KR20150113071A - 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- KR20150113071A KR20150113071A KR1020157023061A KR20157023061A KR20150113071A KR 20150113071 A KR20150113071 A KR 20150113071A KR 1020157023061 A KR1020157023061 A KR 1020157023061A KR 20157023061 A KR20157023061 A KR 20157023061A KR 20150113071 A KR20150113071 A KR 20150113071A
- Authority
- KR
- South Korea
- Prior art keywords
- reference signal
- terminal
- specific reference
- antenna
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
- H04B7/046—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
- H04B7/0469—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0628—Diversity capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0634—Antenna weights or vector/matrix coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 출원에서는 무선 통신 시스템에서 기지국이 단말로 신호를 송신하는 방법이 개시된다. 구체적으로, 상기 방법은, 상기 단말을 위한 단말 특정 참조 신호 시퀀스를 생성하는 단계; 상기 단말이 위치하는 수직 섹터에 기반하여, 상기 단말 특정 참조 신호 시퀀스를 맵핑하기 위한 송신 자원을 결정하는 단계; 상기 결정된 송신 자원에 상기 단말 특정 참조 신호 시퀀스를 맵핑하는 단계; 및 상기 단말 특정 참조 신호 시퀀스를 상기 단말로 2 차원 평판 안테나를 이용하여 송신하는 단계를 포함하는 것을 특징으로 한다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification 그룹 Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.44, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 기지국이 단말로 신호를 송신하는 방법은, 상기 단말을 위한 단말 특정 참조 신호 시퀀스를 생성하는 단계; 상기 단말이 위치하는 수직 섹터에 기반하여, 상기 단말 특정 참조 신호 시퀀스를 맵핑하기 위한 송신 자원을 결정하는 단계; 상기 결정된 송신 자원에 상기 단말 특정 참조 신호 시퀀스를 맵핑하는 단계; 및 상기 단말 특정 참조 신호 시퀀스를 상기 단말로 2 차원 평판 안테나를 이용하여 송신하는 단계를 포함하는 것을 특징으로 한다. 여기서, 상기 결정하는 단계는 상기 기지국이 운용하는 수직 섹터 별로 직교하는 자원으로 상기 송신 자원을 결정하는 단계를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 결정하는 단계는, 상기 단말 특정 참조 신호를 위한 논리적 안테나 포트의 시작 인덱스를 상기 단말 특정 참조 신호가 할당되는 물리적 안테나 포트 순으로 정의하는 단계; 및 상기 단말을 위한 논리적 안테나 포트의 시작 인덱스를 결정하는 단계를 포함한다.
또는, 상기 결정하는 단계가, 상기 단말로 상기 수직 섹터에 대응하는 공 전력 단말 특정 참조 신호의 안테나 포트에 관한 정보를 송신하는 단계; 및 상기 공 전력 단말 특정 참조 신호의 안테나 포트를 제외한 나머지 안테나 포트를 상기 송신 자원으로 결정하는 단계를 포함할 수 있다.
한편, 본 발명의 다른 양상인 무선 통신 시스템에서 단말이 기지국으로부터 신호를 수신하는 방법은, 상기 기지국으로부터 2 차원 평판 안테나를 이용하여 송신된 단말 특정 참조 신호 시퀀스를 수신하는 단계를 포함하고, 상기 단말 특정 참조 신호 시퀀스를 위한 자원은 상기 단말이 위치하는 수직 섹터 별로 직교하도록 결정되는 것을 특징으로 한다.
바람직하게는, 상기 기지국으로부터 상기 단말을 위한 논리적 안테나 포트의 시작 인덱스에 관한 정보를 수신하는 단계를 더 포함할 수도 있고, 이 경우 상기 단말 특정 참조 신호를 위한 논리적 안테나 포트의 시작 인덱스는 상기 단말 특정 참조 신호가 할당되는 물리적 안테나 포트 순으로 정의되는 것을 특징으로 한다.
또는, 상기 기지국으로부터 상기 수직 섹터에 대응하는 공 전력 단말 특정 참조 신호의 안테나 포트에 관한 정보를 수신하는 단계; 및 상기 공 전력 단말 특정 참조 신호의 안테나 포트를 제외한 나머지 안테나 포트를 상기 단말 특정 참조 신호 시퀀스를 위한 자원으로 결정하는 단계를 포함할 수도 있다.
한편, 본 발명의 일 양상에 따른 무선 통신 시스템에서 기지국 장치는, 단말 장치와 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는, 상기 단말을 위한 단말 특정 참조 신호 시퀀스를 생성하고, 상기 단말이 위치하는 수직 섹터에 기반하여 상기 단말 특정 참조 신호 시퀀스를 맵핑하기 위한 송신 자원을 결정하며, 상기 결정된 송신 자원에 상기 단말 특정 참조 신호 시퀀스를 맵핑하여 상기 단말로 2 차원 평판 안테나를 이용하여 송신하도록 상기 무선 통신 모듈을 제어하는 것을 특징으로 한다.
또한, 본 발명의 다른 양상에 따른 무선 통신 시스템에서 단말 장치는, 기지국 장치와 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는, 상기 기지국으로부터 2 차원 평판 안테나를 이용하여 송신된 단말 특정 참조 신호 시퀀스를 수신하도록 상기 무선 통신 모듈을 제어하고, 상기 단말 특정 참조 신호 시퀀스를 위한 자원은 상기 단말이 위치하는 수직 섹터 별로 직교하도록 결정되는 것을 특징으로 한다.
상술한 양상들에서, 상기 기지국은 상기 2 차원 평판 안테나에 포함된 안테나들을 그룹핑하여 복수의 물리적 안테나 포트들로 정의하는 것을 특징으로 하며, 상기 수직 섹터는 상기 2 차원 평판 안테나의 수직 방향 빔포밍에 따라 형성되는 셀 커버리지 영역인 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 기지국과 단말은 평판 안테나의 특성을 반영한 참조 신호를 보다 효율적으로 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 다중 안테나 통신 시스템의 구성도이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 7은 차세대 통신 시스템에서 DAS 시스템의 구성을 예시하는 도면이다.
도 8은 DAS 시스템에서 BTS 호텔(hotel)의 개념을 예시하는 도면이다.
도 9 및 도 10은 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 하향링크 참조 신호의 구조를 도시하는 도면이다.
도 11는 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 12은 현재 3GPP 표준문서에서 정의된 하향링크 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
도 13은 향후 LTE 시스템에 도입될 것으로 예상되는 소형 셀(small-cell) 개념을 예시하는 도면이다.
도 14는 2D 어레이 안테나를 이용한 수직적 셀 분할의 개념을 도시한다.
도 15는 본 발명의 제 1 실시예에 따라 DM-RS 안테나 포트를 할당하는 예를 도시한다.
도 16은 본 발명의 제 3 실시예에 따라 추가적인 DM-RS 직교성을 확보하는 예를 도시한다.
도 17은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 다중 안테나 통신 시스템의 구성도이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 7은 차세대 통신 시스템에서 DAS 시스템의 구성을 예시하는 도면이다.
도 8은 DAS 시스템에서 BTS 호텔(hotel)의 개념을 예시하는 도면이다.
도 9 및 도 10은 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 하향링크 참조 신호의 구조를 도시하는 도면이다.
도 11는 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 12은 현재 3GPP 표준문서에서 정의된 하향링크 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
도 13은 향후 LTE 시스템에 도입될 것으로 예상되는 소형 셀(small-cell) 개념을 예시하는 도면이다.
도 14는 2D 어레이 안테나를 이용한 수직적 셀 분할의 개념을 도시한다.
도 15는 본 발명의 제 1 실시예에 따라 DM-RS 안테나 포트를 할당하는 예를 도시한다.
도 16은 본 발명의 제 3 실시예에 따라 추가적인 DM-RS 직교성을 확보하는 예를 도시한다.
도 17은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
이하 MIMO 시스템에 대하여 설명한다. MIMO(Multiple-Input Multiple-Output)는 복수개의 송신안테나와 복수개의 수신안테나를 사용하는 방법으로서, 이 방법에 의해 데이터의 송수신 효율을 향상시킬 수 있다. 즉, 무선 통신 시스템의 송신단 혹은 수신단에서 복수개의 안테나를 사용함으로써 용량을 증대시키고 성능을 향상 시킬 수 있다. 이하 본 문헌에서 MIMO를 '다중 안테나'라 지칭할 수 있다.
다중 안테나 기술에서는, 하나의 전체 메시지를 수신하기 위해 단일 안테나 경로에 의존하지 않는다. 그 대신 다중 안테나 기술에서는 여러 안테나에서 수신된 데이터 조각(fragment)을 한데 모아 병합함으로써 데이터를 완성한다. 다중 안테나 기술을 사용하면, 특정된 크기의 셀 영역 내에서 데이터 전송 속도를 향상시키거나, 또는 특정 데이터 전송 속도를 보장하면서 시스템 커버리지(coverage)를 증가시킬 수 있다. 또한, 이 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있다. 다중 안테나 기술에 의하면, 단일 안테나를 사용하던 종래 기술에 의한 이동 통신에서의 전송량 한계를 극복할 수 있다.
본 발명에서 설명하는 다중 안테나(MIMO) 통신 시스템의 구성도가 도 4에 도시되어 있다. 송신단에는 송신 안테나가 NT개 설치되어 있고, 수신단에서는 수신 안테나가 NR개가 설치되어 있다. 이렇게 송신단 및 수신단에서 모두 복수개의 안테나를 사용하는 경우에는, 송신단 또는 수신단 중 어느 하나에만 복수개의 안테나를 사용하는 경우보다 이론적인 채널 전송 용량이 증가한다. 채널 전송 용량의 증가는 안테나의 수에 비례한다. 따라서, 전송 레이트가 향상되고, 주파수 효율이 향상된다 하나의 안테나를 이용하는 경우의 최대 전송 레이트를 Ro라고 한다면, 다중 안테나를 사용할 때의 전송 레이트는, 이론적으로, 아래 수학식 1과 같이 최대 전송 레이트 Ro에 레이트 증가율 Ri를 곱한 만큼 증가할 수 있다. 여기서 Ri는 NT와 NR 중 작은 값이다.
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는, 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 이와 같은 다중 안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후, 실질적으로 데이터 전송률을 향상시키기 위한 다양한 기술들이 현재까지 활발히 연구되고 있으며, 이들 중 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 그리고 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발한 연구가 진행되고 있다.
다중 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링 하는 경우 다음과 같이 나타낼 수 있다. 도 4에 도시된 바와 같이 NT개의 송신 안테나와 NR개의 수신 안테나가 존재하는 것을 가정한다. 먼저, 송신 신호에 대해 살펴보면, NT개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 NT개이므로, 전송 정보를 하기의 수학식 2와 같은 벡터로 나타낼 수 있다.
한편, 전송전력이 조정된 정보 벡터 에 가중치 행렬 W가 적용되어 실제 전송되는 NT 개의 송신신호(transmitted signal) 가 구성되는 경우를 고려해 보자. 여기서, 가중치 행렬은 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송신호 는 벡터 X를 이용하여 하기의 수학식 5와 같이 나타낼 수 있다. 여기서 Wij는 i번째 송신안테나와 j번째 정보 간의 가중치를 의미한다. W는 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)이라고 불린다.
일반적으로, 채널 행렬의 랭크의 물리적인 의미는, 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다. 따라서 채널 행렬의 랭크(rank)는 서로 독립인(independent) 행(row) 또는 열(column)의 개수 중에서 최소 개수로 정의되므로, 행렬의 랭크는 행(row) 또는 열(column)의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 수학식 6과 같이 제한된다.
또한, 다중 안테나 기술을 사용해서 보내는 서로 다른 정보 각각을 '전송 스트림(Stream)' 또는 간단하게 '스트림' 으로 정의하기로 하자. 이와 같은 '스트림' 은 '레이어 (Layer)' 로 지칭될 수 있다. 그러면 전송 스트림의 개수는 당연히 서로 다른 정보를 보낼 수 있는 최대 수인 채널의 랭크 보다는 클 수 없게 된다. 따라서, 채널 행렬이 H는 아래 수학식 7과 같이 나타낼 수 있다.
여기서 "# of streams"는 스트림의 수를 나타낸다. 한편, 여기서 한 개의 스트림은 한 개 이상의 안테나를 통해서 전송될 수 있음에 주의해야 한다.
한 개 이상의 스트림을 여러 개의 안테나에 대응시키는 여러 가지 방법이 존재할 수 있다. 이 방법을 다중 안테나 기술의 종류에 따라 다음과 같이 설명할 수 있다. 한 개의 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 다이버시티 방식으로 볼 수 있고, 여러 스트림이 여러 안테나를 거쳐 전송되는 경우는 공간 멀티플렉싱 방식으로 볼 수 있다. 물론 그 중간인 공간 다이버시티와 공간 멀티플렉싱의 혼합(Hybrid)된 형태도 가능하다.
도 5는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element 그룹)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파와 하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산 인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 6은 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6을 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(Scheduling Request) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 6은 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
현재의 무선통신환경은 M2M(Machine-to-Machine) 통신 및 높은 데이터 전송량을 요구하는 다양한 디바이스의 출현 및 보급으로 셀룰러 망에 대한 데이터 요구량이 매우 빠르게 증가하고 있다. 높은 데이터 요구량을 만족시키기 위해 통신 기술은 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술 등과 한정된 주파수 내에서 데이터 용량을 높이기 위해 다중 안테나 기술, 다중 기지국 협력 기술 등으로 발전하고 있고, 통신 환경은 사용자 주변에 액세스 할 수 있는 노드의 밀도가 높아지는 방향으로 진화한다. 이러한 높은 밀도의 노드를 갖춘 시스템은 노들 간의 협력에 의해 더 높은 시스템 성능을 보일 수 있다. 이러한 방식은 각 노드가 독립적인 기지국(Base Station (BS), Advanced BS (ABS), Node-B (NB), eNode-B (eNB), Access Point (AP) 등)으로 동작하여 서로 협력하지 않을 때보다 훨씬 우수한 성능을 갖는다.
이러한 노드는 RRH(remote radio head) 혹은 DAS(distributed antenna system)의 AN(antenna node)등과 같은 형태로도 구현 가능하다. DAS 시스템은 안테나들이 셀 중앙에 몰려 있는 CAS(centralized antenna system) 시스템과 달리, 셀 내의 다양한 위치에 퍼져 있는 안테나들을 단일 기지국에서 관리하는 시스템을 의미한다. DAS 시스템은 여러 안테나 노드가 하나의 셀을 구성한다는 점에서 펨토(femto)/피코(pico) 셀과는 구별된다.
초기의 DAS 시스템의 용도는 음영지역을 커버하기 위해 안테나를 더 설치하여 신호를 반복 전송하는 수준의 용도였다. 그러나, DAS는 기지국 안테나들이 동시에 여러 데이터 스트림을 송수신하여 한 명 혹은 여러 명의 사용자를 지원할 수 있다는 점에서, 일종의 MIMO(multiple input multiple output) 시스템으로 볼 수 있다. 또한 MIMO 시스템은 높은 주파수 효율성으로 인하여 차세대 통신의 요구사항을 만족시키기 위한 필수적인 요건으로 인식되고 있다. MIMO 시스템의 관점에서, DAS 시스템은 CAS 시스템보다 사용자와 안테나간의 거리가 작아짐으로써 얻게 되는 높은 전력효율, 낮은 기지국 안테나간의 상관도 및 간섭으로 인한 높은 채널용량, 셀 내의 사용자의 위치와 상관없이 상대적으로 균일한 품질의 통신성능이 확보되는 등의 장점을 갖게 된다.
도 7은 차세대 통신 시스템에서 DAS 시스템의 구성을 예시하는 도면이다.
도 7을 참조하면, DAS 시스템은 기지국과 그에 연결된 안테나 노드들로 구성된다. 안테나 노드는 기지국과 유선 또는 무선으로 연결되어 있으며, 각각의 안테나 노드는 한 개에서 여러 개의 안테나를 포함할 수 있다. 일반적으로 한 안테나 노드에 속해있는 안테나들은 가장 가까운 안테나 간의 거리가 수 미터 이내로서 지역적으로는 같은 스팟(spot)에 속해 있는 특성을 지니며, 안테나 노드는 단말이 액세스(access)할 수 있는 AP(access point)와 같은 역할을 한다. 기존 DAS 시스템에서는 안테나 노드를 안테나와 동일시 하여 양자를 구별하지 않는 것이 일반적이지만, 실제적으로 DAS 시스템를 효율적으로 운용하기 위해서는 안테나 노트와 안테나와의 관계가 명확히 정의 되어야만 한다.
도 8은 DAS 시스템에서 BTS 호텔(hotel)의 개념을 예시하는 도면이다.
도 8의 (a)는 기존의 셀룰러 시스템을 도시하며, 하나의 기지국(BTS)이 세 개의 섹터(sector)들을 관할하고, 각각의 기지국은 백본(backbone)망을 통해 BSC(Base Station Controller)/RNC(Radio Network Controller)와 연결된 것을 알 수 있다.
그러나, 도 8의 (b)와 같은 DAS 시스템에서는 각 AN와 연결되는 기지국들을 한곳에 모을 수 있다. 이를 BTS 호텔이라고 지칭한다. 이로 인해, 기지국을 설치할 땅과 건물에 대한 비용을 줄이고, 기지국에 대한 유지 및 관리를 한 곳에서 쉽게 할 수 있으며, BTS와 MSC/BSC/RNC를 모두 한 곳에 설치함으로써 백홀 용량(backhaul capacity)을 크게 증가시킬 수 있다.
이하에서는, 참조 신호에 관하여 보다 상세히 설명한다.
일반적으로 채널 측정을 위하여 데이터와 함께 송신측과 수신측 모두가 이미 알고 있는 참조 신호가 송신측에서 수신측으로 전송된다. 이러한 참조 신호는 채널 측정뿐만 아니라 변조 기법을 알려주어 복조 과정이 수행되도록 하는 역할을 수행한다. 참조 신호는 기지국과 특정 단말을 위한 전용 참조 신호(dedicated RS; DRS), 즉 단말 특정 참조 신호와 셀 내 모든 단말을 위한 셀 특정 참조 신호인 공통 참조 신호(common RS 또는 Cell specific RS; CRS)로 구분된다. 또한, 셀 특정 참조 신호는 단말에서 CQI/PMI/RI 를 측정하여 기지국으로 보고하기 위한 참조 신호를 포함하며, 이를 CSI-RS(Channel State Information-RS)라고 지칭한다.
종래 LTE 시스템에서는 참조 신호 는 물리 채널의 스크램블링을 위하여 의사 랜덤(Pseudo-random) 시퀀스 c(n)을 사용하여 생성되며, 상기 의사 랜덤 시퀀스 c(n)은 길이 31의 골드 시퀀스를 이용하여 아래 수학식 8과 같이 정의된다.
수학식 8에서 NC는 1600이며, 제 1 m-시퀀스는 x1(0)는 1 및 x1(n)은 0 (단, n은 1 내지 30)으로 초기값을 갖는다. 제 2 m-시퀀스의 초기값은 로 정의되며, 상기 시퀀스의 용도에 따라 그 값이 정해진다.
셀 특정 참조 신호인 CRS에서는, 상기 cinit가 아래 수학식 9와 같이 정의되며, cinit는 매 OFDM 심볼마다 초기화될 수 있다.
수학식 9에서 ns는 무선 프레임에서의 슬롯 번호를, Ncell ID는 셀 ID를 지시한다. 또한 NCP는 일반 CP에서는 1의 값을 갖고, 확장 CP에서는 0의 값을 갖는다.
또한, 단말 특정 참조 신호, 즉 DM-RS에서 상기 cinit는 단일 안테나 포트인 안테나 포트 5인 경우에는, 아래 수학식 10과 같이 정의되며, 서브프레임의 시작점에서 초기화될 수 있다.
수학식 10에서 특히 nRNTI는 애플리케이션에 따라 다른 값을 가질 수 있다. 즉, 반 지속적 전송(semi-persistent transmission)에서는 SPS-RNTI가 사용되고, 반 지속적 전송이 아닌 경우에는 C-RNTI가 사용될 수 있다.
나아가, 안테나 포트 7 내지 14, 최대 8개의 안테나 포트에 대한 DM-RS에서는, 상기 cinit는 아래 수학식 11과 같이 정의되고, 서브프레임의 시작점에서 초기화될 수 있다.
도 9 및 도 10은 4개의 안테나를 이용한 하향링크 전송을 지원하는 LTE 시스템에서의 참조 신호의 구조를 도시하는 도면이다. 특히 도 9은 일반(normal) 순환 전치(Cyclic Prefix)인 경우를 도시하며, 도 10은 확장(extended) 순환 전치인 경우를 도시한다.
도 9 및 도 10을 참조하면, 격자에 기재된 0 내지 3은 안테나 포트 0 내지 3 각각에 대응하여 채널 측정과 데이터 복조를 위하여 송신되는 셀 특정 참조 신호인 CRS(Common Reference Signal)를 의미하며, 상기 셀 특정 참조 신호인 CRS는 데이터 정보 영역뿐만 아니라 제어 정보 영역 전반에 걸쳐 단말로 전송될 수 있다.
또한, 격자에 기재된 'D'는 단말 특정 RS인 하향링크 DM-RS(Demodulation-RS)를 의미하고, DM-RS는 데이터 영역 즉, PDSCH를 통하여 단일 안테나 포트 전송을 지원한다. 단말은 상위 계층을 통하여 상기 단말 특정 RS인 DM-RS의 존재 여부를 시그널링 받는다. 특히, 도 9 및 도 10은 안테나 포트 5에 대응하는 DM-RS를 예시하며, 3GPP 표준문서 36.211에서는 안테나 포트 7 내지 14, 즉 총 8개의 안테나 포트에 대한 DM-RS 역시 정의하고 있다.
도 11은 현재 3GPP 표준문서에서 정의하고 있는 하향링크 DM-RS 할당 예를 도시한다.
도 11을 참조하면, DM-RS 그룹 #1에는 안테나 포트 인덱스 {#7, #8, #11, #13}에 해당하는 DM-RS가 안테나 포트 별 시퀀스를 이용하여 맵핑되며, DM-RS 그룹 #2에는 안테나 포트 인덱스 {#9, #10, #12, #14}에 해당하는 DM-RS가 마찬가지로 안테나 포트 별 시퀀스를 이용하여 맵핑된다. 또한, 각 안테나 포트에 대응하는 시퀀스 맵핑 시, 아래 표 1과 같은 각 안테나 포트 별로 미리 정의된 직교 커버 코드(Orthogonal Cover Code; OCC)가 적용되어 코드 분할 다중화되는 방식으로 맵핑된다.
한편, 상술한 CSI-RS 는 CRS와 별도로 PDSCH에 대한 채널 측정을 목적으로 제안되었으며, CRS와 달리 CSI-RS는 다중 셀 환경에서 셀 간 간섭(inter-cell interference; ICI)를 줄이기 위하여 최대 32가지의 서로 다른 CSI-RS 설정(configuration)으로 정의될 수 있다.
CSI-RS 설정은 안테나 포트 개수에 따라 서로 다르며, 인접 셀 간에는 최대한 다른 CSI-RS 설정으로 정의되는 CSI-RS가 송신되도록 구성된다. CSI-RS는 CRS와 달리 최대 8개의 안테나 포트까지 지원하며, 3GPP 표준문서에서는 안테나 포트 15 내지 22까지 총 8개의 안테나 포트를 CSI-RS를 위한 안테나 포트로 할당한다. 아래 표 2 및 표 3은 3GPP 표준문서에서 정의하고 있는 CSI-RS 설정을 나타내며, 특히, 표 2는 일반(Normal CP)인 경우를, 표 3은 일반(Extended CP)인 경우를 나타낸다.
표 2 및 표 3에서, (k', l')는 RE 인덱스를 나타내며, k'는 부반송파 인덱스를, l'는 OFDM 심볼 인덱스를 나타낸다. 도 12는 현재 3GPP 표준문서에서 정의된 CSI-RS 설정 중 일반 CP인 경우의 CSI-RS 설정 #0을 예시한다.
또한, CSI-RS 서브프레임 설정이 정의될 수 있으며, 이는 서브프레임 단위로 표현되는 주기(TCSI - RS)와 서브프레임 오프셋()로 구성된다. 아래 표 4는 3GPP 표준문서에서 정의하고 있는 CSI-RS 서브프레임 설정을 나타낸다.
향후 LTE 시스템은 로컬 영역(Local Area)의 도입을 검토하고 있다. 즉, 사용자 별 서비스 지원을 보다 강화하기 위해서 로컬 영역 액세스(Local Area Access)라는 개념의 새로운 셀 구축(deployment)이 도입될 것으로 예상된다.
도 13은 향후 LTE 시스템에 도입될 것으로 예상되는 소형 셀(small-cell) 개념을 예시하는 도면이다.
도 13을 참조하면, 기존의 LTE 시스템에 운용되는 주파수 대역이 아닌, 보다 높은 중심 주파수를 갖는 대역에 보다 넓은 시스템 대역을 설정하여 운용하는 것을 예상할 수 있다. 또한 기존의 셀룰러 대역을 통해서는 시스템 정보(system information)과 같은 제어 신호를 기반으로 기본적인 셀 커버리지를 지원하고, 고주파의 소형 셀에서는 보다 넓은 주파수 대역을 이용하여 전송 효율을 극대화하는 데이터 전송이 이루어질 수 있다. 따라서, 로컬 영역 액세스라는 개념은 보다 좁은 지역에 위치한 저~고 이동성(low-to-medium mobility) 단말들이 그 대상이며, 단말과 기지국 사이의 거리가 기존 km 단위의 셀보다 작은 100m 단위의 작은 셀들이 될 것이다.
이러한 셀들에서는 단말과 기지국 사이의 거리가 짧아지고, 고주파 대역을 사용함에 따라 아래와 같은 채널 특성을 예상할 수 있다.
우선 지연 확산 측면에서는, 기지국과 단말 사이의 거리가 짧아짐에 따라 신호의 지연도 짧아질 수 있다. 또한, 부반송파 간격(Subcarrier spacing) 측면에서는, LTE 시스템과 동일한 OFDM기반의 프레임을 적용할 경우, 할당된 주파수 대역이 상대적으로 크기 때문에 기존의 15kHz보다 극단적으로 큰 값으로 설정될 수 있다. 마지막으로, 도플러 주파수(Doppler's frequency) 측면에서는, 고주파 대역을 사용하기 때문에, 동일한 단말 속도의 저주파 대역보다 높은 도플러 주파수가 나타나기 때문에, 코히런스 시간(coherent time)이 극단적으로 짧아질 수 있다. 여기서, 상관 시간이란, 시간적으로 채널이 정적인 특성 또는 균일한 특성을 보이는 시간 구간을 의미한다. 코히런스 대역폭(coherent bandwidth)는 시간적으로 채널이 정적인 특성 또는 균일한 특성을 보이는 대역폭을 의미한다.
한편, 최근 3GPP 표준에서는 능동 안테나 시스템(AAS, Active Antenna System) 기반의 평판 안테나, 즉 2차원 (2D) 어레이(array) 안테나가 논의 중이다. 각 안테나 포트에는 RF 모듈이 장착되고 각각 2D 안테나 서브 어레이(sub-array)에 맵핑되면, 결과적으로 2D 어레이 안테나 구조를 갖는 AAS BS가 되는 것이다. 이때 안테나 포트 별로 분할된 RF 모듈은 독립적인 진폭(amplitude)과 위상(phase) 제어가 가능하며, 기존의 수평 도메인(horizontal domain) 빔포밍과는 별도로, 수직(Vertical) 방향으로의 엘레베이션 (elevation) 영역을 제공할 수 있다.
이러한 2D 어레이 안테나의 특성을 활용한 예로는, 수직적 셀 분할(Vertical cell spitting )을 들 수 있다.
도 14는 2D 어레이 안테나를 이용한 수직적 셀 분할의 개념을 도시한다. 특히, 도 14는 상기 2D 어레이 안테나의 각 안테나 소자의 진폭 가중치(amplitude weighting)와 위상 천이(phase shift)를 이용하여 동일 셀 내에 두 개의 수직적 섹터(vertical sector)를 구현한 것으로 가정한다.
도 14를 참조하면, 서로 다른 방향으로 여러 개의 빔을 형성한 것을 알 수 있다. 즉, 동일 eNB의 커버리지에서 수평 및 수직으로 구분된 서로 다른 다중(multiple) 셀들을 운용할 수 있고, 각 셀에서는 동일한 시간-주파수(time-frequency) 자원의 재사용을 통해서 셀 용량(capacity)를 증대시킬 수 있다.
이때 수직적 섹터가 중첩되는 영역에서는 동일한 시간-주파수 자원 사용으로 인하여 자원 중첩 또는 자원 충돌이 발생할 수 있으며, 각 영역에서 서비스되는 단말들을 위한 DM-RS 전송 역시 자원 중첩으로 인해 상호 간섭을 유발하게 된다. 따라서, 이러한 수직적 섹터들 사이에는 채널 추정의 정확도가 떨어져 데이터 채널의 복조에 문제가 발생할 수 있다.
본 발명에서는 단일 기지국과 다수의 단말들 간에 데이터 채널의 간섭 문제를 해결하기 위해서, DM-RS 기반의 채널 추정 성능 유지 방안을 제시한다.
<
제 1
실시예
>
본 발명의 제 1 실시예에서는, 2D 어레이 안테나의 복수의 안테나들을 그룹핑하여 가상 안테나 포트로 #7 내지 #14로 구성하고, 수직적 섹터 간에 할당되는 DM-RS의 안테나 포트 시작 인덱스를 서로 다르게 설정하여, 섹터 별로 우선적으로 단말에게 할당하는 DM-RS 안테나 포트가 최대로 상이하도록 유지하는 것을 제안한다.
다시 말해, 수직적 섹터 간에 다수의 시간-주파수 자원, 예를 들어 자원 블록(RB)들을 다수의 단말이 공유할 때, 서로 다른 물리 DM-RS 안테나 포트를 우선적으로 할당하도록 함으로써 동일한 RB를 사용하는 단말들 사이에 발생할 수 있는 DM-RS 중첩 현상을 감소시킬 수 있다.
도 15는 본 발명의 제 1 실시예에 따라 DM-RS 안테나 포트를 할당하는 예를 도시한다.
도 15를 참조하면, LTE 시스템에서는 단말에게 DM-RS 안테나 포트를 {#7, #8, #9, #10, #11, #12, #13, #14}의 순서에 따라 DM-RS 자원을 할당한다. 본 발명의 제 1 실시예에 따르면, 섹터-A 단말과 섹터-B 단말에게 DM-RS 자원 자체가 최대한 직교 하도록 다음과 같이 할당할 수 있다.
1) DM-RS 안테나 포트 논리적 인덱스 = {#7, #8, #9, #10, #11, #12, #13, #14}
2) DM-RS 안테나 포트 물리적 인덱스 = {#7, #8, #11, #13, #9, #10, #12, #14}
보다 구체적으로, 섹터-A의 단말에게는 DM-RS 논리적 인덱스(logical index)를 그대로 할당하고, 섹터-B의 단말에게는 DM-RS 논리적 인덱스 + 쉬프트 값(shift_value)을 할당한다. 즉, 섹터-A 단말은 DM-RS 안테나 포트 논리적 인덱스 {#7, #8, #9, #10}이 할당되므로, DM-RS 안테나 포트 물리적 인덱스 {#7, #8, #11, #13}을 우선적으로 사용하는 것이다. 또한 쉬프트 값으로 4를 사용하면 DM-RS 안테나 포트 논리적 인덱스 {#11, #12, #13, #14}이 할당되므로, 섹터-B는 DM-RS 안테나 포트 물리적 인덱스 {#9, #10, #12, #14}을 우선적으로 할당하게 된다. 이를 통해서 적어도 각 단말 별 랭크 4 이하의 데이터 채널 전송에서는 직교하는 DM-RS 자원들을 할당하여 안정적인 채널 추정이 가능하게 된다. 물론, 이 경우에도 랭크 5 이상의 데이터 채널 전송에서는 자원 중첩 또는 자원 충돌이 발생할 수는 있다.
<
제 2
실시예
>
본 발명의 제 2 실시예에서는, 2D 어레이 안테나의 복수의 안테나들을 그룹핑하여 가상 안테나 포트로 #7 내지 #14로 구성하고, 기지국은 중첩된 수직적 섹터 영역에서 서비스 받는 단말에게 서로 상이한 공 전력(zero-power) DM-RS 안테나 포트를 할당하여, 섹터간 DM-RS 간 간섭이 발생하지 않도록 하는 것을 제안한다.
구체적으로, 수직적 섹터 별로 서로 상이한 공 전력 DM-RS 안테나 포트 패턴을 할당하고 단말들에게 해당 정보를 전송한다. 이를 통하여, 단말들은 위치하는 섹터 별로 서로 다른 DM-RS 안테나 포트를 이용하게 된다. 즉, 단말 입장에서는 공 전력 DM-RS 안테나 포트가 할당됨에 따라, 실제 사용할 수 있는 DM-RS 안테나 포트를 제한(restriction)하는 것과 유사하게 동작하게 된다. 예를 들어, 각 섹터 별로 아래와 같은 패턴이 정의되었다고 가정한다.
1) 섹터-A: 공 전력 DM-RS 패턴 {#7, # 8, #11, #13}
2) 섹터-B: 공 전력 DM-RS 패턴 {#9, #10, #12, #14}
이와 같은 경우, 랭크 4 전송일 경우, 섹터-A에 위치한 단말은 DM-RS 안테나 포트 {#7, # 8, #11, #13}을 제외한 DM-RS 안테나 포트 {#9, #10, #12, #14}를 이용하여 데이터 채널 복조를 위한 채널 추정을 수행한다. 반대로, 섹터-B에 위치한 단말은 DM-RS 안테나 포트 {#9, #10, #12, #14}을 제외한 DM-RS 안테나 포트 {#7, # 8, #11, #13}를 이용하여 데이터 채널 복조를 위한 채널 추정을 수행한다.
<
제 3
실시예
>
본 발명의 제 3 실시예에서는, 2D 어레이 안테나의 복수의 안테나들을 그룹핑하여 가상 안테나 포트로 #7 내지 #14로 구성하고, 기지국이 수직적 섹터 간에 서로 다른 가상 셀 식별자(virtual Cell ID 또는 RNTI) 또는 서로 다른 스크램블링 식별자(SCID)를 부여하여 DM-RS 간 서로 준-직교적인(quasi-orthogonal) 특성의 시퀀스를 유지시키는 것을 제안한다.
따라서, 데이터 채널 복조를 위한 채널 추정을 위하여 수직적 섹터 간 동일한 DM-RS 안테나 포트를 할당 받은 단말에게도, 준-직교적인 시퀀스를 이용하여 추가적인 직교성을 확보할 수 있다. 즉, 상술한 제 1 실시예 또는 제 2 실시예를 통하여 직교하는 DM-RS 자원들을 할당한 후에도 추가적인 직교성(Orthogonality) 확보가 필요한 경우에는, 상기 수학식 11의 의사 랜덤(Pseudo-random) 시퀀스의 준-직교 특성을 이용한다.
도 16은 본 발명의 제 3 실시예에 따라 추가적인 DM-RS 직교성을 확보하는 예를 도시한다. 다만, 도 16에서는 섹터-A에 UE#1과 UE#3이 위치하고, 섹터-B에 UE#2와 UE#4가 위치하는 것으로 가정한다.
도 16을 참조하면, DM-RS 할당 시에 OCC를 이용하여 시간축의 DM-RS를 코드 분할 다중화하고, nSCID를 0 또는 1로 설정하여 준-직교적 특성의 DM-RS 할당을 수행하기 때문에, 서로 다른 수직적 섹터 단말인 UE#1과 UE#2, 그리고 UE#3과 UE#4 사이에 채널 추정이 가능하게 된다. 즉, nSCID=nRNTI={0,1}로 설정하기 때문에, 준-직교적인 의사 랜덤 시퀀스가 생성된다.
한편, 기지국은 단말에게 수직적 섹터에 대한 정보를 전송하여, 상술한 제 1 실시예 내지 제 3 실시예의 동작을 수행할 수 있도록 지시할 수 있다. 즉, 기지국은 단말에게 자신이 속한 수직적 섹터에 대한 정보를 직접 전송하고, 단말은 제 1 실시예 내지 제 3 실시예 중 적절한 동작을 수행하도록 할 수 있다. 이때 기지국이 단말에게 전송하는 정보를 비트맵(bitmap)이나, 가상 셀 식별자(virtual cell ID) 등으로 표현할 수 있다. 예를 들어 수직적 섹터가 총 4개 존재한다고 가정하면, 2 비트 만으로 표현하여 단말에게 전송하거나, 가상 셀 식별자(virtual cell ID) 자체를 전송할 수 있다.
이상에서 설명한 본 발명에 따르면, 수직적 섹터 간 중첩 영역에서 최대한 직교할 수 있는 DM-RS 자원을 할당함으로써, 단말의 안정적인 데이터 수신 성능을 극대화시킬 수 있다.
도 17은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 17을 참조하면, 통신 장치(1700)는 프로세서(1710), 메모리(1720), RF 모듈(1730), 디스플레이 모듈(1740) 및 사용자 인터페이스 모듈(1750)을 포함한다.
통신 장치(1700)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1700)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1700)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1710)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1710)의 자세한 동작은 도 1 내지 도 16에 기재된 내용을 참조할 수 있다.
메모리(1720)는 프로세서(1710)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1730)은 프로세서(1710)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1730)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1740)은 프로세서(1710)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1740)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1750)은 프로세서(1710)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (13)
- 무선 통신 시스템에서 기지국이 단말로 신호를 송신하는 방법으로서,
상기 단말을 위한 단말 특정 참조 신호 시퀀스를 생성하는 단계;
상기 단말이 위치하는 수직 섹터에 기반하여, 상기 단말 특정 참조 신호 시퀀스를 맵핑하기 위한 송신 자원을 결정하는 단계;
상기 결정된 송신 자원에 상기 단말 특정 참조 신호 시퀀스를 맵핑하는 단계; 및
상기 단말 특정 참조 신호 시퀀스를 상기 단말로 2 차원 평판 안테나를 이용하여 송신하는 단계를 포함하는 것을 특징으로 하는,
신호 송신 방법. - 제 1 항에 있어서,
상기 결정하는 단계는,
상기 기지국이 운용하는 수직 섹터 별로 직교하는 자원으로 상기 송신 자원을 결정하는 단계를 포함하는 것을 특징으로 하는,
신호 송신 방법. - 제 1 항에 있어서,
상기 결정하는 단계는,
상기 단말 특정 참조 신호를 위한 논리적 안테나 포트의 인덱스들을 상기 단말 특정 참조 신호가 할당되는 물리적 안테나 포트 순으로 정의하는 단계; 및
상기 단말을 위한 논리적 안테나 포트의 시작 인덱스를 결정하는 단계를 포함하는 것을 특징으로 하는,
신호 송신 방법. - 제 1 항에 있어서,
상기 결정하는 단계는,
상기 단말로 상기 수직 섹터에 대응하는 공 전력 단말 특정 참조 신호의 안테나 포트에 관한 정보를 송신하는 단계; 및
상기 공 전력 단말 특정 참조 신호의 안테나 포트를 제외한 나머지 안테나 포트를 상기 송신 자원으로 결정하는 단계를 포함하는 것을 특징으로 하는,
신호 송신 방법. - 제 1 항에 있어서,
상기 2 차원 평판 안테나에 포함된 안테나들을 그룹핑하여 복수의 물리적 안테나 포트들로 정의하는 단계를 포함하는 것을 특징으로 하는,
신호 송신 방법. - 제 1 항에 있어서,
상기 수직 섹터는,
상기 2 차원 평판 안테나의 수직 방향 빔포밍에 따라 형성되는 셀 커버리지 영역인 것을 특징으로 하는,
신호 송신 방법. - 무선 통신 시스템에서 단말이 기지국으로부터 신호를 수신하는 방법으로서,
상기 기지국으로부터 2 차원 평판 안테나를 이용하여 송신된 단말 특정 참조 신호 시퀀스를 수신하는 단계를 포함하고,
상기 단말 특정 참조 신호 시퀀스를 위한 자원은 상기 단말이 위치하는 수직 섹터 별로 직교하도록 결정되는 것을 특징으로 하는,
신호 수신 방법. - 제 7 항에 있어서,
상기 기지국으로부터 상기 단말을 위한 논리적 안테나 포트의 인덱스들에 관한 정보를 수신하는 단계를 더 포함하고,
상기 단말 특정 참조 신호를 위한 논리적 안테나 포트의 시작 인덱스는 상기 단말 특정 참조 신호가 할당되는 물리적 안테나 포트 순으로 정의되는 것을 특징으로 하는,
신호 수신 방법. - 제 7 항에 있어서,
상기 기지국으로부터 상기 수직 섹터에 대응하는 공 전력 단말 특정 참조 신호의 안테나 포트에 관한 정보를 수신하는 단계; 및
상기 공 전력 단말 특정 참조 신호의 안테나 포트를 제외한 나머지 안테나 포트를 상기 단말 특정 참조 신호 시퀀스를 위한 자원으로 결정하는 단계를 포함하는 것을 특징으로 하는,
신호 수신 방법. - 제 7 항에 있어서,
상기 기지국은,
상기 2 차원 평판 안테나에 포함된 안테나들을 그룹핑하여 복수의 물리적 안테나 포트들로 정의하는 것을 특징으로 하는,
신호 수신 방법. - 제 7 항에 있어서,
상기 수직 섹터는,
상기 2 차원 평판 안테나의 수직 방향 빔포밍에 따라 형성되는 셀 커버리지 영역인 것을 특징으로 하는,
신호 수신 방법. - 무선 통신 시스템에서 기지국 장치로서,
단말 장치와 신호를 송수신하기 위한 무선 통신 모듈; 및
상기 신호를 처리하기 위한 프로세서를 포함하고,
상기 프로세서는,
상기 단말을 위한 단말 특정 참조 신호 시퀀스를 생성하고, 상기 단말이 위치하는 수직 섹터에 기반하여 상기 단말 특정 참조 신호 시퀀스를 맵핑하기 위한 송신 자원을 결정하며, 상기 결정된 송신 자원에 상기 단말 특정 참조 신호 시퀀스를 맵핑하여 상기 단말로 2 차원 평판 안테나를 이용하여 송신하도록 상기 무선 통신 모듈을 제어하는 것을 특징으로 하는,
기지국 장치. - 무선 통신 시스템에서 단말 장치로서,
기지국 장치와 신호를 송수신하기 위한 무선 통신 모듈; 및
상기 신호를 처리하기 위한 프로세서를 포함하고,
상기 프로세서는,
상기 기지국으로부터 2 차원 평판 안테나를 이용하여 송신된 단말 특정 참조 신호 시퀀스를 수신하도록 상기 무선 통신 모듈을 제어하고,
상기 단말 특정 참조 신호 시퀀스를 위한 자원은 상기 단말이 위치하는 수직 섹터 별로 직교하도록 결정되는 것을 특징으로 하는,
단말 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361757209P | 2013-01-27 | 2013-01-27 | |
US61/757,209 | 2013-01-27 | ||
PCT/KR2013/007453 WO2014115941A1 (en) | 2013-01-27 | 2013-08-20 | Method for transmitting and receiving planar antenna based reference signal in wireless communication system and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20150113071A true KR20150113071A (ko) | 2015-10-07 |
Family
ID=51227718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157023061A KR20150113071A (ko) | 2013-01-27 | 2013-08-20 | 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9787448B2 (ko) |
KR (1) | KR20150113071A (ko) |
WO (1) | WO2014115941A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150113071A (ko) * | 2013-01-27 | 2015-10-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치 |
CN105828348B (zh) * | 2015-01-04 | 2019-03-19 | 中国联合网络通信集团有限公司 | 三维小区分裂方法及装置 |
KR102279499B1 (ko) * | 2015-05-19 | 2021-07-20 | 삼성전자 주식회사 | 2차원 안테나를 사용하는 무선 통신 시스템에서 피드백 신호 제공 방법 및 장치 |
WO2018128573A1 (en) * | 2017-01-06 | 2018-07-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio network nodes, wireless device and methods performed therein |
CN112235804B (zh) * | 2020-10-12 | 2021-08-20 | 江苏亨鑫科技有限公司 | 基站远端单元动态划归方法和装置、小区组网方法和系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280607B2 (en) * | 1997-12-12 | 2007-10-09 | Freescale Semiconductor, Inc. | Ultra wide bandwidth communications method and system |
US20060140644A1 (en) * | 2004-12-23 | 2006-06-29 | Paolella Arthur C | High performance, high efficiency fiber optic link for analog and RF systems |
US9100068B2 (en) * | 2008-03-17 | 2015-08-04 | Qualcomm, Incorporated | Multi-resolution beamforming in MIMO systems |
US8274937B2 (en) | 2008-08-26 | 2012-09-25 | Samsung Electronics Co., Ltd. | Method and apparatus for beamforming in OFDM wireless system |
JP5198480B2 (ja) * | 2009-06-23 | 2013-05-15 | 株式会社エヌ・ティ・ティ・ドコモ | 無線基地局装置及び移動局装置、無線通信方法 |
KR20100138261A (ko) * | 2009-06-24 | 2010-12-31 | 주식회사 팬택 | 무선통신 시스템에서 참조신호의 할당방법 및 그 장치, 그 장치를 이용한 송수신장치 |
KR101678435B1 (ko) * | 2009-07-17 | 2016-12-06 | 엘지전자 주식회사 | 다중 안테나 무선 통신 시스템에서 하향링크 신호를 수신하는 방법 및 이를 위한 장치 |
KR20120031700A (ko) * | 2010-09-27 | 2012-04-04 | 삼성전자주식회사 | 계층 셀 통신 시스템에서 피드포워드 인덱스를 이용한 간섭 정렬 방법 및 장치 |
CN102938688B (zh) * | 2011-08-15 | 2015-05-27 | 上海贝尔股份有限公司 | 用于多维天线阵列的信道测量和反馈的方法和设备 |
US9077415B2 (en) * | 2011-12-19 | 2015-07-07 | Samsung Electronics Co., Ltd. | Apparatus and method for reference symbol transmission in an OFDM system |
US9730083B2 (en) * | 2012-06-08 | 2017-08-08 | Nec (China) Co., Ltd. | Method and apparatus for three-dimensional beamforming |
KR20150113071A (ko) * | 2013-01-27 | 2015-10-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 평판 안테나 기반 참조 신호 송수신 방법 및 이를 위한 장치 |
-
2013
- 2013-08-20 KR KR1020157023061A patent/KR20150113071A/ko not_active Application Discontinuation
- 2013-08-20 US US14/763,761 patent/US9787448B2/en active Active
- 2013-08-20 WO PCT/KR2013/007453 patent/WO2014115941A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US9787448B2 (en) | 2017-10-10 |
US20150365948A1 (en) | 2015-12-17 |
WO2014115941A1 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6068675B2 (ja) | 無線通信システムにおいてコヒーレンス時間変化による参照信号のパターン変更方法及びそのための装置 | |
US10097327B2 (en) | Method for receiving downlink data channels in multicell-based wireless communication systems and apparatus for same | |
KR101663616B1 (ko) | 다중 안테나 무선 통신 시스템에서 참조 신호 시퀀스 생성 방법 및 이를 위한 장치 | |
KR101939295B1 (ko) | 다중 셀 기반 무선 통신 시스템에서 하향링크 데이터 채널 수신 방법 및 이를 위한 장치 | |
JP6060272B2 (ja) | 無線通信システムにおいて端末の移動速度による参照信号のパターン変更方法及びそのための装置 | |
KR101904945B1 (ko) | 무선 통신 시스템 셀 간 간섭을 감소시키는 방법 및 이를 위한 장치 | |
JP6058820B2 (ja) | 無線通信システムにおいて基地局が端末に参照信号を送信する方法及びそのための装置 | |
KR20140012699A (ko) | 무선 통신 시스템에서 csi-rs에 기반한 채널 추정 방법 및 이를 위한 장치 | |
KR20150079554A (ko) | 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치 | |
KR20150043345A (ko) | 무선 통신 시스템에서 소형 셀을 위한 순환 전치 구성 방법 및 이를 위한 장치 | |
KR20160013871A (ko) | 대규모 mimo 시스템을 위한 참조 신호 확장 | |
KR20150035705A (ko) | 무선 통신 시스템에서 3차원 빔포밍을 위한 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 | |
KR20160008497A (ko) | 무선 통신 시스템에서 다중 안테나 기반 빔포밍를 위하여 참조 신호를 구성하는 방법 및 이를 위한 장치 | |
KR20130092467A (ko) | 무선 통신 시스템에서 전송 다이버시티 기법을 위한 참조 신호 안테나 포트 할당 방법 및 이를 위한 장치 | |
JP6082481B2 (ja) | 無線通信システムにおいて基地局が端末に制御チャネルを送信する方法及びそのための装置 | |
KR20140126298A (ko) | 무선 통신 시스템에서 단말이 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치 | |
KR20150132073A (ko) | 다중 셀 기반 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치 | |
KR101603115B1 (ko) | 무선 통신 시스템에서 데이터 채널을 추정하는 방법 및 이를 위한 장치 | |
JP6400719B2 (ja) | 無線通信システムにおいて端末間直接通信技法を用いて端末が基地局と信号を送受信する方法及びそのための装置 | |
US9787448B2 (en) | Method for transmitting and receiving planar antenna based reference signal in wireless communication system and apparatus therefor | |
JP6002854B2 (ja) | 無線通信システムにおいてランク変化による参照信号のパターン変更方法及びそのための装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |