Nothing Special   »   [go: up one dir, main page]

KR20160032807A - Negative electrode and rechargeable batteries comprising the same - Google Patents

Negative electrode and rechargeable batteries comprising the same Download PDF

Info

Publication number
KR20160032807A
KR20160032807A KR1020140123250A KR20140123250A KR20160032807A KR 20160032807 A KR20160032807 A KR 20160032807A KR 1020140123250 A KR1020140123250 A KR 1020140123250A KR 20140123250 A KR20140123250 A KR 20140123250A KR 20160032807 A KR20160032807 A KR 20160032807A
Authority
KR
South Korea
Prior art keywords
tin
negative electrode
containing layer
present
secondary battery
Prior art date
Application number
KR1020140123250A
Other languages
Korean (ko)
Inventor
정민영
최경린
김병주
이기대
Original Assignee
(주)오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오렌지파워 filed Critical (주)오렌지파워
Priority to KR1020140123250A priority Critical patent/KR20160032807A/en
Priority to PCT/KR2014/008681 priority patent/WO2016043362A1/en
Publication of KR20160032807A publication Critical patent/KR20160032807A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a negative electrode active material for a secondary battery and a secondary battery including the same. More specifically, the present invention relates to a negative electrode with a novel structure and a secondary battery including the same. The negative electrode includes: a plurality of fiber structures forming a three-dimensional porous network structure; a tin containing layer which is formed on the surfaces and the insides of the metal fiber structures; and a conductive material carried in pores formed in the metal fiber structures. According to the present invention, the volume of the negative electrode can be minimized, and the negative electrode has a structure capable of transferring electrons in a very easy manner.

Description

음극 및 이를 포함하는 이차전지{NEGATIVE ELECTRODE AND RECHARGEABLE BATTERIES COMPRISING THE SAME} [0001] The present invention relates to a negative electrode and a secondary battery including the negative electrode,

본 발명은 이차전지용 음극, 및 이를 포함하는 이차전지에 관한 것으로서, 더욱 상세하게는, 3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체, 상기 복수의 금속 섬유 구조체의 표면 및 내부에 형성되는 주석 함유층, 및 상기 복수의 금속 섬유 구조체가 형성하는 기공 내에 담지된 도전재를 포함하는 음극 및 이를 포함하는 이차전지에 관한 것이다.
More particularly, the present invention relates to a negative electrode for a secondary battery, and more particularly to a negative electrode for a secondary battery, which comprises a plurality of fiber structures forming a three-dimensional porous network structure, And a conductive material supported in the pores formed by the plurality of metal fiber structures, and a secondary battery comprising the same.

현재 이차전지는 모바일폰을 포함한 모바일기기의 주요 전력원으로 활용되고 있다. 이러한 이차전지는 나노스케일의 초소형 장치에서부터, 노트북과 같은 이동형 장치 및 전기자동차 및 스마트 그리드를 위한 전력저장용 장치까지 점차 적용범위가 확대되고 있다.Currently, secondary batteries are being used as a major power source for mobile devices including mobile phones. Such secondary batteries are being increasingly applied to miniature devices of nanoscale, mobile devices such as notebook computers, and electric storage devices for electric vehicles and smart grids.

최근, 리튬이온 이차전지는 전기자동차 및 전력저장 분야에서 각광을 받고 있다. 이러한 분야에서 이차전지를 활용하기 위해서, 이차전지는 낮은 가격과 높은 에너지밀도를 가져야 한다.Recently, lithium ion secondary batteries have attracted attention in the field of electric vehicles and electric power storage. In order to utilize the secondary battery in such a field, the secondary battery must have a low price and a high energy density.

일반적으로 전지는 양극, 음극, 전해질, 분리막 및 이들을 포장하는 케이스로 구성될 수 있다. 여기서 양극 및 음극은 활물질, 도전재 및 바인더로 구성될 수 있다.Generally, a battery can be composed of an anode, a cathode, an electrolyte, a separator, and a case for packaging them. Here, the positive electrode and the negative electrode may be composed of an active material, a conductive material, and a binder.

활물질은 실질적으로 전지가 작동할 때 전기에너지를 발생시키는 물질로 에너지 밀도는 활물질의 종류나 양에 의존한다. 따라서 전지가 많은 에너지를 갖도록 하기 위해서는 전극에 포함되어 있는 단위 질량당 활물질의 양을 늘릴 필요가 있다.The active material is a substance that generates electric energy when the battery is actually operated. The energy density depends on the kind or amount of the active material. Therefore, it is necessary to increase the amount of the active material per unit mass contained in the electrode so that the battery has a large energy.

이에 따라 이차전지의 수명을 늘리기 위한 고용량 전극 활물질에 대한 관심이 증가하고 있다. 특히 음극 활물질로 이용되는 탄소계 소재의 이론용량 값이 372 mAh/g으로 제약이 되기 때문에, Si (4200 mAh/g), Sn (994 mAh/g), Al(993 mAh/g) 과 같은 고용량 소재들이 복합화되어있는 음극 활물질을 제조하려는 연구들이 활발히 이루어지고 있다. Accordingly, there is a growing interest in high capacity electrode active materials for increasing the lifetime of secondary batteries. In particular, since the theoretical capacity value of the carbonaceous material used as the anode active material is limited to 372 mAh / g, a high capacity such as Si (4200 mAh / g), Sn (994 mAh / g) Studies have been actively made to manufacture negative electrode active materials in which materials are mixed.

그러나, 이러한 고용량 전극 활물질의 경우, Li과의 반응시 최소 100 ~ 300% 정도의 큰 부피 팽창을 동반하게 되는데, 이로 인하여 전극판에서 탈리가 되거나, 사이클 수명이 급격히 떨어지는 문제점이 있다. 이에 따라 이러한 부피팽창을 최소화하기 위한 다양한 시도가 이루어지고 있다.However, in the case of such a high-capacity electrode active material, a large volume expansion of at least about 100 to 300% is accompanied by a reaction with Li, which causes a problem in that the electrode plate is desorbed or the cycle life is rapidly reduced. Accordingly, various attempts have been made to minimize such volume expansion.

(0001) 한국 등록 특허 10-1057162호(0001) Korean Patent No. 10-1071616

본 발명의 목적은 순수한 주석 입자들이 전지 작동 과정에서 큰 부피 변화를 일으키므로, 이차전지 음극 활물질에 직접 적용이 곤란한 문제점을 해결하는 새로운 구조의 이차전지 음극 활물질을 제공하는 것이다.
An object of the present invention is to provide a novel secondary battery anode active material which solves the problem that it is difficult to apply pure tin particles directly to a secondary battery anode active material since a large volume change occurs during the operation of the battery.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체;A plurality of fiber structures forming a three-dimensional porous network structure;

상기 복수의 금속 섬유 구조체의 표면에 형성되는 주석 함유층; 및 A tin-containing layer formed on a surface of the plurality of metal fiber structures; And

상기 복수의 금속 섬유 구조체가 형성하는 기공 내에 담지된 도전재를 포함하는 음극을 제공한다. And a conductive material supported in the pores formed by the plurality of metal fiber structure bodies.

도 1에 본 발명에 의한 음극을 모식적으로 나타내었다. 도 1에서 보는 바와 같이 본 발명에 의한 음극(100)은 3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체(20), 상기 복수의 금속 섬유 구조체의 표면에 형성되는 주석 함유층(10) 및 상기 복수의 금속 섬유 구조체가 형성하는 기공 내에 담지된 도전재(30)를 포함한다. Fig. 1 schematically shows a cathode according to the present invention. 1, the cathode 100 according to the present invention includes a plurality of fiber structures 20 forming a three-dimensional porous network structure, a tin-containing layer 10 formed on the surface of the plurality of metal fiber structures, And a conductive material 30 carried in the pores formed by the metal fiber structure.

본 발명에 의한 음극에 있어서, 상기 주석 함유층은 Sn, SnOx 및 주석 합금 으로 이루어진 그룹에서 선택되는 주석 화합물을 포함하는 것을 특징으로 한다. In the negative electrode according to the present invention, the tin-containing layer is characterized by containing a tin compound selected from the group consisting of Sn, SnO x and tin alloy.

본 발명에 의한 음극에 있어서, 상기 주석 합금은 Pt, Si, Zn, Mg, Ni, Au, Fe, Co, Mo, In, Ir, Ag, Ti, Cu, 및 Ru로 이루어진 군에서 선택되는 적어도 어느 하나의 원소와 Sn의 합금인 것을 특징으로 한다. In the negative electrode according to the present invention, the tin alloy may be at least one selected from the group consisting of Pt, Si, Zn, Mg, Ni, Au, Fe, Co, Mo, In, Ir, Ag, Ti, Cu, And is an alloy of one element and Sn.

본 발명에 의한 음극에 있어서, 상기 주석 함유층은 두께가 0.3 ㎛ 이하인 것을 특징으로 한다. In the negative electrode according to the present invention, the tin-containing layer has a thickness of 0.3 탆 or less.

본 발명에 의한 음극에 있어서, 상기 주석 함유층은 전해 도금층인 것을 특징으로 한다. In the negative electrode according to the present invention, the tin-containing layer is an electrolytic plating layer.

본 발명에 의한 음극에 있어서, 상기 3 차원 다공성 네트워크 구조를 형성하는 복수의 금속 섬유는 직경은 100 ㎚ ~ 3 ㎛인 것을 특징으로 한다. 본 발명에 의한 음극에 있어서, 상기 3 차원 다공성 네트워크 구조를 형성하는 복수의 금속 섬유는 직경이 100 ㎚ 이상이어야 탄소 섬유에 주석류 입자를 안정적으로 포함할 수 있고, 3 ㎛ 이하이어야 Li의 확산 반응이 효과적으로 일어날 수 있다.In the negative electrode according to the present invention, the plurality of metal fibers forming the three-dimensional porous network structure have a diameter of 100 nm to 3 占 퐉. In the negative electrode according to the present invention, the plurality of metal fibers forming the three-dimensional porous network structure must have a diameter of 100 nm or more to stably contain the pomegranate particles in the carbon fiber, This can happen effectively.

본 발명에 의한 음극에 있어서, 상기 3 차원 다공성 네트워크 구조를 형성하는 복수의 금속 섬유 구조체는 니켈 폼(Ni foam) 등의 발포금속, 카본 매트(carbon mat), 카본 페이퍼(carbon paper) 또는 카본 펠트(carbon felt) 중 어느 하나인 것을 특징으로 한다. In the negative electrode according to the present invention, the plurality of metal fiber structures forming the three-dimensional porous network structure may be formed of a foamed metal such as Ni foam, a carbon mat, a carbon paper, and carbon felt.

본 발명에 의한 음극에 있어서, 상기 도전재는 흑연(graphite)를 포함할 수 있다. In the cathode according to the present invention, the conductive material may include graphite.

본 발명은 또한, 본 발명에 의한 음극을 포함하는 이차전지를 제공한다.
The present invention also provides a secondary battery comprising a negative electrode according to the present invention.

본 발명에 의한 음극은 3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체의 표면에 주석을 형성하여, Li과의 반응 시에 발생하는 부피 변화를 최소화할 수 있고, 차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체의 기공 내에 도전재를 포함함으로써 이차전지의 용량을 높이면서도, 전기적으로 연결되어 있어, 전자 전달이 매우 용이한 구조를 가져 사이클 특성이 우수하다.
The negative electrode according to the present invention can form tin on the surface of a plurality of fibrous structures forming a three-dimensional porous network structure, minimizing a change in volume generated upon reaction with Li, and forming a multi-dimensional porous network structure The conductive material is contained in the pores of the fiber structure of the secondary battery, thereby increasing the capacity of the secondary battery, and being electrically connected to each other.

도 1 은 본 발명에 의한 음극을 나타낸다.
도 2는 본 발명의 실시예 및 비교예에 따른 이차 전지의 수명 특성을 보여주는 그래프이다.
1 shows a cathode according to the present invention.
2 is a graph showing lifetime characteristics of a secondary battery according to Examples and Comparative Examples of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 주석함유층을 포함하는 음극 제조 1 > Preparation of negative electrode containing tin-containing layer

<< 실시예Example 1-1>  1-1> 음극활물질Anode active material 제조 Produce

섬유 구조체로서 카본 페이퍼(carbon paper)를 준비하고 상기 카본 페이퍼 표면에 전해 도금에 의하여 주석 함유층을 형성하였다. 상기 주석 함유층을 형성하기 위한 화합물로서 황산주석(SnSO4) 0.2M, 황산 칼륨(K2SO4) 0.4M, 글루코스나트륨(Nad-gluconate) 0.4M로 이루어진 용액을 준비하였다. 반응기의 바닥에 상대 전극으로서 주석을 사용하고, 상기 섬유 구조체가 상기 상대 전극으로서 사용되는 주석과 일정 간격을 유지하면서 반응조를 통과하게 하였다. A carbon paper was prepared as a fiber structure and a tin-containing layer was formed on the surface of the carbon paper by electroplating. A solution composed of 0.2 M tin sulfate (SnSO 4 ), 0.4 M potassium sulfate (K 2 SO 4 ), and 0.4 M sodium glucose (Na d -gluconate) was prepared as a compound for forming the tin-containing layer. Tin was used as a counter electrode at the bottom of the reactor, and the fiber structure was allowed to pass through the reactor while maintaining a constant distance from the tin used as the counter electrode.

상기 섬유 구조체인 카본 페이퍼가 반응조를 통과하는 동안 주석판과 카본 페이퍼 사이에 펄스 전류를 인가하였다. 인가 전류는 30㎃/㎠(10sec) → -15㎃/㎠(10sec) → 1㎃/㎠(35 sec) → 휴지(5sec)를 반복하였고, 반응조 내에서 체류 시간이 30분이 되도록 카본 페이퍼의 이동 속도를 조절하였다. A pulse current was applied between the tin plate and the carbon paper while the carbon paper as the fiber structure passed through the reaction tank. The applied current was 30 mA / cm 2 (10 sec) → -15 mA / cm 2 (10 sec) → 1 mA / cm 2 (35 sec) → pause (5 sec) and the movement of the carbon paper The speed was adjusted.

반응이 진행되는 동안 반응조 내에서 상기 주석 함유층을 형성하기 위한 화합물의 농도를 일정하게 유지하기 위하여, 주석 함유층을 형성하기 위한 화합물 용액은 외부의 저장조와 연결하여 지속적으로 순환시켰다.
In order to keep the concentration of the compound for forming the tin-containing layer constant in the reaction tank during the reaction, the compound solution for forming the tin-containing layer was continuously circulated in connection with the external reservoir.

<< 실시예Example 1-2> 음극 제조 1-2> Cathode manufacturing

음극활물질로서, 실시예 1-1의 음극 활물질, 도전재로서 흑연(graphite) 및 결합제로서 폴리비닐리덴플루오라이드(PVDF) 결합제를 90:5:5의 중량비로 혼합하고, N-메틸피롤리돈(NMP) 용매를 이용하여 음극슬러리를 제조하였다. Graphite as a conductive material and polyvinylidene fluoride (PVDF) binder as a binder were mixed in a weight ratio of 90: 5: 5 as the negative electrode active material of Example 1-1, a conductive material, and N-methylpyrrolidone (NMP) solvent to prepare an anode slurry.

상기 음극슬러리를 알루미늄 포일에 도포하고, 130℃에서 2시간 동안 건조시켜 음극을 제조한 후, 롤프레스를 실시하였다.
The negative electrode slurry was applied to an aluminum foil and dried at 130 DEG C for 2 hours to prepare a negative electrode, followed by roll pressing.

<< 실시예Example 1-3> 전지 제조 1-3> Battery manufacturing

양극활물질(Li[NiMnCo]O2, 카본 블랙 도전재 및 폴리비닐리덴플루오라이드(PVDF) 결합제를 95:2:3의 중량비로 혼합하고, N-메틸피롤리돈(NMP) 용매를 이용하여 양극 슬러리를 제조하였다. 제조된 상기 양극 슬러리를 알루미늄 포일에 도포하고, 130℃에서 2시간 동안 건조시켜 양극을 제조한 후 롤프레스를 실시하였다.A positive electrode active material (Li [Ni Mn Co ] O 2 , a carbon black conductive material, and a polyvinylidene fluoride (PVDF) binder were mixed in a weight ratio of 95: 2: 3 and N-methylpyrrolidone (NMP) The positive electrode slurry thus prepared was applied to an aluminum foil and dried at 130 DEG C for 2 hours to prepare a positive electrode, followed by roll pressing.

상기 제조된 실시예 1-2의 음극 및 상기 양극 사이에 폴리에틸렌 분리막(도넨사, F2OBHE, 두께 = 20㎛)을 적용하고, 전해질(1몰의 리튬헥사프루오로포스페이트(LiFP6), 에틸렌카보네이트(EC)/디메틸카보네이트(DMC =1/1부피비)를 주입하여 최종적으로 코인 전지를 제조하였다.
A polyethylene separator (DONESEN, F2OBHE, thickness = 20 μm) was applied between the cathode and the anode of Example 1-2, and an electrolyte (1 mol of lithium hexafluorophosphate (LiFP 6 ), ethylene carbonate (EC) / dimethyl carbonate (DMC = 1/1 by volume) was injected into the coin cell.

<< 비교예Comparative Example >>

주석 함유층이 형성된 섬유 구조체 사이의 기공 내에 흑연(graphite)을 함침시키는 것을 제외하고는 실시예 1-1 내지 1-3과 동일하게 전지를 제조하였다.
A battery was prepared in the same manner as in Examples 1-1 to 1-3 except that graphite was impregnated in the pores between the fibrous structures having the tin-containing layer.

<< 실험예1Experimental Example 1 > 전지의 수명 특성 평가> Evaluation of battery life characteristics

상기 실시예 및 비교예에서 제조된 전지에 대하여 수명 특성을 평가하고 그 결과를 아래 표 1에 나타내었다.The life characteristics of the batteries prepared in Examples and Comparative Examples were evaluated and the results are shown in Table 1 below.

아래 표 1에서 보는 바와 같이, 도전재로 그래핀을 포함한 전지의 경우, 그래핀을 포함하지 않은 비교예보다 무게당 용량(부피당 용량)이 증가한다는 것을 알 수 있다.As shown in Table 1 below, it can be seen that, in the case of a cell containing graphene as a conductive material, the capacity per unit weight (capacity per unit volume) is increased compared with a comparative example not including graphene.

구분division 용량Volume mAh/gmAh / g mAh/㎠mAh / ㎠ 비교예Comparative Example 230230 2.32.3 실시예Example 285285 5.95.9

상기 카본 페이퍼(carbon paper)에 주석을 도금하고 상기 카본 페이퍼의 기공 내에 흑연(graphite)을 삽입한 실시예의 전지와 카본 페이퍼에 주석을 도금한 비교예의 전지에 대하여 수명 특성을 측정하고 그 결과를 도 2에 표시하였다.The battery of the example in which tin was plated on the carbon paper and graphite was inserted in the pores of the carbon paper and the battery of the comparative example in which tin was plated on the carbon paper were measured for life characteristics, 2.

도 2에서 카본 페이퍼에 주석을 도금하고 흑연을 삽입한 실시예의 전지가 카본 페이퍼에 주석을 도금한 비교예의 전지보다 안정적인 수명특성을 보인다는 것을 확인할 수 있다.In FIG. 2, it can be seen that the battery of the example in which the carbon paper is plated with tin and the graphite is inserted shows a more stable lifetime characteristic than the battery of the comparative example in which the carbon paper is plated with tin.

Claims (9)

3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체;
상기 복수의 금속 섬유 구조체의 표면 및 내부에 형성되는 주석 함유층; 및
상기 복수의 금속 섬유 구조체가 형성하는 기공 내에 담지된 도전재를 포함하는 음극.
A plurality of fiber structures forming a three-dimensional porous network structure;
A tin-containing layer formed on a surface and inside of the plurality of metal fiber structure bodies; And
And a conductive material supported in the pores formed by the plurality of metal fiber structure bodies.
제 1 항에 있어서,
상기 주석 함유층은 Sn, SnOx 및 주석 합금으로 이루어진 그룹에서 선택되는 주석 화합물을 포함하는 것인 음극.
The method according to claim 1,
Wherein the tin-containing layer comprises a tin compound selected from the group consisting of Sn, SnO x, and tin alloy cathode.
제 2 항에 있어서,
상기 주석 합금은 Pt, Si, Zn, Mg, Ni, Au, Fe, Co, Mo, In, Ir, Ag, Ti, Cu, 및 Ru로 이루어진 군에서 선택되는 적어도 어느 하나의 원소와 Sn의 합금인 것인 음극.
3. The method of claim 2,
The tin alloy is an alloy of at least one element selected from the group consisting of Pt, Si, Zn, Mg, Ni, Au, Fe, Co, Mo, In, Ir, Ag, Ti, Cu, One cathode.
제 1 항에 있어서,
상기 주석 함유층은 두께가 0.3 ㎛ 이하인 것인 음극.
The method according to claim 1,
Wherein the tin-containing layer has a thickness of 0.3 mu m or less.
제 1 항에 있어서,
상기 주석 함유층은 전해 도금층인 것인 음극.
The method according to claim 1,
Wherein the tin-containing layer is an electrolytic plating layer.
제 1 항에 있어서,
상기 3 차원 다공성 네트워크 구조를 형성하는 복수의 금속 섬유 직경은 100 ㎚ ~ 3 ㎛인 것인 음극.
The method according to claim 1,
Wherein the plurality of metal fibers forming the three-dimensional porous network structure has a diameter of 100 nm to 3 占 퐉.
제 1 항에 있어서,
상기 3 차원 다공성 네트워크 구조를 형성하는 복수의 금속 섬유 구조체는 발포금속, 카본 매트(carbon mat), 카본 페이퍼(carbon paper) 또는 카본 펠트(carbon felt) 중 어느 하나인 것인 음극.
The method according to claim 1,
Wherein the plurality of metal fiber structures forming the three-dimensional porous network structure are any one of a foamed metal, a carbon mat, carbon paper, or carbon felt.
제 1 항에 있어서,
상기 도전재는 흑연(graphite)을 포함하는 것인 음극.
The method according to claim 1,
Wherein the conductive material comprises graphite.
상기 제 1 항에 의한 음극을 포함하는 이차전지.A secondary battery comprising the negative electrode according to claim 1.
KR1020140123250A 2014-09-17 2014-09-17 Negative electrode and rechargeable batteries comprising the same KR20160032807A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140123250A KR20160032807A (en) 2014-09-17 2014-09-17 Negative electrode and rechargeable batteries comprising the same
PCT/KR2014/008681 WO2016043362A1 (en) 2014-09-17 2014-09-18 Negative electrode and secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140123250A KR20160032807A (en) 2014-09-17 2014-09-17 Negative electrode and rechargeable batteries comprising the same

Publications (1)

Publication Number Publication Date
KR20160032807A true KR20160032807A (en) 2016-03-25

Family

ID=55533394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140123250A KR20160032807A (en) 2014-09-17 2014-09-17 Negative electrode and rechargeable batteries comprising the same

Country Status (2)

Country Link
KR (1) KR20160032807A (en)
WO (1) WO2016043362A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169336A1 (en) * 2017-03-16 2018-09-20 주식회사 엘지화학 Electrode and lithium secondary battery comprising same
WO2021075619A1 (en) * 2019-10-14 2021-04-22 경상국립대학교산학협력단 Anode, secondary battery comprising same, and manufacturing method therefor
US11380888B2 (en) 2017-03-16 2022-07-05 Lg Energy Solution, Ltd. Electrode and lithium secondary battery comprising same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358801B1 (en) * 2000-05-17 2002-10-25 삼성에스디아이 주식회사 Negative active material for lithium secondary battery
KR100559364B1 (en) * 2003-05-09 2006-03-10 한국과학기술연구원 An electrode and lithium battery comprising a porous three-dimensional current collector and fabrication method thereof
KR100759556B1 (en) * 2005-10-17 2007-09-18 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
CN103477477B (en) * 2011-04-05 2017-03-08 株式会社Lg 化学 Cathode active material and preparation method thereof
KR101825918B1 (en) * 2012-08-24 2018-02-06 삼성에스디아이 주식회사 Negative electrode, and lithium battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169336A1 (en) * 2017-03-16 2018-09-20 주식회사 엘지화학 Electrode and lithium secondary battery comprising same
US11380888B2 (en) 2017-03-16 2022-07-05 Lg Energy Solution, Ltd. Electrode and lithium secondary battery comprising same
WO2021075619A1 (en) * 2019-10-14 2021-04-22 경상국립대학교산학협력단 Anode, secondary battery comprising same, and manufacturing method therefor

Also Published As

Publication number Publication date
WO2016043362A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
Fang et al. Lithiophilic three-dimensional porous Ti3C2T x-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes
Yang et al. Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives
Wang et al. An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries
Lochala et al. Research progress toward the practical applications of lithium–sulfur batteries
CN109659487B (en) Pre-lithiation method for lithium metal negative electrode protection
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
Liu et al. Research progress on copper-based current collector for lithium metal batteries
Wang et al. Recent progress in aqueous lithium‐ion batteries
CN108461715B (en) Preparation method of solid-state battery lithium cathode
Bashir et al. A review of the energy storage aspects of chemical elements for lithium-ion based batteries
Yu et al. Insight on the double‐edged sword role of water molecules in the anode of aqueous zinc‐ion batteries
TWI463720B (en) Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
US20120264022A1 (en) Electrode for electrochemical device and method for producing the same
JP6585007B2 (en) Method for producing positive electrode, sodium ion electrochemical cell, reversible sodium cell, sodium injection
Huang et al. Electrode/electrolyte additives for practical sodium-ion batteries: a mini review
JP2016091984A (en) Power storage element
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
KR20140073492A (en) Lithium ion capacitor, power storage device, power storage system
JP2021048137A (en) Cathode active material for lithium secondary battery
Wang et al. A lithiophilic 3D conductive skeleton for high performance Li metal battery
Liu et al. Scientific Challenges and Improvement Strategies of Zn‐Based Anodes for Aqueous Zn‐Ion Batteries
KR20140058928A (en) The non-aqueous and high-capacity lithium secondary battery
KR20210127329A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same
Wang et al. In situ tailoring solid electrolyte interphase of three‐dimensional Li metal electrode for enhanced Coulombic efficiency
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application