KR20170034648A - PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof - Google Patents
PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof Download PDFInfo
- Publication number
- KR20170034648A KR20170034648A KR1020150133205A KR20150133205A KR20170034648A KR 20170034648 A KR20170034648 A KR 20170034648A KR 1020150133205 A KR1020150133205 A KR 1020150133205A KR 20150133205 A KR20150133205 A KR 20150133205A KR 20170034648 A KR20170034648 A KR 20170034648A
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- pna
- gyra
- nucleotide sequence
- probe
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 48
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 241000607479 Yersinia pestis Species 0.000 title claims abstract description 31
- 230000003115 biocidal effect Effects 0.000 title claims abstract description 21
- 229960003405 ciprofloxacin Drugs 0.000 title claims abstract description 21
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 69
- 230000035772 mutation Effects 0.000 claims abstract description 19
- 239000003242 anti bacterial agent Substances 0.000 claims abstract description 16
- 229940088710 antibiotic agent Drugs 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 241000235058 Komagataella pastoris Species 0.000 claims abstract description 7
- 108091093037 Peptide nucleic acid Proteins 0.000 claims description 93
- 108010054814 DNA Gyrase Proteins 0.000 claims description 48
- 238000003753 real-time PCR Methods 0.000 claims description 43
- 125000003729 nucleotide group Chemical group 0.000 claims description 42
- 239000002773 nucleotide Substances 0.000 claims description 41
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 20
- 230000000295 complement effect Effects 0.000 claims description 9
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 4
- 229940104302 cytosine Drugs 0.000 claims description 4
- 230000004544 DNA amplification Effects 0.000 claims description 3
- 241000607734 Yersinia <bacteria> Species 0.000 claims description 3
- 206010017533 Fungal infection Diseases 0.000 claims 1
- 230000000813 microbial effect Effects 0.000 claims 1
- 230000001404 mediated effect Effects 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 12
- 239000003814 drug Substances 0.000 abstract description 7
- 229940079593 drug Drugs 0.000 abstract description 7
- 230000003466 anti-cipated effect Effects 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 10
- 101150070420 gyrA gene Proteins 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 150000007523 nucleic acids Chemical class 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 206010064571 Gene mutation Diseases 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- UDGUGZTYGWUUSG-UHFFFAOYSA-N 4-[4-[[2,5-dimethoxy-4-[(4-nitrophenyl)diazenyl]phenyl]diazenyl]-n-methylanilino]butanoic acid Chemical compound COC=1C=C(N=NC=2C=CC(=CC=2)N(C)CCCC(O)=O)C(OC)=CC=1N=NC1=CC=C([N+]([O-])=O)C=C1 UDGUGZTYGWUUSG-UHFFFAOYSA-N 0.000 description 4
- 206010059866 Drug resistance Diseases 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 108010006785 Taq Polymerase Proteins 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 241000193738 Bacillus anthracis Species 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229960003722 doxycycline Drugs 0.000 description 2
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UXUFTKZYJYGMGO-CMCWBKRRSA-N (2s,3s,4r,5r)-5-[6-amino-2-[2-[4-[3-(2-aminoethylamino)-3-oxopropyl]phenyl]ethylamino]purin-9-yl]-n-ethyl-3,4-dihydroxyoxolane-2-carboxamide Chemical compound O[C@@H]1[C@H](O)[C@@H](C(=O)NCC)O[C@H]1N1C2=NC(NCCC=3C=CC(CCC(=O)NCCN)=CC=3)=NC(N)=C2N=C1 UXUFTKZYJYGMGO-CMCWBKRRSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical compound NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- 206010004022 Bacterial food poisoning Diseases 0.000 description 1
- 102100028183 Cytohesin-interacting protein Human genes 0.000 description 1
- 108010041052 DNA Topoisomerase IV Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000194031 Enterococcus faecium Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 101000916686 Homo sapiens Cytohesin-interacting protein Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 231100000579 Toxinosis Toxicity 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 208000028227 Viral hemorrhagic fever Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 244000000028 waterborne pathogen Species 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/107—Modifications characterised by incorporating a peptide nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2561/00—Nucleic acid detection characterised by assay method
- C12Q2561/113—Real time assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 시프로플록사신 항생제에 대해 내성을 보이는 페스트균 검출을 위한 PNA 프로브 및 이의 용도에 관한 것으로, 본 발명을 통해 PNA-매개 PCR 클램핑 방법을 적용하여 단일염기돌연변이 (point mutation)와 같은 유전자 이상으로 항생제 내성을 나타내는 페스트균 변이주에 대하여 신속하고 고감도로 검출 가능한 진단 시스템을 제공할 수 있으며, 이를 통해 약제내성 균주를 사용한 생물테러에 신속히 대응하여 대규모 피해발생을 예방 또는 최소화할 수 있을 것으로 기대된다.The present invention relates to a PNA probe for the detection of pest bacteria resistant to ciprofloxacin antibiotics and a use thereof, wherein the PNA-mediated PCR clamping method is applied through the present invention to produce an antibiotic with a gene similar to a single base mutation It is possible to provide a diagnostic system capable of detecting rapidly and highly sensitively the mutant strains of P. pastoris showing tolerance, and it is anticipated that it will be possible to promptly respond to bioterrorism using drug resistant strains to prevent or minimize the occurrence of large scale damage.
Description
본 발명은 시프로플록사신 항생제에 대해 내성을 보이는 페스트균 검출을 위한 PNA 프로브 및 클램핑 프라이머 세트에 관한 것이다.The present invention relates to a PNA probe and a clamping primer set for detecting pest bacteria resistant to ciprofloxacin antibiotics.
항생제 내성균은 신종 감염 질병류의 발병 위협과 함께 세계적으로 증가하고 있으며, 항생제 내성균의 빠른 확산은 세계 여러 나라의 큰 문제로 부상하고 있다. 우리나라는 2000년 의료분업 이전 항생제 오남용에 의한 항생제 내성율 세계 1위 국가라는 서울대병원의 발표 자료에 따르면 각종 세균 감염질환 치료상 큰 난관에 봉착해 있음은 물론 어떤 항생제로도 다스릴 수 없는 '슈퍼균' 출연 가능성이 어느 나라보다도 높다고 알려져 있다. 2002년 기준으로 우리나라 내성균의 항생제 저항성 추이를 살펴보면 장염 원인균인 장구균(Enterococcus faecium)은 암피실린(Ampicillin)에 97% 수준의 내성률을 보이고, 반코마이신(Vanconycin)에는 33% 수준의 내성율과 식중독균인 포도상구균(Staphylococcus aureus)은 메타실린(Metacillin)에 75%의 내성율을 보이는 것으로 알려져 있다. 항생제 내성율이 높아지면 임상분야에서 감염질환 치료가 무력화되며, 식품분야에서는 항생제 내성을 갖는 세균성 식중독 문제에 적절한 대처가 불가능하다.Antibiotic resistant bacteria are increasing worldwide with threat of new infectious diseases and the rapid spread of antibiotic resistant bacteria is emerging as a big problem in many countries of the world. According to the data of Seoul National University Hospital, which is the world's first antibiotic resistance rate due to abuse of antibiotics prior to the division of labor in 2000, Korea has suffered from a great difficulty in treating various bacterial infectious diseases, 'The possibility of appearing is higher than any other country. In 2002, antibiotic resistance of resistant bacteria in Korea was investigated. Enterococcus faecium has a resistance rate of 97% in ampicillin, vancomycin has a resistance rate of 33% and staphylococcus aureus is known to show 75% resistance to methacillin. If the antibiotic resistance rate is high, treatment of infectious diseases in the clinical field becomes ineffective, and it is impossible to cope with the problem of bacterial food poisoning with antibiotic resistance in the food field.
2001년 9월 미국 세계무역센터 테러와 우편물에 탄저균을 이용한 생물테러가 발생한 이후 전세계적으로 테러에 대한 공포와 우려가 확산 되었으며 세계 각국에서 자국민 보호를 위한 대응 방안 마련에 고심하고 있다. 생물무기는 재래식 무기에 비해 경제적으로 저렴하고 쉽게 은닉하여 살포할 수 있으며, 살포가 이루어진 후 환자 발생에 있어 시간적으로 차이가 있으므로 초기에 감지하기가 어렵고, 극미량으로 치사량이 되며, 한번 오염되면 스스로 번식·확산하는 특성을 지니고 있다. 또한 생물무기는 폭로시 일정기간의 잠복기가 있어 즉각적으로 증상이 나타나지 않기 때문에 오염지역을 확인하기가 쉽지 않고 감염 사실을 확인했을 때는 이미 넓은 지역, 많은 사람들에게 전파시킨 후일 가능성이 높다. 이러한 생물무기의 특성과 북한 및 이라크를 둘러싼 국제정세, APEC, G20 및 G50과 같은 대규모 행사 개최 등으로 인하여 생물테러 발생 가능성과 우려가 증가하는 실정이므로 현재 우리나라는 생물테러 가능성이 높은 탄저, 두장, 보툴리눔 독소증, 페스트, 바이러스성 출혈열을 법정 전염병으로 지정하여 관리하고 있다.Since the September 2001 terrorist attacks on the World Trade Center in the United States and bioterrorism using anthrax bacteria in mailings, fear and concern about terrorism have spread worldwide and the world is struggling to prepare countermeasures for the protection of its citizens from all over the world. Biological weapons are economically cheaper than conventional weapons, they can be easily concealed and sprayed, and it is difficult to detect in the early days due to the time difference in patient outbreak after spraying, and the lethal dose is extremely small. Once contaminated, · Has the characteristic of spreading. In addition, biological weapons are not easy to identify contaminated areas because they have a latent period of exposure for a certain period of time and do not immediately show signs of infection. When the infection is confirmed, it is likely to have already spread to a large area and many people. The possibility of bioterrorism and concerns are increasing due to the characteristics of these biological weapons, the international situation surrounding North Korea and Iraq, and the large-scale events such as APEC, G20 and G50. Therefore, Korea now has an anthrax, Botulinum toxinosis, pest, and viral hemorrhagic fever have been designated as legal infectious diseases.
나쁜일을 도모하는 개인, 그룹 또는 큰 집단이 충분히 위협적인 병원균들을 무기화할 수 있다는 관점에서 항생제 저항성을 지니는 박테리아로 만들거나 백신을 벗어나는 페스트병원균 또는 백신을 무용지물로 하는 바이러스에 대한 연구 가능성이 증대되고 있다. 또한 고위험병원체의 유전자 변이에 의한 약제내성에 관한 보고들도 꾸준히 이어지고 있어 약제내성 균주를 사용한 생물테러에 신속히 대응하기 위한 약제내성 유전자 변이 신속 검출 기술을 개발하고, 이를 이용하여 치료 약제 선택에 대한 신속한 정보를 제공함으로써 내성주에 의한 대규모 피해 발생을 예방 또는 최소화할 수 있다. 현재 페스트균 치료는 시프로플록사신(ciprofloxacin), 독시사이클린(doxycycline), 페니실린 등과 같은 항생제 사용을 기반으로 하고 있으나, 질병의 기초 진단이 필수적이며 해당 약제에 대한 내성 획득이 문제시 될 수 있다. 자연상태에 존재하는 야생형 페스트균은 아직 시프로플록사신 및 독시사이클린에 대한 내성을 갖고 있다는 보고는 아직 발견되지 않았지만 시험관 내에서 내성균이 유도될 수 있다는 사실이 보고된 바 있으며 항생제 내성이 유도된 페스트균이 생물터러 등에 이용될 경우 심각한 위험성을 갖게 된다.From the viewpoint that individuals, groups, or large groups that are doing bad things can weaponize sufficiently pathogenic pathogens, there is a growing likelihood of research into antibiotic-resistant bacteria, viruses that fade away the vaccine, have. In addition, reports on drug resistance due to gene mutation of high-risk pathogens have been steadily developed. Therefore, we have developed a rapid detection technique for drug resistance gene mutation to promptly respond to bioterrorism using drug-resistant strains, By providing information, it is possible to prevent or minimize the occurrence of large-scale damage caused by impeachment. Currently, the use of antibiotics such as ciprofloxacin, doxycycline, and penicillin is based on the use of antibiotics, but basic diagnosis of disease is essential and resistance to the drug may be a problem. Although it has not yet been found that wild-type pests present in the natural state are resistant to ciprofloxacin and doxycycline, it has been reported that resistant bacteria can be induced in vitro, and antibiotic- And the like.
최근 PNA(peptide nucleic acids)를 이용한 방법인 PNA-매개 PCR 클램핑 (PNA-mediated PCR clamping)이란 방법이 개발되었다. PNA는 Taq DNA 폴리머라제의 엑소뉴클라제(5→3)에 대한 내성을 갖고 DNA의 상보적인 사슬과 강하게 결합할 수 있으며 하나의 염기라도 일치하지 않으면 Tm이 크게 감소하기 때문에 클램프 프라이머(clamp primer)로 적합하다.Recently, PNA-mediated PCR clamping (PNA-mediated PCR clamping), a method using peptide nucleic acids (PNA), has been developed. PNA has resistance to exonuclease (5 → 3) of Taq DNA polymerase and can bind strongly to the complementary chain of DNA. If one base does not coincide, Tm is greatly reduced, so a clamp primer ).
최근에는 야생형에 특이적으로 결합하는 PNA(peptide nucleic acid) 프로브를 이용하여 다량 존재하는 야생형의 증폭을 억제하는 방법으로 돌연변이를 선택적으로 검출하는 PNA 클램핑(clamping) 기술이 개발되었다. PNA는 핵산염기가 인산 결합이 아니라 펩티드 결합으로 연결된 유사 DNA로 1991년에 처음 보고되었다(Nielsen et al., Science, 254:1497-1500, 1991). PNA는 상보적인 염기 서열의 천연 핵산과 혼성화(hybridization) 반응을 일으켜서 겹가닥을 형성한다. 핵산 염기의 수가 같은 경우 PNA/DNA 겹가닥은 DNA/DNA 겹가닥보다, PNA/RNA 겹가닥은 DNA/RNA 겹가닥보다 안정하다. PNA의 기본 골격으로는 N-(2-아미노에틸) 글리신이 아미드 결합에 의해 반복적으로 연결된 것이 가장 흔히 쓰이고, 이 경우 펩티드 핵산의 기본 골격(backbone)은 음전하를 띠는 천연 핵산의 기본 골격과 달리 전기적으로 중성이다. In recent years, a PNA clamping technique has been developed that selectively detects mutations by a method of inhibiting amplification of a wild-type wild-type using a PNA (peptide nucleic acid) probe that specifically binds to a wild-type. PNA was first reported in 1991 as a pseudo-DNA in which the nucleic acid base is linked by a peptide bond rather than a phosphate bond (Nielsen et al., Science, 254: 1497-1500, 1991). PNA forms a double strand by causing a hybridization reaction with a natural nucleic acid of a complementary base sequence. When the number of nucleic acid bases is the same, the PNA / DNA double strand is more stable than the DNA / DNA double strand, and the PNA / RNA double strand is more stable than the DNA / RNA double strand. The basic backbone of peptide nucleic acids is most often used in the case of N- (2-aminoethyl) glycine repeatedly linked by amide bonds as a basic skeleton of PNA. Unlike the basic structure of a negatively charged natural nucleic acid It is electrically neutral.
PNA에 존재하는 4개의 핵산염기(nucleobase)는 DNA의 핵산 염기와 비슷한 공간을 차지하고 핵산 염기 사이의 거리도 천연 핵산의 경우와 거의 같다. PNA는 화학적으로 천연 핵산보다 안정할 뿐 아니라 핵산분해효소(nuclease)나 단백질분해효소(protease)에 의해 분해되지 않아 생물학적으로도 안정하다. PNA는 또한 전기적으로 중성이기 때문에 PNA/DNA, PNA/RNA 겹가닥의 안정성은 염 농도에 영향을 받지 않는다. 이러한 성질 때문에 PNA는 상보적인 핵산 염기 서열을 천연 핵산보다 더 잘 인식할 수 있어서 진단 또는 다른 생물학적, 의학적 목적으로 응용된다. The four nucleobases present in the PNA occupy a space similar to that of the DNA and the distance between the nucleotides is almost the same as that of the native nucleic acid. PNA is chemically more stable than natural nucleic acid, and biologically stable because it is not degraded by nuclease or protease. Since PNA is also electrically neutral, the stability of PNA / DNA, PNA / RNA double strands is not affected by salt concentration. Because of this property, PNAs are better able to recognize complementary nucleic acid sequences than natural nucleic acids and are therefore applicable for diagnostic or other biological and medical purposes.
PNA 클램핑 기술은 상기한 PNA의 장점을 이용하여 PNA 프로브가 완벽하게 결합되면 효소 등이 인지하지 못하여 증폭반응이 일어나지 않고, 점 돌연변이가 있는 경우에는 PNA 프로브가 완벽하게 결합하지 못하기 때문에 증폭반응이 일어나게 되는 원리를 이용하는 방법으로, 야생형에 비해 극소량 존재하는 돌연변이를 빠르고 정확하게 검출할 수 있어 많이 이용되고 있다.The PNA clamping technology utilizes the advantages of the PNA described above, so that when the PNA probe is perfectly coupled, the enzyme does not recognize the amplification reaction, and when the point mutation is present, the PNA probe does not bind perfectly, It is a method that uses the principle that occurs, and it is widely used because it can detect a mutation which exists in a very small amount compared to a wild type, quickly and accurately.
한편, 한국공개특허 제2008-0011257호에서는 '수인성 병원미생물 검출용 키트'이 개시되어 있으나, 본 발명에서와 같이 시프로플록사신 항생제에 대해 내성을 보이는 페스트균 검출을 위한 PNA 프로브 및 이의 용도에 대해서는 밝혀진 바가 전혀 없다.Korean Patent Laid-Open Publication No. 2008-0011257 discloses a kit for detecting microorganisms in a water-borne pathogen. However, PNA probes for detecting pest bacteria resistant to ciprofloxacin antibiotics and their uses have been disclosed in the present invention There is no bar.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 PNA-매개 PCR 클램핑 방법을 적용하여 단일염기돌연변이(point mutation)와 같은 유전자 이상으로 항생제 내성을 나타내는 고위험병원체 페스트균 변이주에 대하여 신속하고 고감도로 검출 가능한 진단 시스템을 개발하고자 하였다. 이를 위해 페스트균 변이주로부터 gyrA 유전자의 특정 부위가 단일돌연변이가 발생하여 시프로플록사신 항생제 내성을 나타내는 것을 처음으로 밝혔으며, 이들 돌연변이가 있는 부위 특이적으로 PNA 프로브를 제조하였다. 상기 PNA 프로브와 본 발명을 통해 선별된 최적 프라이머를 이용하여 PNA 매개 클램핑 실시간 PCR을 수행한 결과를 분석한 결과, 야생주와 변이주에서 변이가 일어나지 않은 유전자에서는 PNA에 의한 블록킹(blocking)으로 더 이상 유전자의 합성이 일어나지 않으나, 변이된 유전자에서는 PNA의 해리현상에 의하여 유전자가 증폭하는 것을 확인하였다. 이를 통해 본 발명에서 개발한 gyrA 유전자 특이적 PNA 프로브 및 프라이머를 이용하여 항생제 내성 페스트균 변이주를 정확하게 진단할 수 있는 것을 확인함으로써, 본 발명을 완성하였다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and it is an object of the present invention to provide a method for rapidly and rapidly obtaining a high-risk pathogen pest mutant strain which shows antibiotic resistance above a gene such as a single base mutation by applying a PNA- And to develop a diagnostic system with high sensitivity. For this purpose, a specific mutation of the gyrA gene from the P. pastoris mutant strain was first reported to show resistance to ciprofloxacin antibiotics, and PNA probes were specifically prepared for these mutant sites. As a result of analyzing the PNA-mediated clamping real-time PCR using the PNA probe and the optimal primer selected by the present invention, it was found that in the wild-type and mutant genes, the PNA- Although the synthesis of the gene did not occur, it was confirmed that the gene was amplified by the dissociation phenomenon of PNA in the mutated gene. As a result, the gyrA Specific PNA probes and primers can be used to accurately diagnose antibiotic-resistant Pseudomonas sp. Strains. Thus, the present invention has been completed.
상기 과제를 해결하기 위해, 본 발명은 서열번호 11의 염기서열로 이루어진 GyrA(DNA gyrase A) 유전자의 241번째 염기서열에 구아닌(G)을 포함하거나 또는 242번째 염기서열에 구아닌(G)을 포함하거나 또는 248번째 염기서열에 구아닌(G)을 포함하거나 또는 249번째 염기서열에 사이토신(C)을 포함하는 염기서열 또는 이의 상보적인 염기서열로 이루어진 시프로플록사신(ciprofloxacin) 항생제에 대해 내성을 보이는 페스트균(Yersinia pestis) 검출을 위한 PNA(Peptide Nucleic Acid) 프로브를 제공한다.In order to solve the above problems, the present invention provides a DNA gyrase A gene comprising the guanine (G) in the 241st nucleotide sequence of GyrA (DNA gyrase A) comprising the nucleotide sequence of SEQ ID NO: 11 or the guanine Or a plasmid that is resistant to ciprofloxacin antibiotics comprising a nucleotide sequence comprising a guanine (G) in the 248th nucleotide sequence or a cytosine (C) in the 249th nucleotide sequence or a complementary base sequence thereof ( Yersinia (PNA) probe for detection of pestis .
또한, 본 발명은 상기의 GyrA(DNA gyrase A) 유전자 특이적 PNA(Peptide Nucleic Acid) 프로브와 GyrA 유전자 특이적 클램핑 프라이머 세트를 포함하는 시프로플록사신(ciprofloxacin) 항생제 내성을 가지는 페스트균(Yersinia pestis) 검출을 위한 PNA 매개 클램핑 실시간 PCR(real-time PCR)용 키트를 제공한다.The invention also plague bacteria (Yersinia with ciprofloxacin (ciprofloxacin) antibiotic resistance, including the above-GyrA (DNA gyrase A) gene-specific PNA (Peptide Nucleic Acid) probes and the GyrA gene-specific primer sets clamping PNA-mediated clamping real-time PCR for pestis detection.
또한, 본 발명은In addition,
상기 GyrA(DNA gyrase A) 유전자 특이적 PNA(Peptide Nucleic Acid) 프로브와 GyrA 유전자 특이적 클램핑 프라이머 세트를 이용하여 대상 페스트균(Yersinia pestis)의 GyrA 유전자에 대해 실시간 PCR(real-time PCR)을 수행하는 단계; 및 Real-time PCR was performed on the GyrA gene of Yersinia pestis using a GyrA (DNA gyrase A) gene-specific PNA (Peptide Nucleic Acid) probe and a GyrA gene-specific clamping primer set ; And
(b) 상기 실시간 PCR에 의한 유전자 증폭 결과를 분석하여 페스트균의 GyrA 유전자의 돌연변이 유무를 결정하는 단계를 포함하는 시프로플록사신(ciprofloxacin) 항생제에 대해 내성을 보이는 페스트균 검출 방법을 제공한다.(b) analyzing the result of gene amplification by the real-time PCR to determine the presence or absence of mutation of the GyrA gene of a P. pastoris microbes, which is resistant to ciprofloxacin antibiotics.
본 발명을 통해 PNA-매개 PCR 클램핑 방법을 적용하여 단일염기돌연변이 (point mutation)와 같은 유전자 이상으로 항생제 내성을 나타내는 페스트균 변이주에 대하여 신속하고 고감도로 검출 가능한 진단 시스템을 제공할 수 있으며, 이를 통해 약제내성 균주를 사용한 생물테러에 신속히 대응하여 대규모 피해발생을 예방 또는 최소화할 수 있을 것으로 기대된다.By applying the PNA-mediated PCR clamping method according to the present invention, it is possible to provide a diagnostic system capable of detecting rapidly and highly sensitively a mutant strain of Pest fungus showing resistance to antibiotics above a gene such as a single base mutation. It is anticipated that rapid response to bioterrorism using drug-resistant strains will prevent or minimize the occurrence of large-scale damage.
도 1은 페스트균 gyrA 유전자의 변이 진단을 위해 페스트균 실험군(wild type DNA)과 대조군(mutant type DNA) 샘플을 대상으로 본 발명에서 선별된 PNA2, 프라이머(F/R)/프로브(P)를 이용하여 PNA 매개 실시간 PCR을 수행한 결과를 나타낸다. (A)는 F2/R1/P3, (B)는 F2/R2/P3, (C)는 F2/R3/P3, (D)는 F2/R1/P2 조합으로 5회 이상의 반복 실험 후 선별함.
도 2는 페스트균의 gyrA 유전자 대상으로 페스트균의 PNA 매개 클램핑 실시간 PCR로 확인한 스탠다드 커브를 나타낸다.Figure 1 is a Yersinia pestis group (wild type DNA) and a PNA2, screening in the present invention to target the control group (mutant type DNA) samples primer (F / R) / probe (P) for mutation detection of Yersinia pestis gyrA gene The results are shown in Fig. (A) is selected after F2 / R1 / P3, (B) F2 / R2 / P3, (C) F2 / R3 / P3 and (D)
Fig. 2 shows a standard curve confirmed by PNA-mediated clamping real-time PCR of pest bacteria against the gyrA gene target of P. aeruginosa.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 11의 염기서열로 이루어진 GyrA(DNA gyrase A) 유전자의 241번째 염기서열에 구아닌(G)을 포함하거나 또는 242번째 염기서열에 구아닌(G)을 포함하거나 또는 248번째 염기서열에 구아닌(G)을 포함하거나 또는 249번째 염기서열에 사이토신(C)을 포함하는 염기서열 또는 이의 상보적인 염기서열로 이루어진 시프로플록사신(ciprofloxacin) 항생제에 대해 내성을 보이는 페스트균(Yersinia pestis) 검출을 위한 PNA(Peptide Nucleic Acid) 프로브를 제공한다.In order to accomplish the object of the present invention, the present invention provides a GyrA (DNA gyrase A) gene comprising the nucleotide sequence of SEQ ID NO: 11, which contains guanine (G) in the 241st nucleotide sequence or guanine (G) Or a ciprofloxacin antibiotic consisting of a nucleotide sequence comprising a guanine (G) in the 248th nucleotide sequence or a cytosine (C) in the 249th nucleotide sequence, or a complementary base sequence thereof. (Peptide Nucleic Acid) probe for detection of Yersinia pestis .
본 발명의 일 구현 예에 따른 PNA 프로브에서, 상기 GyrA 유전자 특이적 PNA 프로브는 서열번호 11의 염기서열로 이루어진 GyrA(DNA gyrase A) 유전자의 241번째 염기서열에 구아닌(G)을 포함하거나 또는 242번째 염기서열에 구아닌(G)을 포함하거나 또는 248번째 염기서열에 구아닌(G)을 포함하거나 또는 249번째 염기서열에 사이토신(C)을 포함하는 15~25개 염기서열로 이루어질 수 있고, 바람직하게는 서열번호 10의 염기서열 또는 이의 상보적인 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the PNA probe according to an embodiment of the present invention, the GyrA gene-specific PNA probe comprises guanine (G) in the 241th base sequence of the GyrA (DNA gyrase A) gene consisting of the nucleotide sequence of SEQ ID NO: (G) in the second base sequence or guanine (G) in the 248th base sequence, or 15 to 25 base sequences including the cytosine (C) in the 249th base sequence, and preferably But is not limited to, the nucleotide sequence of SEQ ID NO: 10 or a complementary base sequence thereof.
또한, 본 발명은 상기 GyrA(DNA gyrase A) 유전자 특이적 PNA(Peptide Nucleic Acid) 프로브와 GyrA 유전자 특이적 클램핑 프라이머 세트를 포함하는 시프로플록사신(ciprofloxacin) 항생제 내성을 가지는 페스트균(Yersinia pestis) 검출을 위한 PNA 매개 클램핑 실시간 PCR(real-time PCR)용 키트를 제공한다.The present invention also provides a method for detecting Yersinia pestis having antibiotic resistance to ciprofloxacin comprising the GyrA (DNA gyrase A) gene-specific PNA (Peptide Nucleic Acid) probe and the GyrA gene-specific clamping primer set A kit for PNA-mediated clamping real-time PCR is provided.
본 발명의 일 구현 예에 따른 PNA 매개 클램핑 실시간 PCR용 키트에서, 상기 GyrA 유전자 특이적 클램핑 프라이머 세트는 서열번호 2 및 서열번호 3의 염기서열로 이루어진 프라이머 세트일 수 있으나, 이에 제한되지 않는다. 상기 GyrA 유전자 특이적 클램핑 프라이머 세트는 실시간 PCR 그래프, 형광의 발색 크기와 PCR 산물의 크기 등을 확인하여 최선의 조합을 선택했을 뿐, 상기 프라이머 세트로 한정되지는 않는다.In the kit for PNA-mediated clamping real-time PCR according to an embodiment of the present invention, the GyrA gene-specific clamping primer set may be, but not limited to, a primer set consisting of the nucleotide sequences of SEQ ID NOS: 2 and 3. The GyrA The set of gene-specific clamping primers is not limited to the above-described primer set, only the best combination is selected by checking the real time PCR graph, the fluorescence color size and the size of the PCR product.
또한, 본 발명은 In addition,
(a) 상기 GyrA(DNA gyrase A) 유전자 특이적 PNA(Peptide Nucleic Acid) 프로브와 GyrA 유전자 특이적 클램핑 프라이머 세트를 이용하여 대상 페스트균(Yersinia pestis)의 GyrA 유전자에 대해 실시간 PCR(real-time PCR)을 수행하는 단계; 및 (a) Real-time PCR (real-time PCR) of the GyrA gene of Yersinia pestis using a GyrA (DNA gyrase A) gene-specific PNA (Peptide Nucleic Acid) probe and a GyrA gene-specific clamping primer set ); And
(b) 상기 실시간 PCR에 의한 유전자 증폭 결과를 분석하여 페스트균의 GyrA 유전자의 돌연변이 유무를 결정하는 단계를 포함하는 시프로플록사신(ciprofloxacin) 항생제에 대해 내성을 보이는 페스트균 검출 방법을 제공한다.(b) analyzing the result of gene amplification by the real-time PCR to determine the presence or absence of mutation of the GyrA gene of a P. pastoris microbes, which is resistant to ciprofloxacin antibiotics.
본 발명의 상기 방법은 PNA 매개 클램핑 실시간 PCR을 통해, PNA (클램핑) 프로브를 이용하여 야생형과의 증폭 사이클 차이만으로 항생제에 대해 내성을 보이는 페스트균을 검출할 수 있고, 다량의 야생형의 증폭을 완전하게 저해하여 변이형의 검출 민감도를 향상시킴으로써 극소량 섞여있는 돌연변이를 높은 민감도로 신속 정확하게 검출할 수 있다.
The method of the present invention can detect pest bacteria resistant to antibiotics only by amplification cycle difference with wild type using PNA (clamping) probe through PNA-mediated clamping real-time PCR, and can detect a large amount of wild-type amplification , Thereby improving the detection sensitivity of the mutant, thereby enabling rapid and accurate detection of a mutated mutant having a very small amount with high sensitivity.
이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.
실시예Example 1. 페스트균에서의 대상 유전자 선별 1. Screening of target genes in Pest bacteria
페스트(Yersinia pestis) 게놈 프로젝트(genome project)에 의한 NCBI 데이터베이스의 유전자의 염기서열 정렬로 비교 분석하였다. 페스트균에서의 항생제 타켓 유전자인 시프로플록사신(ciprofloxacin) 항생제 타켓 박테리아 타입 Ⅱ 효소(DNA gyrase(GyrA와 GyrB), 토포이소머라제 Ⅳ(ParC와 ParE))을 확인하여 염기서열을 분석하였다. 시프로플록사신 저항성은 효소 활성 자리 주변의 아미노산 서열의 변화에 의한 것으로 QRDR(quinolone resistance-determining region)의 유전자의 염기서열을 확인하고 일반균과 항생제 내성을 지닌 유전자의 염기서열 변이를 확인하였다. Yersinia pestis ) genome project in the nucleotide sequence of the NCBI database. The nucleotide sequences of ciprofloxacin antibiotics target bacteria type Ⅱ enzyme (DNA gyrase (GyrA and GyrB), topoisomerase IV (ParC and ParE)), which is an antibiotic target gene in P. aeruginosa, were analyzed. The ciprofloxacin resistance was determined by the change of the amino acid sequence around the active site of the enzyme, confirming the nucleotide sequence of the quinolone resistance-determining region (QRDR) gene and confirming the nucleotide sequence variation of the gene having general and antibiotic resistance.
페스트균의 QRDR의 유전자 염기서열 및 아미노산 서열 확인하고 기 보고된 논문의 항생제 내성 변이주의 염기서열과 비교하여 gyrA 유전자에 염기서열 변이가 있는 것을 확인하였다. 돌연변이 염기서열은 242번째 염기서열이 G에서 A으로, 241번째 염기서열이 G에서 T으로 248번째 염기서열이 G에서 T로 249번째 염기서열이 C에서 A/G으로 변화되었다. 그 중에서 249번째 염기서열이 C에서 G으로 변화된 것은 C에서 A로 변화된 것과 동일한 아미노산의 변이가 확인되었다. 위에서 확인된 유전자들에 대하여 NCBI 유전자 데이터베이스를 이용하여 페스트균의 GyrA 유전자의 염기서열 및 아미노산의 서열을 확인하고 정렬 분석으로 각 타입별 유전자의 염기서열을 확인하고 기 보고된 대상 유전자의 염기서열 및 단백질 서열을 비교 분석하였다.The gene sequence and amino acid sequence of the QRDR of P. pasty were confirmed and compared with the nucleotide sequence of the antibiotic resistance mutant of the reported papers, it was confirmed that there was a nucleotide sequence variation in the gyrA gene. The 248th nucleotide sequence was changed from G to A, the 241st nucleotide sequence was changed from G to T, the 248th nucleotide sequence was changed from G to T, and the 249th nucleotide sequence was changed from C to A / G in the mutant nucleotide sequence. Among them, the 249th nucleotide sequence was changed from C to G, and the same amino acid sequence as that from C to A was confirmed. For the genes identified above, the nucleotide sequence and amino acid sequence of the GyrA gene of P. aeruginosa were confirmed using the NCBI gene database, and the nucleotide sequence of each type of gene was confirmed by alignment analysis. Protein sequences were compared and analyzed.
선별된 유전자는 실험군과 변형된 염기서열을 지닌 대조군 올리고핵산을 합성하여 대장균(E. coil) 균주에 클로닝하여 PCR 주형으로 사용하였다. 또한 실험군 유전자의 염기서열은 각 유전자의 염기서열 변이를 모두 포함하여 설계하였으며 그 변이와 합성된 유전자를 플라스미드에 클로닝하여 아래 표 2과 같이 제작하였다.The selection gene by a control oligonucleotide having a group with a modified nucleotide sequence of the nucleic acid synthesis were cloned into E. coli (E. coil) strain was used as a template for PCR. In addition, the nucleotide sequence of the experimental group gene was designed to include all nucleotide sequence variations of each gene, and the mutated and synthesized genes were cloned into a plasmid and constructed as shown in Table 2 below.
(크기 bp)Insertion gene
(Size bp)
(nt1-660)
(660bp)gyrAW
(nt1-660)
(660 bp)
(nt1-660)
(660bp)gyrAM
(nt1-660)
(660 bp)
G242A
G248T
C249A G241T
G242A
G248T
C249A
실시예Example 2. 실시간 PCR( 2. Real-time PCR ( RealReal -- timetime PCR)PCR) 조건 최적화 Condition optimization
각 세균의 선별된 유전자별 특이 프라이머와 프로브를 3셋트 정도를 디자인하여 각 셋트별 반응 농도, 반응 온도, 반응 시간, 합성 곡선 등을 확인하여 실시간 PCR 조건을 최적화하였다. 타겟 유전자에서 진단에 사용할 부위를 포함하는 프라이머를 디자인하고 conventional PCR을 통한 유전자를 합성하고 확인하고자 하였다. 각 유전자별 디자인한 프라이머의 염기서열은 표 3에 나타내었다. 정방향/역방향 프라이머 조합에 따라 유전자 합성 크기가 약 150-600bp의 크기로 다양하게 증폭될 수 있도록 하였으며, conventional PCR로 이 다양한 크기의 PCR 산물을 합성할 수 있는 동일한 조건을 선별하고자 하였다. 각 프라이머의 조합 및 그에 따른 PCR 합성 유전자의 크기는 아래 표 3 및 표 4에 나타내었다.Three sets of specific primers and probes were selected for each gene of each bacterium, and real - time PCR conditions were optimized by checking the reaction concentration, reaction temperature, reaction time, and synthesis curve for each set. We designed a primer containing a site for diagnosis in the target gene and tried to synthesize and confirm the gene through conventional PCR. The nucleotide sequences of primers designed for each gene are shown in Table 3. In order to amplify the size of gene synthesis to about 150-600 bp according to the combination of forward / reverse primer, we tried to select the same conditions for synthesizing these various sizes of PCR products by conventional PCR. The combination of each primer and thus the size of the PCR synthetic gene is shown in Table 3 and Table 4 below.
(mer)size
(mer)
(%)GC
(%)
ForwardGyrA
Forward
ReverseGyrA
Reverse
프라이머가 주형에 결합하는 온도를 결정하기 위하여 페스트균의 GyrA 유전자를 이용하여 50-60℃의 gradient PCR 수행하였을 때, 50-60℃의 온도와 동일한 반응 시간에서 PCR 합성이 원활히 이루어지는 것을 확인하였으며, PCR 합성은 산물은 2% 아가로스 겔을 이용한 전기영동으로 확인하였다.When GyrA gene of Pest bacterium was used to determine the temperature at which the primer binds to the template, gradient PCR at 50-60 ° C was performed to confirm that the PCR reaction proceeded at the same reaction time as the temperature of 50-60 ° C, PCR products were confirmed by electrophoresis using 2% agarose gel.
위의 실험 결과 conventional PCR은 어닐링 온도가 50-60℃에서 각 유전자의 PCR 반응이 원활히 이루어지는 것을 확인하였으며, 55℃에서 대조군과 실험군 유전자를 이용하여 conventional PCR 반응을 수행하여 대조군과 실험군의 PCR 산물을 비교하였을 때 대조군에서는 단일 밴드로 확인되었던 것이 실험군에서는 단일 이상의 밴드가 확인되는 프라이머 세트가 확인되었다. 이런 비특이적 PCR 합성 밴드가 확인되는 프라이머 세트는 실시간 PCR의 후보군에서 제외하였다. 따라서 선별된 conventional PCR의 조건은 다음 표 5와 같다.As a result of the above experiment, conventional PCR showed that the PCR reaction of each gene was smooth at annealing temperature of 50-60 ℃, and PCR reaction product of control group and experimental group was performed at 55 ℃ using control and experiment group genes. In comparison, a single set of bands was identified in the control group, and a set of primers in which a single or more bands were identified in the experimental group. The primer sets in which such nonspecific PCR synthesis bands were identified were excluded from the candidates for real-time PCR. Therefore, the selected conventional PCR conditions are shown in Table 5 below.
선별된 conventional PCR의 조건과 상기 표 4의 프라이머 조합에 CYBR Taq-polymerase를 이용하여 실시간 PCR을 수행하였다. 위의 프라이머의 조합을 기준으로 각 유전자에서 프로브 위치를 선정하여 하기 표 6과 같이 디자인하였으며 실시간 PCR 기기를 고려하여 형광으로는 FAM, HEX, Cy5를 선택하였다.Real-time PCR was performed using CYBR Taq-polymerase in combination with the selected conventional PCR conditions and the primer combinations shown in Table 4 above. Based on the combination of the above primers, probe positions in each gene were selected as shown in Table 6, and FAM, HEX and Cy5 were selected as fluorescence in consideration of real-time PCR instrument.
(mer)size
(mer)
(%)GC
(%)
각 유전자의 프라이머 조합과 위치에 따른 프로브를 조합하여 conventional PCR에서 확인된 어닐링 온도인 50℃와 55℃에서 각각 실시간 PCR을 수행하였다. 각각의 유전자의 실험군과 대조군이 되는 주형 DNA는 농도를 측정하고, 다시 실시간 PCR 반응을 통하여 실험군과 대조군의 Cp값으로 보정 후에 실험에 사용하였다.Real-time PCR was performed at annealing temperatures of 50 ° C and 55 ° C, respectively, which were confirmed by conventional PCR using combinations of primers and probes according to position of each gene. The concentration of the template DNA in the experimental group and the control group of each gene was measured, and the Cp value of the experimental group and the control group was corrected after real-time PCR.
어닐링 온도인 50℃와 55℃에서 각각 실시간 PCR을 수행하여 50℃에서는 유전자의 합성이 진행되지만 프로브가 유전자 주형에 결합하였다가 endo-nuclease에 의한 가수분해로 나타내는 형광 값을 보이지 않았다. 55℃의 경우 유전자 합성과 형광 값을 나타내는 것을 확인할 수 있었다. 따라서 실시간 PCR의 프라이머 및 프로브 어닐링 온도는 55℃로 결정하였다.
Real-time PCR was carried out at annealing temperatures of 50 ° C and 55 ° C, respectively. At 50 ° C, the synthesis of the gene proceeded, but the probe bound to the gene template and showed no fluorescence as indicated by hydrolysis by endo-nuclease. 55 ℃ showed gene synthesis and fluorescence value. Therefore, the primer and probe annealing temperature of real-time PCR was determined to be 55 ° C.
실시예Example 3. 3. PNAPNA 매개 medium 클램핑Clamping 실시간 real time PCRPCR 을 이용하기 위한 To use PNAPNA 의 설계Of design
본 실험은 위에서 결정한 실시간 PCR 조건을 이용하여 대조군 DNA와 유전자 변이 DNA를 구분할 수 있는 PNA를 디자인하여 대조군에서는 유전자 주형에 PNA가 완전한 상보결합으로 클램핑이 작용하여 더 이상 PCR 합성이 진행되지 않으며, 변이주의 경우 PNA가 유전자 주형에 결합하였다가 하나의 염기서열이라도 일치하지 않으면 Tm이 크게 감소하여 유전자 주형에서 떨어져 PCR 합성이 진행되는 성질을 이용하여 유전자의 염기서열 변이를 확인하고자 하였다.In this experiment, PNA designed to distinguish the control DNA from the genetic mutation DNA was designed using the real-time PCR conditions determined above. In the control group, since the clamping was performed due to the complete complementary binding of PNA to the gene template, In the case of PNA binding to the gene template, if the nucleotide sequence does not match, the Tm is greatly decreased and the PCR synthesis proceeds from the gene template to identify the nucleotide sequence variation of the gene.
페스트균의 타겟 유전자에서 염기서열 변이를 포함하여 PNA를 디자인하였으며 주)PANAGENE을 통하여 합성하였다. 일반적인 PNA는 약 18mer 이내의 길이로 합성하는데 이때 변이를 포함하는 염기서열이 PNA의 중앙에 놓이도록 디자인하는 것을 추천한다. 또한 동일한 염기서열의 PNA도 정방향 및 역방향 형태로 합성하여 반응에 보다 최적화된 PNA를 선별하고자 하였다. 합성된 PNA는 아래의 표 7과 같다.PNA was designed with the base sequence mutation in the target gene of P. pastoris and synthesized through PANAGENE. Typical PNAs are synthesized to a length within about 18 mer, and it is recommended that the base sequence containing the mutations be placed in the center of the PNA. In addition, PNAs of the same base sequence were also synthesized in both forward and reverse directions to select more optimized PNAs for the reaction. The synthesized PNA is shown in Table 7 below.
(mer)size
(mer)
(%)GC
(%)
실시예Example 4. 4. PNAPNA 매개 medium 클램핑Clamping 실시간 real time PCRPCR 의 최적 조건 Optimal condition of
PNA는 반응액에 50pmole을 기본적으로 첨가하여 반응하였다. 본 실험의 Taq-polymerase의 경우에는 바이오니아사의 AccuPower Plus DualStar qPCR PreMix를 사용하였다. 그 외 반응 온도에 따른 시간은 아직 적정 프라이머가 결정되지 않았으므로 최대 600bp의 유전자의 합성에도 충분한 시간(약 20초)을 선정하고, 추후 적정 프라이머 및 프로브가 결정된 후 합성 시간을 변경하고자 하였다. PNA was added to the reaction solution in an amount of 50 pmole. For the Taq polymerase of this experiment, AccuPower Plus DualStar qPCR PreMix from Bioneer was used. Since the appropriate primers were not yet determined according to the reaction temperature, a sufficient time (about 20 seconds) was selected for the synthesis of a gene having a maximum of 600 bp, and the synthesis time was changed after the determination of appropriate primers and probes.
프라이머 및 프로브의 농도는 최종 10pmole을 유지하였으며, 각각의 DNA는 플라즈미드 분리 후에 농도를 측정하여 10ng/ul로 희석하여 사용하였다. PNA 첨가한 실시간 PCR의 반응온도는 유전자 주형의 결합 온도인 70℃에 맞추어 수행하였으며, 프라이머와 유전자 주형의 결합온도 역시 55℃에서 시작하였다. PNA를 섞어준 실시간 PCR의 혼합 조건은 하기 표 8과 같다.The final concentrations of primers and probes were maintained at 10 pmole, and each DNA was diluted to 10 ng / ul by measuring the concentration after plasmid isolation. The reaction temperature of PNA-added real-time PCR was adjusted to 70 ° C, the binding temperature of the gene template, and the binding temperature of the primer and the gene template also started at 55 ° C. The mixing conditions of real-time PCR mixed with PNA are shown in Table 8 below.
대조군 유전자에 PNA를 첨가한 반응과 첨가하지 않은 반응을 비교하였을 때 PNA가 첨가되어 클램프로의 역할을 수행하는 반응값(Cp값)이 첨가되지 않은 반응값에 비해 높은 것이 확인되었으며 그래프 상으로도 오른쪽으로 쉬프트(shift)되는 것이 확인되었다. 또한 PNA의 결합온도를 68℃로 변경하였을 때에도 반응값의 차이가 70℃에 비해 크지 않은 것을 확인하였으며 처음 반응값(Cp)이 3~5 사이클 정도 늦게 도출되는 것을 확인하였다. 프라이머의 유전자 주형에 결합하는 온도는 55℃가 낮다는 자문에 따라 60℃로 변경하여 PCR 반응을 수행하였으나 반응의 결과값이 떨어지는 것을 확인하여 원래의 결합온도가 최적의 조건임을 확인할 수 있었다. 따라서 다음에 진행되는 모든 PNA 매개 클램핑 실시간 PCR 경우 PNA의 결합온도는 70℃로 프라이머의 유전자 주형과의 결합온도는 55℃를 기본 조건으로 다음 표 9와 같이 진행하였다.Comparing the reaction with and without PNA added to the control gene, it was confirmed that the reaction value (Cp value) that performs the role of clamping by adding PNA was higher than the reaction value without addition, And shifted to the right. Also, when the PNA binding temperature was changed to 68 ° C, it was confirmed that the difference in reaction value was not greater than 70 ° C, and it was confirmed that the initial reaction value (Cp) was delayed by about 3 to 5 cycles. PCR was carried out by changing the temperature to 60 ° C according to the advice that the temperature to bind to the primer's gene template was 55 ° C. However, it was confirmed that the value of the reaction was lowered, and it was confirmed that the original binding temperature was the optimal condition. Therefore, all PNA-mediated clamping real-time PCR in the following cases was carried out at a binding temperature of 70 ° C and a binding temperature of the primer with the gene template of 55 ° C under the basic conditions as shown in Table 9 below.
일반화된 PNA 매개 클램핑 실시간 PCR 조건을 사용하여 유전자 변이를 선별하기 위한 최적의 PNA(directive/competitive PNA), 프라이머 및 프로브를 선별하기 아래 표 10과 같은 조합으로 실시간 중합효소 연쇄반응을 수행하였다.Generalized PNA-Mediated Clamping Real-time PCR was performed using the combination of directive / competitive PNAs, primers, and probes for screening gene mutations using real-time PCR conditions as shown in Table 10 below.
실시예Example 5. 페스트균의 5. Pest fungus QRDRQRDR 관련 유전자 구분을 위해 For related gene segmentation PNAPNA 매개 medium 클램핑Clamping 실시간 real time PCRPCR 에 이용될 최적의 Optimal for use in 프라이머primer , , 프로브Probe 및 And PNAPNA 의 선별Selection of
페스트균의 gyrA 유전자의 프라이머와 프로브의 조합이 13개로 PNA를 포함하여 26개의 경우의 수가 도출되었다. 26개의 조합 중에서 PNA에 대한 결과를 분석하면 PNA1(forward) 및 PNA2(reverse)를 비교하면 PNA1 및 PNA2에서 돌연변이 유전자의 반응값이 일반적인 유전자의 반응값 보다 낮은 것으로 확인되었으나 PNA2의 경우 돌연변이 염기서열과 일반 염기서열의 반응값의 차이가 더 높으므로 PNA2가 PNA1 보다 안정적으로 클램프 역할을 하는 것으로 확인되어 PNA2을 선별하였다. 또한 프라이머와 프로브의 조합은 F2/R1/P3〉F2/R2/P3〉F2/R3/P3〉F2/R1/P2의 순으로 반응값의 차이가 구별되는 것을 확인되어 선별하였다(도 1).Thirteen combinations of primers and probes of the gyrA gene of P. aeruginosa resulted in the number of 26 cases including PNA. Among the 26 combinations, the results for PNA were analyzed. When the PNA1 (forward) and PNA2 (reverse) were compared, it was found that the reaction value of the mutant gene in PNA1 and PNA2 was lower than that of the normal gene. In the case of PNA2, PNA2 was selected because it was confirmed that PNA2 plays a more stable clamp than PNA1 because the difference in the reaction value of the common nucleotide sequence is higher. Also, the combination of the primer and the probe was confirmed by distinguishing the difference of the reaction values in the order of F2 / R1 / P3> F2 / R2 / P3> F2 / R3 / P3> F2 / R1 / P2 (FIG.
따라서, 페스트균의 QRDR 관련 유전자 구분을 위한 프라이머, 프로브 및 PNA의 조합과 최종 PNA 매개 클램핑 실시간 PCR 조건을 정리하면 아래의 표 11과 같다.Therefore, the combination of primers, probes, and PNAs for identifying QRDR-related genes in P. aeruginosa and real-time PCR conditions for final PNA-mediated clamping are summarized in Table 11 below.
(mer)size
(mer)
(%)GC
(%)
GyrAYP-
GyrA
실시예Example 6. 본 발명에서 개발한 6. In the present invention, PNAPNA 매개 medium 클램핑Clamping 실시간 PCR( Real-time PCR ( PNAPNA -- mediatedmediated clamping clamping realreal -- timetime PCRPCR ) 최적 조건을 활용한 약제내성 고위험 병원체 페스트균의 선별Selection of drug-resistant high-risk pathogen bacterium using optimal conditions
PNA 매개 클램핑 실시간 PCR법을 이용한 페스트균의 약제내성 유전자 변이 검출 시스템 구축을 위하여 본 발명에서 선별된 항생제 관련 유전자의 프라이머, 프로브 및 PNA로 PNA 매개 클램핑 실시간 PCR를 이용하여 실제 페스트균을 이용한 약제 내성 페스트균의 검출 여부를 확인하고자 하였으나 국내에 변이 페스트균의 부재와 형질전환을 이용한 고위험병원체의 약재내성 변이주의 생성은 국제적인 협약 및 제한사항으로 인하여 수행하지 못하였다.PNA-mediated Clamping To construct a drug resistance gene mutation detection system of Pest bacteria using real-time PCR method, PNA-mediated clamping real-time PCR with primers, probes and PNAs of antibiotic-associated genes selected in the present invention was used to detect drug resistance However, the absence of mutant pest bacteria in Korea and the generation of drug-resistant mutants of high-risk pathogens using transfection have not been achieved due to international conventions and restrictions.
따라서, 본 발명의 페스트균의 유전자별 실험군(wild type DNA)과 대조군(mutant type DNA) DNA를 표 2에 기재된 변형된 염기서열을 지닌 플라스미드 및 야생형 염기서열을 지닌 플라스미드를 주형으로 사용하여 실제화된 PNA 매개 클램핑 실시간 PCR법의 검출 한계 및 민감도를 확인하기 위하여 각 유전자의 스탠다드 커브 및 카피 수를 계산하였다. 페스트균의 유전자별 실험군과 대조군 DNA 용액을 10ng으로 농도를 맞추고 이것을 단계별 희석하여 검출 가능 농도를 확인하였다(단계별 희석은 1:10).Therefore, the wild-type DNA and the control (mutant type DNA) DNA of the yeast strain of the present invention can be used as a template using the plasmid having the modified base sequence shown in Table 2 and the plasmid having the wild type sequence as the template Standard curve and copy number of each gene were calculated to confirm detection limit and sensitivity of PNA-mediated clamping real-time PCR method. The concentration of the test DNA in the experimental group and the control DNA solution was adjusted to 10 ng and the detectable concentration was determined by stepwise dilution (stepwise dilution was 1:10).
유전자를 희석하여 PNA 매개 클램핑 실시간 PCR법을 45회로 수행하면 돌연변이를 포함하는 유전자의 반응값이 진행되고 돌연변이를 포함하지 않은 유전자는 PNA의 클램프 역할에 의하여 돌연변이를 포함하는 유전자에 비해 약 10회 후에 반응 값이 나타나게 된다(도 2). 따라서 유전자의 농도가 높을 경우 반응값이 낮은 사이클에서 나타나므로 돌연변이를 포함하지 않은 야생형의 유전자의 반응값도 빠르게 나타나게 된다. 페스트균의 gyrA 유전자의 야생형 및 돌연변이주의 PNA 매개 클램핑 실시간 PCR법에 의한 변이의 검출 최소 농도는 약 0.000001ng 정도로, 이 농도에서 돌연변이 유전자에서는 반응이 일어나지만 대조군에서는 반응이 일어나지 않으므로 서로 비교하기 편리한 이점이 있다. 그러나 전체 반응 사이클 수가 감소하게 되면 감별 한계에 도달하므로 고려하여야 한다.After diluting the gene and performing PNA-mediated clamping real-time PCR for 45 cycles, the reaction value of the mutation-containing gene progressed and the mutant-free gene was amplified about 10 times The reaction value is displayed (FIG. 2). Therefore, when the concentration of the gene is high, the reaction value appears in a low cycle, so that the response value of the wild type gene that does not include the mutation also appears rapidly. Pest The minimum concentration of the mutation detected by the real-time PCR method of PNA-mediated clamping of the wild type and mutation of the gyrA gene is about 0.000001 ng. At this concentration, the reaction occurs in the mutant gene but the reaction does not occur in the control group. However, as the total number of reaction cycles decreases, the differential limit is reached and should be considered.
<110> The Armed Forces Medical Command <120> PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof <130> PN15276 <160> 11 <170> KoPatentIn <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgtgtagtcg gggacgttat 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gcgtactgtt tgcgatgaat 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgctaacaat tcgtgagcaa t 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ccagcatata gcgcagtgag 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 atcgacggaa ccgaagttac 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 6 gcgatgcgtt ataccgaaat 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 7 agcgcggtct acgacactat 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 8 cgtgtagtcg gggacgttat 20 <210> 9 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 9 gcatggtgac agcgcg 16 <210> 10 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 10 cgcgctgtca ccatgc 16 <210> 11 <211> 2676 <212> DNA <213> Yersinia pestis <400> 11 atgagcgacc ttgccagaga aataacaccg gtcaacatcg aggaagagct gaaaagctcc 60 tatctggatt atgcgatgtc cgttattgtc ggacgtgcgt taccagatgt ccgtgatgga 120 ctgaaaccgg tgcaccgtcg cgtactgttt gcgatgaatg tactgggtaa tgactggaat 180 aaaccataca aaaaatcggc ccgtgtagtc ggggacgtta tcggtaaata ccacccgcat 240 ggtgacagcg cggtctacga cactatcgtg cgtatggccc agccgttctc actgcgctat 300 atgctggtgg atgggcaggg taacttcggt tccgtcgatg gtgactccgc cgcggcgatg 360 cgttataccg aaatccgtat gtctaaaatt gctcacgaat tgttagcgga tttagaaaaa 420 gataccgttg acttcgtgcc taactatgat ggtacggaac aaattccggc tgttatgccg 480 accagaatcc ctaacctgct ggtaaacggt tcgtcgggta ttgcggtagg gatggcaacc 540 aatattccgc cacataatct ttctgaggtt attgatggct gtctggctta tatagaagat 600 gaaaacatca gcattgaagg gctgatggag tatatccctg gcccagactt cccaacagca 660 gccattatta atggccgccg tggtattgaa gaggcttatc gtactggtcg cggtaaggtc 720 tatatccgcg cacgtgctga agtcgaagcg gatgccaaaa cgggccgtga aaccattatt 780 gttcatgaga tcccgtatca ggtgaacaaa gcacggttga ttgagaaaat cgccgagctg 840 gtaaaagaaa aacgtgtcga aggcatcagc gcgttacgcg atgagtctga taaagacggc 900 atgcgcatcg tgattgaaat caaacgtgat gcggtcgggg aagtggtgct gaataacctc 960 tactctctga cacaattgca ggtgactttc ggtatcaata tggtggcctt gtctcagggg 1020 caaccgaagc tgcttaacct gaaagacatt ctggttgctt ttgttcgtca ccgtcgtgaa 1080 gtggtgactc gccgtaccat ttttgaactg cgtaaagcac gtgatcgcgc ccatatcctt 1140 gaagcgttgg cgattgcact ggctaacatt gatccgatta tcgaattgat tcgccgtgca 1200 tcgacccctg cggaagcaaa agccggtttg attgccagtc cttgggagtt aggtaacgtt 1260 gcttccatgc tggaacgtgc tggtgatgac gcggcccgcc ctgagtggct ggaagcggaa 1320 tttggtatcc gtgacggtaa atattacctt accgagcaac aggctcaggc tattttggat 1380 ctgcgtttgc agaaactgac aggtctggag catgagaaac tgctggatga gtataaagag 1440 ctgctcacct taattggcga gctgatcttt attctagaaa atccggatcg cctgatggag 1500 gttatccgcg aagaattagt ggcgatcaaa gagcaatata acgatcttcg tcgcactgag 1560 atcaccgcga atacctctga tatcaatatt gaagacctga ttaatcaaga agatgtggtt 1620 gtgacgttgt cccatcaggg ctacgtcaaa taccagccgt tgagtgatta cgaagctcag 1680 cgtcgtggtg gtaaaggtaa atctgctgca cgtatcaaag aagaagactt tattgatcgc 1740 ctgctcgttg ccaataccca cgataccatc ttgtgcttct ccagccgtgg ccgtctctat 1800 tggatgaagg tctatcaact gccggaagcc agccgtgggg ctcgtggccg tcccatcgtc 1860 aacttgttgc cgcttgagcc aaatgagcgt attaccgcca ttctgcctgt gcgcgaatat 1920 gaagaaggct gtcatgtctt tatggctacc gccagcggta ctgtgaagaa aacggcattg 1980 acggagttca gtcgcccacg tagcgccggt attatcgccg ttaatttgaa cgaaggtgat 2040 gagcttatcg gtgtggatct gacggatggc agcaatgaag ttatgctgtt ctcagcattg 2100 ggtaaagtgg ttcgtttccc agaagggcag gttcgctcta tgggccgtac cgcaaccggt 2160 gtccgtggga tcaacctcaa tggcgatgat cgggttattt ctctgatcat tcctcgtggt 2220 gatggtgaaa tcctgaccgt aactgaaaac ggttatggta agcgtactgc agtggcagaa 2280 tatccaacca agtcccgtgc gactcagggg gttatctcca ttaaagtcag tgagcgtaat 2340 ggtaaggttg tcggtgctgt tcaagttgca ccaactgacc aaatcatgat gatcactgat 2400 gctggcacac tggtacgtac tcgcgtatcc gaagtgagtg tcgtagggcg taatacccaa 2460 ggtgtgaccc tgatccgtac cgcagaagat gaacatgttg ttggtttgca acgtgtcgct 2520 gaacctgaag aggatgatga tatccttgat ggcgaatcat cagaaggtga agagggcagc 2580 gaagaaaacg cggcactaaa tgcaccatca gatgatgttg ccgatgaaga cactgatgca 2640 gaagacgaca ctgatgtaga agacgacaac gcataa 2676 <110> The Armed Forces Medical Command <120> PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof <130> PN15276 <160> 11 <170> KoPatentin <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cgtgtagtcg gggacgttat 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 gcgtactgtt tgcgatgaat 20 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cgctaacaat tcgtgagcaa t 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ccagcatata gcgcagtgag 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 atcgacggaa ccgaagttac 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 6 gcgatgcgtt ataccgaaat 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 7 agcgcggtct acgacactat 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 8 cgtgtagtcg gggacgttat 20 <210> 9 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 9 gcatggtgac agcgcg 16 <210> 10 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> PNA probe <400> 10 cgcgctgtca ccatgc 16 <210> 11 <211> 2676 <212> DNA <213> Yersinia pestis <400> 11 atgagcgacc ttgccagaga aataacaccg gtcaacatcg aggaagagct gaaaagctcc 60 tatctggatt atgcgatgtc cgttattgtc ggacgtgcgt taccagatgt ccgtgatgga 120 ctgaaaccgg tgcaccgtcg cgtactgttt gcgatgaatg tactgggtaa tgactggaat 180 aaaccataca aaaaatcggc ccgtgtagtc ggggacgtta tcggtaaata ccacccgcat 240 ggtgacagcg cggtctacga cactatcgtg cgtatggccc agccgttctc actgcgctat 300 atggggtgg atgggcaggg taacttcggt tccgtcgatg gtgactccgc cgcggcgatg 360 cgttataccg aaatccgtat gtctaaaatt gctcacgaat tgttagcgga tttagaaaaa 420 gataccgttg acttcgtgcc taactatgat ggtacggaac aaattccggc tgttatgccg 480 accagaatcc ctaacctgct ggtaaacggt tcgtcgggta ttgcggtagg gatggcaacc 540 aatattccgc cacataatct ttctgaggtt attgatggct gtctggctta tatagaagat 600 gaaaacatca gcattgaagg gctgatggag tatatccctg gcccagactt cccaacagca 660 gccattatta atggccgccg tggtattgaa gaggcttatc gtactggtcg cggtaaggtc 720 tatatccgcg cacgtgctga agtcgaagcg gatgccaaaa cgggccgtga aaccattatt 780 gttcatgaga tcccgtatca ggtgaacaaa gcacggttga ttgagaaaat cgccgagctg 840 gtaaaagaaa aacgtgtcga aggcatcagc gcgttacgcg atgagtctga taaagacggc 900 atgcgcatcg tgattgaaat caaacgtgat gcggtcgggg aagtggtgct gaataacctc 960 tactctctga cacaattgca ggtgactttc ggtatcaata tggtggcctt gtctcagggg 1020 caaccgaagc tgcttaacct gaaagacatt ctggttgctt ttgttcgtca ccgtcgtgaa 1080 gtggtgactc gccgtaccat ttttgaactg cgtaaagcac gtgatcgcgc ccatatcctt 1140 gaagcgttgg cgattgcact ggctaacatt gatccgatta tcgaattgat tcgccgtgca 1200 tcgacccctg cggaagcaaa agccggtttg attgccagtc cttgggagtt aggtaacgtt 1260 gcttccatgc tggaacgtgc tggtgatgac gcggcccgcc ctgagtggct ggaagcggaa 1320 tttggtatcc gtgacggtaa atattacctt accgagcaac aggctcaggc tattttggat 1380 ctgcgtttgc agaaactgac aggtctggag catgagaaac tgctggatga gtataaagag 1440 ctgctcacct taattggcga gctgatcttt attctagaaa atccggatcg cctgatggag 1500 gttatccgcg aagaattagt ggcgatcaaa gagcaatata acgatcttcg tcgcactgag 1560 atcaccgcga atacctctga tatcaatatt gaagacctga ttaatcaaga agatgtggtt 1620 gtgacgttgt cccatcaggg ctacgtcaaa taccagccgt tgagtgatta cgaagctcag 1680 cgtcgtggtg gtaaaggtaa atctgctgca cgtatcaaag aagaagactt tattgatcgc 1740 ctgctcgttg ccaataccca cgataccatc ttgtgcttct ccagccgtgg ccgtctctat 1800 tggatgaagg tctatcaact gccggaagcc agccgtgggg ctcgtggccg tcccatcgtc 1860 aacttgttgc cgcttgagcc aaatgagcgt attaccgcca ttctgcctgt gcgcgaatat 1920 gaagaaggct gtcatgtctt tatggctacc gccagcggta ctgtgaagaa aacggcattg 1980 acggagttca gtcgcccacg tagcgccggt attatcgccg ttaatttgaa cgaaggtgat 2040 gagcttatcg gtgtggatct gacggatggc agcaatgaag ttatgctgtt ctcagcattg 2100 ggtaaagtgg ttcgtttccc agaagggcag gttcgctcta tgggccgtac cgcaaccggt 2160 gtccgtggga tcaacctcaa tggcgatgat cgggttattt ctctgatcat tcctcgtggt 2220 gatggtgaaa tcctgaccgt aactgaaaac ggttatggta agcgtactgc agtggcagaa 2280 tatccaacca agtcccgtgc gactcagggg gttatctcca ttaaagtcag tgagcgtaat 2340 ggtaaggttg tcggtgctgt tcaagttgca ccaactgacc aaatcatgat gatcactgat 2400 gctggcacac tggtacgtac tcgcgtatcc gaagtgagtg tcgtagggcg taatacccaa 2460 ggtgtgaccc tgatccgtac cgcagaagat gaacatgttg ttggtttgca acgtgtcgct 2520 gaacctgaag aggatgatga tatccttgat ggcgaatcat cagaaggtga agagggcagc 2580 gaagaaaacg cggcactaaa tgcaccatca gatgatgttg ccgatgaaga cactgatgca 2640 gaagacgaca ctgatgtaga agacgacaac gcataa 2676
Claims (5)
(b) 상기 실시간 PCR에 의한 유전자 증폭 결과를 분석하여 페스트균의 GyrA 유전자의 돌연변이 유무를 결정하는 단계를 포함하는 시프로플록사신(ciprofloxacin) 항생제에 대해 내성을 보이는 페스트균 검출 방법.The GyrA gene of Yersinia pestis was amplified by real-time PCR using a GyrA (DNA gyrase A) gene-specific PNA (Peptide Nucleic Acid) probe and a GyrA gene-specific clamping primer set of claim 1 or 2 -time PCR); And
(b) analyzing the result of gene amplification by the real-time PCR to determine the presence or absence of mutation of the GyrA gene of a P. pastoris microbial strain, which is resistant to ciprofloxacin antibiotic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150133205A KR101752153B1 (en) | 2015-09-21 | 2015-09-21 | PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150133205A KR101752153B1 (en) | 2015-09-21 | 2015-09-21 | PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170034648A true KR20170034648A (en) | 2017-03-29 |
KR101752153B1 KR101752153B1 (en) | 2017-06-29 |
Family
ID=58498365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150133205A KR101752153B1 (en) | 2015-09-21 | 2015-09-21 | PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101752153B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101967730B1 (en) * | 2017-12-08 | 2019-04-11 | 대한민국 | PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
KR101967733B1 (en) * | 2018-06-14 | 2019-04-11 | 대한민국 | PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
KR20190068402A (en) * | 2018-06-14 | 2019-06-18 | 대한민국(관리부서:국립수산과학원) | PNA Probe for Discrimination of Quinolone Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
-
2015
- 2015-09-21 KR KR1020150133205A patent/KR101752153B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101967730B1 (en) * | 2017-12-08 | 2019-04-11 | 대한민국 | PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
KR101967733B1 (en) * | 2018-06-14 | 2019-04-11 | 대한민국 | PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
KR20190068402A (en) * | 2018-06-14 | 2019-06-18 | 대한민국(관리부서:국립수산과학원) | PNA Probe for Discrimination of Quinolone Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same |
Also Published As
Publication number | Publication date |
---|---|
KR101752153B1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4590573B2 (en) | Rapid identification of infection-causing bacteria | |
US20100255474A1 (en) | Method for Detecting Bacteria and Fungi | |
ES2375406T3 (en) | PROBE AND PRIMER FOR THE DETECTION OF TUBERCULOSIVE BACILS, AND PROCEDURE FOR THE DETECTION OF HUMAN TUBERCULOSIS BACLES WITH THE USE OF THEM. | |
Dadashzadeh et al. | Real-time PCR detection of 16S rRNA novel mutations associated with Helicobacter pylori tetracycline resistance in Iran | |
Ozeki et al. | Development of a rapid assay for detecting gyrA mutations in Escherichia coli and determination of incidence of gyrA mutations in clinical strains isolated from patients with complicated urinary tract infections | |
KR101644773B1 (en) | Genetic Markers for Discrimination and Detection of Causative Bacteria of Edwardsiellosis and Streptococcosis, and Method of Discrimination and Detection of Causative Bacteria Using the Same | |
CN113667718B (en) | Method for detecting target nucleic acid by double-stranded nucleic acid detector | |
KR101752153B1 (en) | PNA probe for detecting Yersinia pestis having resistance against ciprofloxacin antibiotic and the uses thereof | |
KR20180023394A (en) | Diagnostic Kit for Simultaneously Detecting Mycobacterium complex, Non-tuberculosis Mycobacteria and Multidrug-resistant Tuberculosis | |
US20110287965A1 (en) | Methods and compositions to detect clostridium difficile | |
ES2903161T3 (en) | Detection and definition of microorganisms using the ILV3 gene | |
JP6960577B2 (en) | Primer set capable of identifying 3 subspecies of nontuberculous mycobacteria and method for identifying 3 subspecies of nontuberculous mycobacteria | |
WO2011002950A1 (en) | Methods for screening for antibiotic compounds | |
JP5204466B2 (en) | Method for detecting Mycoplasma pneumoniae | |
KR20180033112A (en) | Probe for detecting drug resistant gram-positive pathogens, probe set and a method for detecting drug resitant gram-positive pathogens using them | |
US10415096B2 (en) | Method for simultaneous detection of bacteria and fungi in a biological preparation by PCR, primers as well as bacteria and fungi detection kit | |
KR101838614B1 (en) | Probe for detecting drug resistant gram-positive pathogens, probe set and a method for detecting drug resitant gram-positive pathogens using them | |
KR101810632B1 (en) | Primers for detection of three species of intestinal parasitic protozoa and Multiplex Polymerase Chain Reaction diagnosis method using the primers | |
KR101752152B1 (en) | PNA probe for detecting Bacillus anthracis having resistance against ciprofloxacin antibiotic and the uses thereof | |
JP2006333821A (en) | Method for quantitative detection of DNA | |
KR101975672B1 (en) | A primer set for detecting Yersinia pestis and a method of detecting Yersinia pestis using the same | |
KR101717181B1 (en) | Primer set for diagnosing meningitis and use thereof | |
CN104774932A (en) | Molecular detection kit for determining resistance level of Escherichia coli to quinolone drugs based on high resolution melting curve | |
US20130034856A1 (en) | Method for detecting and identifying candida species | |
US20190119729A1 (en) | Method of detecting and treating p. acnes and kit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20150921 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20161115 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20170530 |
|
GRNT | Written decision to grant | ||
PR0702 | Registration of establishment of national patent |
Patent event code: PR07021E01D Comment text: Registration of Establishment of National Patent Patent event date: 20170623 |
|
PR1002 | Payment of registration fee |
Payment date: 20170623 End annual number: 20 Start annual number: 1 |
|
PG1601 | Publication of registration |