원하는 액세스 포인트(access point) 및 스테이션(station) 각각은 비면허 대역을 통해 신호를 송수신할 수 있다.
한편, 최근 모바일 트래픽은 폭발적으로 증가하고 있으며, 이러한 모바일 트래픽을 면허 대역을 통해 처리하기 위해서 추가적인 면허 대역의 확보가 필요하다. 그러나 면허 대역은 유한하고, 보통 면허 대역은 사업자들 간의 주파수 대역 경매 등을 통해 확보될 수 있으므로, 추가적인 면허 대역을 확보하기 위해 천문학적 비용이 소모될 수 있다. 이러한 문제를 해소하기 위해, 비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스를 제공하는 방안이 고려될 수 있다.
비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스가 제공되는 경우, 비연속된 자원의 사용으로 인해 신호의 송수신이 비연속적으로 발생될 수 있다. 면허 대역을 위해 정의된 기존의 스케쥴링(scheduling) 방식이 비면허 대역에 적용되는 경우, 일부 자원의 스케쥴링이 불가능할 수 있다.
한편, 발명의 배경이 되는 기술은 발명의 배경에 대한 이해를 증진하기 위하여 작성된 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래 기술이 아닌 내용을 포함할 수 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 비면허 대역을 지원하는 셀룰러 통신 네트워크를 위한 스케쥴링 방법 및 장치를 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 통신 네트워크에서 UE의 동작 방법은 비면허 대역에서 복수의 서브프레임들을 포함하는 비면허 대역 버스트를 기지국으로부터 수신하는 단계, 상기 비면허 대역 버스트로부터 제어 정보를 획득하는 단계, 및 상기 제어 정보를 기반으로 상기 비면허 대역 버스트로부터 데이터를 획득하는 단계를 포함하며, 상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS의 크기와 동일하다.
여기서, 상기 제어 정보는 상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함할 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 공통 DCI, PCFICH, PHICH 또는 RRC 시그널링을 통해 수신될 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 수신될 수 있다.
여기서, 상기 종료 서브프레임의 크기는 3, 6, 9, 10, 11, 12 또는 14개의 OFDM 심볼들의 크기와 대응할 수 있다.
여기서, 상기 비면허 대역 버스트 중에서 시작 서브프레임의 크기는 1ms보다 작을 수 있다.
여기서, 상기 UE의 동작 방법은 상기 기지국에서 추가 데이터가 발생된 경우, 상기 비면허 대역 버스트 이외의 비면허 대역 자원을 통해 상기 추가 데이터를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.
여기서, 상기 비면허 대역 자원을 통해 수신되는 참조 신호의 송신 전력은 상기 비면허 대역 버스트를 통해 수신되는 참조 신호의 송신 전력과 동일할 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 통신 네트워크에서 기지국의 동작 방법은 복수의 서브프레임들을 포함하는 비면허 대역 버스트를 생성하는 단계, 및 비면허 대역에서 상기 비면허 대역 버스트를 UE에 전송하는 단계를 포함하며, 상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS의 크기와 동일하다.
여기서, 상기 비면허 대역 버스트를 통해 전송되는 제어 정보는 상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함할 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 공통 DCI, PCFICH, PHICH 또는 RRC 시그널링을 통해 상기 UE에 전송될 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 상기 UE에 전송될 수 있다.
여기서, 상기 종료 서브프레임의 크기는 3, 6, 9, 10, 11, 12 또는 14개의 OFDM 심볼들의 크기와 대응할 수 있다.
여기서, 상기 비면허 대역 버스트 중에서 시작 서브프레임의 크기는 1ms보다 작을 수 있다.
여기서, 상기 기지국의 동작 방법은 추가 데이터가 발생된 경우, 상기 비면허 대역 버스트 이외의 비면허 대역 자원을 통해 상기 추가 데이터를 상기 UE에 전송하는 단계를 더 포함할 수 있다.
여기서, 상기 비면허 대역 자원을 통해 전송되는 참조 신호의 송신 전력은 상기 비면허 대역 버스트를 통해 전송되는 참조 신호의 송신 전력과 동일할 수 있다.
상기 목적을 달성하기 위한 본 발명의 또 다른 실시예에 따른 통신 네트워크에서 UE는 프로세서 및 상기 프로세서에 의해 실행되는 적어도 하나의 명령이 저장된 메모리를 포함하며, 상기 적어도 하나의 명령은 비면허 대역에서 복수의 서브프레임들을 포함하는 비면허 대역 버스트를 기지국으로부터 수신하고, 상기 비면허 대역 버스트로부터 제어 정보를 획득하고, 그리고 상기 제어 정보를 기반으로 상기 비면허 대역 버스트로부터 데이터를 획득하도록 실행되고, 상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS의 크기와 동일하다.
여기서, 상기 제어 정보는 상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함할 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 공통 DCI, PCFICH, PHICH 또는 RRC 시그널링을 통해 수신될 수 있다.
여기서, 상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 수신될 수 있다.
본 발명에 의하면, 비면허 대역에서 부분 서브프레임에 대한 스케쥴링이 수행될 수 있으며, 이에 따라 비면허 대역의 자원이 효율적으로 사용될 수 있다. 따라서, 통신 네트워크의 성능이 향상될 수 있다.
도 1은 무선 통신 네트워크의 제1 실시예를 도시한 개념도이다.
도 2는 무선 통신 네트워크의 제2 실시예를 도시한 개념도이다.
도 3은 무선 통신 네트워크의 제3 실시예를 도시한 개념도이다.
도 4는 무선 통신 네트워크의 제4 실시예를 도시한 개념도이다.
도 5는 무선 통신 네트워크를 구성하는 통신 노드의 일 실시예를 도시한 블록도이다.
도 6은 타입 1 프레임의 일 실시예를 도시한 개념도이다.
도 7은 타입 2 프레임의 일 실시예를 도시한 개념도이다.
도 8은 서브프레임에 포함된 슬롯의 자원 그리드의 일 실시예를 도시한 개념도이다.
도 9는 비면허 대역 버스트의 일 실시예들 도시한 타이밍도이다.
도 10은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 11은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 12는 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 13은 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 14는 SPS 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 2는 무선 통신 네트워크의 제2 실시예를 도시한 개념도이다.
도 3은 무선 통신 네트워크의 제3 실시예를 도시한 개념도이다.
도 4는 무선 통신 네트워크의 제4 실시예를 도시한 개념도이다.
도 5는 무선 통신 네트워크를 구성하는 통신 노드의 일 실시예를 도시한 블록도이다.
도 6은 타입 1 프레임의 일 실시예를 도시한 개념도이다.
도 7은 타입 2 프레임의 일 실시예를 도시한 개념도이다.
도 8은 서브프레임에 포함된 슬롯의 자원 그리드의 일 실시예를 도시한 개념도이다.
도 9는 비면허 대역 버스트의 일 실시예들 도시한 타이밍도이다.
도 10은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 11은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 12는 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 13은 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 14는 SPS 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
아래에서, 본 발명에 따른 실시예들이 적용되는 무선 통신 네트워크(wireless communication network)가 설명될 것이다. 본 발명에 따른 실시예들이 적용되는 무선 통신 네트워크는 아래 설명된 내용에 한정되지 않으며, 본 발명에 따른 실시예들은 다양한 무선 통신 네트워크들에 적용될 수 있다.
도 1은 무선 통신 네트워크의 제1 실시예를 도시한 개념도이다.
도 1을 참조하면, 제1 기지국(110)은 셀룰러(cellular) 통신(예를 들어, 3GPP(3rd generation partnership project) 표준에서 규정된 LTE(long term evolution), LTE-A(advanced), LAA(licensed assisted access) 등)를 지원할 수 있다. 제1 기지국(110)은 MIMO(multiple input multiple output)(예를 들어, SU(single user)-MIMO, MU(multi user)-MIMO, 대규모(massive) MIMO 등), CoMP(coordinated multipoint), 캐리어 애그리게이션(carrier aggregation; CA) 등을 지원할 수 있다. 제1 기지국은 면허 대역(licensed band)(F1)에서 동작할 수 있으며, 매크로 셀(macro cell)을 형성할 수 있다. 제1 기지국(110)은 아이디얼 백홀(ideal backhaul) 또는 논(non)-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(120), 제3 기지국(130) 등)과 연결될 수 있다.
제2 기지국(120)은 제1 기지국(110)의 커버리지(coverage) 내에 위치할 수 있다. 제2 기지국(120)은 비면허 대역(unlicensed band)(F3)에서 동작할 수 있으며, 스몰 셀(small cell)을 형성할 수 있다. 제3 기지국(130)은 제1 기지국(110)의 커버리지 내에 위치할 수 있다. 제3 기지국(130)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제2 기지국(120) 및 제3 기지국(130) 각각은 IEEE(institute of electrical and electronics engineers) 802.11 표준에서 규정된 WLAN(wireless local area network)을 지원할 수 있다. 제1 기지국(110) 및 제1 기지국(110)에 접속된 UE(user equipment)(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 2는 무선 통신 네트워크의 제2 실시예를 도시한 개념도이다.
도 2를 참조하면, 제1 기지국(210) 및 제2 기지국(220) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제1 기지국(210) 및 제2 기지국(220) 각각은 매크로 셀을 형성하는 기지국의 커버리지 내에 위치할 수 있다. 제1 기지국(210)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제3 기지국(230)과 연결될 수 있다. 제2 기지국(220)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(240)과 연결될 수 있다.
제3 기지국(230)은 제1 기지국(210)의 커버리지 내에 위치할 수 있다. 제3 기지국(230)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(240)은 제2 기지국(220)의 커버리지 내에 위치할 수 있다. 제4 기지국(240)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(230) 및 제4 기지국(240) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다. 제1 기지국(210), 제1 기지국(210)에 접속된 UE, 제2 기지국(220) 및 제2 기지국(220)에 접속된 UE 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 3은 무선 통신 네트워크의 제3 실시예를 도시한 개념도이다.
도 3을 참조하면, 제1 기지국(310), 제2 기지국(320) 및 제3 기지국(330) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(310), 제2 기지국(320) 및 제3 기지국(330) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(310)은 면허 대역(F1)에서 동작할 수 있으며, 매크로 셀을 형성할 수 있다. 제1 기지국(310)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(320), 제3 기지국(330) 등)과 연결될 수 있다. 제2 기지국(320)은 제1 기지국(310)의 커버리지 내에 위치할 수 있다. 제2 기지국(320)은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(330)은 제1 기지국(310)의 커버리지 내에 위치할 수 있다. 제3 기지국(330)은 면허 대역(F1)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다.
제2 기지국(320)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(340)과 연결될 수 있다. 제4 기지국(340)은 제2 기지국(320)의 커버리지 내에 위치할 수 있다. 제4 기지국(340)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(330)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제5 기지국(350)과 연결될 수 있다. 제5 기지국(350)은 제3 기지국(330)의 커버리지 내에 위치할 수 있다. 제5 기지국(350)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(340) 및 제5 기지국(350) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다.
제1 기지국(310), 제1 기지국(310)에 접속된 UE(미도시), 제2 기지국(320), 제2 기지국(320)에 접속된 UE(미도시), 제3 기지국(330) 및 제3 기지국(330)에 접속된 UE(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
도 4는 무선 통신 네트워크의 제4 실시예를 도시한 개념도이다.
도 4를 참조하면, 제1 기지국(410), 제2 기지국(420) 및 제3 기지국(430) 각각은 셀룰러 통신(예를 들어, 3GPP 표준에서 규정된 LTE, LTE-A, LAA 등)을 지원할 수 있다. 제1 기지국(410), 제2 기지국(420) 및 제3 기지국(430) 각각은 MIMO(예를 들어, SU-MIMO, MU-MIMO, 대규모 MIMO 등), CoMP, 캐리어 애그리게이션(CA) 등을 지원할 수 있다. 제1 기지국(410)은 면허 대역(F1)에서 동작할 수 있으며, 매크로 셀을 형성할 수 있다. 제1 기지국(410)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 다른 기지국(예를 들어, 제2 기지국(420), 제3 기지국(430) 등)과 연결될 수 있다. 제2 기지국(420)은 제1 기지국(410)의 커버리지 내에 위치할 수 있다. 제2 기지국(420)은 면허 대역(F2)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(430)은 제1 기지국(410)의 커버리지 내에 위치할 수 있다. 제3 기지국(430)은 면허 대역(F2)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제2 기지국(420) 및 제3 기지국(430) 각각은 제1 기지국(410)이 동작하는 면허 대역(F1)과 다른 면허 대역(F2)에서 동작할 수 있다.
제2 기지국(420)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제4 기지국(440)과 연결될 수 있다. 제4 기지국(440)은 제2 기지국(420)의 커버리지 내에 위치할 수 있다. 제4 기지국(440)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제3 기지국(430)은 아이디얼 백홀 또는 논-아이디얼 백홀을 통해 제5 기지국(450)과 연결될 수 있다. 제5 기지국(450)은 제3 기지국(430)의 커버리지 내에 위치할 수 있다. 제5 기지국(450)은 비면허 대역(F3)에서 동작할 수 있으며, 스몰 셀을 형성할 수 있다. 제4 기지국(440) 및 제5 기지국(450) 각각은 IEEE 802.11 표준에서 규정된 WLAN을 지원할 수 있다.
제1 기지국(410) 및 제1 기지국(410)에 접속된 UE(미도시) 각각은 면허 대역(F1)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다. 제2 기지국(420), 제2 기지국(420)에 접속된 UE(미도시), 제3 기지국(430) 및 제3 기지국(430)에 접속된 UE(미도시) 각각은 면허 대역(F2)과 비면허 대역(F3) 간의 캐리어 애그리게이션(CA)을 통해 신호를 송수신할 수 있다.
앞서 설명된 무선 통신 네트워크를 구성하는 통신 노드(즉, 기지국, UE 등)는 비면허 대역에서 LBT(listen before talk) 절차에 기초하여 신호를 전송할 수 있다. 즉, 통신 노드는 에너지 검출(energy detection) 동작을 수행함으로써 비면허 대역의 점유 상태를 판단할 수 있다. 통신 노드는 비면허 대역이 아이들(idle) 상태로 판단된 경우 신호를 전송할 수 있다. 이때, 통신 노드는 랜덤 백오프(random backoff) 동작에 따른 경쟁 윈도우(contention window) 동안 비면허 대역이 아이들 상태인 경우 신호를 전송할 수 있다. 반면, 통신 노드는 비면허 대역이 비지(busy) 상태로 판단된 경우 신호를 전송하지 않을 수 있다.
또는, 통신 노드는 CSAT(carrier sensing adaptive transmission) 동작에 기초하여 신호를 전송할 수 있다. 즉, 통신 노드는 미리 설정된 듀티 사이클(duty cycle)에 기초하여 신호를 전송할 수 있다. 통신 노드는 현재 듀티 사이클이 셀룰러 통신을 지원하는 통신 노드를 위해 할당된 듀티 사이클인 경우 신호를 전송할 수 있다. 반면, 통신 노드는 현재 듀티 사이클이 셀룰러 통신 외의 통신(예를 들어, WLAN 등)을 지원하는 통신 노드를 위해 할당된 듀티 사이클인 경우 신호를 전송하지 않을 수 있다. 듀티 사이클은 비면허 대역에 존재하는 WLAN을 지원하는 통신 노드의 수, 비면허 대역의 사용 상태 등에 기초하여 적응적으로 결정될 수 있다.
통신 노드는 비면허 대역에서 비연속 전송(discontinuous transmission)을 수행할 수 있다. 예를 들어, 비면허 대역에서 최대 전송 기간(maximum transmission duration) 또는 최대 채널 점유 시간(maximum channel occupancy time; max COT)이 설정되어 있는 경우, 통신 노드는 최대 전송 기간(또는, 최대 채널 점유 시간) 내에 신호를 전송할 수 있다. 통신 노드는 현재 최대 전송 기간(또는, 최대 채널 점유 시간) 내에 신호를 모두 전송하지 못한 경우 다음 최대 전송 기간(또는, 최대 채널 점유 시간)에서 나머지 신호를 전송할 수 있다. 또한, 통신 노드는 비면허 대역에서 상대적으로 작은 간섭을 가지는 캐리어를 선택할 수 있고, 선택된 캐리어에서 동작할 수 있다. 또한, 통신 노드는 비면허 대역에서 신호를 전송하는 경우 다른 통신 노드로의 간섭을 줄이기 위해 전송 파워를 조절할 수 있다.
한편, 통신 노드는 CDMA(code division multiple access) 기반의 통신 프로토콜, WCDMA(wideband CDMA) 기반의 통신 프로토콜, TDMA(time division multiple access) 기반의 통신 프로토콜, FDMA(frequency division multiple access) 기반의 통신 프로토콜, SC(single carrier)-FDMA 기반의 통신 프로토콜, OFDM(orthogonal frequency division multiplexing) 기반의 통신 프로토콜, OFDMA(orthogonal frequency division multiple access) 기반의 통신 프로토콜 등을 지원할 수 있다.
통신 노드 중에서 기지국은 노드B(NodeB; NB), 고도화 노드B(evolved NodeB; eNB), BTS(base transceiver station), 무선 기지국(radio base station), 무선 트랜시버(radio transceiver), 액세스 포인트(access point; AP), 액세스 노드 등으로 지칭될 수 있다. 통신 노드 중에서 UE는 터미널(terminal), 액세스 터미널(access terminal), 모바일 터미널(mobile terminal), 스테이션(station), 가입자 스테이션(subscriber station), 휴대 가입자 스테이션(portable subscriber station), 모바일 스테이션(mobile station), 노드(node), 다바이스(device) 등으로 지칭될 수 있다. 통신 노드는 다음과 같은 구조를 가질 수 있다.
도 5는 무선 통신 네트워크를 구성하는 통신 노드의 일 실시예를 도시한 블록도이다.
도 5를 참조하면, 통신 노드(500)는 적어도 하나의 프로세서(510), 메모리(520) 및 네트워크와 연결되어 통신을 수행하는 송수신 장치(530)를 포함할 수 있다. 또한, 통신 노드(500)는 입력 인터페이스 장치(540), 출력 인터페이스 장치(550), 저장 장치(560) 등을 더 포함할 수 있다. 통신 노드(500)에 포함된 각각의 구성 요소들은 버스(bus)(570)에 의해 연결되어 서로 통신을 수행할 수 있다.
프로세서(510)는 메모리(520) 및 저장 장치(560) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(510)는 중앙 처리 장치(central processing unit; CPU), 그래픽 처리 장치(graphics processing unit; GPU), 또는 본 발명의 실시예들에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 메모리(520) 및 저장 장치(560) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(520)는 읽기 전용 메모리(read only memory; ROM) 및 랜덤 액세스 메모리(random access memory; RAM) 중에서 적어도 하나로 구성될 수 있다.
다음으로, 무선 통신 네트워크에서 통신 노드의 동작 방법들이 설명될 것이다. 통신 노드들 중에서 제1 통신 노드에서 수행되는 방법(예를 들어, 신호의 전송 또는 수신)이 설명되는 경우에도 이에 대응하는 제2 통신 노드는 제1 통신 노드에서 수행되는 방법과 상응하는 방법(예를 들어, 신호의 수신 또는 전송)을 수행할 수 있다. 즉, UE의 동작이 설명된 경우에 이에 대응하는 기지국은 UE의 동작과 상응하는 동작을 수행할 수 있다. 반대로, 기지국의 동작이 설명된 경우에 이에 대응하는 UE는 기지국의 동작과 상응하는 동작을 수행할 수 있다.
한편, 비면허 대역 셀과 면허 대역 셀 간에 캐리어 애그리게이션(CA)이 적용될 수 있다. 비면허 대역 셀의 구성(configuration), 추가(add), 수정(modify) 또는 해제(release)는 RRC(radio resource control) 시그널링(signaling)(예를 들어, RRCConnectionReconfiguration 메시지(이하, "RRC 메시지"라 함)의 송수신 절차)을 통해 수행될 수 있다. RRC 메시지는 면허 대역 셀로부터 UE에 전송될 수 있다. RRC 메시지는 비면허 대역 셀의 운용 및 동작에 필요한 정보를 포함할 수 있다.
한편, 셀룰러 통신 네트워크(예를 들어, LTE 네트워크)는 FDD(frequency division duplex) 방식, TDD(time division duplex) 방식 등을 지원할 수 있다. FDD 방식에 기초한 프레임은 "타입(type) 1 프레임"으로 정의될 수 있고, TDD 방식에 기초한 프레임은 "타입 2 프레임"으로 정의될 수 있다.
도 6은 타입 1 프레임의 일 실시예를 도시한 개념도이다.
도 6을 참조하면, 라디오(radio) 프레임(600)은 10개의 서브프레임들을 포함할 수 있고, 서브프레임은 2개의 슬롯(slot)들을 포함할 수 있다. 따라서, 라디오 프레임(600)은 20개의 슬롯들(예를 들어, 슬롯 #0, 슬롯 #1, 슬롯 #2, 슬롯 #3, …, 슬롯 #18, 슬롯 #19)을 포함할 수 있다. 라디오 프레임(600) 길이(Tf)는 10ms일 수 있다. 서브프레임 길이는 1ms(millisecond)일 수 있다. 슬롯 길이(Tslot)는 0.5ms일 수 있다. 여기서, Ts는 1/30,720,000s일 수 있다.
슬롯은 시간 영역에서 복수의 OFDM 심볼들로 구성될 수 있고, 주파수 영역에서 복수의 자원 블록(resource block; RB)들로 구성될 수 있다. 자원 블록은 주파수 영역에서 복수의 서브캐리어(subcarrier)들로 구성될 수 있다. 슬롯을 구성하는 OFDM 심볼의 개수는 CP(cyclic prefix)의 구성에 따라 달라질 수 있다. CP는 정규(normal) CP 및 확장된(extended) CP로 분류될 수 있다. 정규 CP가 사용되면 슬롯은 7개의 OFDM 심볼들로 구성될 수 있고, 이 경우에 서브프레임은 14개의 OFDM 심볼들로 구성될 수 있다. 확장된 CP가 사용되면 슬롯은 6개의 OFDM 심볼들로 구성될 수 있고, 이 경우에 서브프레임은 12개의 OFDM 심볼들로 구성될 수 있다.
도 7은 타입 2 프레임의 일 실시예를 도시한 개념도이다.
도 7을 참조하면, 라디오 프레임(700)은 2개의 하프(half) 프레임을 포함할 수 있고, 하프 프레임은 5개의 서브프레임들을 포함할 수 있다. 따라서, 라디오 프레임(700)은 10개의 서브프레임들을 포함할 수 있다. 라디오 프레임(700) 길이(Tf)는 10ms일 수 있다. 하프 프레임의 길이는 5ms일 수 있다. 서브프레임 길이는 1ms일 수 있다. 여기서, Ts는 1/30,720,000s일 수 있다.
라디오 프레임(700)은 하향링크 서브프레임, 상향링크 서브프레임 및 특별(special) 서브프레임을 포함할 수 있다. 하향링크 서브프레임 및 상향링크 서브프레임 각각은 2개의 슬롯들을 포함할 수 있다. 슬롯 길이(Tslot)는 0.5ms일 수 있다. 라디오 프레임(700)에 포함된 서브프레임들 중에서 서브프레임 #1 및 서브프레임 #6 각각은 특별 서브프레임일 수 있다. 특별 서브프레임은 하향링크 파일럿 시간 슬롯(downlink pilot time slot; DwPTS), 보호 구간(guard period; GP) 및 상향링크 파일럿 시간 슬롯(uplink pilot time slot; UpPTS)을 포함할 수 있다.
하향링크 파일럿 시간 슬롯은 하향링크 구간으로 간주될 수 있으며, UE의 셀 탐색, 시간 및 주파수 동기 획득 등을 위해 사용될 수 있다. 보호 구간은 하향링크 데이터 수신 지연에 의해 발생하는 상향링크 데이터 전송의 간섭 문제의 해결을 위해 사용될 수 있다. 또한, 보호 구간은 하향링크 데이터 수신 동작에서 상향링크 데이터 전송 동작으로 전환을 위해 필요한 시간을 포함할 수 있다. 상향링크 파일럿 시간 슬롯은 상향링크 채널 추정, 시간 및 주파수 동기 획득 등을 위해 사용될 수 있다.
특별 서브프레임에 포함되는 하향링크 파일럿 시간 슬롯, 보호 구간 및 상향링크 파일럿 시간 슬롯 각각의 길이는 필요에 따라 가변적으로 조절될 수 있다. 또한, 라디오 프레임(700)에 포함되는 하향링크 서브프레임, 상향링크 서브프레임 및 특별 서브프레임 각각의 개수 및 위치는 필요에 따라 변경될 수 있다.
도 8은 서브프레임에 포함된 슬롯의 자원 그리드(grid)의 일 실시예를 도시한 개념도이다.
도 8을 참조하면, 하향링크 서브프레임 또는 상향링크 서브프레임에 포함된 슬롯의 자원 블록은 정규 CP가 사용되는 경우에 시간 영역에서 7개의 OFDM 심볼들로 구성될 수 있고, 주파수 영역에서 12개의 서브캐리어들로 구성될 수 있다. 이 경우, 시간 영역에서 하나의 OFDM 심볼과 주파수 영역에서 하나의 서브캐리어로 구성되는 자원은 "자원 엘리먼트(resource element; RE)"로 지칭될 수 있다.
셀룰러 통신 네트워크(예를 들어, LTE 네트워크)의 하향링크 전송에서, 하나의 UE에 대한 자원 할당은 자원 블록 단위로 수행될 수 있고, 참조(reference) 신호, 동기 신호 등에 대한 매핑(mapping)은 자원 엘리먼트 단위로 수행될 수 있다.
한편, 하향링크를 위한 서브프레임은 2개의 슬롯들을 포함할 수 있다. 슬롯은 6개 또는 7개의 OFDM 심볼들을 포함할 수 있다. 슬롯에서 OFDM 심볼 번호는 순차적으로 OFDM 심볼 #0, OFDM 심볼 #1, OFDM 심볼 #2, OFDM 심볼 #3, OFDM 심볼 #4, OFDM 심볼 #5, OFDM 심볼 #6으로 지칭될 수 있다. 서브프레임의 첫 번째 슬롯에 포함된 OFDM 심볼 #0 내지 #2(또는, OFDM 심볼 #0 내지 #3)는 제어 채널들을 포함할 수 있다. 제어 채널은 PCFICH(physical control format indicator channel), PHICH(physical hybrid-ARQ(automatic repeat request) indicator channel), PDCCH(physical downlink control channel) 등을 포함할 수 있다.
서브프레임을 구성하는 OFDM 심볼들 중에서 제어 채널이 할당되지 않은 OFDM 심볼은 데이터 채널(예를 들어, PDSCH(physical downlink shared channel) 등)을 포함할 수 있다. 또한, 데이터 채널이 구성되는 자원 영역 중에서 일부 자원 블록(또는, 자원 엘리먼트)에 EPDCCH(enhanced PDCCH)가 할당될 수 있다.
제어 채널의 전송을 위해 사용되는 OFDM 심볼의 개수를 지시하는 정보를 포함하는 PCFICH는 OFDM 심볼 #0에 구성될 수 있다. 상향링크 전송에 대한 응답인 HARQ ACK/NACK(acknowledgment/negative-ACK) 신호를 포함하는 PHICH는 제어 채널의 전송을 위해 사용되는 OFDM 심볼에 구성될 수 있다. 하향링크 제어 정보(downlink control information; DCI)는 PDCCH 및 EPDCCH 중에서 적어도 하나를 통해 전송될 수 있다. DCI는 UE 및 특정 그룹을 위한 자원 할당 정보 및 자원 제어 정보 중에서 적어도 하나를 포함할 수 있다. 예를 들어, DCI는 하향링크 스케쥴링(scheduling) 정보, 상향링크 스케쥴링 정보, 상향링크 전송 전력 제어 명령(transmit power control command) 등을 포함할 수 있다. 여기서, 특정 그룹은 적어도 하나의 UE를 포함할 수 있다.
DCI는 정보 필드(field)의 종류, 개수, 크기(예를 들어, 정보 필드를 구성하는 비트 수)에 따라 서로 다른 포맷(format)을 가질 수 있다. DCI 포맷 0, 3, 3A, 4 등은 상향링크를 위해 사용될 수 있다. DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C 등은 하향링크를 위해 사용될 수 있다. DCI 포맷에 따라 DCI에 포함되는 정보가 달라질 수 있다. 예를 들어, CIF(carrier indicator field), 자원 블록 할당, MCS(modulation and coding scheme), RV(redundancy version), NDI(new data indicator), TPC(transmit power control), HARQ 프로세스(process) 번호, PMI(precoding matrix indicator)(또는, PMI 확인(confirmation)), 호핑 플래그(hopping flag), 플래그 필드 등의 정보는 DCI 포맷에 따라 선택적으로 DCI에 포함될 수 있다. 따라서, DCI 포맷에 따라 제어 정보의 크기는 달라질 수 있다. 또한, 두 종류 이상의 제어 정보 전송을 위해 동일한 DCI 포맷이 사용될 수 있다. 이 경우, DCI에 포함된 플래그 필드에 의해 제어 정보가 구분될 수 있다. DCI 포맷별 DCI에 포함되는 제어 정보는 아래 표 1과 같을 수 있다.
PDCCH는 하나 또는 연속된 복수의 CCE(control channel element)의 집합(aggregation)에 할당될 수 있고, EPDCCH는 하나 또는 연속된 복수의 ECCE(enhanced CCE)의 집합에 할당될 수 있다. CCE 또는 ECCE는 논리적 할당 단위일 수 있으며, 복수의 REG(resource element group)로 구성될 수 있다. PDCCH(또는, EPDCCH)를 통해 전송되는 비트의 크기는 CCE(또는, ECCE)의 개수, 부호율 등에 기초하여 결정될 수 있다.
면허 대역 셀과 다르게, 비면허 대역 셀에서 신호를 연속적으로 전송할 수 있는 구간은 최대 전송 구간(또는, 최대 점유 구간) 내로 제한될 수 있다. 또한, 채널 점유 상태의 확인 결과에 기초하여 신호가 전송되는 경우(예를 들어, LBT에 기초하여 신호가 전송되는 경우), 다른 통신 노드의 전송이 완료된 경우에 신호가 전송될 수 있다. 비면허 대역을 통해 LTE(또는, LTE-A 등) 서비스가 제공되는 경우, LTE(또는, LTE-A 등)를 지원하는 통신 노드의 전송은 비주기적, 비연속적, 기회주의적 특징을 가질 수 있다. 이러한 특징에 기초하면, 비면허 대역에서 일정 시간 동안 LTE(또는, LTE-A 등)를 지원하는 통신 노드에 의해 연속적으로 전송되는 신호는 "비면허 대역 버스트(burst)"로 지칭될 수 있다.
또한, 면허 대역에서 정의된 채널(예를 들어, PCFICH, PHICH, PDCCH, EPDCCH, PDSCH, PMCH(physical multicast channel), PUCCH, PUSCH 등) 및 신호(예를 들어, 동기 신호(synchronization signal), 참조 신호(reference signal) 등) 중에서 하나 이상의 조합으로 구성되는 서브프레임들의 연속된 집합은 비면허 대역을 통해 전송될 수 있다. 이 경우, 서브프레임들의 전송은 "비면허 대역 전송"으로 지칭될 수 있다.
비면허 대역에서 전송을 위해 사용되는 프레임은 하향링크 비면허 대역 버스트 프레임, 상향링크 비면허 대역 버스트 프레임, 하향/상향 비면허 대역 버스트 프레임 등으로 분류될 수 있다. 하향링크 비면허 대역 버스트 프레임은 "비면허 대역 전송"이 적용되는 서브프레임을 포함할 수 있고, "비면허 대역 신호"를 더 포함할 수 있다. 하향링크 비면허 대역 버스트 프레임 내에서, "비면허 대역 신호"는 "비면허 대역 전송"이 적용되는 서브프레임 전에 위치할 수 있다. "비면허 대역 신호"는 "비면허 대역 전송"이 적용되는 서브프레임의 타이밍(timing)(또는, 슬롯 타이밍, OFDM 심볼(symbol) 타이밍)과 면허 대역에서 서브프레임의 타이밍(또는, 슬롯 타이밍, OFDM 심볼 타이밍)을 일치시키기 위해 구성될 수 있다. 또한, "비면허 대역 신호"는 "비면허 대역 전송"에 기초한 데이터의 수신을 위해 요구되는 AGC(automatic gain control), 동기 획득, 채널 추정 등을 위해 사용될 수 있다.
"비면허 대역 전송"이 적용되는 서브프레임은 최대 전송 구간(또는, 최대 점유 구간) 내에서 설정될 수 있다. 즉, "비면허 대역 전송"이 적용되는 서브프레임 개수는 최대 전송 구간(또는, 최대 점유 구간)에 기초하여 설정될 수 있다. 이때, "비면허 대역 신호"를 고려하여 "비면허 대역 전송"이 적용되는 서브프레임의 개수가 설정될 수 있다. 비면허 대역에서 최대 전송 구간(또는, 최대 점유 구간)은 RRC 시그널링을 통해 알려질 수 있다. UE는 PDCCH(또는, EPDCCH) 또는 "비면허 대역 신호"를 검출함으로써 "비면허 대역 버스트"의 시작 시점을 확인할 수 있다. "비면허 대역 버스트" 또는 "비면허 대역 전송"이 적용되는 서브프레임에 의한 실제 점유 시간은 "비면허 대역 신호" 또는 PHICH를 통해 알려질 수 있다.
도 9는 비면허 대역 버스트의 일 실시예들 도시한 타이밍도이다.
도 9를 참조하면, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍은 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 동일할 수 있다. 면허 대역은 "면허 대역 셀", "PCell(primary cell)" 등으로 지칭될 수 있다. 비면허 대역은 "비면허 대역 셀", "SCell(secondary cell)", "LAA Cell" 등으로 지칭될 수 있다. 면허 대역에서 신호는 연속적으로 전송될 수 있다. 즉, 면허 대역에서 버스트 전송은 연속적으로 발생될 수 있다.
반면, 비면허 대역에서 버스트 전송은 비연속적으로 발생될 수 있다. 예를 들어, 비면허 대역 버스트는 4개의 서브프레임들 단위로 발생될 수 있다. 비면허 대역 버스트를 구성하는 서브프레임들 중에서 시작 서브프레임은 1ms보다 작은 크기를 가질 수 있다. 1ms보다 작은 크기를 가지는 시작 서브프레임은 "시작 부분 서브프레임"으로 지칭될 수 있다. 또한, 비면허 대역 버스트를 구성하는 서브프레임들 중에서 종료 서브프레임은 1ms보다 작은 크기를 가질 수 있다. 1ms보다 작은 크기를 가지는 종료 서브프레임은 "종료 부분 서브프레임"으로 지칭될 수 있다.
종료 부분 서브프레임은 특별 서브프레임에 포함된 하향링크 파일럿 시간 슬롯(DwPTS)과 동일하게 구성될 수 있다. 종료 부분 서브프레임의 크기는 하향링크 파일럿 시간 슬롯(DwPTS)의 크기와 동일할 수 있다. 하향링크 파일럿 시간 슬롯(DwPTS)은 특별 서브프레임의 구성(configuration)에 따라 다양한 크기를 가질 수 있다. 예를 들어, 종료 부분 서브프레임의 크기는 3, 6, 9, 10, 11, 12 또는 14개의 OFDM 심볼들의 크기와 동일할 수 있다. 또는, 종료 부분 서브프레임의 크기는 하향링크 파일럿 시간 슬롯(DwPTS)의 가능한 크기들에 대한 부분 집합 내에서 설정될 수 있다. 이 경우, 부분 집합에 대한 정보는 RRC 시그널링을 통해 UE에 전송될 수 있다. 즉, RRC 시그널링을 통해 전송된 정보에 기초하여, 종료 부분 서브프레임의 크기 범위가 제한될 수 있다.
종료 부분 서브프레임의 크기가 부분 집합에 속한 값으로 제한되는 경우(예를 들어, RRC 시그널링을 통해 부분 집합에 대한 정보가 전송되는 경우) 또는 부분 집합에 속한 값으로 제한되지 않는 경우, 종료 부분 서브프레임의 크기 정보는 DCI(예를 들어, 공통(common) DCI), PCFICH 또는 PHICH를 통해 UE에 전송될 수 있다. 즉, 종료 부분 서브프레임의 크기 정보는 계층(layer)1 시그널링을 통해 UE에 전송될 수 있다. UE는 크기 정보를 기초로 종료 서브프레임이 부분 서브프레임인지를 판단할 수 있다. 예를 들어, 크기 정보가 1ms을 지시하는 경우, UE는 종료 서브프레임이 부분 서브프레임이 아닌 것으로 판단할 수 있다. 크기 정보가 1ms보다 작은 크기를 지시하는 경우, UE는 종료 서브프레임이 부분 서브프레임인 것으로 판단할 수 있다.
종료 부분 서브프레임의 크기 정보는 종료 부분 서브프레임을 구성하는 OFDM 심볼들의 개수(또는, 종료 부분 서브프레임의 종료 시점에 위치한 OFDM 심볼의 번호)를 지시할 수 있다. 또는, 종료 부분 서브프레임을 구성하는 OFDM 심볼들의 개수를 지시하기 위한 코드북(codebook)이 미리 설정될 수 있고, 이 경우에 종료 부분 서브프레임을 구성하는 OFDM 심볼들의 개수는 코드북 내의 특정 인덱스(index)에 의해 지시될 수 있다.
한편, 시작 부분 서브프레임의 길이와 종료 부분 서브프레임의 길이의 합은 1ms로 설정될 수 있다. 예를 들어, 시작 부분 서브프레임은 첫 번째 슬롯의 OFDM 심볼 #4 내지 두 번째 슬롯의 OFDM 심볼 #6으로 구성될 수 있고, 이 경우에 종료 부분 서브프레임은 첫 번째 슬롯의 OFDM 심볼 #0 내지 #3으로 구성될 수 있다.
비면허 대역 버스트(또는, 시작 부분 서브프레임)의 시작 시점은 미리 설정된 OFDM 심볼 번호의 집합 내에서 설정될 수 있다. 예를 들어, 비면허 대역 버스트의 시작 시점은 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #0 또는 두 번째 슬롯의 OFDM 심볼 #0으로 설정될 수 있다. 또는, TDD 방식에 기초한 네트워크에서 비면허 대역 버스트의 시작 시점은 서브프레임 내에서 "첫 번째 슬롯의 OFDM 심볼 #0 + 미리 설정된 오프셋(offset)" 이후에 위치한 OFDM 심볼일 수 있다. 여기서, 미리 설정된 오프셋은 "보호 구간(GP) + 상향링크 파일럿 시간 슬롯(UpPTS)"에 대응하는 시간일 수 있다. 예를 들어, TDD 방식에 기초한 네트워크에서 비면허 대역 버스트의 시작 시점은 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #0, #2, #3, #5, 또는 두 번째 슬롯의 OFDM 심볼 #1일 수 있다.
또는, 비면허 대역 버스트의 시작 시점은 면허 대역에서 PDCCH의 시작 시점, 종료 시점, 또는 참조 신호(예를 들어, CRS(cell specific reference signal)등)의 전송 시점으로 설정될 수 있다. 예를 들어, 비면허 대역 버스트의 시작 시점은 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #0 또는 #4일 수 있다. 비면허 대역 버스트의 시작 시점은 앞서 설명된 내용에 한정되지 않으며, 서브프레임 내의 임의의 OFDM 심볼로 설정될 수 있다.
비면허 대역 버스트(또는, 종료 부분 서브프레임)의 종료 시점은 미리 설정된 OFDM 심볼 번호의 집합(예를 들어, 하향링크 파일럿 시간 슬롯(DwPTS)에서 마지막 OFDM 심볼 번호의 집합) 내에서 설정될 수 있다. 예를 들어, 비면허 대역 버스트의 종료 시점은 서브프레임의 경계(예를 들어, 첫 번째 슬롯의 OFDM 심볼 #0 이전의 OFDM 심볼), 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #0, 슬롯의 경계(예를 들어, 두 번째 슬롯의 OFDM 심볼 #0 이전의 OFDM 심볼) 또는 두 번째 슬롯의 OFDM 심볼 #0으로 설정될 수 있다.
또는, 비면허 대역 버스트의 종료 시점은 비면허 대역 버스트의 시작 시점으로부터 미리 설정된 x개의 서브프레임 후로 설정될 수 있다. 여기서, x는 양의 정수일 수 있다. 예를 들어, 비면허 대역 버스트의 시작 시점이 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #4인 경우, 비면허 대역 버스트의 종료 시점은 비면허 대역 버스트의 시작 시점으로부터 x개의 서브프레임 후에 위치한 서브프레임 내의 첫 번째 슬롯의 OFDM 심볼 #3일 수 있다. 비면허 대역 버스트의 종료 시점은 앞서 설명된 내용에 한정되지 않으며, 서브프레임 내의 임의의 OFDM 심볼로 설정될 수 있다.
한편, 비면허 대역 버스트의 전송 중에 추가 데이터가 발생된 경우, 기지국은 비면허 대역 버스트의 크기를 증가시킬 수 있다. 예를 들어, 비면허 대역 버스트의 종료 서브프레임이 부분 서브프레임인 경우, 기지국은 종료 서브프레임의 크기가 1ms이 되도록 종료 서브프레임의 크기를 증가시킬 수 있고, 종료 서브프레임 중 증가된 자원을 통해 추가 데이터를 전송할 수 있다. 또한, 기지국은 비면허 대역 버스트에 포함되는 서브프레임의 개수를 증가시킬 수 있고, 추가된 서브프레임을 통해 추가 데이터를 전송할 수 있다. 이 경우, 남은 서브프레임(예를 들어, 비면허 대역 버스트 중에서 전송되지 않은 서브프레임)의 개수(또는, 크기)는 이전 서브프레임(예를 들어, 비면허 대역 버스트 중에서 전송된 서브프레임)의 개수(또는, 크기) 이상일 수 있다.
UE는 남은 서브프레임의 개수를 알고 있는 경우에 남은 서브프레임의 개수를 기초로 비면허 대역 버스트의 크기를 예측할 수 있다. 비면허 대역 버스트에 새로운 서브프레임이 추가된 경우, UE는 추가된 서브프레임을 별도의 비면허 대역 버스트로 인식할 수 있다. UE는 별도의 비면허 대역 버스트 내의 참조 신호의 송신 전력 크기가 원시(original) 비면허 대역 버스트(즉, 새로운 서브프레임의 추가 전의 비면허 대역 버스트) 내의 참조 신호의 송신 전력 크기와 동일한 것으로 가정할 수 있고, 이러한 가정을 기초로 별도의 비면허 대역 버스트의 채널 상태를 추정할 수 있다.
한편, 기지국은 원시 비면허 대역 버스트의 종료 후에 UE에 의해 검출될 필요가 없는 제어 채널이 속한 서브프레임의 개수 정보를 UE에 알려줄 수 있다. 예를 들어, 기지국은 UE에 의해 검출될 필요가 없는 제어 채널이 속한 서브프레임의 개수 정보를 공통 DCI 또는 RRC 시그널링을 통해 UE에 전송할 수 있다. 또한, 기지국은 UE에 의해 검출될 필요가 없는 제어 채널이 속한 서브프레임의 개수를 비면허 대역 버스트에 포함된 모든 서브프레임들 각각 또는 비면허 대역 버스트 중에서 종료 서브프레임을 통해 전송할 수 있다. 여기서, 비면허 대역 버스트에 새로운 서브프레임이 추가된 경우, UE에 의해 검출될 필요가 없는 제어 채널이 속한 서브프레임의 개수 정보가 UE에 전송될 수 있다.
UE는 공통 DCI 또는 RRC 시그널링을 통해 UE에 의해 검출될 필요가 없는 제어 채널이 속한 서브프레임의 개수를 확인할 수 있고, 확인된 서브프레임의 개수에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임에 포함된 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
한편, 비면허 대역 버스트의 전송을 위해 셀프(self) 스케쥴링 방식 또는 크로스 캐리어(cross carrier) 스케쥴링 방식이 사용될 수 있다. 또한, 비면허 대역 버스트의 전송을 위해 SPS(semi-persistent scheduling) 방식이 추가로 적용될 수 있다. 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송은 다음과 같이 수행될 수 있다.
도 10은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 10을 참조하면, 기지국은 캐리어 애그리게이션(CA)에 기초하여 면허 대역 및 비면허 대역을 통해 UE에 신호를 전송할 수 있다. 기지국 및 UE는 면허 대역 및 비면허 대역 중에서 적어도 하나를 지원할 수 있다. 여기서, 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사한 구성을 가질 수 있다. 아래에서, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 동일한 경우, 비면허 대역 버스트의 전송이 설명될 것이다. 또한, 아래 설명될 비면허 대역 버스트의 전송은 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 다른 경우에도 적용될 수 있다.
면허 대역의 서브프레임들(예를 들어, 서브프레임 #0, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3, 서브프레임 #4 등) 각각은 1ms의 길이를 가질 수 있다. 비면허 대역 버스트는 4ms의 길이를 가질 수 있다. 비면허 대역 버스트는 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임을 포함할 수 있다. 비면허 대역 버스트 중에서 시작 부분 서브프레임은 1ms보다 작은 길이를 가질 수 있다. 예를 들어, 시작 부분 서브프레임은 10개의 OFDM 심볼들로 구성될 수 있다. 비면허 대역 버스트 중에서 서브프레임 #1, 서브프레임 #2 및 서브프레임 #3은 1ms의 길이를 가질 수 있다. 비면허 대역 버스트 중에서 종료 부분 서브프레임은 1ms보다 작은 길이를 가질 수 있다. 예를 들어, 종료 부분 서브프레임은 4개의 OFDM 심볼들로 구성될 수 있다.
면허 대역 및 비면허 대역 각각의 서브프레임은 제어 채널 및 데이터 채널을 포함할 수 있고, 또는 데이터 채널만 포함할 수 있다. 제어 채널은 PDCCH, EPDCCH, PCFICH, PHICH 등을 포함할 수 있다. 여기서, EPDCCH는 서브프레임 중에서 데이터 채널을 위해 사용되는 OFDM 심볼에 구성될 수 있다. 데이터 채널은 PDSCH 등을 포함할 수 있다. 비면허 대역 버스트의 길이 및 구성은 앞서 설명된 내용에 한정되지 않으며, 다양하게 설정될 수 있다.
비면허 대역의 서브프레임들(예를 들어, 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임) 각각의 PDSCH에 대한 스케쥴링 정보(예를 들어, 자원 할당 정보)는 해당 서브프레임의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 여기서, 비면허 대역의 서브프레임들 중에서 부분 서브프레임을 제외한 서브프레임들(예를 들어, 서브프레임 #1, 서브프레임 #2 및 서브프레임 #3)은 종래 셀프 스케쥴링 방식에 기초하여 스케쥴링될 수 있다.
비면허
대역에서 기지국은 다음과 같이 신호를 전송할 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 시작 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임의 PCFICH가 기존의 용도로 사용되지 않는 경우에 PCFICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 비면허 대역 버스트의 길이 정보 중 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 서브프레임 단위로 지시될 수 있다. 예를 들어, 기존의 PCFICH에 의해 제어 채널이 3개 또는 4개의 OFDM 심볼들로 구성되는 것이 지시될 수 있으며, 이와 유사하게 PCFICH에 의해 비면허 대역 버스트의 길이가 3개 또는 4개의 서브프레임들에 대응하는 길이인 것이 지시될 수 있다. 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 또는 비면허 대역 버스트의 길이 정보의 전송을 위해 사용되는 PCFICH 생성 방법은 기존의 PCFICH 생성 방법과 동일 또는 유사할 수 있다. 따라서, UE는 기존의 PCFICH 검출 방법과 동일 또는 유사하게 PCFICH를 검출함으로써 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 또는 비면허 대역 버스트의 길이 정보를 확인할 수 있다. 여기서, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 PCFICH를 통한 비면허 대역 버스트의 길이 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 서브프레임 단위로 지시될 수 있다. 예를 들어, 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 비면허 대역 버스트를 구성하는 종료 서브프레임(또는, 종료 부분 서브프레임) 내의 마지막 OFDM 심볼 번호를 지시할 수 있다. 예를 들어, 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 4를 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
또한, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보는 공통 DCI를 통해 전송될 수 있다. 비면허 대역 버스트에 포함된 서브프레임들 각각을 통해 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보가 전송될 수 있다. PHICH, PCFICH 또는 공통 DCI가 해당 서브프레임이 부분 서브프레임인 것을 지시하는 경우, 부분 서브프레임의 크기 정보는 공통 DCI 또는 RRC 시그널링 통해 UE에 전송될 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #1의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 3을 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 2를 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 1을 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 종료 부분 서브프레임의 PCFICH가 기존의 용도로 사용되지 않는 경우에 PCFICH를 통해 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 비면허 대역 버스트의 종료 시점 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 예를 들어, 기존의 PCFICH에 의해 제어 채널이 3개 또는 4개의 OFDM 심볼들로 구성되는 것이 지시될 수 있으며, 이와 유사하게 PCFICH에 의해 비면허 대역 버스트의 종료 시점이 종료 부분 서브프레임 내의 세 번째 또는 네 번째 OFDM 심볼인 것이 지시될 수 있다. 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 또는 비면허 대역 버스트의 종료 시점 정보의 전송을 위해 사용되는 PCFICH 생성 방법은 기존의 PCFICH 생성 방법과 동일 또는 유사할 수 있다. 따라서, UE는 기존의 PCFICH 검출 방법과 동일 또는 유사하게 PCFICH를 검출함으로써 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 또는 비면허 대역 버스트의 종료 시점 정보를 확인할 수 있다. 여기서, PCFICH를 통한 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 비면허 대역 버스트의 종료 시점 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 종료 부분 서브프레임의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 0을 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
비면허
대역에서 앞서 설명된 방식과 같이 기지국으로부터 전송된 신호는
UE
에서 다음과 같이 수신될 수 있다.
UE는 기지국으로부터 비면허 대역의 시작 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 시작 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 시작 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 시작 부분 서브프레임의 PCFICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 비면허 대역 버스트의 길이 정보 중에서 적어도 하나를 획득할 수 있다. UE는 비면허 대역의 시작 부분 서브프레임의 PHICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 서브프레임 #1을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #1의 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 서브프레임 #2를 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #2의 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 서브프레임 #3을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #3의 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 종료 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 종료 부분 서브프레임의 PCFICH를 통해 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 및 비면허 대역 버스트의 종료 시점 정보 중에서 적어도 하나를 획득할 수 있다. UE는 비면허 대역의 종료 부분 서브프레임의 PHICH를 통해 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다. 한편, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보가 1 이상의 값을 지시하는 경우, 비면허 대역 버스트 이후에 UE는 지시되는 값에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임의 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
도 11은 셀프 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 11을 참조하면, 기지국은 캐리어 애그리게이션(CA)에 기초하여 면허 대역 및 비면허 대역을 통해 UE에 신호를 전송할 수 있다. 기지국 및 UE는 면허 대역 및 비면허 대역 중에서 적어도 하나를 지원할 수 있다. 여기서, 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사한 구성을 가질 수 있다.
아래에서, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 동일한 경우, 비면허 대역 버스트의 전송이 설명될 것이다. 또한, 아래 설명될 비면허 대역 버스트의 전송은 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 다른 경우에도 적용될 수 있다. 여기서, 서브프레임 및 비면허 대역 버스트의 구성은 도 10을 참조하여 설명된 서브프레임 및 비면허 대역 버스트의 구성과 동일 또는 유사할 수 있다. 비면허 대역의 서브프레임들 중에서 부분 서브프레임을 제외한 서브프레임들(예를 들어, 서브프레임 #1, 서브프레임 #2 및 서브프레임 #3)은 종래 셀프 스케쥴링 방식에 기초하여 스케쥴링될 수 있다.
비면허
대역에서 기지국은 다음과 같이 신호를 전송할 수 있다.
비면허 대역의 시작 부분 서브프레임은 데이터 채널(예를 들어, PDSCH)만으로 구성될 수 있으며, 기지국은 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 예를 들어, 비면허 대역의 시작 부분 서브프레임이 비면허 대역의 서브프레임 #1에 의해 스케쥴링되는 경우, 비면허 대역의 시작 부분 서브프레임에서 제어 채널은 생략될 수 있다. 기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또는, 기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다.
비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보만이 전송되는 경우, 비면허 대역의 시작 부분 서브프레임의 PDSCH는은 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보에 기초하여 스케쥴링될 수 있다. 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각의 PDSCH를 위한 스케쥴링 정보가 전송되는 경우, 비면허 대역의 시작 부분 서브프레임의 PDSCH는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보에 기초하여 스케쥴링될 수 있다.
또한, 기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보를 UE에 전송할 수 있다. 또는, 기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보를 UE에 전송할 수 있다.
한편, 포맷 1에 해당하는 DCI를 통해 자원 블록 할당 관련 정보(예를 들어, 자원 할당 헤더, RA(resource allocation) 타입 0을 위한 자원 블록 할당, 서브셋(subset), 쉬프트(shift), RA 타입 1을 위한 자원 블록 할당 등), MCS 정보, PUCCH를 위한 TPC 등이 전송될 수 있다. 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송되는 DCI(예를 들어, 포맷 1에 해당하는 DCI)는 비면허 대역의 시작 부분 서브프레임을 위해 사용될 수 있다.
예를 들어, DCI는 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보를 지시하는 필드를 추가로 포함할 수 있다. 이 경우, 추가된 필드를 통해 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보가 전송될 수 있다. 또는, 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보를 지시하는 필드들을 포함하는 새로운 DCI가 정의될 수 있다. 또는, DCI에서 HARQ 관련 정보를 지시하는 필드의 크기는 2배 증가될 수 있고, 기존에 비해 2배 증가된 크기를 가지는 필드를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보가 전송될 수 있다.
비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보의 전송을 위해 기존 DCI가 변경된 경우, 기존 DCI의 변경 여부를 UE에 알리기 위한 지시자가 필요할 수 있다. 비면허 대역에서 HARQ 절차는 비동기적으로 수행되므로 PHICH가 사용되지 않을 수 있으며, 이 경우 PHICH를 통해 기존 DCI의 변경 여부를 지시하는 지시자가 전송될 수 있다. 예를 들어, 비면허 대역의 서브프레임 #1의 PHICH를 통해 기존 DCI의 변경 여부를 지시하는 지시자가 전송될 수 있다.
기지국은 비면허 대역의 서브프레임 #1의 PHICH가 기존의 용도, 기존 DCI의 변경 여부를 알리기 위한 용도 등을 위해 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 서브프레임 단위로 지시될 수 있다. 예를 들어, 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 3을 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 시작 서브프레임, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또한, 기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PHICH가 기존의 용도로 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 2를 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다. 또는, 기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH를 위한 스케쥴링 정보를 UE에 전송할 수 있다.
또한, 기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보를 UE에 전송할 수 있다. 또는, 기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보를 UE에 전송할 수 있다.
예를 들어, DCI는 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보를 지시하는 필드를 추가로 포함할 수 있다. 이 경우, 추가된 필드를 통해 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보가 전송될 수 있다. 또는, 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보를 지시하는 필드들을 포함하는 새로운 DCI가 정의될 수 있다. 또는, DCI에서 HARQ 관련 정보를 지시하는 필드의 크기는 2배 증가될 수 있고, 기존에 비해 2배 증가된 크기를 가지는 필드를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보가 전송될 수 있다.
비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보의 전송을 위해 DCI가 변경된 경우, DCI의 변경 여부를 UE에 알리기 위한 지시자가 필요할 수 있다. 비면허 대역에서 HARQ 절차는 비동기적으로 수행되므로 PHICH가 사용되지 않을 수 있으며, 이 경우 PHICH를 통해 DCI의 변경 여부를 지시하는 지시자가 전송될 수 있다. 예를 들어, 비면허 대역의 서브프레임 #3의 PHICH를 통해 DCI의 변경 여부를 지시하는 지시자가 전송될 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PHICH가 기존의 용도, DCI의 변경 여부를 알리기 위한 용도 등을 위해 사용되지 않는 경우에 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #3, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 UE에 전송할 수 있다. 비면허 대역 버스트의 길이는 서브프레임 단위로 지시될 수 있다. 예를 들어, 비면허 대역 버스트의 길이는 4ms를 지시할 수 있다. 비면허 대역 버스트의 종료 시점 정보는 면허 대역 기준으로 서브프레임 #4의 첫 번째 슬롯 내의 OFDM 심볼 #3을 지시할 수 있다. 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수는 1을 지시할 수 있다. 여기서, PHICH를 통한 해당 서브프레임(예를 들어, 서브프레임 #3, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보의 전송은 생략될 수 있다.
기지국은 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 기지국은 비면허 대역의 종료 부분 서브프레임의 PDCCH(또는, EPDCCH)를 통해 전송된 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
여기서, 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보만이 전송되는 경우, 비면허 대역의 종료 부분 서브프레임의 PDSCH는 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보에 기초하여 스케쥴링될 수 있다. 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH를 위한 스케쥴링 정보가 전송되는 경우, 비면허 대역의 종료 부분 서브프레임의 PDSCH은 비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보에 기초하여 스케쥴링될 수 있다. 비면허 대역의 종료 부분 서브프레임이 비면허 대역의 서브프레임 #3에 의해 스케쥴링되는 경우, 비면허 대역의 종료 부분 서브프레임에서 제어 채널은 생략될 수 있다.
비면허
대역에서 앞서 설명된 방식과 같이 기지국으로부터 전송된 신호는
UE에서
다음과 같이 수신될 수 있다.
UE는 기지국으로부터 비면허 대역의 시작 부분 서브프레임을 수신할 수 있고, 수신된 시작 부분 서브프레임을 저장할 수 있다. UE는 기지국으로부터 비면허 대역의 서브프레임 #1을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있다.
비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보만이 획득된 경우, UE는 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보에 기초하여 비면허 대역의 시작 부분 서브프레임으로부터 데이터를 획득할 수 있다. 또는, 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각의 PDSCH를 위한 스케쥴링 정보가 획득된 경우, UE는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보에 기초하여 비면허 대역의 시작 부분 서브프레임으로부터 데이터를 획득할 수 있다.
UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 서브프레임 #1을 위한 HARQ 관련 정보를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #1의 PHICH를 통해 DCI의 변경 여부를 지시하는 지시자를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #1의 PHICH를 통해 해당 서브프레임(예를 들어, 시작 서브프레임, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 비면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 수신할 수 있다.
UE는 기지국으로부터 비면허 대역의 서브프레임 #2를 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있고, 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 획득할 수 있다. 또한, UE는 비면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #2의 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 서브프레임 #3을 수신할 수 있다. 예를 들어, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH를 위한 스케쥴링 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #3의 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 획득할 수 있다.
또한, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보를 획득할 수 있다. UE는 비면허 대역의 서브프레임 #3의 PHICH를 통해 DCI의 변경 여부를 지시하는 지시자를 획득할 수 있다. 또는, UE는 비면허 대역의 서브프레임 #3의 PHICH를 통해 해당 서브프레임(예를 들어, 서브프레임 #3, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 중에서 적어도 하나를 획득할 수 있다.
UE는 기지국으로부터 비면허 대역의 종료 부분 서브프레임을 수신할 수 있다. 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보만이 획득된 경우, UE는 비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보에 기초하여 비면허 대역의 종료 부분 서브프레임으로부터 데이터를 획득할 수 있다. 또는, 비면허 대역의 종료 부분 서브프레임 및 서브프레임 #3 각각의 PDSCH를 위한 스케쥴링 정보가 획득된 경우, UE는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보에 기초하여 비면허 대역의 종료 부분 서브프레임으로부터 데이터를 획득할 수 있다. 한편, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보가 1 이상의 값을 지시하는 경우, 비면허 대역 버스트 이후에 UE는 지시되는 값에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임의 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
한편, 크로스 캐리어 스케쥴링 방식이 사용되는 경우, 비면허 대역 버스트의 전송은 다음과 같이 수행될 수 있다.
도 12는 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 12를 참조하면, 기지국은 캐리어 애그리게이션(CA)에 기초하여 면허 대역 및 비면허 대역을 통해 UE에 신호를 전송할 수 있다. 기지국 및 UE는 면허 대역 및 비면허 대역 중에서 적어도 하나를 지원할 수 있다. 여기서, 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사한 구성을 가질 수 있다.
아래에서, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 동일한 경우, 비면허 대역 버스트의 전송이 설명될 것이다. 또한, 아래 설명될 비면허 대역 버스트의 전송은 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 다른 경우에도 적용될 수 있다. 여기서, 서브프레임 및 비면허 대역 버스트의 구성은 도 10을 참조하여 설명된 서브프레임 및 비면허 대역 버스트의 구성과 동일 또는 유사할 수 있다. 비면허 대역의 서브프레임들 중에서 부분 서브프레임을 제외한 서브프레임들(예를 들어, 서브프레임 #1, 서브프레임 #2 및 서브프레임 #3)은 종래 크로스 캐리어 스케쥴링 방식에 기초하여 스케쥴링될 수 있다.
비면허 대역에서 기지국은 다음과 같이 신호를 전송할 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 데이터 채널(예를 들어, PDSCH)를 통해 데이터를 UE에 전송할 수 있다. 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각은 제어 채널 및 데이터 채널을 포함할 수 있고, 또는 데이터 채널만을 포함할 수 있다.
비면허 대역의 시작 부분 서브프레임의 데이터 채널을 위한 스케쥴링 정보는 면허 대역의 서브프레임 #0의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #0의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #0의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
한편, 비면허 대역의 시작 부분 서브프레임에 포함된 PDSCH의 시작 시점이 면허 대역의 서브프레임 #0에 포함된 PDCCH의 종료 시점 이후인 경우, 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #0의 PDCCH 대신에 EPDCCH를 통해 전송될 수 있다. 또한, 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등도 면허 대역의 서브프레임 #0의 PDCCH 대신에 EPDCCH를 통해 전송될 수 있다.
EPDCCH의 시작 시점은 상위 계층에 의해 가변적으로 설정될 수 있으므로, 비면허 대역의 시작 부분 서브프레임의 시작 시점을 고려하여 면허 대역의 EPDCCH가 구성될 수 있다. 또한, 시작 부분 서브프레임의 스케쥴링을 위해 사용되는 EPDCCH는 면허 대역에서 미리 구성될 수 있다. 비면허 대역의 시작 부분 서브프레임의 시작 시점은 비면허 대역의 시작 부분 서브프레임의 스케쥴링을 위해 사용되는 EPDCCH의 시작 시점과 동일할 수 있다.
비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #2의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #3의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #4의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허
대역에서 앞서 설명된 방식과 같이 기지국으로부터 전송된 신호는
UE
에서 다음과 같이 수신될 수 있다.
UE는 비면허 대역의 시작 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #0의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #0의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #1을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #2를 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #2의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #3을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #3의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 종료 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #4의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다. 한편, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보가 1 이상의 값을 지시하는 경우, 비면허 대역 버스트 이후에 UE는 지시되는 값에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임의 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
도 13은 크로스 캐리어 스케쥴링 방식에 기초한 비면허 대역 버스트의 전송에 대한 다른 실시예를 도시한 타이밍도이다.
도 13을 참조하면, 기지국은 캐리어 애그리게이션(CA)에 기초하여 면허 대역 및 비면허 대역을 통해 UE에 신호를 전송할 수 있다. 기지국 및 UE는 면허 대역 및 비면허 대역 중에서 적어도 하나를 지원할 수 있다. 여기서, 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사한 구성을 가질 수 있다.
아래에서, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 동일한 경우, 비면허 대역 버스트의 전송이 설명될 것이다. 또한, 아래 설명될 비면허 대역 버스트의 전송은 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 다른 경우에도 적용될 수 있다. 여기서, 서브프레임 및 비면허 대역 버스트의 구성은 도 10을 참조하여 설명된 서브프레임 및 비면허 대역 버스트의 구성과 동일 또는 유사할 수 있다. 비면허 대역의 서브프레임들 중에서 부분 서브프레임을 제외한 서브프레임들(예를 들어, 서브프레임 #1, 서브프레임 #2 및 서브프레임 #3)은 종래 크로스 캐리어 스케쥴링 방식에 기초하여 스케쥴링될 수 있다.
비면허
대역에서 기지국은 다음과 같이 신호를 전송할 수 있다.
기지국은 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 데이터 채널(예를 들어, PDSCH)을 통해 데이터를 UE에 전송할 수 있다. 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각은 제어 채널 및 데이터 채널을 포함할 수 있고, 또는 데이터 채널만을 포함할 수 있다.
면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보만이 전송되는 경우, 기지국은 비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보에 기초하여 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또는, 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각의 PDSCH를 위한 스케쥴링 정보가 전송되는 경우, 기지국은 비면허 대역의 시작 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다.
또한, 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다. 여기서, 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보의 전송은 생략될 수 있다.
한편, 기존 DCI는 시작 부분 서브프레임을 위한 HARQ 관련 정보를 지시하는 필드를 추가적으로 포함할 수 있다. 또는, 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보를 지시하는 필드들을 포함하는 새로운 DCI가 정의될 수 있다. 또는, 기존 DCI에서 HARQ 관련 정보를 지시하는 필드의 크기는 2배 증가될 수 있고, 기존에 비해 2배 증가된 크기를 가지는 필드를 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1 각각을 위한 HARQ 관련 정보가 전송될 수 있다.
비면허 대역의 서브프레임 #1의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
한편, 면허 대역의 서브프레임 #1의 제어 채널을 통해 전송되는 DCI는 비면허 대역을 위한 CIF(carrier indicator field)를 포함할 수 있다. 면허 대역의 서브프레임 #1의 제어 채널을 통해 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1을 위한 스케쥴링 정보가 전송되는 경우, 비면허 대역의 시작 부분 서브프레임을 위한 스케쥴링 정보와 비면허 대역의 서브프레임 #1을 위한 스케쥴링 정보를 구별하기 위한 필드가 DCI 내에 추가될 수 있다.
면허 대역의 서브프레임 #1의 제어 채널에 대한 자원 제약을 고려하여, 동일한 DCI에 기초하여 비면허 대역의 시작 부분 서브프레임 및 서브프레임 #1은 스케쥴링될 수 있다. 예를 들어, 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역의 서브프레임 #1을 위한 스케쥴링 정보가 전송될 수 있고, 이 경우에 비면허 대역의 시작 부분 서브프레임은 비면허 대역의 서브프레임 #1을 위한 스케쥴링 정보에 기초하여 스케쥴링될 수 있다.
비면허 대역의 서브프레임 #2의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #2의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허 대역의 서브프레임 #3의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #3의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허 대역의 종료 부분 서브프레임의 PDSCH를 위한 스케쥴링 정보는 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 전송될 수 있다. 이 경우, 기지국은 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 전송되는 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 UE에 전송할 수 있다. 또한, 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #4의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 전송될 수 있다.
비면허
대역에서 앞서 설명된 방식과 같이 기지국으로부터 전송된 신호는
UE
에서 다음과 같이 수신될 수 있다.
UE는 비면허 대역의 시작 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 시작 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 시작 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 시작 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #1을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #1의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #1을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #1)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #1의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #2를 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #2의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #2의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #2를 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #2)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #2의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 서브프레임 #3을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #3의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 서브프레임 #3의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 서브프레임 #3을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 서브프레임 #3)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #3의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다.
UE는 비면허 대역의 종료 부분 서브프레임을 수신할 수 있다. 예를 들어, UE는 면허 대역의 서브프레임 #4의 PDCCH(또는, EPDCCH)를 통해 수신된 스케쥴링 정보에 의해 지시되는 비면허 대역의 종료 부분 서브프레임의 PDSCH를 통해 데이터를 획득할 수 있다. 비면허 대역의 종료 부분 서브프레임을 위한 HARQ 관련 정보, 해당 서브프레임(예를 들어, 종료 서브프레임)이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등은 면허 대역의 서브프레임 #4의 제어 채널(예를 들어, PDCCH, EPDCCH, PHICH, PCFICH 등)을 통해 획득될 수 있다. 한편, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보가 1 이상의 값을 지시하는 경우, 비면허 대역 버스트 이후에 UE는 지시되는 값에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임의 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
한편, 비연속적으로 전송되는 비면허 대역 버스트를 위해 SPS(semi-persistent scheduling) 방식이 적용될 수 있다. 비면허 대역 버스트에 포함된 서브프레임의 데이터 채널을 위한 스케쥴링 정보가 해당 서브프레임의 제어 채널을 통해 전송될 수 없을 경우에 SPS 방식이 적용될 수 있다. SPS 방식이 적용되는 경우, 연속된 x개의 서브프레임들(예를 들어, 비면허 대역 버스트에 포함된 서브프레임들)에 동일한 스케쥴링이 적용될 수 있다. 여기서, x는 2이상의 양의 정수일 수 있다. 예를 들어, 연속된 10개의 서브프레임들에 동일한 스케쥴링이 적용되는 경우, 서브프레임 #0 내지 #9를 위한 자원 할당, MCS 등은 동일할 수 있다. 즉, 자원 할당 및 MCS는 비면허 대역 버스트(또는, SPS의 유효 기간)에서 동일하게 적용될 수 있다. SPS의 유효 기간은 별도로 설정될 수 있다. SPS의 유효 기간이 경과하거나 SPS의 유효 기간 내에 별도의 스케쥴링이 수행된 경우, SPS는 종료될 수 있다. 한편, 제어 정보(예를 들어, HARQ 관련 정보 등)는 SPS 방식이 적용되는 비면허 대역 버스트에 포함된 서브프레임별로 설정될 수 있다. 예를 들어, HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)가 서브프레임마다 다르게 설정된 경우, HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등)는 HARQ 관련 정보가 적용되는 서브프레임(또는, PCell의 서브프레임)의 제어 채널을 통해 개별적으로 스케쥴링될 수 있다. SPS 방식이 사용되는 경우, 비면허 대역 버스트의 전송은 다음과 같이 수행될 수 있다.
도 14는 SPS 방식에 기초한 비면허 대역 버스트의 전송에 대한 일 실시예를 도시한 타이밍도이다.
도 14를 참조하면, 기지국은 캐리어 애그리게이션(CA)에 기초하여 면허 대역 및 비면허 대역을 통해 UE에 신호를 전송할 수 있다. 기지국 및 UE는 면허 대역 및 비면허 대역 중에서 적어도 하나를 지원할 수 있다. 여기서, 기지국 및 UE는 도 1 내지 도 4를 참조하여 설명된 무선 통신 네트워크를 구성할 수 있다. 기지국 및 UE는 도 5를 참조하여 설명된 통신 노드(500)와 동일 또는 유사한 구성을 가질 수 있다.
아래에서, 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 동일한 경우, 비면허 대역 버스트의 전송이 설명될 것이다. 또한, 아래 설명될 비면허 대역 버스트의 전송은 면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍과 비면허 대역의 서브프레임(또는, 슬롯, OFDM 심볼 등) 타이밍이 다른 경우에도 적용될 수 있다. 여기서, 서브프레임 및 비면허 대역 버스트의 구성은 도 10을 참조하여 설명된 서브프레임 및 비면허 대역 버스트의 구성과 동일 또는 유사할 수 있다.
비면허 대역에서 기지국은 다음과 같이 신호를 전송할 수 있다.
SPS의 유효 기간은 비면허 대역 버스트의 길이와 동일할 수 있다. 또는, 비면허 대역 버스트의 길이를 알 수 없는 경우, SPS는 비면허 대역 버스트의 종료 시점까지 적용될 수 있다.
셀프 스케쥴링 방식이 적용되는 경우, 기지국은 비면허 대역의 시작 부분 서브프레임 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 버스트를 구성하는 모든 서브프레임들에 적용되는 제어 정보(예를 들어, 자원 할당 정보, MCS 정보 등)를 UE에 전송할 수 있다. 기지국은 비면허 대역의 시작 부분 서브프레임 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송된 제어 정보에 의해 지시되는 PDSCH(예를 들어, 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH)를 통해 데이터를 UE에 전송할 수 있다.
또한, 기지국은 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 제어 채널을 통해 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등), 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 등을 UE에 전송할 수 있다. 여기서, HARQ 관련 정보는 비면허 대역 버스트에 포함된 서브프레임마다 다르게 설정될 수 있다.
크로스 캐리어 스케쥴링 방식이 적용되는 경우, 기지국은 면허 대역의 서브프레임 #0 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 버스트를 구성하는 모든 서브프레임들에 적용되는 제어 정보(예를 들어, 자원 할당 정보, MCS 정보 등)를 UE에 전송할 수 있다. 기지국은 면허 대역의 서브프레임 #0 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 전송된 제어 정보에 의해 지시되는 PDSCH(예를 들어, 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH)를 통해 데이터를 UE에 전송할 수 있다.
또한, 기지국은 면허 대역의 서브프레임 #0, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 서브프레임 #4 각각의 제어 채널을 통해 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등), 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 등을 UE에 전송할 수 있다. 여기서, HARQ 관련 정보는 비면허 대역 버스트에 포함된 서브프레임마다 다르게 설정될 수 있다.
비면허
대역에서 앞서 설명된 방식과 같이 기지국으로부터 전송된 신호는
UE에서
다음과 같이 수신될 수 있다.
셀프 스케쥴링 방식이 적용되는 경우, UE는 비면허 대역의 시작 부분 서브프레임 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 버스트를 구성하는 모든 서브프레임에 적용되는 제어 정보(예를 들어, 자원 할당 정보, MCS 정보 등)를 획득할 수 있다. UE는 획득된 제어 정보에 의해 지시되는 PDSCH(예를 들어, 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH)를 통해 데이터를 수신할 수 있다.
또한, UE는 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 제어 채널을 통해 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등), 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 등을 획득할 수 있다. 여기서, HARQ 관련 정보는 비면허 대역 버스트에 포함된 서브프레임마다 다르게 설정될 수 있다.
크로스 캐리어 스케쥴링 방식이 적용되는 경우, UE는 면허 대역의 서브프레임 #0 또는 서브프레임 #1의 PDCCH(또는, EPDCCH)를 통해 비면허 대역 버스트를 구성하는 모든 서브프레임에 적용되는 제어 정보(예를 들어, 자원 할당 정보, MCS 정보 등)를 획득할 수 있다. UE는 획득된 제어 정보에 의해 지시되는 PDSCH(예를 들어, 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각의 PDSCH)를 통해 데이터를 수신할 수 있다.
또한, UE는 면허 대역의 서브프레임 #0, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 서브프레임 #4 각각의 제어 채널을 통해 비면허 대역의 시작 부분 서브프레임, 서브프레임 #1, 서브프레임 #2, 서브프레임 #3 및 종료 부분 서브프레임 각각을 위한 HARQ 관련 정보(예를 들어, HARQ 프로세스 번호, RV 등), 비면허 대역 버스트의 길이 정보, 종료 시점 정보, 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 등을 획득할 수 있다. 여기서, HARQ 관련 정보는 비면허 대역 버스트에 포함된 서브프레임마다 다르게 설정될 수 있다. 한편, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보가 1 이상의 값을 지시하는 경우, 비면허 대역 버스트 이후에 UE는 지시되는 값에 대응하는 구간 동안 하향링크 서브프레임(예를 들어, 하향링크 서브프레임의 제어 채널)에 대한 검출을 수행하지 않을 수 있다.
앞서 설명된 실시예들은 본 발명을 설명하기 위한 일부 실시예에 해당하며, 본 발명은 다양하게 변형된 실시예들을 포함할 수 있다. 예를 들어, 비면허 대역 버스트의 전송이 수행되는 경우, 해당 서브프레임이 부분 서브프레임인지를 지시하는 정보, UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보, 비면허 대역 버스트의 길이 정보, 종료 시점 정보 및 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보 등의 조합이 다양한 방법을 통해 UE에 시그널링될 수 있으며, 본 발명은 이러한 변형들을 포함할 수 있다.
본 발명에 따른 방법들은 다양한 컴퓨터 수단을 통해 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능 매체에 기록되는 프로그램 명령은 본 발명을 위해 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.
컴퓨터 판독 가능 매체의 예에는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 적어도 하나의 소프트웨어 모듈로 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (20)
- 통신 네트워크에서 UE(user equipment)의 동작 방법으로서,
비면허 대역에서 복수의 서브프레임들을 포함하는 비면허 대역 버스트(burst)를 기지국으로부터 수신하는 단계;
상기 비면허 대역 버스트로부터 제어 정보를 획득하는 단계; 및
상기 제어 정보를 기반으로 상기 비면허 대역 버스트로부터 데이터를 획득하는 단계를 포함하며,
상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS(downlink pilot time slot)의 크기와 동일한, UE의 동작 방법. - 청구항 1에 있어서,
상기 제어 정보는,
상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms(millisecond)보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함하는, UE의 동작 방법. - 청구항 1에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 공통(common) DCI(downlink control information), PCFICH(physical control format indicator channel), PHICH(physical hybrid-ARQ(automatic repeat request) indicator channel) 또는 RRC(radio resource control) 시그널링(signaling)을 통해 수신되는, UE의 동작 방법. - 청구항 1에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 수신되는, UE의 동작 방법. - 청구항 1에 있어서,
상기 종료 서브프레임의 크기는 3, 6, 9, 10, 11, 12 또는 14개의 OFDM(orthogonal frequency division multiplexing) 심볼들의 크기와 대응하는, UE의 동작 방법. - 청구항 1에서,
상기 비면허 대역 버스트 중에서 시작 서브프레임의 크기는 1ms보다 작은, UE의 동작 방법. - 청구항 1에 있어서,
상기 UE의 동작 방법은,
상기 기지국에서 추가 데이터가 발생된 경우, 상기 비면허 대역 버스트 이외의 비면허 대역 자원을 통해 상기 추가 데이터를 상기 기지국으로부터 수신하는 단계를 더 포함하는, UE의 동작 방법. - 청구항 7에 있어서,
상기 비면허 대역 자원을 통해 수신되는 참조 신호의 송신 전력은 상기 비면허 대역 버스트를 통해 수신되는 참조 신호의 송신 전력과 동일한, UE의 동작 방법. - 통신 네트워크에서 기지국의 동작 방법으로서,
복수의 서브프레임들을 포함하는 비면허 대역 버스트(burst)를 생성하는 단계; 및
비면허 대역에서 상기 비면허 대역 버스트를 UE(user equipment)에 전송하는 단계를 포함하며,
상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS(downlink pilot time slot)의 크기와 동일한, 기지국의 동작 방법. - 청구항 9에 있어서,
상기 비면허 대역 버스트를 통해 전송되는 제어 정보는,
상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms(millisecond)보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함하는, 기지국의 동작 방법. - 청구항 9에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 공통(common) DCI(downlink control information), PCFICH(physical control format indicator channel), PHICH(physical hybrid-ARQ(automatic repeat request) indicator channel) 또는 RRC(radio resource control) 시그널링(signaling)을 통해 상기 UE에 전송되는, 기지국의 동작 방법. - 청구항 9에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 상기 UE에 전송되는, 기지국의 동작 방법. - 청구항 9에 있어서,
상기 종료 서브프레임의 크기는 3, 6, 9, 10, 11, 12 또는 14개의 OFDM(orthogonal frequency division multiplexing) 심볼들의 크기와 대응하는, 기지국의 동작 방법. - 청구항 9에서,
상기 비면허 대역 버스트 중에서 시작 서브프레임의 크기는 1ms보다 작은, 기지국의 동작 방법. - 청구항 9에 있어서,
상기 기지국의 동작 방법은,
추가 데이터가 발생된 경우, 상기 비면허 대역 버스트 이외의 비면허 대역 자원을 통해 상기 추가 데이터를 상기 UE에 전송하는 단계를 더 포함하는, 기지국의 동작 방법. - 청구항 15에 있어서,
상기 비면허 대역 자원을 통해 전송되는 참조 신호의 송신 전력은 상기 비면허 대역 버스트를 통해 전송되는 참조 신호의 송신 전력과 동일한, 기지국의 동작 방법. - 통신 네트워크에서 UE(user equipment)로서,
프로세서(processor); 및
상기 프로세서에 의해 실행되는 적어도 하나의 명령이 저장된 메모리(memory)를 포함하며,
상기 적어도 하나의 명령은,
비면허 대역에서 복수의 서브프레임들을 포함하는 비면허 대역 버스트(burst)를 기지국으로부터 수신하고;
상기 비면허 대역 버스트로부터 제어 정보를 획득하고; 그리고
상기 제어 정보를 기반으로 상기 비면허 대역 버스트로부터 데이터를 획득하도록 실행되고,
상기 비면허 대역 버스트 중에서 종료 서브프레임의 크기는 DwPTS(downlink pilot time slot)의 크기와 동일한, UE. - 청구항 17에 있어서,
상기 제어 정보는,
상기 비면허 대역 버스트의 길이 정보, 상기 비면허 대역 버스트의 종료 시점 정보, 상기 비면허 대역 버스트의 종료 시점까지 남은 서브프레임의 개수 정보, 상기 비면허 대역 버스트에 포함된 서브프레임이 1ms(millisecond)보다 작은 크기를 가지는 부분 서브프레임인지 여부를 지시하는 정보 및 상기 UE에 의해 검출될 필요가 없는 서브프레임의 개수 정보 중에서 적어도 하나를 포함하는, UE. - 청구항 17에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 공통(common) DCI(downlink control information), PCFICH(physical control format indicator channel), PHICH(physical hybrid-ARQ(automatic repeat request) indicator channel) 또는 RRC(radio resource control) 시그널링(signaling)을 통해 수신되는, UE. - 청구항 17에 있어서,
상기 종료 서브프레임의 크기를 지시하는 정보는 상기 복수의 서브프레임들 각각 또는 상기 종료 서브프레임을 통해 수신되는, UE.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2016/012388 WO2017078351A1 (ko) | 2015-11-03 | 2016-10-31 | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 |
EP24159902.6A EP4351075A3 (en) | 2015-11-03 | 2016-10-31 | Scheduling method for communication network supporting unlicensed band |
EP16862367.6A EP3373497B1 (en) | 2015-11-03 | 2016-10-31 | Scheduling method for communication network supporting unlicensed band |
US15/573,753 US10595335B2 (en) | 2015-11-03 | 2016-10-31 | Scheduling method for communication network supporting unlicensed band |
HRP20240718TT HRP20240718T1 (hr) | 2015-11-03 | 2016-10-31 | Metoda rasporeda za komunikacijsku mrežu koja podržava nelicencirani pojas |
CN201680030143.4A CN107637006B (zh) | 2015-11-03 | 2016-10-31 | 支持非授权频带的通信网络的调度方法 |
KR1020230071731A KR102703794B1 (ko) | 2015-11-03 | 2023-06-02 | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150153837 | 2015-11-03 | ||
KR20150153837 | 2015-11-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230071731A Division KR102703794B1 (ko) | 2015-11-03 | 2023-06-02 | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170052473A true KR20170052473A (ko) | 2017-05-12 |
KR102659447B1 KR102659447B1 (ko) | 2024-04-22 |
Family
ID=58740615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160139921A KR102659447B1 (ko) | 2015-11-03 | 2016-10-26 | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10595335B2 (ko) |
EP (1) | EP3373497B1 (ko) |
KR (1) | KR102659447B1 (ko) |
CN (1) | CN107637006B (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2773244C1 (ru) * | 2019-01-18 | 2022-06-01 | Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. | Способ беспроводной связи и устройство для нелицензированного спектра |
US12041653B2 (en) | 2019-01-18 | 2024-07-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and device for wireless communication on an unlicensed spectrum |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019004194A (ja) * | 2015-11-05 | 2019-01-10 | シャープ株式会社 | 端末装置、基地局装置および方法 |
CN112636864B (zh) * | 2015-11-05 | 2024-07-19 | 苹果公司 | 基站或用户设备的装置、基带处理器、方法和存储介质 |
CN106686733B (zh) * | 2015-11-06 | 2021-12-14 | 中兴通讯股份有限公司 | 一种信号处理方法及基站 |
US10674535B2 (en) * | 2015-11-13 | 2020-06-02 | Futurewei Technologies, Inc. | Device, network, and method for communications with opportunistic transmission and reception |
US10362605B2 (en) * | 2016-01-21 | 2019-07-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Systems and methods for multiplexing scheduling requests in unlicensed bands |
CN107295676B (zh) * | 2016-03-31 | 2019-07-23 | 中兴通讯股份有限公司 | 数据传输方法及装置 |
CN110099445B (zh) * | 2018-01-27 | 2021-06-22 | 华为技术有限公司 | 一种上行传输方法及装置 |
CN110234164B (zh) * | 2018-03-06 | 2023-02-03 | 华为技术有限公司 | 一种确定控制信道位置方法设备和处理器可读存储介质 |
CN108886461B (zh) * | 2018-06-15 | 2021-10-15 | 北京小米移动软件有限公司 | 数据传输方法及装置 |
US11057780B2 (en) * | 2018-08-10 | 2021-07-06 | Mediatek Inc. | Channel utilization in unlicensed spectrum |
WO2020092941A1 (en) * | 2018-11-02 | 2020-05-07 | Intel Corporation | Channel occupancy time indication for nr based unlicensed operation |
TWI741468B (zh) * | 2019-01-08 | 2021-10-01 | 財團法人工業技術研究院 | 未授權頻帶中的下行鏈路接收方法與使用所述方法的使用者設備 |
US11425705B2 (en) | 2019-02-28 | 2022-08-23 | Electronics And Telecommunication Research Institute | Method and apparatus for transmitting and receiving control information in communication system supporting unlicensed band |
CN114828219A (zh) * | 2019-11-08 | 2022-07-29 | 展讯通信(上海)有限公司 | 数据接收方法及装置、存储介质、终端 |
US11716761B2 (en) | 2020-03-26 | 2023-08-01 | Electronics And Telecommunications Research Institute | Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor |
US11909435B2 (en) * | 2020-11-02 | 2024-02-20 | Samsung Electronics Co., Ltd. | Method for multi-band communication and electronic device thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102843696B (zh) * | 2011-06-21 | 2016-06-22 | 中国移动通信集团设计院有限公司 | 一种无线系统间共用频谱资源的方法、装置及系统 |
US9509479B2 (en) * | 2012-08-10 | 2016-11-29 | Lg Electronics Inc. | Method and apparatus for supporting burst transmission in a wireless communication system |
US9736829B2 (en) | 2013-10-14 | 2017-08-15 | Qualcomm Incorporated | Downlink control management in an unlicensed or shared spectrum |
US10959197B2 (en) * | 2014-09-08 | 2021-03-23 | Samsung Electronics Co., Ltd. | Cell detection, synchronization and measurement on unlicensed spectrum |
US20170238311A1 (en) * | 2014-09-26 | 2017-08-17 | Nokia Technologies Oy | Synchronous Licensed Assisted Access |
JP2016174216A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社Nttドコモ | 無線基地局、ユーザ端末、無線通信システムおよび無線通信方法 |
EP3079436B1 (en) * | 2015-04-10 | 2018-09-19 | Panasonic Intellectual Property Corporation of America | Discontinuous reception operation for licensed-assisted access |
US9686780B2 (en) * | 2015-04-19 | 2017-06-20 | Alcatel-Lucent Usa Inc. | Delivery of downlink control information associated with downlink data transmission on a licensed-assisted access carrier |
KR20180005671A (ko) * | 2015-05-15 | 2018-01-16 | 샤프 가부시키가이샤 | 단말 장치, 기지국 장치 및 통신 방법 |
WO2017065524A1 (ko) * | 2015-10-13 | 2017-04-20 | 엘지전자 주식회사 | 비면허 대역을 지원하는 무선접속시스템에서 서브프레임 길이 정보를 송수신하는 방법 및 장치 |
US10674535B2 (en) * | 2015-11-13 | 2020-06-02 | Futurewei Technologies, Inc. | Device, network, and method for communications with opportunistic transmission and reception |
WO2018012899A1 (ko) * | 2016-07-13 | 2018-01-18 | 삼성전자 주식회사 | 무선 셀룰라 통신 시스템에서 랜덤액세스 프리앰블 송수신 방법 및 장치 |
US20180124831A1 (en) * | 2016-10-29 | 2018-05-03 | Ofinno Technologies, Llc | Dual connectivity scheduling request for wireless network and wireless device |
-
2016
- 2016-10-26 KR KR1020160139921A patent/KR102659447B1/ko active IP Right Grant
- 2016-10-31 EP EP16862367.6A patent/EP3373497B1/en active Active
- 2016-10-31 CN CN201680030143.4A patent/CN107637006B/zh active Active
- 2016-10-31 US US15/573,753 patent/US10595335B2/en active Active
Non-Patent Citations (4)
Title |
---|
3GPP R1-153274 * |
3GPP R1-154150* * |
3GPP R1-154453 * |
3GPP R1-155602 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2773244C1 (ru) * | 2019-01-18 | 2022-06-01 | Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. | Способ беспроводной связи и устройство для нелицензированного спектра |
US12041653B2 (en) | 2019-01-18 | 2024-07-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and device for wireless communication on an unlicensed spectrum |
Also Published As
Publication number | Publication date |
---|---|
CN107637006A (zh) | 2018-01-26 |
KR102659447B1 (ko) | 2024-04-22 |
CN107637006B (zh) | 2021-03-09 |
EP3373497A4 (en) | 2019-05-22 |
US20180132271A1 (en) | 2018-05-10 |
EP3373497B1 (en) | 2024-02-28 |
US10595335B2 (en) | 2020-03-17 |
EP3373497A1 (en) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102696445B1 (ko) | 면허 및 비면허 대역들을 지원하는 네트워크에서 통신 노드의 동작 방법 | |
KR102659447B1 (ko) | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 | |
CN108352975B (zh) | 支持授权和非授权频带的网络中的通信方法 | |
US11140690B2 (en) | Method and apparatus for transmitting signal in unlicensed band communication system, method and apparatus for scheduling uplink, and method and apparatus for transmitting information about channel state measurement section | |
US9414373B2 (en) | Method of transmitting/receiving downlink control information and user equipment therefor in wireless access system | |
US11044747B2 (en) | Method for scheduling uplink transmission in communication network | |
US10135594B2 (en) | Scheduling method for communication network supporting unlicensed band | |
EP3823196B1 (en) | Uplink control information transmission method and apparatus | |
US20210320759A1 (en) | Method and apparatus for sidelink communication based on feedback | |
JP2015512571A (ja) | Ltefddネットワークにおける半二重fdd動作のための方法 | |
KR101812174B1 (ko) | 다중 반송파를 사용하는 무선 통신 시스템에서 제어 정보 전송 방법 | |
US20240107553A1 (en) | Method and apparatus for transmitting or receiving feedback information in communication system | |
US20220149996A1 (en) | Method and apparatus for scheduling and hybrid automatic repeat request feedback in communication system | |
US20200059321A1 (en) | Coverage enhancement for ofdm transmissions | |
KR20210095699A (ko) | 데이터 송신 방법 및 디바이스 | |
KR20200029358A (ko) | 비면허 대역에서 신호의 송수신을 위한 방법 및 장치 | |
US20220321266A1 (en) | Hybrid automatic repeat request (harq) feedback for dynamic multi-slot physical downlink shared channel (pdsch) | |
KR102482083B1 (ko) | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 | |
KR102703794B1 (ko) | 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법 | |
KR102498332B1 (ko) | 면허 및 비면허 대역들을 지원하는 네트워크에서 통신 노드의 동작 방법 | |
US20190386789A1 (en) | A Wireless Device, a Network Node and Methods Therein for Handling Transmissions in a Wireless Communications Network | |
KR20160134497A (ko) | 면허 및 비면허 대역을 지원하는 네트워크에서 통신 노드의 동작 방법 | |
KR20200100001A (ko) | 통신 시스템에서 이동성 지원을 위한 측정 방법 및 장치 | |
KR20200099973A (ko) | 통신 시스템에서 이동성 지원을 위한 측정 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
J301 | Trial decision |
Free format text: TRIAL NUMBER: 2023101001189; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20230602 Effective date: 20231222 |
|
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant |