KR20150058143A - Hybrid energy storage devices including support filaments - Google Patents
Hybrid energy storage devices including support filaments Download PDFInfo
- Publication number
- KR20150058143A KR20150058143A KR1020157002572A KR20157002572A KR20150058143A KR 20150058143 A KR20150058143 A KR 20150058143A KR 1020157002572 A KR1020157002572 A KR 1020157002572A KR 20157002572 A KR20157002572 A KR 20157002572A KR 20150058143 A KR20150058143 A KR 20150058143A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon nanofibers
- intercalation
- intercalation material
- conductive substrate
- cnf
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Inert Electrodes (AREA)
Abstract
본 발명은, 탄소 나노섬유(CNF) 상에 동축으로 코팅된 Si 쉘(shell)들에 기초하는 신규한 하이브리드 리튬-이온 애노드 재료에 관한 것이다. 고유한 컵-스택킹 흑연 마이크로구조는 CNF를 효율적인 Li+ 인터칼레이션 매체로 만든다. 고도로 가역적인(reversible) Li+ 인터칼레이션 및 추출이 높은 전력율들에서 관측되었다. 더욱 중요하게, 고도로 전도성이고 기계적으로 안정한 CNF 코어는 임의적으로, 완전히 리튬화된 합금을 형성함으로써 훨씬 더 높은 이론상의 비용량을 갖는 동축으로 코팅된 비결정질 Si 쉘을 지지한다. 인터칼레이션 매질 가까이에 표면 효과 지배 사이트의 첨가는 배터리 및 커패시터 둘 모두의 장점을 포함하는 하이브리드 장치를 형성시킨다.The present invention relates to novel hybrid lithium-ion anode materials based on Si shells coaxially coated on carbon nanofibers (CNF). The unique cup-stacking graphite microstructure makes CNF an efficient Li + intercalation medium. Highly reversible Li + intercalation and extraction were observed at high power rates. More importantly, highly conductive and mechanically stable CNF cores optionally support coaxially coated amorphous Si shells with much higher theoretical specific capacities by forming fully lithiumated alloys. Adding a surface effect dominating site near the intercalation medium forms a hybrid device that includes the advantages of both the battery and the capacitor.
Description
<관련 출원들에 대한 상호-참조><Mutual Reference to Related Applications - Reference>
본 출원은 2013년 2월 27일에 출원된 미국 정규특허 출원번호 제13/779,409호의 일부연속출원; 2012년 12월 21일에 출원된 미국 정규특허 출원번호 제13/725,969호의 일부연속출원이고, 미국 가특허 출원 61/667,876호(2012년 7월 3일에 출원), 61/677,317호(2012년 7월 30일에 출원), 61/806,819호(2013년 3월 29일에 출원), 및 61/752,437호(2013년 1월 14일에 출원)에 대한 이득을 청구하고 이를 우선권으로 주장한다.This application is a continuation-in-part of U.S. Provisional Patent Application No. 13 / 779,409, filed February 27, 2013; This is a continuation of part of U.S. Provisional Patent Application No. 13 / 725,969 filed on December 21, 2012, which is a continuation-in-part of U.S. Provisional Patent Application 61 / 667,876 (filed July 3, 2012), 61/677, (Filed on July 30, 2013), 61 / 806,819 (filed on March 29, 2013), and 61 / 752,437 (filed on January 14, 2013).
본 출원은 또한 모두 2013년 3월 26일에 출원된 미국 가특허 출원 13/779,472호, 13/779,522호 및 13/779,571호와 관련된다.This application is also related to U.S. Patent Application Nos. 13 / 779,472, 13 / 779,522, and 13 / 779,571, all filed on March 26, 2013.
상기 모든 가특허출원 및 정규특허출원의 내용은 본원에 참고로 포함된다.The contents of all such patent applications and formal patent applications are incorporated herein by reference.
<발명의 분야>[0001]
본 발명은 배터리, 커패시터, 및 연료 전지를 포함하지만 이로 제한되지 않는 에너지 저장 장치의 분야에 관한 것이다.The present invention relates to the field of energy storage devices including, but not limited to, batteries, capacitors, and fuel cells.
재충전가능 리튬 이온 배터리들은, 휴대용 전자기기, 전동 공구(power tool)들, 및 미래 전기 차량들에서 전력 공급을 위한 중요한 전기 에너지 저장 장치들이다. 에너지 비용량(specific energy capacity), 충전/방전 속도, 및 사이클링 수명을 개선하는 것은 상기 재충전가능 리튬 이온 배터리들의 더 넓은 적용들을 위해 중요하다.Rechargeable lithium-ion batteries are important electrical energy storage devices for powering portable electronic devices, power tools, and future electric vehicles. Improving the specific energy capacity, charge / discharge rate, and cycling life is important for the wider applications of these rechargeable lithium ion batteries.
현재의 상업적인 Li-이온 배터리들에서, 흑연 또는 다른 탄소함유 재료(carbonaceous material)들이 애노드들로서 이용되고, 상기 애노드들은, 완전히 인터칼레이팅(intercalate)된 LiC6 화합물을 형성함으로써 372 mAh/g의 이론상의 용량 한계치를 갖는다. 대조적으로, 실리콘은, 완전히 리튬화된(lithiated) 합금 Li4 .4Si를 형성함으로써, 4,200 mAh/g의 훨씬 더 높은 이론상의 비용량(specific capacity)을 갖는다. 그러나, 최대 ~300-400% 만큼의 리튬화된 Si의 큰 부피 팽창은, 종래에 균열(fracture)들 및 기계적 장애를 필연적으로 초래하는 큰 구조적 스트레스를 야기하며, 이는 선행 기술의 Si 애노드들의 수명을 상당히 제한하였다.In current commercial Li- ion battery, the graphite or other carbon-containing material (carbonaceous material) have been used as the anode, the anode may, completely intercalation (intercalate) with LiC 6 theoretical 372 mAh / g by forming the compound Lt; / RTI > In contrast, the silicon, and has a fully lithiated a (lithiated) Li alloy to form a 4 .4 Si, the theoretical specific capacity of a much higher of 4,200 mAh / g (specific capacity) . However, the large volume expansion of the lithiated Si by as much as ~ 300-400% causes a large structural stress which conventionally leads to fractures and mechanical failure inevitably, which leads to the lifetime of the prior art Si anodes .
일부 구체예에서, 전력 저장 장치는, 비정질 실리콘층으로 동축으로 코팅된, 수직으로 정렬된 탄소 나노섬유들(vertically aligned carbon nanofibers; VACNF)의 어레이를 도입함으로써 고성능 Li-이온 애노드의 하이브리드 코어-쉘 NW(나노-와이어) 아키텍처를 포함한다. 수직 정렬된 CNF들은 다중벽 탄소 나노튜브들(MWCNT)을 포함하고, 이러한 것들은 임의적으로, DC-바이어싱된 플라즈마 화학 기상 증착(PECVD) 공정을 이용하여 Cu 기판 상에 성장된다. 이러한 방법에 의해 성장된 탄소 나노섬유들(CNF)은, 통상의 고체 탄소 나노섬유들 및 공통 MWCNT들의 중공 구조로부터 이러한 것들을 구별짓는 고유한 내부 모폴러지(morphology)를 가질 수 있다. 구별짓는 특징들 중 하나는, 이들 CNF들이 임의적으로, 대부분의 중공 중심 채널에 걸쳐 일련의 대나무형(bamboo-like) 노드들로 이루어지는 것이다. 이러한 마이크로구조는 본원의 다른 부분에서 추가로 논의되는 원뿔형 흑연 컵(conical graphitic cup)들의 스택에 기인할 수 있다. 더 큰 길이 스케일(length scale)에서, 이들 PECVD-성장 CNF들은 통상적으로 기판 표면에 수직으로 균일하게 정렬되고, 서로로부터 잘 분리되어 있다. 이들은 어떠한 얽힘(entanglement)도 갖지 않거나 또는 최소의 얽힘을 가질 수 있고, 따라서 VACNF 어레이로 지칭되는 브러시형(brush-like) 구조를 형성할 수 있다. 개개의 CNF들의 직경은, VACNF 어레이가 강건하고, Si 증착 및 습식 전기화학적 테스트들에 걸쳐 자신의 무결성(integrity)을 유지할 수 있도록, 원하는 기계적 강도를 제공하게 선택될 수 있다.In some embodiments, the power storage device includes a hybrid core-shell of a high performance Li-ion anode by introducing an array of vertically aligned carbon nanofibers (VACNF) coaxially coated with an amorphous silicon layer NW (nano-wire) architecture. Vertically aligned CNFs include multi-wall carbon nanotubes (MWCNTs), which are optionally grown on a Cu substrate using a DC-Biased Plasma Chemical Vapor Deposition (PECVD) process. Carbon nanofibers (CNFs) grown by this method can have a unique internal morphology that differentiates them from conventional solid carbon nanofibers and the hollow structure of common MWCNTs. One distinguishing feature is that these CNFs are arbitrarily made up of a series of bamboo-like nodes across most hollow center channels. This microstructure can be attributed to the stack of conical graphitic cups discussed further elsewhere herein. On a larger length scale, these PECVD-grown CNFs are normally uniformly aligned vertically to the substrate surface and are well separated from each other. They may have no entanglement or have minimal entanglement and thus form a brush-like structure referred to as a VACNF array. The diameter of the individual CNFs can be selected to provide the desired mechanical strength so that the VACNF arrays are robust and can maintain their integrity over Si deposition and wet electrochemical tests.
본 발명의 다양한 구체예는 VACNF와는 다른 소정 타입의 지지 필라멘트를 포함한다. 이러한 지지 필라멘트는 예를 들어 나노와이어, 카본 시트, 또는 본원에 기술된 다른 구조물을 포함할 수 있다. 다른 구체예는 임의의 지지 필라멘트를 포함하지 않고 대신에 바인더를 사용한다.Various embodiments of the present invention include certain types of support filaments that differ from VACNF. Such supporting filaments may include, for example, nanowires, carbon sheets, or other structures described herein. Other embodiments do not include any supporting filaments and instead use a binder.
본 발명의 다양한 구체예들은 전도성 기판; 기판 상에 성장된, 복수의 수직으로 정렬된 탄소 나노섬유들로서, 복수의 다중-벽 탄소 나노튜브(multi-walled carbon nanotube)들을 포함하는 탄소 나노튜브들; 및 하나 또는 둘 이상의 전하 운반체들을 포함하는 전해질(electrolyte)을 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; A plurality of vertically aligned carbon nanofibers grown on a substrate, the carbon nanotubes comprising a plurality of multi-walled carbon nanotubes; And an electrolyte comprising an electrolyte comprising one or more charge carriers.
본 발명의 다양한 구체예들은 전도성 기판; 기판 상에 성장된, 복수의 수직으로 정렬된 탄소 나노섬유들; 및 복수의 수직으로 정렬된 탄소 나노섬유들 상에 배치되고, 인터칼레이션 재료(intercalation material) 1 그램 당 대략 1,500 내지 4,000 mAh의 리튬 이온 저장 용량을 갖도록 구성된 인터칼레이션 재료 층을 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; A plurality of vertically aligned carbon nanofibers grown on the substrate; And an energy storage layer disposed on the plurality of vertically aligned carbon nanofibers and comprising an intercalation material layer configured to have a lithium ion storage capacity of from about 1,500 to 4,000 mAh per gram of intercalation material, System.
본 발명의 다양한 구체예들은 전도성 기판; 기판 상에 성장되는, 복수의 수직으로 정렬된 탄소 나노섬유들; 및 복수의 수직으로 정렬된 탄소 나노섬유들 상에 배치되고, 인터칼레이션 재료의 이온 저장 용량이 1C 및 3C의 충전율에서 대략 동일하도록 구성된 인터칼레이션 재료 층을 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; A plurality of vertically aligned carbon nanofibers grown on the substrate; And an energy storage system disposed on the plurality of vertically aligned carbon nanofibers and including an intercalation material layer configured such that the ion storage capacity of the intercalation material is approximately the same at a charge rate of 1C and 3C.
본 발명의 다양한 구체예들은 에너지 저장 장치를 제조하는 방법으로서, 기판을 제공하는 단계; 기판 상에 탄소 나노섬유들을 성장시키되, 탄소 나노섬유들이 적층된 원뿔 구조(stacked-cone structure)를 갖는 단계; 및 인터칼레이션 재료를 탄소 나노섬유들에 적용하되, 인터칼레이션 재료가 전하 운반체들의 인터칼레이션을 위해 구성되는 단계를 포함하는 방법을 포함한다.Various embodiments of the present invention provide a method of manufacturing an energy storage device, comprising: providing a substrate; Growing carbon nanofibers on a substrate, the carbon nanofibers having a stacked-cone structure in which carbon nanofibers are stacked; And applying the intercalation material to the carbon nanofibers, wherein the intercalation material is configured for intercalation of the charge carriers.
본 발명의 다양한 구체예는 하나 이상의 전하 운반체를 포함하는 전해질; 전도성 기판; 기판에 부착된 복수의 수직 정렬된 지지 필라멘트; 각각의 지지 필라멘트 상에 배치되고 대부분의 인터칼레이션 재료 내에서 전하 운반체의 일원을 가역적으로 흡착하도록 구성된 인터칼레이션 재료; 및 인터칼레이션 재료 상에 배치되고 복수의 나노입자를 포함하되 나노입자 각각이 나노입자의 표면 상에 패러데이 상호작용(faradaic interaction)을 통해 전하 운반체의 일원을 흡착시키도록 구성된 표면 효과 지배 사이트(surface effect dominant site)를 제공하도록 구성된 바인더를 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the invention include an electrolyte comprising at least one charge carrier; Conductive substrate; A plurality of vertically aligned support filaments attached to the substrate; An intercalation material disposed on each support filament and configured to reversibly adsorb a member of a charge carrier within most of the intercalation material; And a surface effect control surface disposed on the intercalation material and configured to adsorb a member of the charge carrier through a faradic interaction on the surface of the nanoparticles, each nanoparticle comprising a plurality of nanoparticles, an energy storage system comprising a binder configured to provide an effect dominant site.
본 발명의 다양한 구체예에서, 하나 이상의 전하 운반체를 포함하는 전해질; 전도성 기판; 기판에 부착된 복수의 지지 필라멘트; 각각의 지지 필라멘트 상에 배치되고 대부분의 인터칼레이션 재료 내에서 전하 운반체의 일원을 가역적으로 흡착하도록 구성된 인터칼레이션 재료; 및 인터칼레이션 재료 상에 배치되고 인터칼레이션 재료로의 전하 운반체의 인터칼레이션을 촉진시키도록 구성된 복수의 표면 효과 지배 사이트를 포함하는 바인더를 포함하는 에너지 저장 시스템을 포함한다.In various embodiments of the present invention, an electrolyte comprising at least one charge carrier; Conductive substrate; A plurality of support filaments attached to a substrate; An intercalation material disposed on each support filament and configured to reversibly adsorb a member of a charge carrier within most of the intercalation material; And an energy storage system disposed on the intercalation material and comprising a binder comprising a plurality of surface effect control sites configured to promote intercalation of the charge carrier to the intercalation material.
본 발명의 다양한 구체예는 하나 이상의 전하 운반체를 포함하는 전해질; 전도성 기판; 대부분의 인터칼레이션 재료 내에서 전하 운반체의 일원을 가역적으로 흡착하도록 구성된 인터칼레이션 재료; 및 인터칼레이션 재료 상에 배치되고 복수의 나노입자를 포함하되 나노입자 각각이 나노입자의 표면 상에서 패러데이 상호작용을 통해 전하 운반체의 일원에 전자를 공여하도록 구성된 표면 효과 지배 사이트를 제공하도록 구성된 바인더를 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the invention include an electrolyte comprising at least one charge carrier; Conductive substrate; An intercalation material configured to reversibly adsorb a member of a charge carrier within most of the intercalation material; And a binder disposed on the intercalation material and configured to provide a surface effect dominating site comprising a plurality of nanoparticles, each nanoparticle configured to donate electrons to a member of a charge carrier through Faraday interaction on the surface of the nanoparticles And an energy storage system including
본 발명의 다양한 구체예는 캐소드; 및 하나 이상의 전하 운반체를 포함하는 전해질에 의해 캐소드로부터 분리된 애노드로서, 전하 운반체를 인터칼레이팅하고 제 1 반응 전위에서 전하 운반체에 전자를 공여하도록 구성된 인터칼레이션 재료, 제 2 반응 전위에서 전하 운반체에 전자를 공여하도록 구성된 표면 효과 지배 사이트를 포함하는 복수의 나노입자를 포함하되 제 1 반응 전위와 제 2 반응 전위 간의 절대적 차이는 2.4V 미만인 애노드를 포함하는 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a cathode; An intercalation material configured to intercalate the charge carrier and donate electrons to the charge carrier at a first reaction potential as an anode separated from the cathode by an electrolyte comprising at least one charge carrier; Wherein the absolute difference between the first reaction potential and the second reaction potential comprises an anode having an anode of less than 2.4 volts.
본 발명의 다양한 구체예는 전하 저장 장치의 애노드에서 전위 구배를 설정하기 위한 수단으로서, 애노드가 전해질, 복수의 표면 효과 지배 사이트, 인터칼레이션 재료 및 기판을 포함하는 수단; 표면 효과 지배 사이트 중 하나에서 전해질의 전하 운반체를 수용하기 위한 수단; 표면 효과 지배 사이트 중 하나로부터의 전하 운반체에서 전자를 수용하기 위한 수단; 및 인터칼레이션 재료에서 전하 운반체를 수용하기 위한 수단을 포함하는 시스템을 포함한다.Various embodiments of the present invention provide a device for setting a potential gradient in an anode of a charge storage device, comprising: means comprising an anode comprising an electrolyte, a plurality of surface effect dominating sites, an intercalation material and a substrate; Means for receiving a charge carrier of the electrolyte in one of the surface effect dominating sites; Means for receiving electrons from a charge carrier from one of the surface effect dominating sites; And means for receiving a charge carrier in the intercalation material.
본 발명의 다양한 구체예는 전도성 기판을 제공하는 단계; 기판 상에서 지지 필라멘트를 성장시키는 단계; 인터칼레이션 재료를 지지 나노섬유에 적용하되, 인터칼레이션 재료가 전하 운반체의 인터칼레이션을 위해 구성되는 단계; 복수의 표면 효과 지배 사이트를 인터칼레이션 재료에 대해 매우 근접하게 적용하는 단계를 포함하는, 에너지 저장 장치를 제조하는 방법을 포함한다.Various embodiments of the present invention provide a method comprising: providing a conductive substrate; Growing a supporting filament on a substrate; Applying an intercalation material to the support nanofibers, wherein the intercalation material is configured for intercalation of the charge carriers; And applying the plurality of surface effect dominating sites in close proximity to the intercalation material.
본 발명의 다양한 구체예는 전도성 기판을 제공하는 단계; 결합 재료, 표면 효과 지배 사이트 및 인터칼레이션 재료를 혼합하되, 표면 효과 지배 사이트가 제 1 반응 전위에서 전자를 전하 운반체로부터 받아들이도록 구성되며 인터칼레이션 재료가 제 2 반응 전위에서 전하 운반체 또는 전자를 전하 운반체로부터 받아들이도록 구성되는 단계; 및 결합 재료, 표면 효과 지배 사이트 및 인터칼레이션 재료를 기판에 적용하는 단계를 포함하는 애노드를 제조하는 방법을 포함한다.Various embodiments of the present invention provide a method comprising: providing a conductive substrate; A surface effect dominating site is configured to receive electrons from a charge carrier at a first reaction potential and wherein the intercalation material is configured to accept a charge carrier or electron at a second reaction potential, Configured to receive from a charge carrier; And applying the bonding material, the surface effect dominating site and the intercalation material to the substrate.
본 발명의 다양한 구체예는 전도성 기판을 제공하는 단계; 지지 필라멘트를 제공하는 단계; 인터칼레이션 재료를 지지 필라멘트에 적용하되 인터칼레이션 재료가 전하 운반체의 인터칼레이션을 위해 구성되는 단계; 및 표면 효과 지배 사이트를 지지 필라멘트에 첨가하는 단계를 포함하는, 에너지 저장 장치를 제조하는 방법을 포함한다.Various embodiments of the present invention provide a method comprising: providing a conductive substrate; Providing a supporting filament; Applying an intercalation material to the supporting filament, wherein the intercalation material is configured for intercalation of the charge carrier; And adding the surface effect dominating site to the supporting filament.
본 발명의 다양한 구체예는 전하 저장 장치의 캐소드와 애노드 사이에 전위를 설정하되 전하 저장 장치가 전해질을 포함하는 단계; 애노드의 표면 효과 지배 사이트에서 전해질의 제 1 전하 운반체를 수용하는 단계; 애노드의 전자를 제 1 전하 운반체로 이동시키는 단계; 전해질의 제 2 전하 운반체를 애노드의 인터칼레이션 재료에서 수용하는 단계; 및 전자를 인터칼레이션 재료에서 제 2 전하 운반체로 이동시키는 단계를 포함하는, 전하 저장 장치를 충전시키는 방법을 포함한다.Various embodiments of the present invention provide a method comprising: establishing a potential between a cathode and an anode of a charge storage device, wherein the charge storage device comprises an electrolyte; Receiving a first charge carrier of the electrolyte at the surface effect dominating site of the anode; Moving electrons of the anode to the first charge carrier; Receiving a second charge carrier of the electrolyte in the intercalating material of the anode; And transferring electrons from the intercalation material to the second charge carrier.
본 발명의 다양한 구체예는 전하 저장 장치의 애노드에서 전하 구배를 설정하되 애노드가 전해질, 표면 효과 지배 사이트를 갖는 복수의 나노입자, 인터칼레이션 재료, 및 기판을 포함하는 단계; 전해질의 제 1 전하 운반체를 표면 효과 지배 사이트 중 하나에서 수용하는 단계; 전자를 표면 효과 지배 사이트 중 하나에서 제 1 전하 운반체로 이동시키는 단계; 제 2 전하 운반체를 애노드의 인터칼레이션 재료에서 수용하는 단계; 및 전자를 인터칼레이션 재료에서 제 2 전하 운반체로 이동시키는 단계를 포함하는, 전하 저장 장치를 충전시키는 방법을 포함한다.Various embodiments of the invention include the steps of setting a charge gradient in the anode of a charge storage device, wherein the anode comprises an electrolyte, a plurality of nanoparticles having surface effect dominating sites, an intercalation material, and a substrate; Accepting a first charge carrier of the electrolyte at one of the surface effect dominating sites; Transferring electrons from one of the surface effect dominating sites to the first charge carrier; Receiving a second charge carrier in the intercalating material of the anode; And transferring electrons from the intercalation material to the second charge carrier.
본 발명의 다양한 구체예는 전도성 기판; 전도성 기판에 연결된 탄소 나노섬유 또는 다른 지지 필라멘트; 및 탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료를 포함하며, 탄소 나노섬유는 탄소 나노섬유의 길이를 따라 복수의 노출된 나노규모 에지를 포함하는 것인 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; Carbon nanofibers or other supporting filaments connected to a conductive substrate; And an intercalation material configured to form a shell over at least a portion of the carbon nanofibers, wherein the carbon nanofibers comprise a plurality of exposed nanoscale edges along the length of the carbon nanofibers .
본 발명의 다양한 구체예는 전도성 기판; 전도성 기판에 연결된 탄소 나노섬유 또는 다른 지지 필라멘트; 및 탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료를 포함하며, 탄소 나노섬유는 탄소 나노섬유의 길이를 따라 복수의 컵형 구조를 포함하는 것인 에너지 저장 시스템, 예컨대 배터리 또는 전극을 포함한다.Various embodiments of the present invention include a conductive substrate; Carbon nanofibers or other supporting filaments connected to a conductive substrate; And an intercalation material configured to form a shell over at least a portion of the carbon nanofibers, wherein the carbon nanofibers comprise a plurality of cup-shaped structures along the length of the carbon nanofibers, such as a battery or an electrode .
본 발명의 다양한 구체예는 전도성 기판; 전도성 기판에 연결된 탄소 나노섬유 또는 다른 지지 필라멘트; 및 탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료를 포함하며, 인터칼레이션 재료는 탄소 나노섬유의 길이를 따라 깃털형 구조로 배치된 것인 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; Carbon nanofibers or other supporting filaments connected to a conductive substrate; And an intercalation material configured to form a shell over at least a portion of the carbon nanofibers, wherein the intercalation material is arranged in a feathered structure along the length of the carbon nanofibers.
본 발명의 다양한 구체예는 전도성 기판; 전도성 기판에 연결된 탄소 나노섬유; 및 탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료를 포함하며, 인터칼레이션 재료는, 인터칼레이션 재료의 팽창이 탄소 나노섬유로부터 인터칼레이션 재료를 층간박리하지 않도록 구성된 것인 에너지 저장 시스템을 포함한다.Various embodiments of the present invention include a conductive substrate; Carbon nanofibers connected to a conductive substrate; And an intercalation material configured to form a shell over at least a portion of the carbon nanofibers, wherein the intercalation material is configured so that the expansion of the intercalation material does not delaminate the intercalation material from the carbon nanofibers Energy storage systems.
본 발명의 다양한 구체예는 전도성 기판을 제공하고; 각각이 탄소 나노섬유의 길이를 따라 복수의 노출된 나노규모의 에지를 포함하는 탄소 나노섬유를 전도성 기판에 부가하고; 전하 운반체들의 인터칼레이션을 위해 구성된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것을 포함하는 에너지 저장 장치의 제조 방법을 포함한다.Various embodiments of the present invention provide a conductive substrate; Adding carbon nanofibers, each containing a plurality of exposed nanoscale edges along the length of the carbon nanofibers, to the conductive substrate; And applying an intercalation material configured for intercalation of the charge carriers to the carbon nanofibers.
본 발명의 다양한 구체예는 전도성 기판을 제공하고; 각각이 탄소 나노섬유의 길이를 따라 복수의 컵형 구조를 포함하는 탄소 나노섬유를 전도성 기판에 부가하고; 전하 운반체들의 인터칼레이션을 위해 구성된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것을 포함하는 에너지 저장 장치의 제조 방법을 포함한다.Various embodiments of the present invention provide a conductive substrate; Adding carbon nanofibers, each containing a plurality of cup-shaped structures, along the length of the carbon nanofibers to the conductive substrate; And applying an intercalation material configured for intercalation of the charge carriers to the carbon nanofibers.
본 발명의 다양한 구체예는 전도성 기판을 제공하고; 탄소 나노섬유를 전도성 기판에 부가하고; 전하 운반체들의 인터칼레이션을 위해 구성되고 탄소 나노섬유의 길이를 따라 깃털형 구조로 배치된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것을 포함하는 에너지 저장 장치의 제조 방법을 포함한다.Various embodiments of the present invention provide a conductive substrate; Adding carbon nanofibers to the conductive substrate; And applying an intercalation material configured for intercalation of the charge carriers and arranged in a feather-like structure along the length of the carbon nanofibers to the carbon nanofibers.
도 1a 및 도 1b는 본 발명의 다양한 구체예들에 따른, 기판 상에 성장된 복수의 CNF를 포함하는 CNF 어레이를 예시한다.
도 2a 내지 도 2c는 본 발명의 다양한 구체예들에 따른, 상이한 상태들의, 복수의 수직 정렬된 CNF들을 예시한다.
도 3a 내지 도 3c는 본 발명의 다양한 구체예들에 따른, CNF의 세부사항들을 예시한다.
도 4는 본 발명의 다양한 구체예들에 따른, CNF의 적층된-원뿔 구조의 개략도를 예시한다.
도 5a 내지 도 5c는 본 발명의 다양한 구체예들에 따른, ~3 ㎛ 길이 CNF들의 전기화학적 특징분석을 예시한다.
도 6a 내지 도 6c는 본 발명의 다양한 구체예들에 따른, 3 ㎛ 길이 CNF들의 주사 전자 현미경 이미지(scanning electron microscopy image)들을 예시한다.
도 7a 내지 도 7c는 본 발명의 다양한 구체예들에 따른, Li-이온 배터리 애노드들로서 Si 층을 포함하는 CNF들을 이용하여 달성된 결과들을 예시한다.
도 8은 본 발명의 다양한 구체예들에 따른, CNF 어레이의 용량이 충전율에 따라 어떻게 변화하는지를 예시한다.
도 9는 본 발명의 다양한 구체예들에 따른, CNF 어레이들의 라만 스펙트럼들(Raman spectra)을 예시한다.
도 10a 내지 도 10c는 본 발명의 다양한 구체예들에 따른, 15 충전-방전 사이클들에 걸친 쿨롱 효율(coulombic efficiency) 및 Li+ 삽입-추출 용량들의 변동을 도시한다.
도 11a 내지 도 11c는 본 발명의 다양한 구체예들에 따른, 새롭게(freshly) 준비된 CNF 어레이들의 주사 전자 현미경 이미지들을 도시한다.
도 11d는 하나보다 많은 수의 CNF를 포함하는 나노섬유/실리콘 복합체의 단면도를 도시한다.
도 12는 본 발명의 다양한 구체예들에 따른, 길이 10 ㎛의 섬유들을 포함하는 탄소 나노-섬유 어레이를 예시한다.
도 13은 본 발명의 다양한 구체예들에 따른, CNF 어레이들 및/또는 CNF들을 제조하는 방법들을 예시한다.
도 14a는 본 발명의 다양한 구체예에 따른, 전력 증강 재료를 포함하는 CNF를 예시한다.
도 14b는 본 발명의 다양한 구체예에 따른, 도 14a에 예시된 전력 증강 재료의 세부사항을 예시한다.
도 14c는 본 발명의 다양한 구체예에 따른, 도 14a에 예시된 전력 증강 재료의 다른 세부사항을 예시한다.
도 15는 본 발명의 다양한 구체예에 따른, 인터칼레이션 재료에 의해 코팅된 비-정렬된 CNF 및 전력 증강 재료를 포함하는 전극 표면을 예시한다.
도 16은 본 발명의 다양한 구체예에 따른, 전력 증강 재료, 비-정렬된 CNF 및 자유 인터칼레이션 재료를 포함하는 전극 표면을 예시한다.
도 17은 본 발명의 다양한 구체예에 따른, CNF가 없는, 인터칼레이션 재료 및 전력 증강 재료를 포함하는 전극 표면을 예시한다.
도 18은 본 발명의 다양한 구체예에 따른, CNF에 매우 근접하게 배치된 표면 효과 지배 사이트를 포함하는 전극 표면을 예시한다.
도 19 및 도 20은 본 발명의 다양한 구체예에 따른, 자유 인터칼레이션 재료에 매우 근접하게 배치된 표면 효과 지배 사이트를 포함하는 전극 표면을 예시한다.
도 21은 본 발명의 다양한 구체예에 따른, 전극 표면을 조립하는 방법을 예시한다.
도 22는 본 발명의 다양한 구체예에 따른, 전하 저장 장치를 작동시키는 방법을 예시한다.Figures 1A and 1B illustrate a CNF array comprising a plurality of CNFs grown on a substrate, in accordance with various embodiments of the present invention.
Figures 2A-2C illustrate a plurality of vertically aligned CNFs of different states, in accordance with various embodiments of the present invention.
Figures 3A-3C illustrate the details of CNF, in accordance with various embodiments of the present invention.
Figure 4 illustrates a schematic diagram of a stacked-cone structure of CNF, in accordance with various embodiments of the present invention.
Figures 5A-5C illustrate electrochemical characterization of ~ 3 mu m long CNF's, according to various embodiments of the present invention.
Figures 6A-6C illustrate scanning electron microscopy images of 3 mu m long CNFs according to various embodiments of the present invention.
Figures 7A-7C illustrate the results achieved using CNFs comprising a Si layer as Li-ion battery anodes, in accordance with various embodiments of the present invention.
Figure 8 illustrates how the capacity of a CNF array varies with charge rate, in accordance with various embodiments of the present invention.
Figure 9 illustrates Raman spectra of CNF arrays, in accordance with various embodiments of the present invention.
Figures 10A-10C illustrate the variation of coulombic efficiency and Li + insertion-extraction capacities over 15 charge-discharge cycles, in accordance with various embodiments of the present invention.
11A-C illustrate SEM images of freshly prepared CNF arrays, in accordance with various embodiments of the present invention.
Figure 11d shows a cross-sectional view of a nanofiber / silicone composite comprising more than one CNF.
Figure 12 illustrates a carbon nanofiber
Figure 13 illustrates methods of fabricating CNF arrays and / or CNFs, in accordance with various embodiments of the present invention.
Figure 14A illustrates a CNF comprising a power enhancing material, in accordance with various embodiments of the present invention.
Figure 14B illustrates details of the power enhancing material illustrated in Figure 14A, in accordance with various embodiments of the present invention.
Figure 14C illustrates another detail of the power enhancing material illustrated in Figure 14A, in accordance with various embodiments of the present invention.
Figure 15 illustrates an electrode surface comprising non-aligned CNF and power enhancing material coated by an intercalation material, in accordance with various embodiments of the present invention.
Figure 16 illustrates an electrode surface comprising a power enhancing material, a non-aligned CNF and a free intercalation material, according to various embodiments of the present invention.
Figure 17 illustrates an electrode surface comprising CNF free, intercalating material and power enhancing material, according to various embodiments of the present invention.
Figure 18 illustrates an electrode surface comprising a surface effect control site disposed in close proximity to CNF, according to various embodiments of the present invention.
Figures 19 and 20 illustrate electrode surfaces including surface effect dominated sites disposed in close proximity to free intercalation material, in accordance with various embodiments of the present invention.
Figure 21 illustrates a method of assembling electrode surfaces, in accordance with various embodiments of the present invention.
Figure 22 illustrates a method of operating a charge storage device, in accordance with various embodiments of the present invention.
도 1a 및 도 1b는 본 발명의 다양한 구체예들에 따른, 전도성 기판(105) 상에 성장된 복수의 CNF(110)를 포함하는 CNF 어레이(100)를 예시한다. 도 1a에는 Li 추출된(방전된) 상태의 CNF 어레이(100)가 도시되고, 도 1b에는 Li 삽입된(충전된) 상태의 CNF 어레이(100)가 도시된다. 본원에서 논의되는 이러한 구체예 및 다른 구체예의 CNF(110)는 임의적으로 수직으로 정렬된다. CNF(110)는 DC-바이어싱된 플라즈마 화학 기상 증착(PECVD) 공정을 이용하여 Cu의 기판(105) 상에 성장된다. 상기 논의된 바와 같이, 이러한 방법에 의해 성장된 CNF들(110)은, 적층된 컵들 또는 원뿔들 또는 나사(spiral)와 유사한 원뿔형 흑연 구조들의 스택을 포함하는 고유한 모폴러지를 가질 수 있다. 이는 리튬 인터칼레이션을 용이하게 하는 매우 미세한 구조를 생성한다. 여기서, 이러한 구조는 본원의 다른 부분에서 "적층된-원뿔(stacked-cone)" 구조로서 지칭된다. 더 큰 길이 스케일에서, 이들 CNF들(110)은 통상적으로, 기판 표면에 수직으로 균일하게 정렬되고, 서로로부터 잘 분리되어 있다. 개개의 CNF들의 직경은, CNF 어레이(100)가 강건하고 Si 증착 및 습식 전기화학적 사이클을 통해 이의 무결성을 유지할 수 있도록, 원하는 기계적 강도를 제공하게 선택될 수 있다. 시드층(seed layer)이 임의적으로, 기판(105) 상에 CNF들(110)을 성장시키기 위해 이용된다. 이용시, CNF 어레이(100)는, 고체 또는 액체, 또는 고체와 액체의 조합일 수 있고, 또한 리튬 이온과 같은 하나 이상의 전하 운반체들을 포함하는 전해질(125)과 접촉하게 배치된다. CNF들(110)은, 전해질(125) 중 일부가 CNF들(110) 사이에 배치되고/거나 CNF들(110) 사이의 갭들을 통해 기판(105)을 준비시킬 수 있도록 구성된다.1A and 1B illustrate a
75 내지 300㎚의 직경들 또는 다른 범위들이 가능하지만, 도 1a 및 도 1b에 예시된 개개의 CNF들(110)의 직경은 공칭으로 100 내지 200㎚이다. CNF들(110)은 임의적으로 자신들의 길이를 따라 테이퍼링(taper)된다. 본원에서 논의된 기술들을 이용하여 생성된 CNF들(110)은, 축을 따라 탁월한 전기 전도성(σ = ~2.5×105 S/m)을 갖고, 기판(105)과의 견고한 저항 접촉(ohmic contact)을 형성한다. CNF들(110) 사이의 개방 공간(open space)은, CNF(110)의 첨단(tip)(120)에서 질량(mass)에 따라 점진적으로 가늘어지는 동축 쉘(gradually thinned coaxial shell)을 형성하기 위해 실리콘층(115)이 각각의 CNF들 상으로 증착되는 것을 가능하게 한다. 이러한 설계는, 전체 실리콘층(115)이 CNF(110)에 걸쳐 전기적으로 연결되고 충전-방전 사이클링 동안 완전히 활성(active)으로 유지되는 것을 가능하게 한다. 리튬을 실리콘층(115)과 합금화할 때 발생하는 팽창은, 예를 들어, CNF들(110)의 길이 치수(long dimension)에 수직하는 방사상 방향으로 용이하게 수용될 수 있다. 비(non)-Si-코팅 CNF들(110)과 Si-코팅 CNF들(110)의 사이클링 안정성, 및 충전 및 방전 용량이 비교될 수 있다. 실리콘층(115)의 부가는, C/2 충전율에서 3938 mAh/gSi까지의 현저한 Li+ 삽입(충전) 용량을 제공하였고, 110 사이클 후에 1944 mAh/gSi가 유지되었다. 이러한 충전/방전율 및 대응하는 용량은, Si 나노와이어들 또는 하이브리드 Si-C 나노구조들을 이용한 이전의 아키텍처들보다 상당히 더 높다. 도 1a 및 도 1b는 사시도들이다.Diameters of 75 to 300 nm or other ranges are possible, but the diameter of the
다양한 구체예들에서, 0.01부터 0.5, 1.0, 1.5, 2.5, 3.0, 4.0, 10, 20, 25 ㎛ (또는 그 초과)까지의 공칭 Si 두께가, 도 1a 및 도 1b에 예시된 것들과 같은 CNF 어레이들(100)을 형성하기 위해, 3 ㎛ 길이 CNF들(110) 상으로 증착될 수 있다. 마찬가지로, 다양한 구체예들에서, 0.01부터 0.5, 1.0, 1.5, 2.5, 3.0, 4.0, 10, 20, 25 ㎛(또는 그 초과)까지의 공칭 Si 두께가, CNF 어레이들(100)을 형성하기 위해 10 ㎛ 길이 CNF들(110) 상으로 증착될 수 있다. 몇몇 구체예들에서, Si의 공칭 두께는 0.01 ㎛ 내지 CNF들(110) 사이의 평균 거리이다.In various embodiments, nominal Si thicknesses from 0.01 to 0.5, 1.0, 1.5, 2.5, 3.0, 4.0, 10, 20, 25 microns (or more) Lt; / RTI > may be deposited onto 3 mu m long CNFs 110 to form the
CNF 어레이들(100)을 이용하여, C/2 충전율에서 ~4,000 mAh/g까지의 질량-비용량(mass-specific capacity)을 갖는 Li 이온 저장이 달성된다. 이러한 용량은, 동일한 전력율(power rate)에서 Si 나노와이어들만을 또는 다른 Si-나노구조화된 탄소 하이브리드들을 이용하여 달성된 것들보다 상당히 더 높다. 개선된 성능은, 이러한 하이브리드 아키텍처의 짧은 Li+ 경로 길이 및 CNF들(110)에 의해 의한 효율적인 전하 수집(charge collection)으로 인해 완전히 활성화된 Si 쉘에 기인한다. 우수한 사이클링 안정성이 110 사이클에 걸쳐 입증되었다. 다양한 구체예들에서, CNF 어레이들(100)의 Li 이온 저장의 저장 용량은, Si의 1 그램 당 대략 750, 1500, 2000, 2500, 3000, 3500 또는 4000 mAh이거나, 또는 이들 값들 사이의 임의의 범위 내에 있다. 본원에서 사용되는 용어 (예를 들어, Si의) "공칭 두께"는, 기판(105) 상에, 상기 두께의 Si의 평평한 층을 형성시키는 Si의 양이다. 예를 들어, 1.0 ㎛의 Si의 공칭 두께는, 기판(105) 상에 바로 증착되는 경우, Si의 1.0 ㎛ 두께 층을 초래할 Si의 양이다. 공칭 두께는 리포팅되는데, 그 이유는 상기 공칭 두께가, 당해 기술분야에 알려진 방법들을 이용하여 중량에 의해 용이하게 측정될 수 있기 때문이다. 1.0 ㎛의 공칭 두께는, CNF들(110) 상에 더 작은 두께의 Si 층(115)을 초래할 것인데, 그 이유는 Si가, CNF들(110) 표면들의 더 큰 영역에 걸쳐 분포되기 때문이다.Using the
도 2a 내지 도 2c는 본 발명의 다양한 구체예들에 따른, 대략 3 ㎛의 평균 섬유 길이를 갖는 CNF 어레이(100)를 예시한다. 도 2a 내지 도 2c는 주사 전자 현미경(SEM) 이미지들이다. 도 2a는 실리콘층(115)을 갖지 않는 복수의 수직 정렬된 CNF들(110)을 도시한다. 도 2b는 실리콘층(115)을 포함하는 복수의 수직 정렬된 CNF들(110)을 도시한다. 도 2c는 100 리튬 충전-방전 사이클을 경험한 후에 추출된(방전된) 상태의, 복수의 수직 정렬된 CNF들(110)을 도시한다. CNF들(110)은, 기판의 표면 상에서의 본질적으로 균일한 수직 정렬 및 무작위 분포로, Cu 기판(105)에 견고하게 부착된다. 이러한 연구에서 이용된 샘플들은, ~330 ㎚의 평균 최근린 거리(average nearest-neighbor distance)에 대응하는, (SEM 이미지들의 최상측-뷰(top view)로부터 카운팅된) 1.11×109 CNF/㎝2 의 평균 영역 밀도(average areal density)를 갖는다. 도 2의 CNF들(110)의 평균 길이는, 길이 2.5 내지 3.5 ㎛의 범위에서 CNF들의 >90%에 있어서 ~3.0 ㎛이다. 직경은 ~147 ㎚의 평균으로, ~80 ㎚ 내지 240 ㎚로 퍼져있다(spread). 첨단(120)의 역 눈물방울 형상 Ni 촉매제(inverse teardrop shaped Ni catalyst)는 CNF의 중심의 중공 채널을 캡핑(capping)하는 각각의 CNF(110)의 첨단에 제공되며, 이는 PECVD 공정 동안 CNF(110)의 첨단 성장을 촉진하였다. Ni 촉매 나노입자들의 크기는 각각의 CNF들(110)의 직경을 규정하였다. 10 ㎛까지의 더 긴 CNF들(110)이, 하기 섹션들에서 논의될 몇몇 연구들에서 또한 이용되었다.Figures 2A-2C illustrate a
다양한 구체예들에서, 평균 최근린 거리는 200 내지 450 ㎚, 275 내지 385 ㎚, 300 내지 360 ㎚ 등으로 변화할 수 있다. 또한, CNF들(110)의 평균 길이는 대략 2 내지 20, 20 내지 40, 40 내지 60, 60 내지 80, 80 내지 100, 100 내지 120, 120 내지 250 (㎛), 또는 그 초과일 수 있다. 밀리미터 길이만큼 긴 표준 탄소 나노섬유들은 당해 기술분야에 알려져 있다. 다양한 구체예들에서, 평균 직경은 대략 50 내지 125, 100 내지 200, 125 내지 175 (㎚), 또는 다른 범위들로 변화할 수 있다.In various embodiments, the average nearest distance may vary from 200 to 450 nm, from 275 to 385 nm, from 300 to 360 nm, and the like. In addition, the average length of the
비정질 Si 층(115)이 마그네트론 스퍼터링(magnetron sputtering)에 의해 CNF 어레이(100) 상으로 증착되었다. 브러시형 CNF 어레이들(100)의 개방 구조는, Si가 어레이로 아래로 깊이 도달(reach deep down)하여 CNF들(110) 사이에 콘포말 구조(conformal structure)들을 형성시키는 것을 가능하게 하였다. 결과적으로, 이는, CNF 첨단에 두꺼운 Si 코팅을 형성하였으며, 그 다음에 CNF의 하부 주변에 점진적으로 얇아지는 동축 Si 쉘이 뒤따르며, 이는 면봉(cotton swab)과 유사한, 흥미있는 테이퍼링된 코어-쉘 구조를 나타낸다. Si 증착의 양은, 스퍼터링 동안 QCM(quartz crystal microbalance)을 이용한, 평평한 표면 상의 Si 막들의 공칭 두께에 의해 특징지어진다. Li+ 삽입/추출 용량들은 공칭 두께로부터 유도된 총 Si 질량에 대해 정규화되었다. 0.50 ㎛의 공칭 두께에서, Si-코팅된 CNF들(110)은 서로로부터 잘-분리되어서, (도 2b에 도시된) 개방 코어-쉘 CNF 어레이 구조를 형성한다. 이러한 구조는 전해질이 Si 층(115)의 전체 표면을 자유롭게 접근하도록 허용하였다. 예시된 구체예에서, Si 층(115)의 적용 전의 CNF들(110)의 ~147 ㎚ 평균 직경과 비교하여, 평균 첨단 직경이 ~457 ㎚이었다. 첨단(120)의 평균 방사상 Si 두께는 ~155 ㎚일 것으로 추정되었다. 이는 0.50 ㎛의 공칭 Si 두께보다 명백히 훨씬 더 작았는데, 그 이유는 대부분의 Si가 CNF들의 전체 길이를 따라 퍼지기 때문이다. 10 내지 1000, 20 내지 500, 50 내지 250, 100 내지 200 (㎚)의 범위 또는 상이한 범위들의 다른 방사상 Si 두께들이 대안적인 구체예들에서 확인된다. 본원의 다른 부분에서 논의되는 바와 같이, CNF들(110)의 적층된-원뿔은 추가적인 미세 구조를 Si 층(115)에 제공한다. 적층된-원뿔 구조는 임의적으로, 단면에서 보았을 때 적층된-원뿔 구조를 형성하는 나사형 성장 패턴(spiral growth pattern)의 결과이다.An
도 3a 내지 도 3c의 TEM(transmission electron microscopy) 이미지들은 Si-코팅 CNF들(110)의 구조적인 세부사항들을 추가로 예시한다. ~390 ㎚ Si의 Si 층(115)은 ~210 ㎚ 직경 CNF(110)의 첨단(120) 바로 위에 형성되었다. 면봉형 Si 층(115)의 가장 큰 부분은 직경이 ~430 ㎚이었으며, 이는 첨단(120)의 최단부(very end) 가까이에서 나타났다. 균일한 Si와 명백하게 상이한, 변조된 콘트라스트(modulated contrast)를 갖는 깃털형 텍스처(feather-like texture)를 보이는, CNF(110) 둘레의 동축 Si 층(115)이 첨단 위에 증착된다(도 3a 참조). 이는 PECVD-성장 CNF들(110)의 적층된-원뿔 마이크로구조의 결과일 가능성이 있다. 이러한 CNF들(110)이 CNF(110) 중심축을 따라 균일하지 않게 적층된 컵형(cup-like) 흑연 구조들을 포함한다는 것이 문헌으로부터 알려져 있다. CNF들(110)의 직경의 이러한 편차들의 이용은, 본 출원인이 소유하는, 2010년 10월 13일 출원된 미국 특허 출원 일련 번호 제 12/904,113호에서 이전에 개시되었다.The transmission electron microscopy (TEM) images of FIGS. 3A-3C further illustrate the structural details of the Si-coated
각 CNF의 길이를 따라 적층된-원뿔 구조는, 점선들에 의해 표시되는 바와 같이, 도 3b에서 명백하게 확인될 수 있는 1 내지 5개, 5 내지 15개 또는 10개보다 많은 수의 컵형 흑연 층들로 이루어진다. 각 적층된-원뿔의 에지에서 흑연 층들 중 일부의 측면 에지가 노출된다. 상기 노출된 에지에서 리튬은 흑연 층들 사이를 관통할 수 있다. 분자 단위에서, 컵형 구조는 리튬과 상호작용할 수 있는 그라펜의 원뿔 및/또는 흑연 시트를 포함한다. 컵 에지는 나노규모 에지이고 그라펜 에지의 특성을 가질 수 있는데 반하여, 흑연 층들 사이에서는 그라펜 시트들 사이에서와 같은 특성이 발견될 수 있다. 컵 에지는 리튬 이온이 이를 통해 이동할 수 있는 수직으로 정렬된 탄소 나노섬유에 제공된다. VACNF의 신규 마이크로구조는 CNF 측벽의 길이를 따라 노출된 흑연 에지, 예를 들어 컵 에지의 스택을 생성한다. 상기 나노규모 에지는 그라펜/흑연 시트 및 리본 상에서 전형적으로 발견되는 에지와 유사하다. 상기 노출된 컵 에지는 변경된 실리콘 핵형성 속도를 야기하고, 이에 따라 변조된 실리콘 쉘 텍스처가 생성된다. 상기 노출된 에지는 또한 VACNF 코어와 Si 쉘 사이에 우수한 계면을 형성하여 상기 하이브리드 구조에서 신속한 전자 전달을 용이하게 한다. Si 쉘의 두가지 상이한 구조는 VACNF의 성장 공정을 변경시켜 제어할 수 있다. 컵 구조를 포함하는 VACNF의 영역은 깃털형 Si 쉘을 야기하고, 컵 구조를 포함하지 않는 VACNF의 영역은 VACNF의 첨단에서 관측되는 구조와 유사한 Si 구조를 갖는다. VACNF는 VACNF의 길이를 따라 및 또한 첨단에서 컵 적층 구조가 없는 하나 이상의 영역을 갖도록 임의로 구성된다. 별법의 구체예에서, 탄소 나노섬유는 노출된 흑연/그라펜 또는 흑연 에지를 갖는 컵 적층 구조를 또한 포함하지만 기판에 수직으로 정렬되고/되거나 심지어 직접 부착되지는 않는다. "컵 적층" 흑연 마이크로구조의 사용을 본원의 다른곳에서 논의하지 않는 한, 흑연 시트의 노출된 나노규모 에지를 생성하는 다른 방법은 산을 사용하여 탄소 나노튜브를 푸는 것을 포함한다. 상기 방식으로 생성된 노출된 나노규모 에지는 Si 쉘의 제어 및/또는 고정에 있어 또한 이점을 제공할 것으로 예상되고 일부 구체예에 포함될 수 있다. 예를 들어, 흑연 나노규모 리본의 에지를 사용하여 상기 리본 주위의 Si 쉘의 성장에 영향을 미칠 수 있다.The stacked-cone structure along the length of each CNF is formed by cup-like graphite layers of from 1 to 5, 5 to 15 or more than 10, which can be clearly identified in Figure 3b, as indicated by the dashed lines . The side edges of some of the graphite layers are exposed at the edge of each stacked-cone. At the exposed edges, lithium may penetrate between the graphite layers. In the molecular unit, the cup-shaped structure comprises graphene cone and / or graphite sheet which can interact with lithium. While the cup edge is a nanoscale edge and can have properties of graphene edges, properties such as those between graphene sheets can be found between graphite layers. The cup edge is provided to vertically aligned carbon nanofibers through which lithium ions can migrate. The new microstructure of VACNF creates a stack of exposed graphite edges, for example cup edges, along the length of the CNF sidewalls. The nanoscale edges are similar to the edges typically found on graphene / graphite sheets and ribbons. The exposed cup edge results in a modified silicon nucleation rate, thus producing a modulated silicon shell texture. The exposed edges also form a good interface between the VACNF core and the Si shell to facilitate rapid electron transfer in the hybrid structure. The two different structures of the Si shell can be controlled by altering the growth process of the VACNF. The region of the VACNF including the cup structure results in a feathered Si shell and the region of the VACNF not including the cup structure has a Si structure similar to that observed at the tip of the VACNF. VACNF is optionally configured to have one or more regions along the length of the VACNF and also at the apex without a cup stack. In an alternative embodiment, the carbon nanofibers also include a cup laminate structure with exposed graphite / graphene or graphite edges, but are not aligned and / or even directly attached to the substrate. Other methods of producing exposed nanoscale edges of graphite sheets include loosening carbon nanotubes using acids, unless the use of "cup-laminated" graphite microstructures is discussed elsewhere herein. The exposed nanoscale edges produced in this way are expected to also provide benefits in the control and / or fixation of the Si shell and may be included in some embodiments. For example, the edges of graphite nanoscale ribbons can be used to affect the growth of Si shells around the ribbon.
본원에서 사용되는 용어 "나노섬유"는 나노규모 (1 마이크로미터 미만)의 적어도 2차원을 갖는 구조를 포함하는 것으로 의도된다. 이는 예를 들어 두께 및 폭이 나노규모이지만 길이는 나노규모일 수 있거나 그렇지 않을 수 있는 와이어, 튜브 및 리본을 포함한다. 용어 나노섬유는 두께는 나노규모일 수 있지만 길이 및 폭은 둘 다 나노규모인 그라펜 시트는 배제하는 것으로 의도된다. 다양한 구체예에서 본원에 논의된 지지 필라멘트는 나노섬유이다.As used herein, the term "nanofibers" is intended to include structures having at least two dimensions on a nanoscale (less than one micrometer). This includes, for example, wires, tubes and ribbons, which may or may not be nanoscale in thickness and width but of length nanoscale. The term nanofiber is intended to exclude graphene sheets, both of which may be nanoscale in thickness, but are both nanoscale in length and width. In various embodiments, the supporting filaments discussed herein are nanofibers.
전자 빔이 수백개의 나노미터 두께 CNF 또는 Si-CNF 하이브리드를 관통할 필요가 있기 때문에, 도 3b 및 도 3c의 해상도 및 콘트라스트는 제한되지만, 구조적인 특징들은 문헌에서 더 작은 CNF들을 이용한 고해상도 TEM 연구들과 일치한다. 이러한 고유한 구조는, Si 증착 동안 변화된 핵형성 층들 및 따라서 CNF(110) 측벽 상의 Si 층(115)의 변조된 밀도를 초래하는 CNF 측벽을 따라 단속적인(broken) 흑연 에지들의 클러스터들을 발생하였다. 변조된 밀도는, 도 3a의 (100 ㎚ 정사각형) 박스(310)에 의해 표시된 초고 표면적(ultra-high surface area) Si 구조들을 초래한다. Si 층(115)의 깃털형 Si 구조들은, 매우 높은 Li 용량 및 또한 CNF(110)로의 고속 전자 전달을 초래하는 탁월한 Li 이온 계면을 제공한다. 도 3a에서, 첨단(120)의 어두운 영역은 CNF들의 성장을 위한 니켈 촉매이다. 다른 촉매들이 또한 이용될 수 있다.Although the resolution and contrast of FIGS. 3b and 3c are limited because the electron beam needs to penetrate hundreds of nanometer thick CNF or Si-CNF hybrids, the structural features are limited by the high resolution TEM studies using smaller CNFs in the literature . This unique structure generated clusters of broken graphite edges along the CNF sidewalls resulting in modulated density of the nucleation layers changed during Si deposition and thus the
도 3b 및 도 3c는 리튬 인터칼레이션/추출 사이클들 이전(도 3b) 그리고 이후(도 3c) 기록된 이미지들이다. 도 3c의 샘플은, 전기화학 셀로부터 꺼내졌을 때, 탈리튬화된(delithiated)(방전된) 상태였다. 도 3b의 점선들은 CNF들(110) 내부의 적층된-원뿔 흑연 층들의 시각적 안내(visual guidance)이다. 도 3c의 긴 점선들은 CNF(110)의 측벽 표면을 나타낸다.Figures 3b and 3c are images before (Figure 3b) and after (Figure 3c) lithium intercalation / extraction cycles. The sample of Figure 3c was in a delithiated (discharged) state when it was taken out of the electrochemical cell. The dashed lines in FIG. 3B are visual guidance of the laminated-cone graphite layers within the
본원의 다른 부분에서 논의되는 바와 같이, CNF들(110)의 적층된-원뿔 구조는, 공통으로 이용된 탄소 나노튜브들(CNT들) 또는 흑연과 철저하게 상이하다. 적층된-원뿔 구조는, 심지어 Si 층(115)의 부가 없이도, 표준 탄소 나노튜브들 또는 나노와이어들에 비해 개선된 Li+ 삽입을 초래한다. 예를 들어, CNF들(110)의 적층된-원뿔 흑연 구조는 (단지 단부들에서 보다는) CNF들(110)의 측벽을 통한 흑연 층들로의 Li+ 인터칼레이션을 허용한다. CNF들(110) 각각의 벽에 걸친 Li+ 운반 경로는 매우 짧고(몇몇 구체예들에서, D ~290㎚를 가짐), 공통으로 이용된 무결절(seamless) 탄소 나노튜브들(CNT들)의 개방 단부들로부터의 긴 경로와 상당히 상이하다. 도 4는 CNF들(110)의 적층된-원뿔 구조의 개략도를 예시한다. 이러한 특정 구체예에서, 파라미터들의 평균 값들은: CNF 반경 rCNF = 74 ㎚, CNF 벽 두께 tW = ~50 ㎚, 흑연 원뿔 각 θ = 10°, 및 흑연 원뿔 길이 D = tW/sinθ = 290 ㎚이다.As discussed elsewhere herein, the stacked-cone structures of the
도 5a 내지 도 5c는 ~3 ㎛ 길이 CNF들(110)의 전기화학적 특징화를 예시한다. 이러한 특징화는 도 4와 관련하여 기술된 현상을 예시한다. 도 5a는 0.1, 0.5, 및 1.0 mV/s 스캔 속도(scan rate)에서의 1.5 V 내지 0.001 V 대(versus) Li/Li+ 기준 전극으로부터의 사이클릭 볼타모그램들(cyclic voltammograms; CV)을 도시한다. 리튬 디스크가 카운터 전극으로서 이용되었다. 데이터는 제 2 사이클로부터 취해져서, 노출된 기하학적 표면적에 대해 정규화되었다. 도 5b는 각각, (추정된 탄소 질량에 대해 정규화된) 647, 323, 및 162 mA/g 또는 (기하학적 표면적에 대해 정규화된) 71.0, 35.5, 및 17.8 ㎛/㎝2의 전류 밀도들에 대응하는, C/0.5, C1, 및 C/2 전력율들에서의 정전류식(galvanostatic) 충전-방전 프로파일들을 도시한다. 도 5c는 (좌측 수직축에 대한) 인터칼레이션 및 추출 용량들 및 (우측 수직축에 대한) 쿨롱 효율 대(versus) C/1 충전-방전율에서의 사이클 수를 도시한다. (C/1 방전율 = 1 시간, C/2 방전율 = 120 분(min), 2C = C/0.5 = 30 분 등임).Figures 5A-5C illustrate electrochemical characterization of
새롭게 어셈블링된 하프-셀(half-cell)은 통상적으로, 코팅되지 않은 CNF들(110) 애노드의 개방 회로 전위(OCP)가 ~2.50 내지 3.00 V 대(vs.) Li/Li+ 기준 전극이었다는 것을 보였다. 0.001 V 내지 1.50 V에서 측정된 CV들은, Li+ 인터칼레이션이, 전기 전위가 1.20 V 미만일 때 시작한다는 것을 보여준다. OCP로부터 0.001 V의 제 1 사이클은, 용매, 염들, 불순물들의 분해(decomposition)에 의해, 필요한 보호층, 즉, 고체 전해질 중간상(solid electrolyte interphase; SEI)의 형성을 수반하였고, 따라서, 큰 캐소드 전류를 나타내었다. 이후의 CV들은 더 작지만 더욱 안정된 전류들을 보였다. Li+ 인터칼레이션과 연관된 캐소드 전류는, 명확한(sharp) 캐소드 피크가 0.18 V에서 나타날 때까지, 전극 전위가 네거티브로 스위핑(sweep)됨에 따라, 서서히 상승하였다. 0.001 V에서 하한치에 도달한 후에 전극 전위가 포지티브로 반전되었기 때문에, 연속적인 애노드 전류 및 1.06 V에서의 광범위 피크(broad peak)에 의해 표시되는, 리튬 추출이 1.50 V까지의 전체 범위에서 관측되었다.The newly assembled half-cell typically has an open circuit potential (OCP) of
CNF 어레이들(100)의 CV 피쳐들은, CNT들의 중공 채널로의 느린 Li+ 확산 및 흑연으로의 단계별(staged) 인터칼레이션의 것들과 다소 상이하였다. CNF들(110)로의 Li-이온 삽입은, 그의 고유한 구조로 인해 측벽으로부터 흑연 층들 사이의 인터칼레이션을 통할 가능성이 있다. 도 3c의 TEM 이미지는, CNF(110) 내부의 적층된-원뿔들의 흑연 스택들이 Li+ 인터칼레이션-추출 사이클들 동안 다소 방해받는다는 것을 표시하며, 이는 Li+ 인터칼레이션 상에서 발생하는 큰 부피 변화로 인해서일 가능성이 있다. 몇몇 잔해(debris) 및 나노입자들이, 외부 표면에서 뿐만 아니라 CNF들(110) 내부에서 백색 물체들로서 관측된다. 이는 측벽을 통한 CNF 내부로의 침투를 나타낸다.The CV features of
도 5b의 정전류식 충전-방전 프로파일들은, 전력율이 C/2로부터 C/0.5(C/0.5는 "2C"로 또한 지칭됨)로 증가함에 따라 Li+ 저장 용량이 감소되었다는 것을 보였다. (특히, C/1보다 더 높은 것들에 대해) 전력율들을 비교하는 것을 더욱 용이하게 하기 위해, 본 발명자들은, 문헌에서 더 일반적으로 이용되는 "2C" 대신에 본 명세서에서는 분수 표기법 C/0.5를 이용한다. Li+ 인터칼레이션 및 추출 용량들이, 다음의 평균 파라미터들을 이용하여, 중공 수직 정렬된 CNF 구조에 기초하여 계산되었던 CNF들(110)의 추정된 질량(1.1 × 104 g/㎝2)에 대해 정규화되었는데, 상기 평균 파라미터들은: 길이(3.0 ㎛), 밀도(㎝2 당 1.1 × 109 CNF), 외측 직경(147 ㎚), 및 중공 내부 직경(49 ㎚, 외측 직경의 ~1/3)이다. CNF들(110)의 고체 흑연 벽의 밀도는 흑연과 동일할 것으로 가정되었다(2.2 g/㎝3). 정규 C/2 전력율에서, 인터칼레이션 용량은 430 mA h g-1이었고, 추출 용량은 390 mA h g-1이며, 상기 인터칼레이션 용량 및 추출 용량 양측 모두는 흑연에 대한 이론상의 값 372 mA h g-1 보다 다소 더 높으며, 이는 CNF들(110) 내부의 중공 구획들로의 비가역적인 Li+ 삽입 및 SEI 형성에 기인할 수 있다. 추출 용량들은 모든 전력율들에서 인터칼레이션 값들의 90%를 초과할 것으로 확인되었고, 인터칼레이션 및 추출 용량들 양측 모두는, 흑연 애노드들과 비교하여, 전력율이 C/2로부터 C/1로 증가함에 따라 ~9%만큼, 그리고 C/1로부터 C/0.5로 증가함에 따라 ~20%만큼 감소되었다.The constant current charge-discharge profiles of Figure 5b showed that the Li + storage capacity was reduced as the power rate increased from C / 2 to C / 0.5 (C / 0.5 also referred to as "2C "). In order to make it even easier to compare the power ratios (especially for those higher than C / 1), the present inventors have used fractional notation C / 0.5 in place of "2C" . Li + intercalation and extraction capacities were calculated for the estimated mass of CNFs 110 (1.1 × 10 4 g / cm 2 ) which had been calculated based on the hollow vertically aligned CNF structure, using the following average parameters: The average parameters are: length (3.0 μm), density (1.1 × 10 9 CNF per cm 2 ), outer diameter (147 nm), and hollow inner diameter (49 nm, ~ 1/3 of the outer diameter) . The density of the solid graphite walls of the
충전-방전 사이클링에 따라, 인터칼레이션 용량은 C/1 전력율에서 20 사이클들 후에 410 mA h g-1로부터 370 mA h g-1로 다소 강하(drop)되지만, 추출 용량은 375 내지 355 mA h g-1로 유지되었다는 것이 확인되었다. CNF(110) 표면 상에서의 SEI 형성으로 인해 첫 번째 2개의 사이클들을 제외한, 전체적인 쿨롱 효율(즉, 추출 용량 대 인터칼레이션 용량의 비율)은 ~94%이었다. SEI 막은 초기 사이클들 동안 탄소함유 애노드들 상에 용이하게 형성되는 것이 알려져 있으며, 이는 리튬 이온 확산을 허용하지만 전기적으로 절연되어 직렬 저항의 증가를 초래한다. TEM 이미지(도 3c) 및 SEM 이미지(도 6a)는, 충전-방전 사이클들 동안 비균일 박막이 CNF(110) 표면 상에 증착되었다는 것을 보여준다. 몇몇 구체예들에서, SEI는 CNF들(110)의 기계적 강도를 증가시키도록 외장(sheath)으로서 기능하여서, 다른 폴리머 코팅들을 이용한 연구에서 관측되었던 바와 같은 용매의 응집성의 모세관력(cohesive capillary force)에 의한 마이크로번들(microbundle)들로의 붕괴(collapsing)로부터 상기 CNF들(110)을 보호한다.Charge-discharge cycling according to, intercalation capacity is C / 1 In the power ratio after 20 cycles of 410 mA hg -1 but rather drops (drop) with 370 mA hg -1 from, extraction capacity is 375 to 355 mA hg - 1. & Lt; / RTI > The overall Coulomb efficiency (i.e., the ratio of the extraction capacity to the intercalation capacity), excluding the first two cycles, was ~94% due to SEI formation on the
도 6a 내지 도 6c는 본 발명의 다양한 구체예들에 따른, 3 ㎛ 길이 CNF들(110)의 주사 전자 현미경 이미지들을 예시한다. 도 6a는 인터칼레이션/추출 사이클들 후의 탈리튬화된(방전된) 상태의 CNF들(110)을 도시한다. 도 6b는 탈리튬화된 상태에서 100 사이클들 후에 Si 층(115)을 포함하는 CNF들(110)을 도시한다. 도 6c는 리튬화된 상태에서 100 사이클들 후에 Si 층(115)을 포함하는 CNF들(110)을 도시한다. 이들 이미지들은 45° 사시도들이다.Figures 6A-6C illustrate SEM images of 3 mu m
도 7a 내지 도 7c는 Li-이온 배터리 애노드들로서 Si 층(115)을 포함하는 CNF들(110)을 이용하여 달성된 결과들을 예시한다. 이들 결과들은, 0.50 ㎛의 공칭 Si 두께를 이용하여 달성되었다. 도 7a는 0.10, 0.50, 및 1.0 mV s-1 스캔 속도들에서의 1.5 V 내지 0.05 V 대(versus) Li/Li+의 사이클릭 볼타모그램들을 도시한다. 측정들은, 샘플이 150 충전-방전 사이클들을 거친 후에 이루어졌으며, 각각의 스캔 속도에서의 제 2 사이클의 데이터가 보여진다. 도 7b는 120 사이클들에서 샘플을 이용하여, C/0.5, C/1, 및 C/2 전력율들에서의 정전류식 충전-방전 프로파일들을 도시한다. 모든 프로파일들은 각각의 전력율에서 제 2 사이클로부터 취해졌다. 도 7c는 (전극들로서 이용된) 2개의 CNF 어레이들(100)의 (좌측 수직축에 대한) 인터칼레이션 및 추출 용량들 및 (우측 수직축에 대한) 쿨롱 효율 대(versus) 충전-방전 사이클 수를 도시한다. 제 1 CNF 어레이(100)는 C/10 전력율에서 하나의 사이클을 이용하여, C/5 전력율에서 하나의 사이클을 이용하여, 그리고 C/2 전력율에서 2개의 사이클들을 이용하여 첫 번째로 컨디셔닝되었다. 이는 그 다음으로, 96 사이클들의 나머지에 대해 C/2 삽입율 및 C/5 추출율에서 테스트되었다. 채워진 그리고 개방된 정사각형들은, 삽입 및 추출 용량들을 각각 나타낸다. 제 2 전극은, C/10, C/5, C/2, C/1, C/0.5, 및 C/0.2 전력율에서 2개의 사이클들 각각을 이용하여 첫 번째로 컨디셔닝되었다. 그 후에, 다음번(next) 88 사이클들에 대해 C/1 전력율에서 테스트되었다. 전극들 양측 모두의 쿨롱 효율들은 채워진(제 1 전극) 및 개방된(제 2 전극) 다이아몬드들에 의해 표현되며, 이는 99%에서 대부분 오버랩된다.Figures 7A-7C illustrate the results achieved using
도 7a의 CV들은 Si 나노-와이어들의 CV들과 매우 유사한 피쳐들을 나타낸다. 코팅되지 않은 CNF 어레이(100)와 비교하여, Li+ 삽입에 대한 캐소드파(cathodic wave) 및 Li+ 추출에 대한 애노드파(anodic wave) 양측 모두가 더 낮은 값들(각각 ~0.5 및 0.7 V 미만)로 이동된다. 피크 전류 밀도는 Si 층(115)의 적용 후 10 내지 30배만큼 증가되고, 스캔 속도에 정비례한다. 명백하게, Si로의 합금-형성 Li+ 삽입은, 흑연 층들 사이의 Li+의 느린 확산에 의해 제한되었던, 코팅되지 않은 CNF들로의 인터칼레이션보다 훨씬 더 신속하다. ~0.28 V에서의 캐소드 피크는 순수 Si 나노와이어들에 대한 이전의 연구들에서 관측되지 않았다. Li-Si 합금의 비정질 Si로의 변환을 나타내는 3개의 애노드 피크들은, 100 내지 200 ㎷만큼의 더 낮은 전위들로의 이동에도 불구하고, Si 나노와이어들을 이용한 것들과 유사하다.The CVs in Figure 7a represent features that are very similar to the CVs of Si nanowires. (Less than about 0.5 and less than 0.7 V, respectively) for both the cathodic wave for Li + insertion and the anodic wave for Li + extraction, as compared to
도 7b에 도시된 Si 층(115)을 포함하는 CNF 어레이의 정전류식 충전-방전 프로파일들은 2개의 현저한 피쳐들: (1) ~3000 mA h (gSi)-1의 높은 Li+ 삽입(충전) 및 추출(방전) 용량이 C/2 율에서 심지어 120 사이클들 후에도 달성되었음; 및 (2) Li+ 용량이 C/2, C/1, 및 C/0.5 전력율들에서 거의 동일하였음을 포함하였다. 즉, 전극으로서 작동하는 CNF 어레이(100)의 용량은, 충전율이 C/2부터 C/1 및 C/0.5로 증가되었을 때, 감소되지 않았다. 다양한 구체예들에서, 이들 충전율에 걸쳐, 용량은 충전율과 거의 무관하였다. Si 층(115)을 포함하는 CNF 어레이들(100)의 총 Li+ 저장 용량은, Si 층(115)이 없는 CNF 어레이들(100)보다 약 10배 더 컸다. 이는, 충전 사이클에 대한 낮은 전위 한계치가 0.001 V로부터 0.050 V로 증가되었을지라도 발생하였다. 결과적으로, CNF 코어로의 Li+ 인터칼레이션의 양은 무시해도 될 정도였던 것으로 보인다. 비용량은, 2.33 g ㎝-3의 벌크 밀도(bulk density) 및 측정된 공칭 두께로부터 계산되었던 Si의 질량만을 나눔으로써 계산되었다. 이러한 방법은, Si 층(115)의 비용량을 벌크 Si의 이론상의 값에 비교하기 위해 적합한 메트릭으로서 선택되었다. 0.456 ㎛ 공칭 두께의 Si 층(115)이 증착된 3.0 ㎛ 길이 CNF들(110)에 대해, CNF들(110)의 실제 질량 밀도(~1.1 × 10-4 g ㎝-2)와 비교하여, Si 층(115)의 실제 질량 밀도는 ~1.06 × 10-4 g ㎝-2이었다. 도 7b의 대응하는 쿨롱 효율은 모든 3개의 전력율들에서 99%보다 더 크고, Si 층(115)을 갖지 않는 CNF들(110)의 쿨롱 효율보다 훨씬 더 높다.The constant current charge-discharge profiles of the CNF array, including the
도 8은 본 발명의 다양한 구체예들에 따른, CNF 어레이(100)의 용량이 충전율에 따라 어떻게 변화하는지를 예시한다. 데이터는 여러 개의 사이클들에 대해 도시된다. 도 8은 설정 시간들에서의 전체 용량(C/h 예를 들어, 전체 용량/시간들(full Capacity/hours))을 달성하기 위해 요구되는 동일한 전류율들 대(versus) 충전율(C-율)를 갖는 사이클들의 그룹에 대한 평균 방전 비용량(average specific discharge capacity)을 도시한다. 수직선들은 C/4, 1C, 3C, 및 8C에 초점 맞춰졌다. CNF 어레이(100)는 대칭적으로 각각 C/8, C/4, C/2, C/1, C/0.8, C/0.4, 및 C/0.16 전력율에서 2개의 사이클들을 이용하여 첫 번째로 컨디셔닝되었고, 그 후에 다음번 88 사이클들에 대해 C/1 대칭 전력율에서 테스트되었다. 이는 사이클 101부터 사이클 200까지 반복되었다. 사이클 201에서 시작하여, 전극은 대칭적으로 C/4, C/3, C/2, C/1, C/0.75, C/0.66, C/0.50, C/0.33, C/0.25, C/0.20, 및 C/0.15 전력율들 각각에서 5개의 사이클들에 대해 사이클링되었고, 그 후에 다음번 45 사이클들에 대해 C/1 대칭 전력율에서 테스트되었다. 이는 사이클 301부터 사이클 400까지 그리고 사이클 401부터 사이클 500까지 반복되었다. 용량의 변화는 작지만(<16%), C-율은 32 배(fold)만큼 변화된다. C-율이 3C로부터 8C로 변화되는 경우, 100 사이클들 후의 전극은 증가된 용량을 보였다. 따라서, 더 빠른 충전율이, 개선된 용량을 초래하였다. 높은 용량(>2,700 mAh/g)은 높은 및 더 낮은 충전율들(C/4 및 8C) 양측 모두에서 달성되었다. C-율이 증가됨에 따라 3C를 초과하는 충전율들에서 용량이 증가된다. 사이클들의 수에 따른 비용량의 강하(drop)는 알려진, 정정가능한 인자(factor)들에 기인한다.Figure 8 illustrates how the capacity of the
CV들 및 충전-방전 측정들 양측 모두는 Si 층(115)으로의 Li+ 삽입이 신속하고 매우 가역적이었다는 것을 나타내었으며, 이는 고성능 Li-이온 배터리 애노드들에 대해 원하는 피쳐들이다. 이는 상이한 테스팅 컨디션들: (1) 삽입에 대해 C/2 율 및 추출에 대해 C/5 율을 이용한 느린 비대칭 테스트들; 및 (2) 삽입 및 추출 양측 모두에 대해 C/1 율에서의 신속한 대칭 테스트에서 2개의 동일한 샘플들에 대한 2개의 긴 사이클링 테스트들을 이용하여 추가로 증명되었다(도 7c 참조). 데이터의 세트들 모두는 초기 컨디셔닝 사이클들을 제외하고(전자의(former) 4 사이클들 및 후자의(latter) 12 사이클들은 낮은 충전율들로 변화됨) 긴 사이클링에 걸쳐 >98%의 쿨롱 효율을 보였다. 느린 비대칭 테스트들에서, 삽입 용량은 5번째 사이클에서의 3643 mA h g-1로부터 100번째 사이클에서의 3341 mA h g-1로 8.3%만큼만 강하되었다. 심지어 C/1 충전-방전율에서, 삽입 용량은 13번째 사이클에서의 3096 mA h g-1로부터 100번째 사이클에서의 2752 mA h g-1로 11%만큼만 강하된다. 이들 2개의 데이터 세트들 사이의 Li+ 용량의 차이는 대부분, 초기 컨디셔닝 파라미터들 및 작은 샘플-투-샘플 변동들에 기인하였을 수 있다. 이는, C/10 및 C/5 율들에서 도 7c의 제 1 소수의(few) 컨디셔닝 사이클들 동안 삽입-추출 용량의 유사한 값들에 의해 표시되었다. 더욱 신속한 충전율들(샘플 #2의 9번째 및 10번째 사이클들에 대해 C/0.5 및 11번째 및 12번째 사이클들에서 대해 C/0.2)은 유해할 것으로 그리고 용량의 비가역적인 강하를 초래할 것으로 확인되었다. 그러나, 전극은 더 긴 사이클링 후에 안정화되었다. 도 7b에서 보여지는 바와 같이, 충전-방전 프로파일들은 C/2, C/1, 및 C/0.5 충전율들에서 거의 동일하며, 이는 120 사이클들을 거친 후에 샘플 #1을 이용하여 측정되었다. 이는 4번의 충전율 변동들로 끝난다.Both CVs and charge-discharge measurements indicated that Li + implantation into the
3000 내지 3650 mA h g-1의 범위의 Si 층(115)의 비용량은 문헌에서 요약된 비정질 Si 애노드들의 가장 높은 값들과 일치한다. CNF 어레이(100)의 전체 Si 쉘이 Li+ 삽입에 대해 활성이었고 120 사이클들에 걸쳐 용량의 거의 90%가 유지되었다는 것이 주목할만하며, 이는 본 발명자들의 지식으로는 평평한 초박(ultrathin)(< 50 ㎚) Si 막들을 제외하고 이전에 달성되지 않았다. 본원에 개시된 비용량은, Si NW들을 이용한 C/2 율에서의 ~2500 mA h g-1 및 C/1 율에서의 ~2200 mA h g-1, 및 랜덤하게 배향된 탄소 나노섬유-Si 코어-쉘 NW들을 이용한 C/1 율에서의 ~800 mA h g-1을 포함하는, 유사한 전력율들에서 다른 나노구조화된 Si 재료들을 이용하여 리포팅되었던 비용량들보다 상당히 더 높다. 명백하게, 본 발명의 다양한 구체예들에 포함된 것과 같은 잘-분리된 CNF들(110) 상의 동축 코어-쉘 NW 구조는, 종래 기술에 비해 향상된 충전-방전율, Si의 거의 전체 Li+ 저장 용량, 및 긴 사이클 수명을 제공한다.The specific capacity of the
도 7c에 도시된 바와 같이, 이례적으로 높은 삽입 용량(~4500 mA h g-1)이, 초기 사이클들에서 항상 관측되었고, 이는 나중의 사이클들보다 20 내지 30% 더 높았다. 그에 반해, 추출 값들은 전체 사이클들에 걸쳐 비교적 안정적이었다. 추가의(extra) 삽입 용량은 3개의 비가역적 반응들: (1) (수십 나노미터의) 얇은 표면 전해질 중간상(surface electrolyte interphase; SEI) 층의 형성; (2) Si 표면 상에 제공된 SiOx와의 Li의 반응들(SiOx + 2xLi → Si + xLi2O); 및 (3) 더 높은 이론상의 용량(~4200 mA h g-1)을 갖는 시작 결정질(crystalline) Si 코팅의, 더 낮은 용량(<3800 mA h g-1)을 갖는 비정질 Si로의 변환의 결합에 기인할 수 있다. TEM 이미지(도 3c) 및 SEM 이미지(도 6b)는, 비-균일 SEI가 충전-방전 사이클들 후에 Si 층(115)의 표면 상에 증착될 수 있다는 것을 보였다. 이러한 탄력적 SEI 막은, CNF 어레이(100)가, 충전-방전 사이클들 동안 발생하는 큰 부피 팽창-수축(expansion-contraction) 사이클들을 거칠 때, Si 층(115)을 CNF(110) 표면들 상에 고정하는 것을 도울 수 있다. 도 6b 및 도 6c의 SEM 이미지들 사이의 인상적인 차이는, 비-리튬화된 상태와 비교상의 리튬화된(충전된) 상태의 Si 층(115)의 큰 팽창을 나타낸다. (그러나, 전기화학적 셀이 이미징 동안 디셈블링(dissemble)되었기 때문에, 팽창 중 일부는 공기에 의한 Li의 산화에 기인할 수 있다). 초기 충전-방전 사이클들 동안의 SEI의 생성은 도 3a와 도 3b 사이의 Si 층(115)에서 보여진 차이들을 초래한다는 것을 유의한다. 도 3b에서, Si는 깃털형 구조들 사이의 갭들을 채우는 SEI를 생성하기 위해 전해질과 상호작용하였다. 상호작용은 혼합, 화학적 작용들, 전하 커플링, 캡슐화 및/또는 등등을 포함할 수 있다. 그러므로, Si 층(115)은 도 3b에서 더욱 균일하게 보인다. 그러나, Si 층(115)은 이제, SEI 및 Si(깃털형 구조들)의 인터리빙된 층들을 포함한다. 이들 인터리빙된 층들 각각은 대략 수십 나노미터일 수 있다. SEI 층은 전해질과 Si 층(115)(또는 다른 전극 재료) 사이의 상호작용의 생성물인 이온 투과성 재료일 수 있다.As shown in Fig. 7C, an exceptionally high insertion capacity (~ 4500 mA hg -1 ) was always observed in the initial cycles, which was 20-30% higher than later cycles. On the other hand, the extraction values were relatively stable over the entire cycles. The extra insertion capacity includes three irreversible reactions: (1) the formation of a thin surface electrolyte interphase (SEI) layer (tens of nanometers); (2) reactions of Li with SiO x provided on the Si surface (SiO x + 2xLi? Si + xLi 2 O); And (3) the conversion of a starting crystalline Si coating with a higher theoretical capacity (~ 4200 mA hg -1 ) to amorphous Si with lower capacity (<3800 mA hg -1 ) . The TEM image (FIG. 3C) and the SEM image (FIG. 6B) showed that a non-uniform SEI could be deposited on the surface of the
Si 쉘의 결정질 및 비정질 구조는 라만 분광법(Raman spectroscopy)에 의해 드러났다. 도 9에 도시된 바와 같이, Si 층(115)을 포함하는 원래의(pristine) CNF 어레이(100)는, 비정질 Si에 대응하는 350 내지 550 ㎝-1의 범위의 오버랩된 다수의 광대역(broad band)들, 및 나노결정질 Si에 대응하는 480 ㎝-1에서의 훨씬 더 높은 명확한 대역(sharp band)을 보였다. 충전-방전 테스트들 후에, 광대역들은 470 ㎝-1에서 단일 피크로 병합(merge)되었지만, 명확한 피크는 사라졌다. 베어(bare) CNF들(110)은 이러한 범위에서 어떠한 피쳐도 보이지 않았다. 결정질 Si 피크는, 단일-결정질 Si(100) 웨이퍼를 이용하여 측정된 것으로부터 ~40 ㎝-1만큼, 그리고 다른 마이크로-결정질 Si 재료들로부터 ~20 내지 30 ㎝-1만큼 다운시프트되었다. 이러한 시프트는, 훨씬 더 작은 결정 크기 및 큰 무질서(disorder)들에 기인했을 수 있다. 원래의(original) Si 층(115)은, 도 3a의 깃털형 TEM 이미지와 연관된 비정질 매트릭스에 임베딩된 나노결정들로 이루어졌을 수 있다. 초기 사이클들 후에, Si 나노결정들은 비정질 Si로 변환되었으며, 이는 사이클링 테스트 후의 TEM 이미지들과 일치한다(도 3b 및 도 3c 참조). 그러나, Si 층(115)은 명백하게, 순수 Si NW들의 큰 길이방향 팽창(100% 까지)과 대조적으로, CNF의 길이를 따라 슬라이딩되지 않았다. 이는, 일부 구체예에서, 실리콘의 팽창이 탄소 나노섬유에 대하여 길이보다는 주로 방사상임을 가리킨다. 일부 구체예에서, 팽창은 Si의 깃털형 구조들 사이에서 발생한다. 예를 들어, 하나의 깃털은 가장 가까운 이웃한 깃털들의 위 및 아래 방향으로 팽창될 수 있고, 이에 따라 깃털 사이의 갭이 채워질 수 있다. 어떠한 경우에도, 팽창은 실리콘의 층간박리가 선행 기술에 비해 현격하게 감소되도록 하는 방식으로 발생한다. 따라서, Si 층(115)은 120이 넘는 사이클들 동안 CNF들(110)에 단단히 고정되었다. CNF-Si 계면은 온전히 유지되었지만, Li+ 삽입 동안의 Si 쉘의 부피 변화는 방사상 팽창에 의해 지배되었다.The crystalline and amorphous structures of the Si shells were revealed by Raman spectroscopy. 9, a
본 발명의 다양한 구체예들은, 상이한 길이들 및 실리콘 쉘 두께를 갖는 CNF들(110)을 포함한다. CNF들(110)이 발생될 때 제어될 수 있는 하나의 인자는, 각각의 CNF(110) 사이의 개방된 공간, 예를 들어, CNF 어레이(100) 내의 CNF들(110) 사이의 평균 거리이다. 이러한 공간은, 충전시 Si 층(115)이 방사상으로 팽창하도록 허용하고, 따라서 몇몇 구체예들에서 안정성을 제공한다. 최적의 전극 구조는 CNF들(110)의 길이 및 Si 층(115)의 두께 양측 모두에 의존하기 때문에, 더 높은 총 Li+ 저장 용량을 달성하기 위해 더 긴 CNF들(110) 및 더 두꺼운 Si 층들(115)을 이용하는 것이 때때로 바람직하다. 더 긴 CNF들(110)은 더 큰 저장 용량과 상관된다. 도 10a 내지 도 10c는 각각 0.50, 1.5, 및 4.0 ㎛의 공칭 두께로 Si 층(115)이 증착된 3개의 10 ㎛ 길이 CNF(110) 샘플들을 이용한 15 충전-방전 사이클들에 걸친 쿨롱 효율 및 Li+ 삽입-추출 용량들의 변동을 도시한다. 제 1 사이클에 대한 C/10 충전율 및 제 2 사이클에 대한 C/5 율에서의 컨디셔닝 후에, 비대칭 충전율들(삽입에 대해 C/2 및 추출에 대해 C/5)이, 도 7c의 샘플 #1의 측정들과 유사하게 그 후의 사이클들에서 이용되었다. 이러한 프로토콜은 사이클들에 걸쳐 최소의 저하 및 거의 100% 쿨롱 효율을 제공하였다. 공칭 두께는 스퍼터링 동안 QCM(quartz crystal microbalance)을 이용하여 인 시튜(in situ) 측정되었다.Various embodiments of the present invention include
3597 mA h g-1 및 3416 mA h g-1 만큼 높은 비용량들이, 3.0 ㎛ 길이 CNF들(110) 상의 0.50 ㎛ 두께 Si 층(115)(도 7c 참조)을 이용한 것들과 매우 유사하게, 각각 0.50 및 1.5 ㎛ 두께 Si 층(115)을 이용하여 달성되었다. 용량은 15 사이클들에 걸쳐 거의 일정하게 유지되었다. 그러나, 4.0 ㎛ 공칭 Si 두께를 갖는 전극은, 단지 2221 mA h g-1에서 상당히 더 낮은 비용량을 보였다. 이는, 팽창시, 인접한 CNF들(110)로부터의 Si 층들(115)이 서로 접촉하기 시작하여, 이들을 추가의 팽창으로부터 제한하고, CNF들(110) 사이의 Li의 확산을 제한한다는 것을 나타낸다. 결과적으로, 실리콘 코팅의 부분(fraction)만이 리튬 삽입에서 활성화되었다. 사이클 안정성은 상응하게, 더 얇은 Si 층들(115)을 갖는 샘플들보다 더 나빴다(worse).The capacities as high as 3597 mA hg -1 and 3416 mA hg -1 are very similar to those using the 0.50 탆 thick Si layer 115 (see Fig. 7C) on 3.0 탆
10 ㎛ 길이 CNF들(110)을 포함하는 CNF 어레이들(100) 상의 동일한 양의 Si (500 ㎚ 공칭 두께)는, 탄소 질량이 3배를 초과하여 더 높을지라도, 3 ㎛ 길이 CNF들(110)의 것(3643 mA h g-1, 도 7c 참조)과 거의 동일한 양의 Li+ 저장 용량(3597 mA h g-1, 도 6a 참조)을 제공하였다. 이는, CNF들(110)의 기여가, Li+ 저장을 계산하는데 있어서 무시할만하다는 매우 강력한 증거이다. Si-코팅된 샘플에서 매우 적은 Li+ 이온들이 CNF들(110)로 인터칼레이팅되었을 수 있고, 이는 다수의 충전-방전 사이클들 동안의 구조의 안정성에 기여한다.The same amount of Si (500 nm nominal thickness) on
자신들의 구조들과 잘 상관된 3개의 샘플들의 Li+ 저장 비용량(specific Li+ storage capacity)의 변동은, 도 11a 내지 도 11c에 예시된 SEM 이미지들에 의해 드러났다. 도 11a 내지 도 11c는, (~10 ㎛ 길이 CNF들(110) 상의) 새롭게 준비된 CNF 어레이들(100)의 주사 전자 현미경 이미지들을 도시한다. Si 층(115)은 (a) 0.50 ㎛, (b) 1.5 ㎛, 및 (c) 4.0 ㎛의 공칭 Si 두께를 이용하여 발생되었으며, 이는 증착 동안 QCM(quartz crystal microbalance)를 이용하여 인-시튜(in-situ) 측정되었다. 모든 이미지들은 45° 사시도들이다. 0.50 ㎛ 공칭 Si 두께에서, 평균 첨단 직경은, 3.0 ㎛ 길이 CNF들(110) 상에서의 ~457 ㎚ 평균 직경보다 훨씬 더 작은, 10 ㎛ 길이 CNF들 상에서 ~388 ㎚인 것으로 확인되었다. Si 층(115)은 더 얇았지만, 10 ㎛ 길이 CNF들(110)을 따라 더욱 균일하게 확산되었다.Variations in the well of the correlated three samples with their structure Li + storage capacity ratio (specific Li + storage capacity) is revealed by the SEM image illustrated in Figure 11a to Figure 11c. Figs. 11A-11C show scanning electron microscope images of newly prepared CNF arrays 100 (on
10 ㎛ CNF들(110)이 성장하는 것이, 3 ㎛ CNF들(110)이 성장하는 것의 약 6배인 120 분이 걸렸다는 것이 유의된다. 몇몇 Ni 촉매제들이 긴 PECVD 프로세스 동안 NH3에 의해 느리게 에칭되어서, Ni 나노입자 크기의 연속적인 감소를 초래하고, (도 12에 도시된 바와 같은) 테이퍼링된 첨단(120)을 초래한다. CNF(110) 길이 변동은 또한, 긴 CNF들(110)을 이용하여 증가되었다. 이들 인자들은 집합적으로, 첨단(120)의 음영 효과들을 감소시켰다. 결과적으로, 심지어, 1.5 ㎛ 공칭 Si 두께에서, Si 층(115)이 코팅된 CNF들(110)은 서로로부터 잘 분리된다. 10 ㎛ CNF 어레이들(100) 상의 1.5 ㎛의 Si의 SEM 이미지(도 11b)는, 3.0 ㎛ CNF 어레이들(100) 상의 0.50 ㎛의 Si의 SEM 이미지(도 2b)와 매우 유사하다. 그러나, 공칭 Si 두께가 4.0 ㎛로 증가되었기 때문에, Si 층들(115)은 명백하게 서로 병합되고, CNF들(110) 사이의 공간의 대부분까지 채워진다(도 10c 참조). 이는, Si 층(115)의 부피 팽창(volumetric expansion)을 수용하기 위해 필요한 자유 공간(free space)을 감소시켰다. 결과적으로, Li+ 저장 비용량(specific Li+ storage capacity)이 상당히 강하되었다.It is noted that the growth of 10 占 퐉 CNFs 110 took about 120 minutes, which is about six times that of the 3 占 퐉 CNFs 110 growing. Some Ni catalysts are etched slowly by NH 3 during the long PECVD process, resulting in a continuous reduction of the Ni nanoparticle size and result in a tapered tip 120 (as shown in FIG. 12). The
도 11a 및 도 11b는 각각, 거의 동일한 수의 CNF들(110)을 포함하지만, 도 11b에서는 실질적으로 더 적은 가시적인 첨단들(120)을 갖는다. 이는, Si 층(115)이, 단일 CNF(110)를 포함하는 나노섬유/실리콘 복합체를 형성할 수 있기 때문이다(그 단면은 도 1a에 도시됨). 또는, Si 층(115)이, 단일 실리콘 커버 하에 2, 3, 또는 그보다 많은 CNF(110)를 포함하는 나노섬유/실리콘 복합체를 형성할 수 있다. 이는, Si 층(115) 증착 공정 동안 2 또는 그보다 많은 CNF들(110)이 합쳐질 때 발생한다. 나노섬유/실리콘 복합체는, 하나 또는 그보다 많은 CNF(110)를 감싸는(envelop) 연속적인 Si 층(115)을 포함하는 구조이다. 2개의 CNF(110)를 포함하는 나노섬유/실리콘 복합체의 단면이 도 11d에 예시된다. 다양한 구체예들에서, 나노섬유/실리콘 복합체들의 적어도 1%, 5%, 또는 10%는 하나보다 많은 수의 CNF(110)를 포함한다.11A and 11B each include substantially the same number of
다양한 구체예들에서, 0.50 및 1.5 ㎛ 공칭 Si 두께들을 갖는 CNF 어레이들(100)의 경우는, 각각 3208±343 및 3212±234 mA h g-1의 비견할만한 질량-비용량들을 갖는다. 4.0 ㎛ 공칭 Si 두께를 갖는 샘플들은 2072±298 mA h g-1에서 훨씬 더 낮은 용량을 제공한다. 더 얇은 Si 코팅들은 완전히 활성화되고, 비정질 Si가 제공될 수 있는 최대 Li 삽입 용량을 제공한다. 다른 한편, 영역-비용량(area-specific capacity)은, 0.50 ㎛ Si에서의 0.373±0.040 mA h cm-2으로부터 1.5 ㎛ Si 두께에서의 1.12±0.08mA h cm-2으로 Si 두께를 비례해서 증가시키지만, 4.0 ㎛ 공칭 Si 두께에서 1.93±0.28 mA h cm-2을 제공하기 위해 선형 곡선으로부터 강하(drop off)된다. 4.0 마이크로미터의 공칭 실리콘 두께에서, 두꺼운 Si 코팅의 추가의(extra) 실리콘의 일부분만이 활성으로 Li 저장에 수반된다. 4.0 ㎛의 두께는 CNF들(110) 사이의 평균 거리보다 더 크다. 전기화학적 결과들은, 도 11c의 SEM 이미지에서 도시된 구조와 일치하며, 이는 CNF들(110) 사이의 공간이 본질적으로 채워진다는 것을 보여준다.In various embodiments, the
본 발명의 다양한 구체예들에서, CNF 어레이(100)의 구조는, 대략 30 내지 40, 40 내지 75, 75 내지 125 미크론(microns)(또는 그 초과 또는 이들의 조합들)의 길이 및 대략 ~50 ㎚의 직경들을 갖는 CNF들(110) 상에 대략 200 내지 300 ㎚ 방사상 두께의 Si 층을 포함한다. 몇몇 구체예들에서, 이들 CNF 어레이(100)는 ~10 미크론, ~10 내지 20 미크론, ~10 내지 50 미크론, 또는 그 초과의 범위들 내의 두께를 갖는 전도성 포일(foil)들 상에 성장된다. 다양한 구체예들에서, (평평한 표면 상의 1.5 ㎛ 공칭 두께와 동등한) Si가, CNF 어레이들(100)을 형성하기 위해 10 ㎛ 길이 CNF들(110) 상으로 증착된다. 이는, Li 이온들이 CNF들(110) 사이의 CNF 어레이들(100)을 투과할 수 있도록, 서로로부터 잘 분리된 개개의 CNF들(110)을 갖는 개방된 수직 코어-쉘 나노와이어 구조를 유지하면서 달성된다. 이러한 고유한 하이브리드 아키텍쳐는 Si 층들(115)이, Li+ 삽입 및 추출 동안 방사상 방향으로 자유롭게 팽창/수축되도록 허용하였다. 3000 내지 3650 mA h g-1의 질량-비용량을 갖는 고성능 Li 저장이 심지어 C/1 율에서 달성되었다. 용량은, 유사한 질량의 비정질 Si로부터 예상되었을 최대 값과 매칭되어서, Si 층(115)이 완전히 활성화되었다는 것을 나타낸다. 이러한 3D 나노구조화된 아키텍처는, 짧은 Li+ 삽입-추출 경로를 유지하면서 대량의 Si 재료와 효율적인 전기 연결을 가능하게 한다. 결과적으로, 이론상의 한계치에 가까운 높은 용량이, 120이 넘는 충전-방전 사이클 동안 가능하다. 충전율이 C/10으로부터 C/0.5(또는 2C)로 20배 증가되었을 때, 용량의 변화가 거의 존재하지 않았다. 상당히 개선된 충전 및 전력율들에서의 높은 용량 및 놀라운 사이클 안정성은, 이러한 신규한 구조를, 고성능 Li-이온 배터리들을 위한 우수한(choice) 애노드 재료로 만든다. 동일한 코어-쉘 개념은, Si 쉘을 TiO2, LiCoO2, LiNiO2, LiMn2O4, LiFePO4, Li2O, Li2O2 등과 대체함으로써 캐소드 재료들에 적용될 수 있다.In various embodiments of the present invention, the structure of the
도 13은 본 명세서에 개시된 CNF 어레이들(100) 및/또는 CNF들(110)을 생성하기 위한 방법들을 예시한다. 기판 제공 단계(1310)에서, 기판(105)이 제공된다. 기판(105)은 임의로는 CNF들(110)의 성장을 위해 적합하다. 기판(105)은 다양한 재료들, 예를 들어, Cu를 포함할 수 있다. 기판(105)은 임의적으로, 본원의 다른 부분에서 기술된 두께를 갖는 전도성 포일이다. 임의적인 핵형성 사이트들 제공 단계(1320)에서, CNF들(110)의 성장을 위한 핵형성 사이트들이 기판(105) 상에 제공된다. 다양한 핵형성 재료들, 이를 테면, Ni 입자들은 당해 기술분야에 알려져 있다. 핵형성 사이트들은 임의적으로, 본원의 다른 부분에서 교시된 것들과 같은, CNF들(110) 사이의 평균 거리들을 생성하기 위한 밀도로 제공된다. 핵형성 사이트들 제공 단계(1320)는, CNF들(110) 또는 유사한 구조들의 성장을 위해 핵형성이 요구되지 않거나 어느 다른 곳에 성장시킨 후 바인더를 사용하여 CNF들(110)을 기판(105)에 부착시키는 구체예들에서 선택적이다.FIG. 13 illustrates methods for generating the
CNF들 성장 단계(1330)에서, CNF들(110)은 기판(105) 상에 성장되거나, 일부 구체예에서는 기판(105)으로부터 분리된다. CNF들(110)은 임의적으로, 본원의 다른 부분에서 교시된 적층된-원뿔 구조를 생성하기 위해, 그의 길이를 따라 노출된 흑연 에지를 갖는 구조를 생성하기 위해, 또는 유사하게 가변적인 구조를 생성하기 위해 성장된다. CNF들(110)은, 본원의 다른 부분에서 교시된 길이들 중 임의의 길이로 성장될 수 있다. 성장은 임의적으로, Klankowski 등의 "A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers" J. Mater. Chem. A, 2013, 1, 1055에서 인용된 또는 교시된 것들과 같은 PECVD 공정들을 이용하여 달성된다.CNFs In the growth step 1330, the
Si 층 적용 단계(1340)에서, Si 층(115)과 같은 인터칼레이션 재료는 성장된 CNF들(110)에 적용된다. 일부 구체예에서, Si 층 적용 단계(1340)는 CNF들(110)을 기판(105)에 부착시키기 전에 일어난다. 적용된 재료는, 수십 또는 수백 나노미터의 Si 층(115) 두께를 생성하기 위해, 본원의 다른 부분에서 교시된 공칭 두께들 중 임의의 공칭 두께를 가질 수 있다. 일부 구체예에서, Si 층 적용 단계(1340)는 CNF(110)의 길이를 따라 노출된 에지와 무관한 구조로 인터칼레이션 재료를 성장시키는 것을 포함한다. 예를 들어, CNF들(110)이 본원에서 논의된 컵형 구조를 포함하는 경우에, Si 층 적용 단계(1340)는 도면, 예를 들어 도 3a에 예시된 깃털형 구조를 성장시키는 것을 포함한다.In the Si
임의적 PEM 적용 단계(1345)에서, 전력 증강 재료(PEM)는 CNF 어레이(100) 또는 CNF들(110)에 첨가된다. 일부 구체예에서, PEM 적용 단계(1345)는 CNF들(110)을 기판(105)에 부착시키기 전에 일어난다. PEM은 통상적으로 본원의 다른 곳에서 추가로 상세하게 논의되는 바와 같이, 바인더 및 표면 효과 지배 사이트를 포함한다. 임의적 컨디션 단계(1350)에서, 단계(1310-1340)를 이용하여 형성된 CNF 어레이(100)는 하나 이상의 리튬 인터칼레이션 사이클을 이용하여 컨디셔닝된다.In the optional PEM application step 1345, a power enhancement material (PEM) is added to
도 14a는 본 발명의 다양한 구체예에 따른, 전력 증강 재료(1320)를 포함하는 CNF(110)를 예시한다. 전력 증강 재료(1320)는 인터칼레이션 재료 위에, 예를 들어 실리콘층(115) 위에 층으로서 적용된다. 도 14b는 본 발명의 다양한 구체예에 따른, 도 14b에 예시된 전력 증강 재료(1320)의 세부사항을 예시한다. 전력 증강 재료(1320)는 표면 효과 지배 사이트(1430) 및 임의적 바인더(1440)를 포함한다. 실리콘층(115)은 인터칼레이션 재료의 일 예이다. 실리콘층(115)이 본원에서 일 예로서 사용되는 경우에, 다른 타입의 인터칼레이션 재료가 실리콘으로 치환되거나 이와 결합될 수 있는 것으로 이해될 것이다. 이러한 대안적이거나 추가의 인터칼레이션 재료는 Ag, Al, Bi, C, Se, Sb, Sn 및 Zn을 포함한다. 도 14에 예시된 CNF(110)는 통상적으로 CNF 어레이(100) 내의 다수의 CNF(110) 중 하나이다.14A illustrates
일부 구체예에서, 표면 효과 지배 사이트(1430)는 패러데이 상호작용에서 전하 운반체를 흡착시키도록, 예를 들어 전하 운반체와의 레독스 반응을 수행하도록 구성된 나노입자의 표면을 포함한다. 이러한 것들은 "표면 효과 지배"로서 지칭되는데, 왜냐하면 통상적으로 이러한 나노입자에 대하여, 전하 운반체와 나노입자 표면 간의 패러데이 상호작용은 벌크 패러데이 상호작용을 지배하기 때문이다. 이에 따라, 전하 운반체는 대부분의 나노입자에 대해 표면에서 반응할 가능성이 매우 더욱 크다. 예를 들어, 리튬 이온은 대부분의 나노입자에 흡수되는 것 보다는 나노입자의 표면 상에 흡착할 가능성이 더욱 클 것이다. 이러한 나노입자는 때때로, 표면 레독스 입자로서 지칭된다. 패러데이 상호작용은 상당한 양의 느슨하게 결합된 전하를 저장하고 이에 따라 상당한 전력 밀도를 제공할 수 있는 유사 커패시터를 야기시킨다. 유사 커패시턴스에서, 전자는 교환된다(예를 들어, 공여된다). 이러한 경우에, 전하 운반체와 나노입자 간에 교환된다. 일부 전위가 나노입자로의 전하 운반체의 일부 인터칼레이션을 야기시키지만, 이는 표면 효과 지배 사이트(1430)에서 대부분의 상호작용을 구성하지 않고, 일부 타입의 나노입자를 분해시킬 수 있다. 패러데이 상호작용은 전기화학적 상호작용의 결과로서 전하가 이동되는(예를 들어, 공여되는) 상호작용이다.In some embodiments, the surface
표면 효과 지배 사이트(1430)를 포함하는 나노입자는 전이금속 옥사이드, 예를 들어 TiO2, Va2O5, MnO, MnO2, NiO, 탄탈 옥사이드, 루테늄 옥사이드, 루비듐 옥사이드, 주석 옥사이드, 코발트 옥사이드, 니켈 옥사이드, 구리 옥사이드, 철 옥사이드, 및/또는 등을 포함할 수 있다. 이러한 것들은 또한 금속 니트라이드, 탄소, 활성탄, 그라펜, 흑연, 티타네이트(Li4Ti5O12), 결정질 실리콘, 주석, 게르마늄, 금속 하이드라이드, 철 포스페이트, 폴리아닐린, 중간상 탄소, 및/또는 등을 포함할 수 있다. 요망되는 패러데이 성질을 갖는 상기 재료 및/또는 다른 재료의 혼합물이 표면 효과 지배 사이트(1430)에 포함될 수 있는 것을 인식된다. 다양한 구체예에서, 이러한 나노입자는 1, 2, 3, 5, 8, 13, 21 또는 34 나노미터 미만의 직경을 가질 수 있다. 나노입자 크기의 하한치는 구성 재료의 분자의 크기에 따른다. 나노입자는 적어도 수 개의 분자를 포함한다. 보다 작은 크기는 가능한 흡착 사이트의 벌크 비에 대한 보다 큰 표면을 제공한다. 그러나, 단지 한 쌍의 분자를 포함하는 입자는 안정성을 감소시킨다. 나노입자는 임의적으로 다층으로 형성된다. 예를 들어, 이러한 것들은 전이금속, Co, Ni, Mn, Ta, Ru, Rb, Ti, Sn, V2O2, FeO, Cu 또는 Fe 코어 상에 TiO2 층(또는 본원에서 논의된 임의의 다른 나노입자 재료), 또는 일부 다른 재료의 코어 상의 그라펜/흑연 층을 포함할 수 있다. 일부 구체예에서, 상이한 코어 재료는 표면 재료의 반응 전위에 영향을 미친다. 표면 효과 지배 사이트(1430)의 양은 임의적으로 요망되는 전력 및 에너지 밀도에 따라 선택된다. 예를 들어, 보다 큰 전력 밀도는 인터칼레이션 재료의 양 당 보다 많은 수의 표면 효과 지배 사이트(1430)를 가짐으로써 달성될 수 있거나, 보다 큰 양의 에너지 밀도는 표면 효과 지배 사이트(1430)의 갯수 당 보다 큰 양의 인터칼레이션 재료를 가짐으로써 달성될 수 있다. 사실적으로 높은 에너지 및 전력 밀도 둘 모두가 동시에 달성될 수 있다는 것이 본 발명의 일부 구체예의 장점이다.Nanoparticles containing surface effect
나노입자의 표면 상에 전하 운반체를 흡착시킴으로써, 전하 운반체는 단지 이전에 커패시터로 달성되는 것과 같은 전력 밀도를 제공할 수 있다. 이는 전하의 방출이 인터칼레이션 재료를 통한 전하 운반체의 확산에 따르는 것이 아니기 때문이다. 또한, 인터칼레이션 재료에 매우 근접하게 표면 효과 지배 사이트(1430)를 배치시킴으로써, 전하 운반체는 인터칼레이션 재료에서 표면 효과 지배 사이트(1430)(또는 전해질로 직접적으로)로 이동할 수 있다. 이는 통상적인 배터리와 동일하거나 이보다 큰 에너지 밀도를 야기시킨다. 배터리의 에너지 밀도 및 커패시터의 전력 밀도 둘 모두는 동일한 장치에서 달성된다. 방전 동안에 인터칼레이션 재료 내의 전하 운반체가 표면 효과 지배 사이트(1430)로 이동하고 이에 따라 이러한 사이트를 재충전할 수 있다는 것이 주지된다.By adsorbing the charge carrier on the surface of the nanoparticle, the charge carrier can provide the same power density as previously achieved with the capacitor. This is because the discharge of charge is not due to the diffusion of the charge carrier through the intercalation material. Also, by placing the surface
일부 구체예에서, 표면 효과 지배 사이트(1430)는 보다 큰 입자 상에 배치된다. 예를 들어, 입자 크기는 1, 10, 25, 100 또는 250 마이크론 보다 클 수 있다(그러나, 일반적으로, 1 밀리미터 미만이다). 활성탄, 흑연 및 그라펜은 이러한 크기의 입자에 포함될 수 있는 재료이다. 예를 들어, 활성탄은 상기에 교시된 나노입자 직경과 유사한 표면 효과 지배 사이트(1430)의 기공 크기를 가지면서 전력 증강 재료(1320)에 포함될 수 있다. 본 발명의 목적을 위하여, 나노입자는 1 ㎛ 미만의 평균 직경을 갖는 입자이다.In some embodiments, surface
임의적 바인더(1440)는 인터칼레이션 재료에 근접하게 표면 효과 지배 사이트(1430)를 유지시키도록 구성된다. 일부 구체예에서, 표면 효과 지배 사이트(1430)의 분포는 바인더(1440) 전반에 걸쳐 균일하다. 예를 들어, 표면 효과 지배 사이트(1430)를 포함하는 나노입자는 비교적 균일한 분포를 형성시키기 위해 바인더(1440)가 인터칼레이션 재료에 적용되기 전에 바인더(1440)과 혼합될 수 있다. 대안적으로, 나노입자는 바인더(1440)의 적용 전에 인터칼레이션 재료의 표면에 적용될 수 있다. 이는 인터칼레이션 재료에 대해 원위에 있는 바인더(1440)의 구역과 비교하여 인터칼레이션 재료에 근접한 표면 효과 지배 사이트(1430)(바인더(1440) 내)의 보다 큰 농도를 야기시킬 수 있다. 바인더(1440)는 표면 효과 지배 사이트(1430) 또는 관련된 나노입자가 인터칼레이션 재료에 직접적으로 부착된, 예를 들어 실리콘층(115)에 부착되는 구체예에서 임의적인 것이다.Optional binder 1440 is configured to maintain surface
바인더(1440)는 전해질의 전하 운반체에 대해 투과성이다(예를 들어, 다공성이다). 바인더(1440)를 위한 적합한 재료의 예는 폴리비닐리덴 플루오라이드(PVDF), 스티렌 부타디엔 고무, 폴리(아크릴산)(PAA), 카복시메틸-셀룰로오즈(CMC), 및/또는 등을 포함한다. 투과성 요건을 충족시키는 다른 바인더가 사용될 수 있다. 바인더(1440)는 임의적으로 이의 전도성을 증가시키는 재료를 포함한다. 예를 들어, 바인더(1440)는 전도성 폴리머, 흑연, 그라펜, 금속 나노입자, 카본 나노튜브, 카본 나노섬유, 금속 나노와이어, Super-P (전도성 카본 블랙), 및/또는 등을 포함할 수 있다. 재료는 바람직하게 바인더(1440)를 전도성으로 만드는데 충분히 높은 농도, 예를 들어 침투 한계치(percolation threshold)로 존재한다.The binder 1440 is transparent (e.g., porous) to the charge carrier of the electrolyte. Examples of suitable materials for the binder 1440 include polyvinylidene fluoride (PVDF), styrene butadiene rubber, poly (acrylic acid) (PAA), carboxymethyl-cellulose (CMC), and / or the like. Other binders meeting the permeability requirements may be used. Binder 1440 optionally includes a material that increases its conductivity. For example, the binder 1440 may comprise a conductive polymer, graphite, graphene, metal nanoparticles, carbon nanotubes, carbon nanofibers, metal nanowires, Super-P (conductive carbon black), and / have. The material is preferably present at a sufficiently high concentration, e. G., A percolation threshold, to render the binder 1440 conductive.
인터칼레이션 재료(예를 들어, 실리콘층(115))에 매우 근접하게 표면 효과 지배 사이트(1430)의 첨가는 반드시 수직 정렬된 CNF(110), 또는 임의의 지지 필라멘트의 사용을 필요로 하지 않는다. 예를 들어, 도 15는 본 발명의 다양한 구체예에 따른, 인터칼레이션 재료에 의해 코팅된 비-정렬된 CNF(110) 및 전력 증강 재료(1320)를 포함하는 전극 표면을 예시한다. 이러한 구체예에서, CNF(110)는 기판(110)에 직접적으로 부착되지 않고 바인더(1440)에 의해 기판(110)에 매우 근접하게 유지된다. 일부 구체예에서, 예를 들어 도 3b에 예시된 컵형 구조를 포함하는 CNF(110)는 도 15에 예시된 것과 같이 비-부착된 형상으로 사용된다. 상기 구체예에서, 컵형 구조는 여전히 아래 놓인 CNF(110)로부터의 실리콘의 층간박리를 방지하는 것을 돕는다. CNF(110)가 본원에서 지지 필라멘트의 일 예로서 사용되지만, 본원에서 논의된 다른 타입의 지지 필라멘트가 임의의 실시예에서 CNF(110)의 탄소 나노섬유를 보충하거나 대체하기 위해 사용될 수 있다.The addition of surface
도 15에 의해 예시된 구체예는 예를 들어 먼저 부착되지 않은 CNF(110)를 성장시킴으로써 형성될 수 있다. 이후에, 이러한 것들은, 인터칼레이션 재료가 일반적으로 코팅층으로서 CNF(110)와 접촉되도록 실리콘층(115)(또는 일부 다른 인터칼레이션 재료)으로 코팅된다. 코팅된 CNF(110)는 이후에 표면 효과 지배 사이트(1430) 및 바인더(1440)와 혼합된다. 마지막으로, 얻어진 혼합물은 기판(105) 상에 증착된다.The embodiment illustrated by Fig. 15 can be formed, for example, by growing
도 16은 본 발명의 다양한 구체예에 따른, 전력 증강 재료(1320), 비-정렬된 CNF(110) 및 자유 인터칼레이션 재료(1610)를 포함하는 전극 표면을 예시한다. 이러한 구체예에서, 인터칼레이션 재료(1610)는 반드시 코팅으로서 CNF(110) 주변에 배치될 필요는 없다. 인터칼레이션 재료(1610)는 CNF(110)의 표면으로 제한되지 않는다는 측면에서 자유롭지만, 바인더(1440)에 의해 기판(105)에 근접하여 유지된다.Figure 16 illustrates an electrode surface comprising a
도 16에 예시된 구체예는 예를 들어 바인더(1440), 표면 효과 지배 사이트(1430), 인터칼레이션 재료(1610) 및 CNF(110)를 함께 (임의의 순서로) 혼합함으로써 형성될 수 있다. 혼합물은 이후에 기판(105)에 적용된다. 이러한 구체예에서, CNF(110)는 바인더(1440)와는 다른 수단에 의해 기판(105)에 부착될 수 있거나 부착되지 않을 수 있다. 인터칼레이션 재료(1610)는 CNF(110) 또는 기판(105)과 접촉될 수 있거나 접촉되지 않을 수 있다. 마찬가지로, 표면 효과 지배 사이트(1430)는 임의적으로 기판(105), CNF(110), 및/또는 인터칼레이션 재료(1610)와 접촉된다. 인터칼레이션 재료(1610)는 임의적으로, 적어도 0.1, 0.6, 1, 1.5, 2, 3,5, 7, 9, 10, 13, 15, 18, 21 또는 29 ㎛ 또는 이들 사이의 범위의 크기를 갖는 인터칼레이션 재료의 입자, 현탁액, 클러스터, 및/또는 점적을 포함한다. 다른 크기가 대안적인 구체예에서 가능하다.The embodiment illustrated in FIG. 16 may be formed by, for example, mixing (in any order) the binder 1440, the surface
도 17은 본 발명의 다양한 구체예에 따른, 지지 필라멘트를 포함하지 않으면서, 바인더(1440), 표면 효과 지배 사이트(1430), 및 인터칼레이션 재료(1610)를 포함하는 전극 표면을 예시한다. 이러한 구체예에서, 표면 효과 지배 사이트(1430) 및 인터칼레이션 재료(1610)는 바인더(1440)에 의해 기판(11005)에 근접하게 유지된다.Figure 17 illustrates an electrode surface comprising a binder 1440, a surface
도 18은 도 15에 예시된 것과 유사한 전극 표면을 예시한다. 그러나, 도 18에 의해 예시된 구체예에서, 표면 효과 지배 사이트(1430)는 인터칼레이션 재료(1610)에 매우 근접하여 농축된다. 예를 들어, 표면 효과 지배 사이트(1430)의 적어도 2%, 10%, 25%, 50%, 75% 또는 85%는 인터칼레이션 재료(1610)와 접촉된 입자 상에 존재한다. 인터칼레이션 재료(1610)에 근접한 표면 효과 지배 사이트(1430)의 증가된 농도는 본원의 다른 곳에 기술된 방법을 이용하여 달성될 수 있다. 이는 바인더(1440) 내의 다른 부피와 비교하여 인터칼레이션 재료(1610)의 표면에 표면 효과 지배 사이트(1430)의 보다 큰 농도를 야기시킨다.Fig. 18 illustrates an electrode surface similar to that illustrated in Fig. However, in the embodiment illustrated by FIG. 18, the surface
도 14c, 19 및 20은 각각 도 14b, 16 및 17에 예시된 것과 유사한 전극 표면을 예시한다. 그러나, 이러한 도면에 의해 예시된 구체예에서, 표면 효과 지배 사이트(1430)는 본 발명의 다양한 구체예에 따른, 자유 인터칼레이션 재료에 매우 근접하게 배치된다. 도 18에 의해 예시된 구체예에서와 같이, 일부 구체예에서, 표면 효과 지배 사이트(1430)의 적어도 2%, 10%, 25%, 50%, 75% 또는 85%는 인터칼레이션 재료(1610)와 접촉되어 있다. 일부 구체예에서, 표면 효과 지배 사이트(1430)를 포함하는 보다 높은 농도의 나노입자는 10 내지 15 나노미터의 이러한 표면 보다 5 나노미터의 인터칼레이션 재료(1610) 표면 내에 배치된다. 인터칼레이션 재료(1610)에 근접한 표면 효과 지배 사이트(1430)의 증가된 농도는, 나노입자가 인터칼레이션 재료(1610)의 표면에 정전기적 이중층을 형성하도록 용액 중에서의 나노입자 및 인터칼레이션 재료(1610)의 적절한 제타 전위를 선택함으로써 달성될 수 있다. 제타 전위는 표면의 위치에서 계면 이중층에서의 전기 전위 대 표면으로부터 이격된 벌크 용액 중의 포인트에서의 전기 전위이다. 제타 전위는 임의적으로 25 mV(절대) 보다 크다. 다른 구체예에서, 나노입자는 바인더(1440)의 적용 이전에 인터칼레이션 재료(1610)의 표면에 적용된다.Figures 14c, 19 and 20 illustrate electrode surfaces similar to those illustrated in Figures 14b, 16 and 17, respectively. However, in the embodiment illustrated by these figures, the surface
도 16 내지 20에 예시된 바와 같은 인터칼레이션 재료(1610)는 실리콘층(115)(실리콘을 포함하거나 배제함)에 대하여 본원에서 논의된 임의의 단일 재료 또는 재료의 조합물을 포함할 수 있다. 마찬가지로, CNF(110)는 도 16 내지 20에 예시된 바와 같이, 본원에서 논의되는 다양한 타입의 섬유(탄소 나노섬유를 포함하거나 배제함)의 임의의 단일 섬유 또는 이러한 것들의 조합물을 포함할 수 있다. 예를 들어, 이러한 CNF(110)는 분지된 섬유, 다중벽 섬유, 와이어, 에어로겔, 흑연, 탄소, 그라펜, 붕소-니트라이드 나노튜브, 등을 포함할 수 있다. 이러한 도면 및 본원의 다른 도면에 도시된 표면 효과 지배 사이트(1430) 및 CNF(110)의 수는 단지 예시적 목적을 위한 것이다. 예를 들어, 실제로, 표면 효과 지배 사이트(1430)의 수는 더욱 많을 수 있다. 마찬가지로, 도시된 인터칼레이션 재료(1610) 및 실리콘층(115)의 양과 크기는 예시적 목적을 위한 것이다. 대안적인 구체예는 보다 많거나 보다 적은 양, 및 보다 크거나 보다 작은 크기를 포함할 수 있다. 마찬가지로, PEM(1420)의 깊이 및 CNF(110)의 길이는 도면에 도시된 것에서 벗어날 수 있다.The
다양한 구체예에서, 표면 효과 지배 사이트(1430)를 포함하는 나노입자의 양은 (방전된 상태에서 측정하는 경우에) 인터칼레이션 재료(1610) 또는 실리콘층(115)의 표면 상에 나노입자의 단일층의 적어도 0.1, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2, 3, 5, 10, 25, 50 또는 100배(또는 이들 사이의 임의의 범위)를 초래하기 위하여 선택될 수 있다. 본원에서 사용되는 0.1 단일층은 10%를 명시하는 것이며, 10x 단일층은 10 단일층이다. 다양한 구체예에서, 표면 효과 지배 사이트(1430)를 포함하는 나노입자의 양은 (방전된 상태에서 측정하는 경우에) 인터칼레이션 재료(1610)의 표면 상에 나노입자의 적어도 1, 5, 10, 20, 50, 100, 250 또는 500 나노미터 층(또는 이들 사이의 임의의 조합)을 야기시키기 위해 선택될 수 있다. 단일층에서 측정하는 경우에 다른 적용 범위 밀도 또는 깊이가 가능하다. 나노입자(표면 효과 지배 사이트(1430)를 포함)의 적용 범위가 1.0 단일층에 접근함에 따라, 나노입자는 바인더(1440)를 통해 이동하는 전해질의 전하 운반체와 인터칼레이션 재료(1610) 사이에 층을 형성할 수 있다. 예를 들어, 일부 구체예에서, 전해질은 전하 운반체로서 리튬을 포함한다. 리튬은 바인더(1440)를 통해 이동할 수 있고, 표면 효과 지배 사이트(1430)와 패러데이 반응을 일으키는데, 여기서 전자는 표면 효과 지배 사이트(1430) 중 하나로부터 리튬으로 공여된다. 이러한 전자는 기판(105)에서 인터칼레이션 재료(1610)를 통해 나노입자로 이동된다(예를 들어, 공여된다). 나노입자가 배리어를 형성하기 때문에, 충전 공정에서 이러한 단계에서, 단지 제한된 양의 전하 운반체는 인터칼레이션 재료(1610)에 도달한다. 충전은 표면 효과 지배 사이트(1430)에서 반응에 의해 지배된다. 일부 구체예에서, 충전은 빠를 수 있는데, 왜냐하면 전하 운반체와의 패러데이 반응이 일어나기 전에 인터칼레이션 재료(1610)로의 전하 운반체의 인터칼레이션이 필수적이지 않기 때문이다. 표면 효과 지배 사이트(1430)의 존재는 인터칼레이션 이전에 초기 패러데이 반응이 일어날 수 있는 표면 구역을 크게 증가시킨다. 표면 효과 지배 사이트(1430)는 인터칼레이션 재료(1610)로의 전하 운반체의 인터칼레이션을 촉진시킨다. 전하 운반체는 표면 효과 지배 사이트(1430)에서 수용 시의 형태로 인터칼레이팅될 수 있거나 금속 옥사이드와 같은 대체 형태로 인터칼레이팅될 수 있다. 금속 옥사이드로서 인터칼레이팅되는 경우에, 옥사이드의 산소는 인터칼레이션 이후에 표면 효과 지배 사이트(1430)로 다시 재순환될 수 있다.In various embodiments, the amount of nanoparticles comprising surface-effect dominated
일부 구체예에서, 나노입자가 불완전한 배리어를 형성하기 때문에, 일부 전하 운반체는 여전히 이러한 충전 단계(예를 들어, 본원에서 논의되는 전극을 포함하는 전력 저장 장치를 충전하는 초기 단계)에서 인터칼레이션 재료(1610)에 도달한다. 전하 운반체 인터칼레이션이 표면 구역에서 일어날 때 일부 구체예의 인터칼레이션 재료(1610), 예를 들어 실리콘이 확장하기 때문에, 인터칼레이션 재료(1610)가 또한 증가한다. 이는 인터칼레이션 재료(1610)의 표면 상에서 나노입자의 표면 적용 범위를 감소시키고, 전하 운반체에 대한 배리어를 형성함에 있어서 나노입자의 유효성을 감소시킨다. 이에 따라, 충전이 진행됨에 따라, 단위 시간 당 보다 많은 수의 전하 운반체가 인터칼레이션 재료(1610)에 도달할 수 있다. 이는 임의적으로 충전이 인터칼레이션 재료(1610) 내에서의 반응에 의해 지배될 때까지 계속된다. 표면 적용 범위의 감소는 또한 전해질에 노출되는 각 나노입자 상에서 표면 효과 지배 사이트(1430)의 평균 분율을 증가시킬 수 있다. 본원에서 사용되는 구 "표면 적용 범위(surface coverage)"는 표면 상에서 종의 밀도를 나타내기 위해 사용되고 단일층의 수(또는 이의 분율)로서, 두께로서, 또는 농도 등으로서 측정될 수 있다.In some embodiments, because the nanoparticles form an imperfect barrier, some charge carriers still remain in the charge stage (e.g., the initial stage of charging the power storage device, including the electrodes discussed herein) (1610). The
일부 구체예에서, 표면 효과 지배 사이트(1430)에서의 전력 저장은 패러데이 표면 반응이 일어나는 전위에서 일어나지만, 표면 효과 지배 사이트(1430)를 포함하는 나노입자로의 전하 운반체의 인터칼레이션이 일어나지 않는다. 이는 전하 운반체의 반복된 인터칼레이션 및 탈-인터칼레이션에 의해 나노입자의 분해를 방지하고, 보다 긴 사이클 수명을 가능하게 한다. 동일한 전극에서, 표면 효과 지배 사이트(1430)를 갖는 나노 입자로의 전하 운반체의 인터칼레이션을 야기시키는 전위를 임의적으로 포함하는, 보다 높은 전위에서 일어나는 패러데이 반응을 통해 인터칼레이션 재료(1610) 내에 전력을 저장하는 것이 요망될 수 있다. 이는 본 발명의 일부 구체예에서 일어날 수 있는데, 왜냐하면 기판(105)과 전해질(125) 사이에 전위 강하가 존재하기 때문이다.In some embodiments, power storage at the surface
하나의 특정 예에서, 리튬이 전하 운반체인 경우에, 표면 효과 지배 사이트(1430)는 TiO2 상에 존재하며, 인터칼레이션 재료(1610)는 주로 실리콘이다. 다른 구체예에서 특정 전압은 표면 효과 지배 사이트(1430) 및 인터칼레이션 재료(1610)에 포함된 화학 종, 및 충전 동안에 일어나는 반응, 등에 의존적인 것으로 이해될 것이다. 다양한 구체예에서, 표면 효과 지배 사이트(1430)와 기판(105) 사이의 전위차는 적어도 0.001, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.3, 1.7, 2.0, 2.2, 또는 2.4V, 또는 이들 사이의 임의의 범위이다. 본원에서 사용되는 용어 "전위"는 정전기적 전위의 절대값(예를 들어, │x│)를 지칭하는 것으로 사용된다.In one particular example, where lithium is a charge carrier, the surface
도 21은 본 발명의 다양한 구체예에 따른, 전극 표면을 조립하는 방법을 예시한다. 조립된 전극 표면은 예를 들어 배터리, 커패시터 또는 하이브리드 장치에서 애노드로서 사용될 수 있다. 도 21에 예시된 방법은 임의적으로 본원의 다른 부분에서 논의되는 다양한 전극을 형성하기 위해 사용된다.Figure 21 illustrates a method of assembling electrode surfaces, in accordance with various embodiments of the present invention. The assembled electrode surface may be used as an anode, for example, in a battery, a capacitor or a hybrid device. The method illustrated in FIG. 21 is optionally used to form the various electrodes discussed elsewhere herein.
기판 제공 단계(2110)에서, 전도성 기판이 제공된다. 기판 제공 단계(2110)는 기판 제공 단계(1310)와 유사하다. 기판 제공 단계(2110)에서, CNF(110) 또는 다른 지지 필라멘트의 성장을 위해 임의적으로 적합한 기판(105)이 제공된다. 본원에서 논의되는 바와 같이, 기판(105)은 다양한 재료, 예를 들어 Cu, Au, Sn, 등을 포함할 수 있다. 기판(105)은 임의적으로 본원의 다른 부분에 기술되는 바와 같이 핵형성 사이트를 포함한다.In the
임의적인 CNF 제공 단계(2120)에서, CNF(110)(또는 본원에 기술된 임의의 다른 지지 필라멘트)가 제공된다. CNF 제공 단계(2120)는 지지 필라멘트가 없는 전극, 예를 들어 도 17 및 20에 의해 예시된 것이 형성되는 구체예에서 임의적인 것이다. 일부 구체예에서, CNF(110)는 기판(105) 상에 CNF(110)를 성장시킴으로써 제공된다. 일부 구체예에서, CNF(110)는 CNF(110)를 혼합물에 첨가함으로써 제공되며, 이후에 기판(105)에 적용된다. 일부 구체예에서, CNF(110)는 기판(105)과 별도로 형성되고, 이후에 기판(105)에 부착된다.In the optional
인터칼레이션 재료 제공 단계(2130)에서, 인터칼레이션 재료(1610)가 제공된다. 일부 구체예에서, 인터칼레이션 재료(1610)는 먼저 CNF(110)에 적용된다. 다양한 구체예에서, 인터칼레이션 재료(1610)는 콜로이드성 현탁액으로서, 기상 증착을 이용하여, 용매 중에서, 페이스트 등으로서 적용된다.In an intercalation
표면 효과 지배 사이트(SEDS) 제공 단계(2140)에서, 표면 효과 지배 사이트(1430)가 제공된다. 본원의 다른 부분에서 논의되는 바와 같이, 표면 효과 지배 사이트(1430)는 나노입자, 또는 보다 큰 구조물, 예를 들어 흑연, 그라펜 또는 활성탄 상에 배치될 수 있다. 표면 효과 지배 사이트(1430)는 바인더(1140) 중의 현탁액으로서, 또는 용매 중에서, 스퍼터 증착, 전기 증착, 증발을 이용하여 스프레이 등으로서 제공될 수 있다. 일부 구체예에서 인터칼레이션 재료(1610)의 제타 전위는 표면 효과 지배 사이트(1430)가 인터칼레이션 재료(1610)의 표면에서 농축되도록 선택된다.In a surface effect dominating site (SEDS) providing
적용 단계(2150)에서, 인터칼레이션 재료(1610), 표면 효과 지배 사이트(1430) 및 임의적으로 CNF(110)는 기판(105)에 적용된다. 이러한 재료는 매우 다양한 순서 및 조합으로 적용될 수 있다. 예를 들어, 인터칼레이션 재료(1610)는 CNF(110)(아마도 기판(105)에 이미 부착됨)에 적용될 수 있으며, 이후에 표면 효과 지배 사이트(1430)는 인터칼레이션 재료(1610)의 상부 상에 적용될 수 있다. 대안적으로, 자유 CNF(110), 인터칼레이션 재료(1610)가 먼저 혼합될 수 있고, 이후에 표면 효과 지배 사이트(1430) 및 바인더(1140) 중 어느 하나가 단독으로 또는 조합하여 첨가될 수 있다. 본원의 교시를 기초로 하여, 당업자는 다른 구체예에서, 이러한 구성성분들이 임의의 순서 또는 조합으로 혼합되거나 첨가될 수 있는 것으로 이해할 것이다. 또한, 이러한 구성성분들은 기판(105)에 적용되기 전 또는 후에 혼합될 수 있다. 단계(2110-2150)는 임의의 순서로 수행될 수 있다. 적용 단계(2150) 이후에는 임의적으로 컨디션 단계(1350)가 이어진다.In application step 2150, the
일부 구체예에서, 도 21에 예시된 방법은 인터칼레이션 재료(1610) 및 표면 효과 지배 사이트(1430)를 충분한 양의 분산물을 갖는 현탁액 또는 용매 중에서 혼합하는 것을 포함한다. 분산물은 임의적으로 CNF(110)에 적용된다. 분산물의 용매는 이후에 혼합물로부터 증발되어 CNF(110) 상에 분말 또는 코팅을 형성시킨다. 바인더(1440)는 CNF(110)에 적용 이전 또는 이후에 현탁액에 첨가될 수 있다. 일부 구체예에서, 표면 효과 지배 사이트(1430)의 적용은 기판(105) 상에 스퍼터링되는 재료를 교체함으로써 인터칼레이션 재료(1610) 증착의 최종 단계에서 일어난다. 이러한 구체예에서, 예를 들어, TiO2는 거의 모든 인터칼레이션 재료(1610)가 증착된 후에 스퍼터링 믹스에 첨가될 수 있다. 이는 인터칼레이션 재료(1610)의 상부 상에 TiO2의 스퍼터링된 층을 표면 효과 지배 사이트(1430)로서 형성시킨다.In some embodiments, the method illustrated in Figure 21 involves mixing the
도 22는 본 발명의 다양한 구체예에 따른, 전하 저장 장치를 작동시키는 방법을 예시한다. 이러한 방법은 예를 들어 전하 저장 장치를 충전할 때 사용될 수 있다. 일부 구체예에서, 이러한 방법은 충전 장치를 와이어를 통해 전하 저장 장치의 애노드 및 캐소드 둘 모두에 부착시키는 것을 포함한다. 이러한 전하 저장 장치는 애노드 및 캐소드에 전위를 발생시켜서, 이들 사이에 전위 구배를 야기시킨다. 전위 구배는 전자를 애노드를 유도한다. 도 22에 예시된 단계는 임의적으로 동시에 일어나며, 예를 들어 이러한 것들은 서로에 대해 동시에 또는 겹치는 시간에 일어날 수 있다.Figure 22 illustrates a method of operating a charge storage device, in accordance with various embodiments of the present invention. This method can be used, for example, when charging a charge storage device. In some embodiments, the method includes attaching the charging device to both the anode and the cathode of the charge storage device via a wire. These charge storage devices generate potentials at the anode and the cathode, causing a potential gradient between them. A potential gradient induces electrons to the anode. The steps illustrated in Figure 22 occur randomly at the same time, for example, they can occur at the same time or at the same time with respect to each other.
전위 설정 단계(2210)에서, 전위는 전하 저장 장치에서 설정된다. 이러한 전위는 전하 장치의 애노드와 캐소드에 사이에서 일어날 수 있다. 이러한 전위는 전하 저장 장치 내의 기판(105)과 전해질(125) 간에 전위 구배를 야기시킬 것이다. 전위 구배는 표면 효과 지배 사이트(1430)와 인터칼레이션 재료(1610)의 위치 사이에 전위차를 형성시킬 수 있다. 다양한 구체예에서, 이러한 전위차는 적어도 0.001, 0.1, 0.3, 0.4, 0.5, 0.8, 1.0, 1.3, 1.7, 2.0, 또는 2.4 V, 또는 이들 사이의 임의의 범위이다.In the
리튬 수용 단계(2220)에서, 리튬이지만, 단지 하나의 가능한 예인 전하 운반체는 표면 효과 지배 사이트(1430) 중 하나에 수용된다. 이러한 전하 운반체는 임의적으로 바인더(1440)를 통해 수용된다.In the
전자 이동 단계(2230)에서, 전자는 표면 효과 지배 사이트(1430)에서 리튬 수용 단계(2220)에서 수용되는 전하 운반체로 이동된다(예를 들어, 공여된다). 이러한 이동은 표면 효과 지배 사이트(1430)와 전하 운반체 간에 전자의 공유를 포함할 수 있다. 전자는 패러데이 반응에서 이동되고, 통상적으로 기판(105)으로부터 전도된다. 전하 운반체가 표면 효과 지배 사이트(1430)의 표면에 있는 동안에 이동이 일어나고, 그러한 위치의 전위에서 일어난다. 전자 이동의 반응 전위는, 예를 들어 전하 운반체의 반응 전위 및 표면 효과 지배 사이트(1430)의 반응 전위에 의존적이다. 반응 전위는 표면 효과 지배 사이트(1430) 및 인근의 인터칼레이션 재료(1610) 둘 모두에 의존적일 수 있다. 본원에서 사용되는 용어 "반응 전위"는 반응이 주목할 만한 속도로 일어나는 전위를 지칭하기 위해 사용된다. 반응의 반응 전위는 예를 들어, 사이클릭 볼타모그램에서의 피크에 의해 예시될 수 있다. 다른 예에서, 전기화학 전지에서 반응 Li+ + e- → Li 또는 2Li+ + MO + 2e- → Li2O + M (여기서, M은 본원에서 논의된 임의의 전이금속임)을 일으키기 위하여 요구되는 전위는 이러한 반응의 반응 전위이다. 반응 전위는 반응이 일어나는 환경에 매우 의존적일 수 있다. 예를 들어, 상기 제 2 반응은 2 내지 10 nm 범위의 직경을 갖는 TiO2 나노입자의 존재 하에서 보다 낮은 반응 전위를 가질 수 있다. 마찬가지로, 반응 전위는 인터칼레이션을 위해 요구되는 에너지, 또는 표면 효과 지배 사이트(1430) 및 인터칼레이션 재료(1610)의 인접성에 의해 영향을 받을 수 있다.In the
리튬 인터칼레이션 단계(2240)에서, 리튬이 단지 하나의 가능한 예인 전하 운반체는 인터칼레이션 재료(1610) 내에 인터칼레이션된다. 이러한 단계는 인터칼레이션 재료(1610)의 벌크 내부로 전하 운반체의 이동을 포함할 수 있다. 전하 운반체는 리튬 수용 단계(2220)에서 표면 효과 지배 사이트(1430)에서 수용되는 것과 동일한 화학 종으로서, 또는 대안적으로 표면 효과 지배 사이트(1430)에서 형성된 화학 종으로서 인터칼레이션 재료(1610)에서 수용될 수 있다. 예를 들어, 전하 운반체는 표면 효과 지배 사이트(1430)에서 수용되는 화학 종의 옥사이드(예를 들어, Li2O, 등)로서 인터칼레이션 재료(1610)에서 수용될 수 있다.In the
전자 이동 단계(2250)에서, 전자는 인터칼레이션 재료(1610)에서 리튬 인터칼레이션 단계(2240)의 전하 운반체로 이동된다. 전자는 패러데이 반응에서 이동되고, 통상적으로 기판(105)으로부터 전도된다. 전하 운반체가 인터칼레이션 재료(1610) 내에 있는 동안에 이동이 일어나고 그러한 위치의 전위에서 일어난다. 전자 이동의 반응 전위는 전하 운반체의 반응 전위 및 인터칼레이션 재료(1610)의 반응 전위에 의존적일 수 있다. 이러한 전도대의 전위는 인터칼레이션 재료(1610)와 인접한 표면 효과 지배 사이트(1430) 둘 모두에 의해 영향을 받을 수 있다. 표면 지배 사이트(1430)는 전해질(125)에서 인터칼레이션 재료(1610)로의 리튬의 이동을 촉진시킬 수 있다. 본원의 다른 부분에서 논의되는 바와 같이, 이러한 이동은 Li2O와 같은 중간 옥사이드를 통해 일어날 수 있다. 이러한 전자 이동의 일 함수는 전자 이동 단계(2230)에서 전자 이동의 일 함수와 차이가 날 수 있다. 예를 들어, 다양한 구체예에서, 일 함수는 적어도 0.001, 0.1, 0.3, 0.4, 0.5, 0.8, 1.0, 1.3, 1.7, 2.0 또는 2.4V, 또는 이들 사이의 임의의 조합이다. 일부 구체예에서, 리튬이 표면 효과 지배 사이트(1430)를 포함하는 대부분의 나노입자에서 보다 인터칼레이션 재료(1610)에 인터칼레이팅되는 것이 열역학적으로 더욱 바람직하다. 그러나, 표면 효과 지배 사이트(1430)의 존재는 인터칼레이션 재료(1610)로의 전하 운반체의 인터칼레이션을 촉매화할 수 있다.In
전하 운반체가 전자 이동 단계(2230)에서 옥사이드로 전환되는 경우에, 일부 구체예에서, 전자 이동 단계(2250)는 인터칼레이션 재료(1610)에서 표면 효과 지배 사이트(1430)로 역으로 산소의 이동을 포함한다. 이러한 산소는 인터칼레이션 재료(1610)에서 전하 운반체의 옥사이드로서 수용되고, 인터칼레이션 동안에 전하 운반체로부터 방출된다. 표면 효과 지배 사이트(1430)로 역으로 이동된 후에, 이러한 산소는 전자 이동 단계(2230)의 추가 발생에서 사용될 수 있으며, 즉 산소는 재순환된다.In some embodiments, when the charge carrier is converted to an oxide in the
도 22의 설명이 리튬 수용 단계(2220)에서 수용된 전하 운반체 및 리튬 인터칼레이션 단계(2240)에서의 전하 운반체가 두 개의 다른 개개의 전하 운반체(동일한 타입일 수 있음)인 것으로 가정하고 있지만, 다양한 구체예에서, 단계(2220, 2230 및 2240)는 동일한 개개 전하 운반체에 의해 수행될 수 있다. 예를 들어, 일부 구체예에서, 리튬 수용 단계(2220)는 표면 효과 지배 사이트(1430) 중 하나에서 전하 운반체를 수용하는 것을 포함한다. 전자 이동 단계(2230)는 이후에 전하 운반체가 표면 효과 지배 사이트(1430)와 반응하여 중간 화합물을 형성시키는 반응을 포함한다. 일부 구체예에서, 이러한 반응은 2Li+ + MO + 2e- → Li2O + M (여기서, M은 본원에서 논의된 임의의 전이 금속이며, Li2O는 얻어진 중간 화합물임)을 포함한다. 리튬 인터칼레이션 단계(2240)에서, 중간 화합물(예를 들어, Li2O)은 인터칼레이션 재료(1610)으로 인터칼레이팅되거나, 중간 화합물에서의 Li 중 하나(또는 둘 모두)는 Li2O의 O에서 인터칼레이션 재료(예를 들어, LixSi)의 원자로 이동된다. 이러한 이동은 전자 이동 단계(2230)에서 분할된 MO의 재생을 초래할 수 있다. 이러한 예에서, 동일한 개개 Li 원자가 단계 (2220-2230 및 2240) 각각에서 포함된다는 것이 주지된다. 전자 이동 단계(2250)는 도 22에 의해 예시된 방법의 이러한 구체예에서 요구되지 않는다. 일부 구체예에서, Li2O와 같은 중간체를 포함하는 반응 순서 및 중간체를 포함하지 않는 반응 순서 둘 모두가 단일 충전 사이클 동안에 일어나는 것이 가능하다.Although the description of Figure 22 assumes that the charge carriers received in the
여러 구체예들이 본 명세서에서 구체적으로 예시 및/또는 기술된다. 그러나, 수정들 및 변경들이, 첨부된 청구항들의 사상 및 의도된 범주로부터 벗어남 없이, 상기 교시들에 의해 커버되고 첨부된 청구항들의 범주 내에 있다는 것이 이해될 것이다. 예를 들어, 본 명세서에 논의된 예들은, 적층된-원뿔 구조를 갖는 CNF들에 초점이 맞춰졌지만, 상기 교시들은 유사하거나 상이한 구조들을 갖는 다른 재료들에 적응될 수 있다. 마찬가지로, Cu 기판 및 Li 전하 운반체들이 본원에서 논의되었지만, 다른 기판들 및 전하 운반체들이 당업자에게 명백할 것이다. 실리콘층(115)는 임의적으로, 실리콘에 부가하여 또는 실리콘에 대한 대안으로서 인터칼레이션 재료들로 형성된다. 예를 들어, 주석, 게르마늄, 탄소, 흑연, 그라펜, 실리콘, 본원에서 논의되는 다른 재료들 또는 이들의 조합들이 인터칼레이션 재료로서 이용될 수 있다. 부가적으로, 에어로졸, 나노-와이어, TiO2(티탄 옥사이드), 금속 와이어, 탄소 와이어, 또는 붕소 니트라이드 나노-섬유들이 본원에서 논의되는 탄소 나노-섬유들 대신 이용될 수 있다. 도면에서 바인더(1440), 표면 효과 지배 사이트(1430), 인터칼레이션 재료(1610) 및 CNF(110), 및 다른 요소들의 상대 농도는 예시되는 것에서 크게 벗어날 수 있다.Various embodiments are specifically illustrated and / or described herein. However, it will be understood that modifications and variations are covered by the above teachings and are within the scope of the appended claims, without departing from the spirit and intended scope of the appended claims. For example, while the examples discussed herein focus on CNFs having stacked-cone structures, the teachings may be adapted to other materials having similar or different structures. Likewise, although Cu substrates and Li charge carriers are discussed herein, other substrates and charge carriers will be apparent to those skilled in the art. The
본 명세서에서 교시된 전극들은 커패시터들, 배터리들, 및 이들의 하이브리드들을 포함하는 매우 다양한 에너지 저장 장치들에 포함될 수 있다. 이들 에너지 저장 장치들은, 예를 들어, 조명 시스템, 휴대용 전자기기, 부하 밸런싱 디바이스들, 통신 디바이스들, 예비 전원들, 차량들, 및 컴퓨팅 디바이스들에서 이용될 것이다. 본 명세서에서 교시된 개념은 많은 경우에 캐소드 및 또한 애노드에 적용될 수 있다.The electrodes taught herein may be included in a wide variety of energy storage devices, including capacitors, batteries, and hybrids thereof. These energy storage devices will be used in, for example, lighting systems, portable electronic devices, load balancing devices, communication devices, standby power supplies, vehicles, and computing devices. The concepts taught herein can in many cases be applied to the cathode and also to the anode.
VACNF 성장 및 실리콘 증착, 현미경검사 및 분광분석법 특성화, 및 전기화학 전지 어셈블리와 충전-방전 테스트의 세부사항은 2012년 7월 3일에 출원된 미국 가출원 61/667,876호에서 찾을 수 있다.Details of VACNF growth and silicon deposition, microscopy and spectroscopic characterization, and electrochemical cell assemblies and charge-discharge tests can be found in U.S. Provisional Application No. 61 / 667,876, filed July 3, 2012.
본 명세서에 논의된 구체예들은 본 발명의 예시이다. 본 발명의 이러한 구체예들이 도면들과 관련하여 기술되었기 때문에, 기술된 방법들 및/또는 특정 구조들의 다양한 수정들 또는 적응들이 당업자들에게 명백해질 수 있다. 본 발명의 교시들에 의존하고, 이러한 교시들을 통해 당해 기술분야를 개선한 모든 이러한 수정들, 적응들, 또는 변경들은, 본 발명의 사상 및 범주 내에 있는 것으로 고려된다. 그러므로, 본 발명이 어떠한 방식으로도, 예시된 구체예들로만 제한되지 않는다는 것이 이해되기 때문에, 이러한 설명들 및 도면들은 제한적인 의미로 고려되지 않아야 한다.The embodiments discussed herein are illustrative of the present invention. As these embodiments of the invention have been described in connection with the drawings, various modifications or adaptations of the described methods and / or specific structures may become apparent to those skilled in the art. It is contemplated that all such modifications, adaptations, or variations that rely on the teachings of the present invention and that are amenable to those techniques through these teachings are within the spirit and scope of the present invention. Therefore, it is to be understood that these descriptions and drawings are not to be considered in a limiting sense, since it is understood that the invention is not limited in any way to the illustrated embodiments.
Claims (38)
탄소 나노섬유의 길이를 따라 복수의 노출된 나노규모 에지를 포함하는, 전도성 기판에 연결된 탄소 나노섬유; 및
탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료
를 포함하는 에너지 저장 시스템.Conductive substrate;
Carbon nanofibers connected to a conductive substrate, comprising a plurality of exposed nanoscale edges along the length of the carbon nanofibers; And
An intercalation material configured to form a shell over at least a portion of the carbon nanofibers
≪ / RTI >
탄소 나노섬유의 길이를 따라 복수의 컵형 구조를 포함하는, 전도성 기판에 연결된 탄소 나노섬유; 및
탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성된 인터칼레이션 재료
를 포함하는 에너지 저장 시스템.Conductive substrate;
A carbon nanofiber connected to the conductive substrate, the carbon nanofiber including a plurality of cup-shaped structures along the length of the carbon nanofibers; And
An intercalation material configured to form a shell over at least a portion of the carbon nanofibers
≪ / RTI >
전도성 기판에 연결된 탄소 나노섬유; 및
탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성되고 탄소 나노섬유의 길이를 따라 깃털형 구조로 배치된 인터칼레이션 재료
를 포함하는 에너지 저장 시스템.Conductive substrate;
Carbon nanofibers connected to a conductive substrate; And
An intercalation material arranged to form a shell over at least a portion of the carbon nanofibers and arranged in a feather-like configuration along the length of the carbon nanofibers
≪ / RTI >
전도성 기판에 연결된 탄소 나노섬유; 및
탄소 나노섬유의 적어도 일부 위에 쉘을 형성하도록 구성되고 인터칼레이션 재료의 팽창이 탄소 나노섬유로부터 인터칼레이션 재료를 층간박리하지 않도록 구성된 인터칼레이션 재료
를 포함하는 에너지 저장 시스템.Conductive substrate;
Carbon nanofibers connected to a conductive substrate; And
An intercalation material configured to form a shell over at least a portion of the carbon nanofibers and an expansion of the intercalation material not to delaminate the intercalation material from the carbon nanofibers;
≪ / RTI >
각각이 탄소 나노섬유의 길이를 따라 복수의 노출된 나노규모 에지를 포함하는 탄소 나노섬유를 전도성 기판에 부가하고;
전하 운반체의 인터칼레이션을 위해 구성된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것
을 포함하는 에너지 저장 장치를 제조하는 방법.Providing a conductive substrate;
Adding carbon nanofibers, each containing a plurality of exposed nanoscale edges along the length of the carbon nanofibers, to a conductive substrate;
Application of intercalation materials configured for intercalation of charge carriers to carbon nanofibers
≪ / RTI >
각각이 탄소 나노섬유의 길이를 따라 복수의 컵형 구조를 포함하는 탄소 나노섬유를 전도성 기판에 부가하고;
전하 운반체의 인터칼레이션을 위해 구성된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것
을 포함하는 에너지 저장 장치를 제조하는 방법.Providing a conductive substrate;
Adding carbon nanofibers, each containing a plurality of cup-shaped structures, along the length of the carbon nanofibers to the conductive substrate;
Application of intercalation materials configured for intercalation of charge carriers to carbon nanofibers
≪ / RTI >
탄소 나노섬유를 전도성 기판에 부가하고;
전하 운반체의 인터칼레이션을 위해 구성되고 탄소 나노섬유의 길이를 따라 깃털형 구조로 배치된 인터칼레이션 재료를 탄소 나노섬유에 적용하는 것
을 포함하는 에너지 저장 장치를 제조하는 방법.Providing a conductive substrate;
Adding carbon nanofibers to the conductive substrate;
Application of intercalation materials constructed for intercalation of charge carriers and arranged in a feather-like structure along the length of carbon nanofibers to carbon nanofibers
≪ / RTI >
29. The system or method according to any one of claims 1 to 28, wherein the intercalation material comprises a first silicon structure along with the carbon nanofibers and a second silicon structure along the length of the carbon nanofibers.
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261667876P | 2012-07-03 | 2012-07-03 | |
US61/667,876 | 2012-07-03 | ||
US201261677317P | 2012-07-30 | 2012-07-30 | |
US61/677,317 | 2012-07-30 | ||
US13/725,969 | 2012-12-21 | ||
US13/725,969 US9412998B2 (en) | 2009-02-25 | 2012-12-21 | Energy storage devices |
US201361752437P | 2013-01-14 | 2013-01-14 | |
US61/752,437 | 2013-01-14 | ||
US13/779,409 | 2013-02-27 | ||
US13/779,409 US9349544B2 (en) | 2009-02-25 | 2013-02-27 | Hybrid energy storage devices including support filaments |
US201361806819P | 2013-03-29 | 2013-03-29 | |
US61/806,819 | 2013-03-29 | ||
PCT/US2013/049382 WO2014008433A1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197028127A Division KR20190112201A (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020197028124A Division KR20190112198A (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020197028126A Division KR20190112200A (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150058143A true KR20150058143A (en) | 2015-05-28 |
KR102294208B1 KR102294208B1 (en) | 2021-08-25 |
Family
ID=49882505
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030011A KR102339235B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020227015839A KR20220066203A (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020157002572A KR102294208B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020207030018A KR102339237B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020207030009A KR102398418B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030011A KR102339235B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020227015839A KR20220066203A (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207030018A KR102339237B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
KR1020207030009A KR102398418B1 (en) | 2012-07-03 | 2013-07-03 | Hybrid energy storage devices including support filaments |
Country Status (5)
Country | Link |
---|---|
JP (3) | JP6272851B2 (en) |
KR (5) | KR102339235B1 (en) |
CN (6) | CN112349877A (en) |
GB (1) | GB2518110B (en) |
WO (1) | WO2014008433A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9705136B2 (en) | 2008-02-25 | 2017-07-11 | Traverse Technologies Corp. | High capacity energy storage |
US10056602B2 (en) | 2009-02-25 | 2018-08-21 | Cf Traverse Llc | Hybrid energy storage device production |
US9979017B2 (en) | 2009-02-25 | 2018-05-22 | Cf Traverse Llc | Energy storage devices |
US9917300B2 (en) | 2009-02-25 | 2018-03-13 | Cf Traverse Llc | Hybrid energy storage devices including surface effect dominant sites |
US10193142B2 (en) | 2008-02-25 | 2019-01-29 | Cf Traverse Llc | Lithium-ion battery anode including preloaded lithium |
US9362549B2 (en) | 2011-12-21 | 2016-06-07 | Cpt Ip Holdings, Llc | Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers |
US10727481B2 (en) | 2009-02-25 | 2020-07-28 | Cf Traverse Llc | Energy storage devices |
US9349544B2 (en) | 2009-02-25 | 2016-05-24 | Ronald A Rojeski | Hybrid energy storage devices including support filaments |
US9966197B2 (en) | 2009-02-25 | 2018-05-08 | Cf Traverse Llc | Energy storage devices including support filaments |
US9431181B2 (en) | 2009-02-25 | 2016-08-30 | Catalyst Power Technologies | Energy storage devices including silicon and graphite |
US9941709B2 (en) | 2009-02-25 | 2018-04-10 | Cf Traverse Llc | Hybrid energy storage device charging |
US11233234B2 (en) | 2008-02-25 | 2022-01-25 | Cf Traverse Llc | Energy storage devices |
US10205166B2 (en) | 2008-02-25 | 2019-02-12 | Cf Traverse Llc | Energy storage devices including stabilized silicon |
US9412998B2 (en) | 2009-02-25 | 2016-08-09 | Ronald A. Rojeski | Energy storage devices |
US11996550B2 (en) | 2009-05-07 | 2024-05-28 | Amprius Technologies, Inc. | Template electrode structures for depositing active materials |
US20100285358A1 (en) | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
US8257866B2 (en) | 2009-05-07 | 2012-09-04 | Amprius, Inc. | Template electrode structures for depositing active materials |
US8450012B2 (en) | 2009-05-27 | 2013-05-28 | Amprius, Inc. | Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries |
GB2581071B (en) * | 2012-07-03 | 2021-01-27 | Traverse Tech Corp | Hybrid energy storage devices including support filaments |
CN104507445A (en) | 2012-08-02 | 2015-04-08 | 莱雅公司 | Dyeing composition comprising at least one fatty substance, at least one oxidizing agent and at least one non-ionic, anionic and amphoteric surfactantdyeing composition comprising at least one fatty substance, at least one oxidizing agent and at least one non-ionic, anionic and amphoteric surfactant |
CN106133965B (en) | 2013-11-15 | 2019-10-11 | 加利福尼亚大学董事会 | Mix nano structural material and method |
EP3143657B1 (en) * | 2014-05-12 | 2019-07-10 | Amprius, Inc. | Structurally controlled deposition of silicon onto nanowires |
NL2014588B1 (en) * | 2015-04-07 | 2017-01-19 | Stichting Energieonderzoek Centrum Nederland | Rechargeable battery and method for manufacturing the same. |
JP2017091778A (en) * | 2015-11-09 | 2017-05-25 | 戸田工業株式会社 | Negative electrode active material grain powder for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery |
US20170309914A1 (en) * | 2016-04-20 | 2017-10-26 | Ford Global Technologies, Llc | Pre-lithiated lithium ion battery cell |
JP6766739B2 (en) * | 2017-04-20 | 2020-10-14 | トヨタ自動車株式会社 | All solid state battery |
CN111081992B (en) * | 2019-10-12 | 2021-10-12 | 开封大学 | Preparation method of binder-free lithium ion battery negative electrode material |
JP7552416B2 (en) | 2021-02-18 | 2024-09-18 | 株式会社豊田中央研究所 | Porous silicon material, electrode for power storage device, power storage device, and method for producing porous silicon material |
CN113410445A (en) * | 2021-06-18 | 2021-09-17 | 电子科技大学 | Silicon-carbon composite negative electrode material for secondary battery and preparation method thereof |
WO2023286579A1 (en) * | 2021-07-13 | 2023-01-19 | 株式会社村田製作所 | Negative electrode for secondary batteries, and secondary battery |
CN116417567A (en) * | 2023-06-09 | 2023-07-11 | 深圳海辰储能控制技术有限公司 | Positive electrode plate, energy storage device and preparation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050013512A (en) * | 2003-07-28 | 2005-02-04 | 티디케이가부시기가이샤 | Electrode and electrochemical element using the same |
JP2010525549A (en) * | 2007-04-23 | 2010-07-22 | アプライド・サイエンシズ・インコーポレーテッド | Method of depositing silicon on carbon material to form anode for lithium ion battery |
KR20100128282A (en) * | 2008-02-25 | 2010-12-07 | 로날드 앤쏘니 로제스키 | High capacity electrodes |
JP2011018575A (en) * | 2009-07-09 | 2011-01-27 | Mie Univ | Negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery |
KR20110125808A (en) * | 2010-05-14 | 2011-11-22 | 삼화콘덴서공업주식회사 | Active material for anode, method for manufacturing the same, and secondary battery and super capacitor including the same |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE39789T1 (en) * | 1983-06-27 | 1989-01-15 | Voltaix Inc | COATINGS FOR ELECTROCHEMICAL ELECTRODES AND METHOD OF MAKING SAME. |
JP3953276B2 (en) * | 2000-02-04 | 2007-08-08 | 株式会社アルバック | Graphite nanofiber, electron emission source and manufacturing method thereof, display element having the electron emission source, and lithium ion secondary battery |
TWI263702B (en) * | 2004-12-31 | 2006-10-11 | Ind Tech Res Inst | Anode materials of secondary lithium-ion battery |
FR2895572B1 (en) * | 2005-12-23 | 2008-02-15 | Commissariat Energie Atomique | MATERIAL BASED ON CARBON AND SILICON NANOTUBES FOR USE IN NEGATIVE ELECTRODES FOR LITHIUM ACCUMULATOR |
KR100883748B1 (en) * | 2006-05-04 | 2009-02-12 | 주식회사 엘지화학 | Electrochemical energy storage device with high capacity and high power using conductive polymer composite |
US8491999B2 (en) * | 2006-09-14 | 2013-07-23 | Wisconsin Alumni Research Foundation | Metal-coated vertically aligned carbon nanofibers |
JP2010538444A (en) * | 2007-09-07 | 2010-12-09 | インオーガニック スペシャリスツ インク | Silicon modified nanofiber paper as anode material for lithium secondary battery |
US7745047B2 (en) * | 2007-11-05 | 2010-06-29 | Nanotek Instruments, Inc. | Nano graphene platelet-base composite anode compositions for lithium ion batteries |
FR2925039B1 (en) * | 2007-12-14 | 2013-08-02 | Commissariat Energie Atomique | METHOD FOR THE COLLECTIVE MANUFACTURE OF CARBON NANOFIBERS ON THE SURFACE OF MICROMOTIVE SURFACE MOUNTED ON THE SURFACE OF A SUBSTRATE AND STRUCTURE COMPRISING NANOFIBRES ON THE SURFACE OF MICROMOTIVES |
US8481214B2 (en) * | 2008-02-25 | 2013-07-09 | Catalyst Power Technologies | Electrodes including support filament with collar stop |
CN102387984A (en) * | 2008-09-08 | 2012-03-21 | 新加坡南洋理工大学 | Nanoparticle decorated nanostructured material as electrode material and method for obtaining the same |
KR20100073506A (en) * | 2008-12-23 | 2010-07-01 | 삼성전자주식회사 | Negative active material, negative electrode comprising same, method of preparing negative electrode, and lithium battery |
US20100261071A1 (en) * | 2009-04-13 | 2010-10-14 | Applied Materials, Inc. | Metallized fibers for electrochemical energy storage |
US20100285358A1 (en) * | 2009-05-07 | 2010-11-11 | Amprius, Inc. | Electrode Including Nanostructures for Rechargeable Cells |
CN102122708A (en) * | 2010-01-08 | 2011-07-13 | 中国科学院物理研究所 | Negative pole material for lithium-ion secondary battery, negative pole containing negative pole material, preparation method of negative pole and battery containing negative pole |
KR101211568B1 (en) * | 2010-05-14 | 2012-12-12 | 삼화콘덴서공업주식회사 | Active material for Anode, Method for manufacturing the same, And Secondary Battery and Super Capacitor including the Same |
US9558860B2 (en) * | 2010-09-10 | 2017-01-31 | Samsung Electronics Co., Ltd. | Graphene-enhanced anode particulates for lithium ion batteries |
KR101384881B1 (en) * | 2010-11-02 | 2014-04-15 | 한국전자통신연구원 | Lithium rechargeable battery |
-
2013
- 2013-07-03 CN CN202011217561.9A patent/CN112349877A/en active Pending
- 2013-07-03 CN CN201380035121.3A patent/CN104662726B/en active Active
- 2013-07-03 KR KR1020207030011A patent/KR102339235B1/en active IP Right Grant
- 2013-07-03 JP JP2015520694A patent/JP6272851B2/en not_active Expired - Fee Related
- 2013-07-03 CN CN202011223853.3A patent/CN112349880A/en active Pending
- 2013-07-03 KR KR1020227015839A patent/KR20220066203A/en not_active Application Discontinuation
- 2013-07-03 CN CN201710944389.9A patent/CN108123099B/en active Active
- 2013-07-03 WO PCT/US2013/049382 patent/WO2014008433A1/en active Application Filing
- 2013-07-03 KR KR1020157002572A patent/KR102294208B1/en active IP Right Grant
- 2013-07-03 CN CN202011223830.2A patent/CN112349879A/en active Pending
- 2013-07-03 CN CN202011222697.9A patent/CN112349878A/en active Pending
- 2013-07-03 GB GB1500515.0A patent/GB2518110B/en active Active
- 2013-07-03 KR KR1020207030018A patent/KR102339237B1/en active IP Right Grant
- 2013-07-03 KR KR1020207030009A patent/KR102398418B1/en active IP Right Grant
-
2020
- 2020-10-21 JP JP2020176930A patent/JP7045032B2/en active Active
-
2022
- 2022-03-09 JP JP2022036037A patent/JP2022091795A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050013512A (en) * | 2003-07-28 | 2005-02-04 | 티디케이가부시기가이샤 | Electrode and electrochemical element using the same |
JP2010525549A (en) * | 2007-04-23 | 2010-07-22 | アプライド・サイエンシズ・インコーポレーテッド | Method of depositing silicon on carbon material to form anode for lithium ion battery |
KR20100128282A (en) * | 2008-02-25 | 2010-12-07 | 로날드 앤쏘니 로제스키 | High capacity electrodes |
JP2011018575A (en) * | 2009-07-09 | 2011-01-27 | Mie Univ | Negative electrode material for lithium-ion secondary battery, and lithium-ion secondary battery |
KR20110125808A (en) * | 2010-05-14 | 2011-11-22 | 삼화콘덴서공업주식회사 | Active material for anode, method for manufacturing the same, and secondary battery and super capacitor including the same |
Also Published As
Publication number | Publication date |
---|---|
JP2015528985A (en) | 2015-10-01 |
JP2022091795A (en) | 2022-06-21 |
KR102294208B1 (en) | 2021-08-25 |
CN108123099B (en) | 2021-06-08 |
CN104662726A (en) | 2015-05-27 |
KR102339237B1 (en) | 2021-12-13 |
CN112349880A (en) | 2021-02-09 |
JP2021022575A (en) | 2021-02-18 |
CN112349877A (en) | 2021-02-09 |
CN104662726B (en) | 2017-11-10 |
GB2518110A (en) | 2015-03-11 |
CN112349879A (en) | 2021-02-09 |
CN112349878A (en) | 2021-02-09 |
KR102339235B1 (en) | 2021-12-13 |
KR20200122425A (en) | 2020-10-27 |
JP7045032B2 (en) | 2022-03-31 |
JP6272851B2 (en) | 2018-01-31 |
WO2014008433A1 (en) | 2014-01-09 |
GB2518110B (en) | 2020-06-24 |
CN108123099A (en) | 2018-06-05 |
KR20220066203A (en) | 2022-05-23 |
KR102398418B1 (en) | 2022-05-16 |
KR20200122424A (en) | 2020-10-27 |
KR20200122426A (en) | 2020-10-27 |
GB201500515D0 (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7045032B2 (en) | Hybrid energy storage device including support filament | |
KR102224727B1 (en) | Hybrid energy storage devices | |
US9362549B2 (en) | Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers | |
US9917300B2 (en) | Hybrid energy storage devices including surface effect dominant sites | |
US20130169238A1 (en) | Hybrid Energy Storage Device Charging | |
US10714267B2 (en) | Energy storage devices including support filaments | |
US20180351156A1 (en) | Hybrid energy storage device production | |
US20130209869A1 (en) | Hybrid Energy Storage Devices Including Support Filaments | |
JP6894031B2 (en) | Hybrid energy storage device including support filament | |
US20190123349A1 (en) | Energy Storage Devices Including Stabilized Silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E90F | Notification of reason for final refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |