Nothing Special   »   [go: up one dir, main page]

KR20150047298A - Novel synthesis method of silane compound for packaging optical devices - Google Patents

Novel synthesis method of silane compound for packaging optical devices Download PDF

Info

Publication number
KR20150047298A
KR20150047298A KR1020130127214A KR20130127214A KR20150047298A KR 20150047298 A KR20150047298 A KR 20150047298A KR 1020130127214 A KR1020130127214 A KR 1020130127214A KR 20130127214 A KR20130127214 A KR 20130127214A KR 20150047298 A KR20150047298 A KR 20150047298A
Authority
KR
South Korea
Prior art keywords
formula
compound
silane compound
carbon atoms
reaction
Prior art date
Application number
KR1020130127214A
Other languages
Korean (ko)
Inventor
강병남
안자은
이종찬
주한복
송선식
한재영
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020130127214A priority Critical patent/KR20150047298A/en
Publication of KR20150047298A publication Critical patent/KR20150047298A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • C07F7/0838Compounds with one or more Si-O-Si sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

The present invention relates to a novel synthesis method of a silane compound, and more specifically, to a method for manufacturing a silane compound with the amount of impurities minimized by using an Ullmann-type reaction instead of a conventional Girgnard reaction, and a silane compound synthesized thereby. The method for manufacturing a silane compound of the present invention uses the Ullmann-type reaction instead of the conventional Girgnard reaction, thus can minimize the amount of impurities. In addition, physical and optical properties such as a water vapor transmission rate (WVTR), a degree of stickiness after hardening, and the color of a sample can be maximized, and useful for an optical element such as a flexible OLED element.

Description

실란 화합물의 신규한 합성방법{NOVEL SYNTHESIS METHOD OF SILANE COMPOUND FOR PACKAGING OPTICAL DEVICES}TECHNICAL FIELD [0001] The present invention relates to a novel method for synthesizing a silane compound,

본 발명은 실란 화합물의 신규한 합성방법에 관한 것으로, 더욱 상세하게는 종래의 그리냐드 반응(Grignard reaction) 대신 울만 반응(Ullmann-type reaction)을 이용하여 불순물의 양이 최소화된 실란 화합물을 제조하는 방법, 및 이에 따라 합성된 실란 화합물에 관한 것이다.
The present invention relates to a novel method for synthesizing a silane compound, and more particularly, to a method for preparing a silane compound in which the amount of impurities is minimized by using a Ullmann-type reaction instead of the conventional Grignard reaction And to silane compounds synthesized accordingly.

OLED, LCD 등의 광학소자에 포함되는 유기 물질은 대기 중의 산소 또는 수증기에 매우 취약하므로, 산소 또는 수증기에 노출되는 경우 출력 감소 또는 조기 성능 저하가 발생할 수 있다. 이에, 금속 및 유리를 사용하여 상기 소자들을 보호함으로써 소자의 수명을 연장시키기 위한 방법이 개발되었으나, 금속은 일반적으로 투명도가 부족하고 유리는 휨성(flexibility)이 부족한 단점이 있었다. Organic materials included in optical devices such as OLEDs and LCDs are very vulnerable to oxygen or water vapor in the atmosphere, so that when exposed to oxygen or water vapor, a reduction in output or premature performance may occur. Thus, a method for protecting the devices by using metal and glass to prolong the lifetime of the device has been developed, but the metal generally has a disadvantage in that the transparency is insufficient and the glass has insufficient flexibility.

이에, 얇고 가볍고 구부러질 수 있는 플렉시블(flexible) OLED를 비롯한 기타 광학소자의 봉지화에 사용되는 휨성(flexibility)이 있는 투명 배리어 필름 또는 봉지재 조성물이 개발되어 왔으며, 특히 내광성 및 투광성이 우수한 실리콘계 고분자 화합물이 광학소자의 봉지재로서 지속적으로 선호 및 개발되어 왔다.Accordingly, a transparent barrier film or encapsulant composition having flexibility, which is used for encapsulating other optical elements including a flexible and flexible OLED capable of being thin, light and bendable, has been developed. In particular, a silicone polymer Compounds have been constantly preferred and developed as encapsulants for optical elements.

이에, 종래에는 광학소자 봉지재용 실란 화합물을 그리냐드 반응(Grignard reaction)을 이용하여 생성물을 합성하였다. 그 일예로, 하기 반응식 1에 나타난 방법으로 실란 화합물을 합성할 수 있으나, 이러한 방법을 사용하는 경우, 합성 중 일치환 또는 삼치환된 실란 화합물이 불순물로 생성되어 순도나 정제에 문제가 있었다([Trans. Mater. Soc. Jpn, 2011,36,257]참고)Thus, conventionally, a silane compound for an optical element encapsulant was synthesized using a Grignard reaction. For example, a silane compound can be synthesized by the method shown in Reaction Scheme 1 below. However, when such a method is used, a monosubstituted or trisubstituted silane compound is produced as an impurity during synthesis, Trans. Mater. Soc. Jpn , 2011 , 36 , 257)

[반응식 1][Reaction Scheme 1]

Figure pat00001

Figure pat00001

상기와 같은 문제점을 해결하기 위해, 본 발명은 종래의 그리냐드 반응 대신 실란 화합물 합성시 불순물의 양을 최소화 할 수 있는 신규한 합성방법 및 이에 따라 합성된 실란 화합물을 제공하는 것을 목적으로 한다.In order to solve the above problems, it is an object of the present invention to provide a novel synthesis method capable of minimizing the amount of impurities in the synthesis of a silane compound in place of the conventional Grignard reaction, and a silane compound thus synthesized.

상기 목적을 달성하기 위해 본 발명은 In order to achieve the above object,

1) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 2의 다이할로 벤젠 화합물을 반응시켜 하기 화학식 3의 할로벤젠 다이알킬 실란 화합물을 제조하는 단계;1) reacting a halodialkylsilane compound of the formula 1 and a dihalobenzene compound of the formula 2 to prepare a halobenzene dialkylsilane compound of the formula 3;

2) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 4의 할로페놀 화합물을 반응시켜 하기 화학식 5의 다이알킬 실란 페놀 화합물을 제조하는 단계; 및2) reacting a halodialkylsilane compound represented by the following formula 1 with a halophenol compound represented by the following formula 4 to prepare a dialkylsilane phenol compound represented by the following formula 5; And

3) 상기 화학식 3 및 화학식 5의 화합물을 울만 반응(Ullmann reaction)시켜 하기 화학식 6의 비스페닐에테르 실란 화합물을 제조하는 단계를 포함하는 실란 화합물의 제조방법을 제공한다:3) preparing a biphenyl ether silane compound represented by the following formula (6) by the Ullmann reaction of the compounds represented by the above formulas (3) and (5)

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

[화학식 2](2)

Figure pat00003
Figure pat00003

[화학식 3](3)

Figure pat00004
Figure pat00004

[화학식 4][Chemical Formula 4]

Figure pat00005
Figure pat00005

[화학식 5][Chemical Formula 5]

Figure pat00006
Figure pat00006

[화학식 6][Chemical Formula 6]

Figure pat00007
Figure pat00007

상기 식에서,In this formula,

R은 각각 독립적으로 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐 또는 탄소수 6 내지 30의 아릴이다.
Each R is independently an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, or an aryl having 6 to 30 carbon atoms.

또한 본 발명은 상기 방법에 따라 제조된 하기 화학식 6-1의 실란 화합물을 제공한다:The present invention also provides a silane compound of the following formula (6-1) prepared according to the above method:

[화학식 6-1][Formula 6-1]

Figure pat00008
Figure pat00008

상기 식에서, In this formula,

R은 상기에서 정의한 바와 같고,R is as defined above,

n은 2 내지 50,000의 정수이다.
n is an integer from 2 to 50,000.

또한 본 발명은 상기 실란 화합물을 이용하여 제조되는 봉지막을 제공한다.The present invention also provides a sealing film produced using the silane compound.

본 발명의 실란 화합물 제조방법은 종전의 그리냐드 반응 대신에 울만 반응을 이용함으로써, 종전의 그리냐드 반응을 이용하는 합성방법보다 목적하는 이치환 실란 화합물 외에 원하지 않는 일치환 또는 삼치환된 불순물의 양을 최소화 할 수 있고, 이로 인해 투습성(WVTR), 경화 후 끈적임 정도(Tacky) 및 시료의 색과 같은 물리적 및 광학적 특성을 극대화 할 수 있으므로, 플렉시블(flexible) OLED소자를 비롯한 광학소자에 유용하게 사용될 수 있다.
The silane compound production method of the present invention minimizes the amount of undesired monosubstituted or trisubstituted impurities in addition to the aimed disubstituted silane compound by using the conventional Grignard reaction instead of the conventional Grignard reaction And can maximize the physical and optical properties such as moisture vapor permeability (WVTR), tackiness after curing and color of a sample, and thus can be usefully used in optical devices including flexible OLED devices .

본 발명은 실란 화합물로서 비스페닐 에테르(bisphenyl ether) 형태의 실란 화합물의 합성시 울만 반응을 이용하는 것을 특징으로 한다.
The present invention is characterized in that a silanol compound is used as a silane compound in the synthesis of a bisphenyl ether type silane compound.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

광학소자 봉지용 실란 화합물을 합성하는 방법으로, 종래에는 주로 그리냐드 반응을 이용하는 방법이 사용되어 왔으며, 그 일예로 하기 반응식 1의 반응을 들 수 있다.As a method of synthesizing a silane compound for optical element encapsulation, a method using a Grignard reaction has been conventionally used. For example, the reaction of the following reaction formula 1 can be mentioned.

[반응식 1][Reaction Scheme 1]

Figure pat00009

Figure pat00009

상기 반응식 1에 따르면, 먼저, 그리냐드 반응을 통해 출발물질로서 화학식 7의 비스페닐 에테르 디브로모 화합물과 마그네슘 및 요오드를 촉매로 사용하고 테트라하이드로퓨란 용매 하에서 교반 후 화학식 1의 클로로다이메틸 실란을 첨가하고 24시간 동안 환류하여 목적하는 화학식 6의 화합물을 합성한다.
According to Reaction Scheme 1, firstly, as a starting material, bisphenyl ether dibromo compound of formula (7), magnesium and iodine as a starting material are used as a catalyst, and after stirring in a tetrahydrofuran solvent, chlorodimethylsilane of formula And refluxed for 24 hours to synthesize the desired compound of formula (VI).

그러나 상기 방법으로 실란 화합물을 합성할 경우, 목적하는 이치환된 실란 화합물 외에, 주 불순물로 생성되는 일치환 또는 삼치환된 실란 화합물(불순물 A 및 B)의 생성을 막을 수 없고, 이러한 불순물은 봉지재 특성으로 평가되는 투습성(WVTR), 끈적임 정도(Tacky) 및 투명도에 영향을 줄 수 있다.
However, when the silane compound is synthesized by the above-mentioned method, it is impossible to prevent the formation of mono- or tri-substituted silane compounds (impurities A and B) produced as main impurities in addition to the desired disubstituted silane compounds, Moisture permeability (WVTR), tackiness and transparency that are evaluated as properties.

반면, 본 발명에서는,On the other hand, in the present invention,

1) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 2의 다이할로 벤젠 화합물을 반응시켜 하기 화학식 3의 할로벤젠 다이알킬 실란 화합물을 제조하는 단계;1) reacting a halodialkylsilane compound of the formula 1 and a dihalobenzene compound of the formula 2 to prepare a halobenzene dialkylsilane compound of the formula 3;

2) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 4의 할로페놀 화합물을 반응시켜 하기 화학식 5의 다이알킬 실란 페놀 화합물을 제조하는 단계; 및2) reacting a halodialkylsilane compound represented by the following formula 1 with a halophenol compound represented by the following formula 4 to prepare a dialkylsilane phenol compound represented by the following formula 5; And

3) 상기 화학식 3 및 화학식 5의 화합물을 울만 반응(Ullmann reaction)시켜 하기 화학식 6의 비스페닐에테르 실란 화합물을 제조하는 단계를 포함하는 방법에 따라 광학 봉지재용 실란 화합물을 제조할 수 있다:3) preparing a biphenyl ether silane compound represented by the following formula (6) by the Ullmann reaction of the compounds represented by the above formulas (3) and (5) to prepare a silane compound for an optical encapsulant:

[화학식 1][Chemical Formula 1]

Figure pat00010
Figure pat00010

[화학식 2](2)

Figure pat00011
Figure pat00011

[화학식 3](3)

Figure pat00012
Figure pat00012

[화학식 4][Chemical Formula 4]

Figure pat00013
Figure pat00013

[화학식 5][Chemical Formula 5]

Figure pat00014
Figure pat00014

[화학식 6][Chemical Formula 6]

Figure pat00015
Figure pat00015

상기 식에서,In this formula,

R은 각각 독립적으로 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐 또는 탄소수 6 내지 30의 아릴이다.
Each R is independently an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, or an aryl having 6 to 30 carbon atoms.

구체적으로, 본 발명의 제조방법은 하기 반응식 2에 따라 수행될 수 있다:Specifically, the preparation method of the present invention can be carried out according to the following Reaction Scheme 2:

[반응식 2][Reaction Scheme 2]

Figure pat00016
Figure pat00016

상기 식에서, R은 상기에서 정의한 바와 같다.
Wherein R is as defined above.

상기 반응식 2에 나타난 바와 같이, 본 발명의 방법에 따르면, 목적하는 생성물인 화합물 6을 합성할 경우, 1) 출발물질이 종래 방법에 따른 반응식 1의 화합물 7 보다 저렴하고, 2) 단계적으로 화합물 3과 5를 합성한 후, 울만반응을 통해 최종 생성물을 합성하므로 불순물인 일치환 혹은 삼치환된 유사 실란 화합물의 생성을 최소화할 수 있는 장점이 있다.
As shown in Reaction Scheme 2, according to the method of the present invention, when synthesizing the desired product, Compound 6, 1) the starting material is less expensive than the compound 7 of Scheme 1 according to the conventional method, and 2) And 5, and then synthesizing the final product through the Ullmann reaction, there is an advantage that generation of the monosubstituted or tri-substituted silane compound, which is an impurity, can be minimized.

본 발명은 또한 상기 방법에 따라 제조된 광학소자 봉지용 실란 화합물을 제공한다. 상기 실란 화합물은 광학소자 봉지용 열경화성 수지 조성물로 사용 되는 소재 물질로, 광학소자의 수명을 증가시키기 위해 사용하는 것이며, 바람직하게는 하기 화학식 6-1의 실란 화합물 일 수 있다:The present invention also provides a silane compound for encapsulating an optical element produced according to the above method. The silane compound is a material used as a thermosetting resin composition for encapsulating an optical element, and is used for increasing the lifetime of an optical element, and may preferably be a silane compound represented by the following formula (6-1)

[화학식 6-1][Formula 6-1]

Figure pat00017
Figure pat00017

상기 식에서, In this formula,

R은 상기에서 정의한 바와 같고,R is as defined above,

n은 2 내지 50,000의 정수이다.
n is an integer from 2 to 50,000.

본 발명에 따른 실란 화합물은 금속과 유리의 단점인 투명도와 휨성(flexibility)을 해결하여 플렉시블(flexible) OLED소자를 비롯한 광학소자에 봉지재료로서 사용가능하며, 가교결합이 가능하여 수지와의 상용성이 증가된 화합물이므로 기계적 특성이 우수하고 기재에 대한 접착력 및 수분 또는 산소에 대한 배리어 특성이 향상된 광학소자 봉지용 조성물을 제공할 수 있다.
The silane compound according to the present invention can be used as an encapsulating material in an optical element including a flexible OLED element by solving the disadvantages of metal and glass which are transparency and flexibility and can be crosslinked, It is possible to provide a composition for encapsulating an optical element which is excellent in mechanical properties and improved in adhesion to a substrate and barrier properties to moisture or oxygen.

본 발명의 실란 화합물이 상기 광학소자 봉지용 조성물에 사용되는 경우, 총 조성물 중량에 대하여 약 0.01 내지 50 중량%의 양으로 포함될 수 있으며, 상기 화합물 외에 통상적으로 사용되는 실세스퀴옥산 공중합체, 폴리실록산, 실록산 수지, 가교수지, 실란 커플링제, 촉매 및 반응 지연제 등을 통상적인 양으로 포함할 수 있다.When the silane compound of the present invention is used in the composition for encapsulating an optical element, it may be contained in an amount of about 0.01 to 50% by weight based on the weight of the total composition. Examples of the silsesquioxane copolymer, polysiloxane , A siloxane resin, a crosslinked resin, a silane coupling agent, a catalyst, and a reaction retarder.

본 발명에서 사용가능한 실록산 수지로는 폴리메틸비닐 실록산, 폴리(메틸페닐)하이드로실록산, 폴리(메틸페닐)실록산, 폴리(페닐비닐)-코-(메틸비닐)실세스퀴옥산, gelest사의 PDV-1635 등을 들 수 있고, 가교수지로는 실세스퀴옥산 공중합체, 페닐하이드로실세스퀴옥산 또는 디메틸실릴페닐에테르 등을 들 수 있고, 실란 커플링제로는 메타크릴레이트계 시클로실록산 등을 들 수 있고, 촉매로는 백금 촉매, 반응 지연제로는 에티닐트리메틸실란 또는 에티닐트리에틸실란 등을 들 수 있으나 이에 한정되는 것은 아니며, 이들을 각각 1종 이상 포함할 수 있다.
Examples of the siloxane resin usable in the present invention include polymethylvinylsiloxane, poly (methylphenyl) hydrosiloxane, poly (methylphenyl) siloxane, poly (phenylvinyl) -co- (methylvinyl) silsesquioxane, PDV- Examples of the crosslinking resin include silsesquioxane copolymer, phenylhydrosilsesquioxane, and dimethylsilylphenyl ether. Examples of the silane coupling agent include methacrylate-based cyclosiloxane and the like, Examples of the catalyst include a platinum catalyst, and the reaction retarder includes ethynyltrimethylsilane, ethynyltriethylsilane, and the like, but not limited thereto, and may include at least one of these compounds.

본 발명은 또한 상기 실란 화합물 또는 이를 포함하는 광학소자 봉지용 조성물을 이용하여 제조된 광학소자 봉지막을 제공한다.
The present invention also provides an optical element encapsulating film produced using the silane compound or a composition for encapsulating an optical element comprising the silane compound.

본 발명의 광학소자 봉지막은 투명하여 광투과율 및 굴절률이 우수할 뿐 아니라, 경화 후 끈적임이 없고 향상된 투습도를 가지므로, 각종 광학소자의 봉지 박막으로 사용할 경우 광학소자의 수명을 연장시키는데 효과적이며, 특히 플렉시블 OLED의 봉지막으로 사용될 수 있다.
Since the optical element encapsulating film of the present invention is transparent and has excellent light transmittance and refractive index as well as no stickiness after curing and has an improved moisture permeability, it is effective in prolonging the life of an optical element when used as a sealing film for various optical elements, It can be used as a sealing film of flexible OLED.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

비교예 1 내지 3Comparative Examples 1 to 3 : 비스페닐에테르 다이실란 화합물(화학식 6)의 합성: Synthesis of bisphenyl ether disilane compound (Formula 6)

[반응식 1][Reaction Scheme 1]

Figure pat00018
Figure pat00018

1) 화학식 8의 화합물의 합성1) Synthesis of the compound of formula (8)

화학식 7의 비스-4-브로모페닐 에테르(50.0 g, 152 mmol)를 플라스크에 넣고 드라이 THF 용매(375 mL, 7.5 mL/g)를 첨가하여 용해시킨 후, 상온에서 마그네슘(8.87 g, 365 mmol)과 요오드(3.85 g, 15.2 mmol)를 드라이 THF(25.0 mL)에 녹여 서서히 적가 하였다. 적가 완료 후 반응물을 환류 시켜 화학식 8의 그리냐드(Grignard) 화합물을 합성하였다.
4-Bromophenyl ether (50.0 g, 152 mmol) of the formula (7) was added to the flask, and a dry THF solvent (375 mL, 7.5 mL / g) was added thereto to dissolve. Magnesium (8.87 g, 365 mmol ) And iodine (3.85 g, 15.2 mmol) were dissolved in dry THF (25.0 mL) and slowly added dropwise. After completion of the dropwise addition, the reaction product was refluxed to synthesize a Grignard compound of formula (8).

2) 화학식 6의 화합물의 합성 2) Synthesis of compound of formula (6)

상기 화학식 8의 그리냐드 화합물을 플라스크에 넣고 온도를 0 ℃로 유지한 상태에서 화학식 1의 클로로-다이메틸실란 화합물(51.0 mL, 456 mmol)을 첨가한 후, 상온에서 24시간 동안 교반하였다. 반응 종료 후 포화 NH4Cl 수용액으로 ?칭 (quenching)시키고 EtOAc 용매를 첨가하여 추출한 다음, 식염수로 세척하고 무수 Na2SO4로 건조한 다음, 여과 및 농축하였다. 반응 혼합물을 가지고 HPLC 측정을 수행하여 화학식 6의 화합물 외에 불순물 A 및 B의 비율을 확인하였으며, 그 결과를 하기 표 1에 나타내었다.The Grignard compound of Formula 8 was placed in a flask and the chloro-dimethylsilane compound of Formula 1 (51.0 mL, 456 mmol) was added thereto while maintaining the temperature at 0 ° C, followed by stirring at room temperature for 24 hours. After completion of the reaction, the reaction mixture was quenched with a saturated aqueous solution of NH 4 Cl, extracted with an EtOAc solvent, washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. HPLC measurements were carried out with the reaction mixture to determine the proportion of impurities A and B in addition to the compound of formula 6, and the results are shown in Table 1 below.

또한 혼합물을 SiO2 하에서 플래쉬 컬럼 크로마토그래피(Pet.ether : DCM = 5:1) 방법을 사용하여 각각을 분리하고 1H-NMR을 통해 확인하였다.The mixture was further separated and purified by 1 H-NMR using a flash column chromatography (Pet.ether: DCM = 5: 1) method under SiO 2 .

[화학식 6의 화합물(목적화합물)][Compound (6) (target compound)]

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34 (12H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 7.01 (2H, d, J = 8.4 Hz), 7.50 (2H, d, J = 8.4 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (12H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 7.01 (2H, d, J = 8.4 Hz ), 7.50 (2H, d, J = 8.4 Hz).

[불순물 A(일치환된 실란 화합물)][Impurity A (monosubstituted silane compound)]

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34 (6H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 6.99 (2H, d, J = 8.4 Hz), 7.03 (2H, d, J = 7.6 Hz), 7.12 (1H, t, J = 7.6 Hz), 7.31-7.36 (2H, m), 7.44 (2H, d, J = 8.4 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (6H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 6.99 (2H, d, J = 8.4 Hz ), 7.03 (2H, d, J = 7.6Hz), 7.12 (1H, t, J = 7.6Hz), 7.31-7.36 (2H, m), 7.44 (2H, d, J = 8.4Hz).

[불순물 B(삼치환된 실란 화합물)][Impurity B (trisubstituted silane compound)]

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34 (18H, d, J = 4.0 Hz), 4.41-4.46 (3H, sept, J = 4.0 Hz), 6.81 (1H, d, J = 8.0 Hz), 6.99 (2H, d, J = 8.4 Hz), 7.49 (1H, dd, J = 8.0, 1.6 Hz), 7.50 (2H, d, J = 8.4 Hz), 7.71 (1H, d, J = 1.6 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (18H, d, J = 4.0 Hz), 4.41-4.46 (3H, sept, J = 4.0 Hz), 6.81 (1H, d, J = 8.0 Hz ), 6.99 (2H, d, J = 8.4 Hz), 7.49 (1H, dd, J = 8.0, 1.6 Hz), 7.50 ).

또한, 상기 반응 혼합물(화학식 6의 화합물, 1O 중량부)에, 비닐 터미네이티드 폴리(메틸 페닐)실록산, 비닐 터미네이티드 실세스퀴옥산 공중합체 및 폴리(메틸 페닐)하이드로실록산의 3종 수지(80 중량부), Pt-촉매(5 중량부), 및 억제제(5 중량부)를 중합하여 5 cm x 5 cm 크기와 1 mm 이하의 두께로 시편을 제작하였으며, 이를 이용하여 투습도(WVTR) 및 경화 후 끈적임 정도(Tacky)를 공지의 방법에 따라 측정하였으며, 그 결과를 하기 표 1에 나타내었다.To the reaction mixture (compound of formula (VI), 10 parts by weight) were added three kinds of resins, vinyl terminated poly (methylphenyl) siloxane, vinyl terminated silsesquioxane copolymer and poly (methylphenyl) hydrosiloxane (WVTR) was prepared by polymerizing 5 parts by weight of a catalyst (80 parts by weight), Pt catalyst (5 parts by weight) and inhibitor (5 parts by weight) And the degree of stickiness after curing (Tacky) were measured according to a known method. The results are shown in Table 1 below.

HPLC
데이터
HPLC
data
RT(분)RT (min) RRTRRT 화합물 중 비율Percentage of compound
비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 불순물 AImpurity A 4.364.36 0.830.83 7.597.59 5.665.66 7.897.89 미지Unknown 4.754.75 0.910.91 -- -- -- 화합물 6Compound 6 5.215.21 1.001.00 83.4983.49 85.1785.17 86.6086.60 미지Unknown 5.625.62 1.071.07 0.470.47 0.420.42 0.440.44 불순물 BImpurity B 6.136.13 1.171.17 5.635.63 6.826.82 5.045.04 WVTR(g/m2)WVTR (g / m 2 ) 2020 1818 1616 경화 후 끈적임 정도Degree of stickiness after curing 있음has exist 있음has exist 있음has exist color 연한 노란색Light yellow 연한 노란색Light yellow 연한 노란색Light yellow

상기 표 1에 나타난 바와 같이, 반응 종료 후 생성물인 화합물 6 외에 불순물 A 및 B가 함께 존재하였으며 무색이 아닌 연한 노란색임을 확인하였다. 이러한 불순물이 존재하면 투습도나 경화 후 끈적임 정도에 영향을 주는 것을 알 수 있다.
As shown in Table 1, it was confirmed that impurities A and B were present together with Compound 6, which is a product after completion of the reaction, and it was pale yellow which was not colorless. The presence of such impurities affects the moisture permeability and the degree of stickiness after curing.

실시예 1Example 1 : 비스페닐에테르 다이실란 화합물(화학식 6)의 합성: Synthesis of bisphenyl ether disilane compound (Formula 6)

[반응식 2][Reaction Scheme 2]

Figure pat00019
Figure pat00019

1) 화학식 3의 화합물의 합성1) Synthesis of Compound (3)

화학식 2의 다이브로모벤젠(15.0 g, 63.5 mmol)을 플라스크에 넣고 드라이 THF 용매(150 mL, 10 mL/g)를 첨가하여 용해시키고, -78 ℃에서 n-BuLi(28.0 mL, 70 mmol, 2.5 M 용액(in hexane))을 서서히 첨가한 후, -78 ℃에서 3시간 동안 교반하였다. 그 후, 화학식 1의 클로로다이메틸실란(8.50 mL, 92.5 mmol)을 첨가하여 상온에서 교반하면서 반응시켰다. 반응 종료 후, 포화 NH4Cl 수용액으로 ?칭(quenching)시키고 EtOAc 용매를 첨가하여 추출한 다음, 식염수(brine)로 세척하고 무수 Na2SO4로 건조한 다음, 여과 및 농축하였다. 반응 혼합물을 진공 증류(70 내지 75 ℃, 10 mmbar) 방법으로 정제하여 화학식 3의 화합물을 무색 오일상으로 합성 하였다(10.8 g, 80% 수율). BuLi (28.0 mL, 70 mmol, 2.5 mmol) was added at -78 째 C to a solution of dibromobenzene of Formula 2 (15.0 g, 63.5 mmol) in a flask and dissolved with a dry THF solvent (150 mL, 10 mL / M solution (in hexane) was slowly added thereto, followed by stirring at -78 ° C for 3 hours. Then, chlorodimethylsilane (8.50 mL, 92.5 mmol) of the formula (1) was added and reacted at room temperature with stirring. After the reaction was completed, the reaction mixture was quenched with a saturated aqueous NH 4 Cl solution, extracted with EtOAc solvent, washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The reaction mixture was purified by vacuum distillation (70-75 캜, 10 mmbar) to give the compound of formula (3) as a colorless oily phase (10.8 g, 80% yield).

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34(6H, d, J = 4.0 Hz), 4.41-4.45(1H, sept, J = 4.0 Hz), 7.41(2H, d, J = 8.0 Hz), 7.51(2H, d, J = 8.0 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (6H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 7.41 (2H, d, J = 8.0 Hz ), 7.51 (2H, d, J = 8.0 Hz).

2) 화학식 5의 화합물의 합성2) Synthesis of Compound (5)

화학식 4의 4-브로모페놀(14.0 g, 80.0 mmol)을 플라스크에 넣고 드라이 THF 용매(240 mL, 17 mL/g)를 첨가하여 용해시키고, -78 ℃에서 n-BuLi(72.0 mL, 180 mmol, 2.5 M 용액(in hexane))을 서서히 첨가한 후, -78 ℃에서 2시간 동안 교반하였다. 그 후, 화학식 1의 클로로다이메틸실란(11.0 mL, 120 mmol)을 첨가하여 상온에서 교반하면서 반응시켰다. 반응 종료 후, 포화 NH4Cl 수용액으로 ?칭시키고 EtOAc 용매를 첨가하여 추출한 다음, 식염수로 세척하고 무수 Na2SO4로 건조한 다음, 여과 및 농축하였다. 반응 혼합물을 플래쉬 컬럼 크로마토그래피(flash column chromatography, 펜탄:EtOAc = 19:1) 방법으로 정제하여 화학식 5의 화합물을 무색 오일상으로 합성 하였다(10.9 g, 82% 수율).4-Bromophenol (14.0 g, 80.0 mmol) of the formula 4 was dissolved in a dry THF solvent (240 mL, 17 mL / g) and added at -78 ° C with n-BuLi (72.0 mL, 180 mmol , 2.5 M solution (in hexane)) was slowly added thereto, followed by stirring at -78 ° C for 2 hours. Thereafter, chlorodimethylsilane (11.0 mL, 120 mmol) of the formula (1) was added and reacted at room temperature with stirring. After completion of the reaction, the reaction mixture was neutralized with a saturated aqueous solution of NH 4 Cl, extracted with EtOAc solvent, washed with brine, dried over anhydrous Na 2 SO 4 , filtered and concentrated. The reaction mixture was purified by flash column chromatography (pentane: EtOAc = 19: 1) to give the compound of formula 5 as a colorless oily phase (10.9 g, 82% yield).

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34(6H, d, J = 4.0 Hz), 4.41-4.45(1H, sept, J = 4.0 Hz), 5.03(1H, brs), 6.88(2H, d, J = 8.4 Hz), 7.45(2H, d, J = 8.4 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (6H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 5.03 (1H, brs), 6.88 (2H , d, J = 8.4Hz), 7.45 (2H, d, J = 8.4Hz).

3) 화학식 6의 화합물의 합성3) Synthesis of Compound (6)

화학식 3의 4-브로모벤젠-다이메틸실란(10.0 g, 46.5 mmol)과 요오드화 구리(44.3 mg, 0.233 mmol), 벤조트리아졸(55.4 mg, 0.465 mmol)을 플라스크에 넣고 다이메틸설폭사이드 용매(50 mL, 5 mL/g)를 첨가하여 상온에서 30분간 교반 시킨 후, 화학식 5의 4-다이메틸실란 페놀(8.50 g, 55.8 mmol)과 소듐 tert-부톡사이드(6.26 g, 65.1 mmol)를 첨가하여 95 내지 100℃에서 18시간 동안 교반하면서 반응시켰다. 반응 종료 후, 물과 EtOAc 용매를 첨가하여 추출하고, 식염수로 세척하고, 무수 Na2SO4로 건조한 다음, 여과 및 농축하였다. 상기 반응 혼합물을 가지고 HPLC 측정을 수행하여 화학식 6의 화합물 외에 불순물 A 및 B의 비율을 확인하였으며, 그 결과를 하기 표 2에 나타내었다.4-Bromobenzene-dimethylsilane (10.0 g, 46.5 mmol), copper iodide (44.3 mg, 0.233 mmol) and benzotriazole (55.4 mg, 0.465 mmol) were added to a flask and dimethylsulfoxide 50 mL, 5 mL / g), and the mixture was stirred at room temperature for 30 minutes. Then, 4-dimethylsilanephenol (8.50 g, 55.8 mmol) and sodium tert-butoxide (6.26 g, 65.1 mmol) And reacted at 95 to 100 DEG C for 18 hours with stirring. After completion of the reaction, the powder is extracted with water and EtOAc solvent, washed with saline, dried over anhydrous Na 2 SO 4, filtered and concentrated to a. The reaction mixture was subjected to HPLC measurement to determine the proportion of the impurities A and B in addition to the compound of the formula 6. The results are shown in Table 2 below.

또한, 상기 반응 혼합물을 SiO2 하에서 플래쉬 컬럼 크로마토그래피(Pet.ether : DCM = 5:1) 방법을 사용하여 각각을 분리하고 1H-NMR을 통해 확인하였다.In addition, the reaction mixture was purified by flash column chromatography under the SiO 2 were isolated, respectively, using the method and confirmed by 1 H-NMR (Pet.ether: 1 : DCM = 5).

1H-NMR (CDCl3, Varian 400 MHz): δ 0.34(12H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 7.01(2H, d, J = 8.4 Hz), 7.50(2H, d, J = 8.4 Hz).
1 H-NMR (CDCl 3, Varian 400 MHz): δ 0.34 (12H, d, J = 4.0 Hz), 4.41-4.45 (1H, sept, J = 4.0 Hz), 7.01 (2H, d, J = 8.4 Hz ), 7.50 (2H, d, J = 8.4 Hz).

또한, 상기 반응 혼합물을 가지고 상기 비교예 1과 동일한 방법으로 시편을 제작하여 투습도 및 경화 후 끊적임 정도를 공지의 방법에 따라 측정하였으며, 그 결과를 하기 표 2에 나타내었다.In addition, the specimen was prepared in the same manner as in Comparative Example 1 with the reaction mixture, and the moisture permeability and the degree of hibernation after curing were measured according to a known method. The results are shown in Table 2 below.

HPLC
데이터
HPLC
data
RT(분)RT (min) RRTRRT 실시예 1의 화합물 중 비율The ratio of the compound of Example 1
불순물 AImpurity A 4.364.36 0.830.83 0.440.44 미지Unknown 4.754.75 0.910.91 0.560.56 화합물 6Compound 6 5.215.21 1.001.00 95.2695.26 미지Unknown 5.625.62 1.071.07 2.742.74 불순물 BImpurity B 6.136.13 1.171.17 0.500.50 투습도(g/m2)Water vapor permeability (g / m 2 ) 1414 경화 후 끈적임 정도Degree of stickiness after curing 없음none color 무색Colorless

상기 표 2에 나타난 바와 같이, 본 발명의 신규한 합성방법에 따라 제조된 비스페닐에테르 다이실란 화합물의 순도의 95% 이상으로, 종래의 합성방법에 따라 합성된 비교예 1 내지 3의 화합물에 비해 불순물의 함량이 적음을 확인할 수 있다. 또한, 수증기 투과율도 비교예 1 내지 3의 화합물에 비해 낮고 경화 후에 끈적임이 없으며, 무색의 화합물이므로, 우수한 광학 특성 및 물성을 가짐을 확인할 수 있다.Compared to the compounds of Comparative Examples 1 to 3, which were synthesized according to the conventional synthesis method, at least 95% of the purity of the biphenyl ether disilane compound prepared according to the novel synthesis method of the present invention, as shown in Table 2 above It can be confirmed that the content of impurities is small. In addition, the water vapor transmission rate was lower than that of the compounds of Comparative Examples 1 to 3, and there was no tackiness after curing, and it was confirmed that the compound had excellent optical properties and physical properties because it was a colorless compound.

Claims (4)

1) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 2의 다이할로 벤젠 화합물을 반응시켜 하기 화학식 3의 할로벤젠 다이알킬 실란 화합물을 제조하는 단계;
2) 하기 화학식 1의 할로다이알킬 실란 화합물과 하기 화학식 4의 할로페놀 화합물을 반응시켜 하기 화학식 5의 다이알킬 실란 페놀 화합물을 제조하는 단계; 및
3) 상기 화학식 3 및 화학식 5의 화합물을 울만 반응(Ullmann reaction)시켜 하기 화학식 6의 비스페닐에테르 실란 화합물을 제조하는 단계를 포함하는 실란 화합물의 제조방법:
[화학식 1]
Figure pat00020

[화학식 2]
Figure pat00021

[화학식 3]
Figure pat00022

[화학식 4]
Figure pat00023

[화학식 5]
Figure pat00024

[화학식 6]
Figure pat00025

상기 식에서,
R은 각각 독립적으로 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐 또는 탄소수 6 내지 30의 아릴이다.
1) reacting a halodialkylsilane compound of the formula 1 and a dihalobenzene compound of the formula 2 to prepare a halobenzene dialkylsilane compound of the formula 3;
2) reacting a halodialkylsilane compound represented by the following formula 1 with a halophenol compound represented by the following formula 4 to prepare a dialkylsilane phenol compound represented by the following formula 5; And
3) preparing a biphenyl ether silane compound of formula (6) by the Ullmann reaction of the compound of formula (3) and formula (5)
[Chemical Formula 1]
Figure pat00020

(2)
Figure pat00021

(3)
Figure pat00022

[Chemical Formula 4]
Figure pat00023

[Chemical Formula 5]
Figure pat00024

[Chemical Formula 6]
Figure pat00025

In this formula,
Each R is independently an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, or an aryl having 6 to 30 carbon atoms.
상기 제조방법이 하기 반응식 2에 따라 수행되는 것임을 특징으로 하는, 실란 화합물의 제조방법:
[반응식 2]
Figure pat00026

상기 식에서,
R은 각각 독립적으로 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐 또는 탄소수 6 내지 30의 아릴이다.
A process for producing a silane compound, wherein the process is carried out according to the following Reaction Scheme 2:
[Reaction Scheme 2]
Figure pat00026

In this formula,
Each R is independently an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, or an aryl having 6 to 30 carbon atoms.
제1항의 방법에 따라 제조된 하기 화학식 6-1의 실란 화합물:
[화학식 6-1]
Figure pat00027

상기 식에서,
R은 각각 독립적으로 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐 또는 탄소수 6 내지 30의 아릴이다.
n은 2 내지 50,000의 정수이다.
A silane compound represented by the following formula (6-1), prepared according to the process of claim 1:
[Formula 6-1]
Figure pat00027

In this formula,
Each R is independently an alkyl having 1 to 20 carbon atoms, an alkenyl having 2 to 20 carbon atoms, or an aryl having 6 to 30 carbon atoms.
n is an integer from 2 to 50,000.
제3항의 광학소자 봉지용 실란 화합물을 이용하여 제조되는 광학소자 봉지막.An optical element encapsulating film produced by using the silane compound for encapsulating an optical element according to claim 3.
KR1020130127214A 2013-10-24 2013-10-24 Novel synthesis method of silane compound for packaging optical devices KR20150047298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130127214A KR20150047298A (en) 2013-10-24 2013-10-24 Novel synthesis method of silane compound for packaging optical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130127214A KR20150047298A (en) 2013-10-24 2013-10-24 Novel synthesis method of silane compound for packaging optical devices

Publications (1)

Publication Number Publication Date
KR20150047298A true KR20150047298A (en) 2015-05-04

Family

ID=53386369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130127214A KR20150047298A (en) 2013-10-24 2013-10-24 Novel synthesis method of silane compound for packaging optical devices

Country Status (1)

Country Link
KR (1) KR20150047298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135951A (en) * 2021-04-08 2021-07-20 吉林奥来德光电材料股份有限公司 Silicon-containing monomer, photocuring composition, packaging structure and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135951A (en) * 2021-04-08 2021-07-20 吉林奥来德光电材料股份有限公司 Silicon-containing monomer, photocuring composition, packaging structure and semiconductor device

Similar Documents

Publication Publication Date Title
KR102016348B1 (en) Resin composition for packaging optical devices
JP2011190413A (en) Siloxane polymer crosslinking-cured product
KR101556110B1 (en) Thiophenoxy phenyl silane composition and method for making same
KR20130140900A (en) Siloxane compound and cured product thereof
KR102676480B1 (en) Polymerizable composition containing a silsesquioxane compound having an acrylic group
JP2015155541A (en) Siloxane polymer crosslinked cured product
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
KR20150047298A (en) Novel synthesis method of silane compound for packaging optical devices
TWI409271B (en) Method for producing organic silicon compounds
US2485928A (en) Method of making siloxanes
KR101607956B1 (en) Led encapsulant containing siloxane hybrid resin
WO2012144481A1 (en) Siloxane compound and cured product thereof
KR20140083619A (en) Siloxane monomer and composition for encapsulant and encapsulant and electronic device
WO2019003767A1 (en) Isocyanuric acid derivative having alkoxyalkyl group and production method therefor
KR101965194B1 (en) Fluoro monomer and oligomer compounds, photopolymerized composition, and hydrophobic film using the same
KR101614590B1 (en) Curable resin composition
KR101601886B1 (en) High refractive and transparent siloxane hybrimer resin and led encapsulant using the same
CN104140679B (en) The silicon composition of a kind of main chain containing hydrocarbylene structure and preparation method thereof
KR101698428B1 (en) High refractive and transparent led encapsulant containing siloxane hybrid resin and crosslingking agent for synthesizing led encapsulant
TWI705070B (en) Method for producing iodine-containing silicon compound
JPWO2017209004A1 (en) Low viscosity agent for high refractive index polymerizable compound and polymerizable composition containing the same
US20160093825A1 (en) Curable organo polysiloxane composition, encapsulant, and electronic device
JP7140378B2 (en) Organic phosphors that emit ultraviolet light
JP3848270B2 (en) Novel polymer containing 9-oxo-9-phosphafluorene-2,7-diyl group in the main chain, production method thereof and use thereof
KR101760806B1 (en) Carbazole-siloxane derivative for light emitting diode or printed electronics encapsulant and light emitting diode or printed electronics using the same

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination