Nothing Special   »   [go: up one dir, main page]

KR20140064226A - Manufacturing methods of polymer foaming agent that includes a sulfonyl hydrazide - Google Patents

Manufacturing methods of polymer foaming agent that includes a sulfonyl hydrazide Download PDF

Info

Publication number
KR20140064226A
KR20140064226A KR1020120131305A KR20120131305A KR20140064226A KR 20140064226 A KR20140064226 A KR 20140064226A KR 1020120131305 A KR1020120131305 A KR 1020120131305A KR 20120131305 A KR20120131305 A KR 20120131305A KR 20140064226 A KR20140064226 A KR 20140064226A
Authority
KR
South Korea
Prior art keywords
maobsh
blowing agent
poly
polymer
obsh
Prior art date
Application number
KR1020120131305A
Other languages
Korean (ko)
Other versions
KR101518698B1 (en
Inventor
정재욱
정일두
Original Assignee
부산대학교 산학협력단
주식회사 금양
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단, 주식회사 금양 filed Critical 부산대학교 산학협력단
Priority to KR1020120131305A priority Critical patent/KR101518698B1/en
Publication of KR20140064226A publication Critical patent/KR20140064226A/en
Application granted granted Critical
Publication of KR101518698B1 publication Critical patent/KR101518698B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/30Polysulfonamides; Polysulfonimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/10Polysulfonamides; Polysulfonimides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to a polymeric foaming agent including sulfonyl hydrazide and a method for producing the same. More particularly, the present invention relates to a polymeric foaming agent including sulfonyl hydrazide and a method for producing the same wherein methacryloyl oxybisbenzenesulfonyl hydrazide (MAOBSH), a novel monomer including a functional group of sulfonyl hydrazide capable of forming a foaming body by being decomposed with heat, is synthesized from methacryloyl chloride and 4,4′-oxybisbenzenesulfonyl hydrazide(OBSH). In the method of the present invention, a poly(MAOBSH) which is a polymeric foaming agent (PFA) is obtained using AIBN, an initiator, in the existence of a solvent THF at 70°C and the foaming body, in which the polymeric foaming agent is mixed, exhibits a more superior surface and cell structure in which OBSH is mixed and has excellence mechanical properties such as elongation and compression set, so that the polymeric foaming agent and the method for producing the same of the present invention has characteristics of improving the compatibility with the polymeric materials.

Description

슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법 {Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a polymer foaming agent containing a sulfonyl hydrazide,

본 발명은 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법에 관한 것으로, 가열에 의해 분해되어 발포체를 형성할 수 있는 설포니 하이드라이즈(Sulfonyl Hydrazide) 관능기를 포함하는 새로운 모노머(monomer)인 MAOBSH {methacryloyl oxybis (benzenesulfonyl hydrazide)}는 methacryloyl chloride와 OBSH {4,4’-oxybis(benzenesulfonyl hydrazide)} 로부터 합성되었고, 용매 THF하에 개시제 AIBN를 사용하여 70 ℃에서 고분자 발포제(polymeric foaming agent, PFA) 인 poly(MAOBSH)를 얻었을 수 있는 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법에 관한 것이다.The present invention relates to a process for preparing a polymeric foaming agent containing sulfonyl hydrazide, which comprises a novel monomer containing a sulfonyl hydrazide functional group which can be decomposed by heating to form a foam ) Was synthesized from methacryloyl chloride and OBSH (4,4'-oxybis (benzenesulfonyl hydrazide)}. MAOBSH (methanesulfonyl hydrazide) was synthesized from polymeric foaming agent The present invention relates to a process for producing a polymeric blowing agent comprising sulfonyl hydrazide, which may be obtained from poly (MAOBSH) which is poly (PFA).

일반적으로, 화학 발포제는 열 분해를 통해 가스를 발생하여 고분자 매트릭스 내에 셀 구조들을 만드는 화학 첨가제이다. 최근 생산되는 발포제들의 형태는 두 가지로 구분될 수 있는데, 하나는 ammonia bicarbonate와 sodium bicarbonate 같은 무기 발포제가 있으며, 이 발포제들은 이산화탄소를 발생하여 연속기포 발포제를 만드는 데 주로 사용되어 왔고, 다른 하나는 유기 발포제로 분해되어 질소를 발생하여 전형적으로 독립 기포 발포제를 만든다. 지난 70년 동안, 수 천 개 이상의 화학제품들이 고분자 재료를 위한 발포제로 제시되어 왔었다. 1940년에 Diazoaminobenzene (DAB)가 최초 상업적인 유기 발포제로서 개발되었지만 자체 독성과 오염성 때문에, 비오염성 지방족 화합물인 2,2’-azobisisobutyonitrile 과 azodicarboxylic 산의 유도체 및 dinitrosopentamethylene tetramine 가 유기화학 발포제로서 개발되었다.       Generally, chemical blowing agents are chemical additives that generate gas through thermal decomposition to form cell structures within the polymer matrix. Recently, there are two types of foaming agents, one of which is ammonia bicarbonate and the other is inorganic blowing agent such as sodium bicarbonate. These foaming agents have been mainly used to produce carbon dioxide, Decomposes into a blowing agent to generate nitrogen, which is typically used to make a blowing agent of a closed cell. Over the past 70 years, thousands of chemicals have been proposed as blowing agents for polymeric materials. Although diazoaminobenzene (DAB) was first developed as a commercial organic foaming agent in 1940, due to its toxicity and contamination, non-staining aliphatic compounds, 2,2'-azobisisobutyonitrile, azodicarboxylic acid derivatives and dinitrosopentamethylene tetramine were developed as organic chemical foaming agents.

1952년까지 몇 가지 sulfonyl hydrazide들이 고무 및 플라스틱의 발포제로 이용되어 왔었으며, 비대칭 분자 구성을 가진 Sulfonyl hydrazide들이 고무발포 용도에 유용하게만 쓰여 왔었다. 왜냐하면 많은 다른 고분자들에서 예를 들면, poly(vinyl chloride)에서 이들은 mercaptan과 같은 냄새가 났다. 그러나 그 중에서 4,4’-oxybis(benzenesulfonyl hydrazide) (OBSH)와 p-toluenesulfonylhydrazide (TSH) 가 발포제로 광범위하게 사용되었다. 최근에 Cai 등이 polypropylene (PP)에 나노 실리카의 분산을 향상시키기 위해, poly(p-vinylphenlysulfonylhydrazide) (PVPSH)를 수용성 라디칼 중합을 통해 표면처리된 나노 실리카 실란 카플링제에 그래프트하였다. PVPSH 그래프트된 나노 실리카와 polypropylene (PP)의 용융 블렌딩이 기포 늘임 효과를 일으켜 polypropylene (PP) 매트릭스 내에 나노 입자들의 분산을 향상시킨다고 보고되었다{Cai LF, Huang XB, Rong MZ, Ruan WH and Zhang MQ, Polymer 47: 7043-7050 (2006), Cai LF, Huang XB, Rong MZ, Ruan WH and Zhang MQ, Macromol Chem Phys 207: 2093-2102 (2006)}. Until 1952, some sulfonyl hydrazides have been used as blowing agents in rubber and plastics. Sulfonyl hydrazides with asymmetric molecular structures have been used only for rubber foaming applications. Because in many other polymers, for example, poly (vinyl chloride), they smelled like mercaptans. However, 4,4'-oxybis (benzenesulfonyl hydrazide) (OBSH) and p-toluenesulfonylhydrazide (TSH) were widely used as blowing agents. Recently, Cai et al. Grafted poly (p-vinylphenlysulfonylhydrazide) (PVPSH) onto a surface-treated nanosilica silane coupling agent through water-soluble radical polymerization to improve the dispersion of nanosilica in polypropylene (PP). It has been reported that melt-blending of PVPSH grafted nanosilica with polypropylene (PP) improves the dispersion of nanoparticles in the polypropylene (PP) matrix due to the bubble stretching effect {Cai LF, Huang XB, Rong MZ, Ruan WH and Zhang MQ, Polymer 47 : 7043-7050 (2006), Cai LF, Huang XB, Rong MZ, Ruan WH and Zhang MQ, Macromol Chem Phys. 207 : 2093-2102 (2006)}.

그러나, 상기의 저분자 유기 발포제들의 사용은 고분자 재료들과의 상용성 부족과 형성된 발포체의 셀 크기 조절의 어려움과 같은 단점들을 가지고 있었다.그리하여, 고분자 재료들과 저분자량 발포제의 상용성을 개선하기 위해 추가적인 마스터배치 제조 공정이 개발되어 왔었다. 그러나 이와 같은 공정은 제조비용의 증가와 비효과적인 방법들을 만들어 낸 결과가 되었다. 따라서, EVA (ethylene vinyl acetate)와 같은 고분자들과 상용성이 뛰어날 것으로 기대되는 대안으로서의 고분자 발포제(PFA) 개발에 대한 강력한 필요가 있다.       However, the use of the above-mentioned low molecular organic foaming agents has disadvantages such as a lack of compatibility with polymer materials and difficulty in controlling the cell size of the formed foam. Thus, in order to improve the compatibility of the polymer materials with the low molecular weight foaming agent Additional master batch manufacturing processes have been developed. However, this process has resulted in increased manufacturing costs and ineffective methods. Therefore, there is a strong need for the development of an alternative polymeric foaming agent (PFA) that is expected to be highly compatible with polymers such as ethylene vinyl acetate (EVA).

이에 상기의 문제점을 해결하기 위하여, 본원 발명에서는 oxybis(benzenesulfonyl hydrazide){이하 ‘OBSH’로 표기}를 포함하는 새로운 고분자 발포제를 합성하고 그 발포 거동과 고분자 발포제에 첨가하는 촉진제의 효과들을 평가하는 것으로, 본 발명에서 새로운 모노머인 methacryloyl oxybis(benzenesulfonyl hydrazide){이하 ‘MAOBSH’로 표기}와 그 고분자 발포제(polymeric foaming agent, 이하 ‘PFA’로 표기)인 poly(MAOBSH)를 합성하였고 FT-IR 과 1H-NMR로 특성을 결정하였으며, poly(MAOBSH)의 분해와 가스 발생량을 가스 발생 측정 장비 GEMI (gas evolution measurement instrument)에 의해 측정하였다. 열중량분석기(thermo-gravity analysis, 이하 ‘TGA’로 표기)와 시차열량계(Differential scanning calorimetry, 이하 ‘DSC’로 표기)는 분해 및 발열 거동을 측정하는 데 또한 사용되었으며, OBSH와 고분자 발포제(PFA)가 혼합된 고분자 발포제의 형태학적(morphologies) 특성을 측정하였다.In order to solve the above problems, the present invention is to synthesize a new polymer blowing agent containing oxybis (benzenesulfonyl hydrazide) (hereinafter referred to as 'OBSH') and to evaluate its foaming behavior and the effects of the promoter added to the polymer foaming agent (MAOBSH) and poly (MAOBSH), a polymeric foaming agent (hereinafter, referred to as PFA), were synthesized in the present invention. FT-IR and 1H (methyl ethyl ketone) - NMR, and the decomposition of poly (MAOBSH) and the amount of gas generation were measured by gas evolution measurement instrument (GEMI). Thermo-gravity analysis (TGA) and differential scanning calorimetry (DSC) were also used to measure decomposition and exothermic behavior. OBSH and polymer foam (PFA) The morphology characteristics of the polymer blowing agent were investigated.

발포 성능은 ethylene-vinyl acetate copolymer (이하, ‘EVA’로 표기)를 기초로 하는 기본 발포 배합에 따라 측정되었으며, 고분자로 발포한 EVA 발포제의 기계적인 물성들은 ASTM 방법에 따라 측정되었다. The foaming performance was measured according to the basic foaming formulation based on ethylene-vinyl acetate copolymer (hereinafter referred to as "EVA"). Mechanical properties of EVA foaming agent foamed with polymer were measured according to ASTM method.

이상의 설명에서와 같이, 본 발명에 따른 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제는 고분자 발포제가 혼입된 발포체가 OBSH를 혼입한 더 뛰어난 표면과 미세한 셀 구조를 보였으며 신장 및 영구압축 줄음율과 같은 기계적 물성에서도 나아졌으며, 이는 개발된 고분자 발포제와 고분자 재료들과의 상용성이 더 좋은 효과가 있다.As described above, the polymer foaming agent containing sulfonyl hydrazide according to the present invention exhibited a superior surface and fine cell structure in which the foamed foam was incorporated with OBSH, But also improved mechanical properties such as tone, which has a better compatibility with the polymer foam material and the polymer material.

도 1은 MAOBSH (a)와 고분자발포제 poly(MAOBSH) (b)의 FT-IR 스펙트럼
도 2는 OBSH, MAOBSH 및 poly(MAOBSH)의 분해 온도와 가스 발생량 그래프.
도 3은 OBSH (a), MAOBSH (b)와 poly(MAOBSH) (c)의 열중량분석(TGA) 그래프
도 4는 OBSH (a), MAOBSH (b)와 poly(MAOBSH) (c)의 시차열량계(DSC) 그래프
도 5는 우레아 처리에 의하여 poly(MAOBSH) 표면에 분해 활성 그래프
도 6은 OBSH와 poly(MAOBSH)로 통합된 EVA 스폰지의 영역 확장 그래프
도 7은 OBSH (a)와 poly(MAOBSH) (b)로 통합 EVA 스폰지의 표면 영역의 SEM 이미지 [상단, 기포 형성하기 전에, 아래, 발포 후]
도 8은 OBSH (a)와 poly(MAOBSH) (b)로 통합 EVA 스폰지의 교차 영역의 SEM 이미지 [상단, 기포 형성하기 전에, 아래, 발포 후]
Figure 1 shows the FT-IR spectrum of MAOBSH (a) and the polymeric blowing agent poly (MAOBSH) (b)
FIG. 2 is a graph showing the decomposition temperatures and gas production rates of OBSH, MAOBSH and poly (MAOBSH). FIG.
Figure 3 shows the thermogravimetric analysis (TGA) graphs of OBSH (a), MAOBSH (b) and poly (MAOBSH)
FIG. 4 is a graph showing the differential scanning calorimetry (DSC) of OBSH (a), MAOBSH (b) and poly (MAOBSH)
Fig. 5 is a graph showing decomposition activity on poly (MAOBSH) surface by urea treatment
Figure 6 is an area expansion graph of the EVA sponge integrated with OBSH and poly (MAOBSH)
Figure 7 shows the SEM image of the surface area of the integrated EVA sponge (top, before, after, and after foaming) with OBSH (a) and poly (MAOBSH)
8 shows SEM images of the intersection areas of the integrated EVA sponge with [OBSH (a) and poly (MAOBSH) (b) (top, before, after,

본 발명은 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제 및 그의 제조방법에 관한 것으로, 가열에 의해 분해되어 발포제를 형성할 수 있는 설포니 하이드라이즈(Sulfonyl Hydrazide) 관능기를 포함하는 새로운 모노머(monomer)인 MAOBSH {methacryloyl oxybis(benzenesulfonyl hydrazide)}는 methacryloyl chloride와 OBSH {4,4’-oxybis(benzenesulfonyl hydrazide)}로부터 합성되었고, 용매 THF하에 개시제 AIBN를 사용하여 70℃에서 고분자 발포제(polymeric foaming agent, PFA)인 poly(MAOBSH)를 얻었으며, 상기 고분자 발포제가 혼입된 발포제가 OBSH를 혼입한 더 뛰어난 표면과 미세한 셀 구조를 보였으며 신장 및 영구압축 줄음율과 같은 기계적 물성들이 뛰어난 것으로, 본 발명의 고분자 발포제와 고분자 재료들과의 상용성이 더 좋아지는 특징을 가진 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제 및 그의 제조방법에 관한 것이다. 이하, 첨부 도면을 참조하여 본 발명의 실시예들을 통해서 본 발명을 보다 구체적으로 설명하면 다음과 같다.     The present invention relates to a polymeric foaming agent containing sulfonyl hydrazide and a process for producing the same, and relates to a novel monomer containing a sulfonyl hydrazide functional group which can be decomposed by heating to form a foaming agent MAOBSH was synthesized from methacryloyl chloride and OBSH {4,4'-oxybis (benzenesulfonyl hydrazide)} and polymeric foaming agent was prepared at 70 ℃ by using initiator AIBN in solvent THF. , Poly (MAOBSH), which is PFA, was obtained. The foaming agent incorporating the polymeric blowing agent showed a superior surface and fine cell structure incorporating OBSH, and excellent mechanical properties such as elongation and compression set ratio. (Sulfonyl Hydrazide), which is characterized by its superior compatibility with polymeric foams and polymeric materials. Also it relates to a polymer blowing agent, and a method of manufacturing. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

[실시예 1] 재료 및 시약[Example 1] Materials and reagents

발포제인 OBSH 및 발포촉진제로 표면 처리된 우레아 Cellex-A는 한국 ㈜금양으로부터 받아 사용하였으며, Triethylamine(이하 ‘TEA’로 표기함)는 무수아세트산으로 환류하여 KOH로 수세하고 진공 증류하여 정제하였다. AIBN은 알드리찌사(Aldrich Co.)로부터 받아 클로로포름에 용해하여 동량의 메탄올을 투입하여 침전시켰다. 모든 다른 시약들과 용매들은 상업적인 공급처로부터 구매하였고 표준 절차들에 의해 정제하였다. THF (Tetrahydrofuran) 와 중탄산나트륨(sodium bicarbonate )은 추가 정제 없이 사용하였다. OBSH, which is a foaming agent, and urea Cellex-A, which is surface treated with a foaming promoter, were purchased from Kyo Yang, Korea. Triethylamine (hereinafter referred to as "TEA") was refluxed with acetic anhydride, washed with KOH and purified by vacuum distillation. AIBN was obtained from Aldrich Co. and dissolved in chloroform, and the same amount of methanol was added to precipitate AIBN. All other reagents and solvents were purchased from commercial sources and purified by standard procedures. THF (Tetrahydrofuran) and sodium bicarbonate were used without further purification.

[실시예 2] 측정 기구 및 장비[Embodiment 2] Measurement apparatus and equipment

적외선 스펙트럼은 Perkin-Elmer 2000 FT-IR 분광기에 의해 분석되었다. 1H-NMR는FT-300 MHZ Varian Gemini 2000 분석기로 DMSO-d6 용매를 사용하여 분석되었다. Infrared spectra were analyzed by a Perkin-Elmer 2000 FT-IR spectrometer. ≪ 1 > H-NMR was analyzed using a DMSO-d6 solvent with an FT-300 MHZ Varian Gemini 2000 analyzer.

화학이동들 (chemical shifts)은 내부표준물질인 Tetramethylsilane를 사용하여 ppm단위로 확인하였고, 열분해 온도 (Td)는 열중량 분석기기 (TGA, TA Instrument, New Castle, USA, Q500)를 사용하였으며, 질소 기류 하에 분당 10 ℃의 승온 속도로 100℃에서 800 ℃까지 분석하였다. 가스 발생량은 가스발생량 측정 기구 (gas volume measurement instrument, GEMI)로 측정 하였으며, ㈜금양에 의해 제작되었다. 0.5g의 시료를 넣은 시험관을 오일 배스에 넣고 100 ℃ 부터 분당 5 ℃ 일정한 승온 속도로 온도를 상승하여 가열하였다. 시차열량계(Differential scanning calorimetry, DSC)는 Du Pont 900 열분석기기를 사용하였고 대기 기류하에 분당 10 ℃ 승온하여 측정되었다. 발포제로 혼입된 SBR의 형태학적(morphology) 특성은 스캔 전자현미경 (scanning electron microscopy, SEM ; JEOL JSM35-CF)에 의해 분석되었는데, SEM 챔버에 설치되기 전에 금으로 표면 처리되었다. 발포제가 혼합된 EVA의 경도는 ASTM D2240에 의해 측정되었는데, 자동유압 블레이드를 가진 경도 시험계 (Gotech Testing Machines Inc, GT-GS-MB)를 이용하였다. 이는 시편에 대한 정확하고 꾸준하고 균일한 강제각을 유지 할 수 있는 경도 시험계를 채택하고 불균일한 표면 때문에 시험 오차들을 피할 수 있도록 설계된 기기이다. 발포제의 인장 강도, 파단 신장율, 인열강도 및 Split Tear는 ASTM D3754에 의해 Gotech사의 범용테스트기계(Universal Testing Machine, GT-A170006 or AI700S)를 사용하여 25 ℃에서 200 mm/min의 하중 속도에서 측정되었다. 발포체의 영구압축줄음율(compression set)은 발포체의 시료들이 두 평평한 금속판들 사이에 두고 원래 두께의 50%까지 압축하였을 때 측정하였으며, 그것들은 60℃ 오븐에서 6시간 가압한 후 상온에서 30분간 회복시켰다. ASTM D395에 따라 원 두께 변화율을 얻기 위해 발포제의 회복된 두께는 다시 측정되었다. 발포배율은 다음과 같은 식에 의해 계산되었다 :The chemical shifts were determined in ppm using Tetramethylsilane as the internal standard and the thermal decomposition temperature (Td) was determined using a thermogravimetric analyzer (TGA, TA Instrument, New Castle, USA, Q500) And analyzed at 100 ° C to 800 ° C at a heating rate of 10 ° C per minute under an air stream. The amount of gas generated was measured by a gas volume measurement instrument (GEMI), and it was manufactured by Ge Yang Yang. A test tube containing 0.5 g of the sample was placed in an oil bath, and the temperature was raised from 100 DEG C at a constant heating rate of 5 DEG C per minute and heated. Differential scanning calorimetry (DSC) was measured using a Du Pont 900 thermal analyzer and heating at 10 ° C per minute under atmospheric pressure. The morphology characteristics of the SBR incorporated with the blowing agent were analyzed by scanning electron microscopy (SEM; JEOL JSM35-CF) and were surface treated with gold before being installed in the SEM chamber. The hardness of the EVA mixed with the blowing agent was measured by ASTM D2240, and a hardness tester (Gotech Testing Machines Inc, GT-GS-MB) with an automatic hydraulic blade was used. It is a device designed to adopt a hardness test system capable of maintaining accurate, steady and uniform force angles to the specimen and to avoid test errors due to uneven surfaces. The tensile strength, elongation at break, tear strength and split tear of the blowing agent were measured at a load rate of 200 mm / min at 25 ° C. using a Gotech universal testing machine (GT-A170006 or AI700S) according to ASTM D3754 . The compression set of the foam was measured when the samples of the foam were placed between two flat metal plates and compressed to 50% of their original thickness. They were pressed in a 60 ° C oven for 6 hours and then restored for 30 minutes at room temperature . The recovered thickness of the blowing agent was again measured to obtain the original thickness variation rate according to ASTM D395. The expansion ratio was calculated by the following equation:

체적 발포 배율(%) = [(Volume expansion ratio (%) = [( t1t1 x  x t2t2 x  x t3t3 ) / (m1 x m2 x m3)] x 100) / (m1 x m2 x m3)] x100

면적 발포 배율 (%) = [(Area Foaming Magnification (%) = [( t1xt1x t2t2 ) / (m1 x m2)] x 100) / (m1 x m2)] x 100

이 때 각각 t1은 발포체의 가로, t2는 발포체의 세로, t3는 발포제의 높이이며, m1은 발포전 시료(몰드)의 가로, m2은 발포전 시료(몰드)의 세로, m3는 발포전 시료(몰드)의 높이 이다. In this case, t1 is the width of the foam, t2 is the height of the foam, t3 is the height of the foaming agent, m1 is the width of the sample (mold) before foaming, m2 is the length of the sample before molding (mold) Mold).

[실시예 3] MAOBSH 의 합성[Example 3] Synthesis of MAOBSH

하기 반응식 1에서 알 수 있듯이, MAOBSH는 methacryloyl chloride (이하 ‘MAC’으로 표기함)와 OBSH와의 반응에 의해 합성되어지며, THF (Tetrahydrofuran) 140 ㎖에 0.07 ㏖의 OBSH 25 g, 0.0035 ㏖의 TEA 0.5 ㎖ 및 0.01g 의 하이드로퀴논(hydroquinone)를 넣어 교반한 용액에 0.0745 ㏖의 MAC 8 ㎖를 천천히 적가하여 온도가 40℃ 이상 급격히 상승하지 않도록 하였으며, 적가 후, 증류수 20 ㎖에 0.07 ㏖의 중탄산나트륨(sodium bicarbonate) 5.8 g을 넣어 용해한 용액에 투입하였다. 상기 과정 중에 용액은 투명한 색깔로 바뀌고 플라스크에서 층분리가 있어 났으며, 반응을 종료한 후, 유기층을 층분리하여 molecular sieve#4를 넣어서 건조하였다. THF (Tetrahydrofuran) 용제를 휘발하여 순수한 MAOBSH를 얻었는데, 수율은 91% 이었다. As shown in Scheme 1, MAOBSH is synthesized by reaction with methacryloyl chloride (hereinafter referred to as "MAC") and OBSH. To 140 ml of THF (Tetrahydrofuran), 25 g of 0.07 mol OBSH, 0.0035 mol TEA 0.5 (0.0745 mol) of MAC was slowly added dropwise to the solution, which had been stirred with 0.01 g of hydroquinone, so that the temperature did not rise rapidly above 40 ° C. After dropwise addition, 0.07 mol of sodium bicarbonate sodium bicarbonate) was added to the solution. During this process, the solution turned to a clear color and the layer was separated from the flask. After completion of the reaction, the organic layer was separated and dried with molecular sieve # 4. THF (tetrahydrofuran) solvent was volatilized to obtain pure MAOBSH, the yield being 91%.

반응식 1 : MAOBSH의 합성에 대한 반응 방식Reaction Scheme 1: Reaction Scheme for the Synthesis of MAOBSH

Figure pat00001
Figure pat00001

[실시예 4] 고분자 발포제 Poly(MAOBSH)의 합성Example 4 Synthesis of Polymer Blowing Agent Poly (MAOBSH)

용매 THF (Tetrahydrofuran) 40㎖ 에 9.36mmol의 MAOBSH 4g과 0.187 mmol의 AIBN (Azobisisobutyronitrile) 0.06g을 넣은 용액을 건조할 내열유리중합반응기(Pyrex polymerization vessel)에 투입하였다. 반응기는 순수 질소가스로 정제(purging)하여 두 번 가스를 뺀 후, 밀봉하였고 수온조에서 70 ℃에서 24시간 동안 정치하였다. 고분자 발포제( PFA )인 Poly ( MAOBSH )는 과량의 diethyl ether에 침전시켜 여과하고, 항량이 될 때까지 30℃의 진공 오븐에서 건조하였다. Solvent A solution of 9.36 mmol of MAOBSH and 0.087 g of AIBN (Azobisisobutyronitrile) in 40 ml of THF (tetrahydrofuran) was placed in a Pyrex polymerization vessel to be dried. The reactor was purged with pure nitrogen gas to remove the gas twice, sealed, and allowed to stand at 70 ° C for 24 hours in a water bath. A polymeric foaming agent (PFA) Poly (MAOBSH) was dried in a vacuum oven at 30 ℃ until the filtered and precipitated into a large excess of diethyl ether constant weight.

< 실험 > 분해온도 촉진 시험 <Experiment> Decomposition temperature promotion test

분해촉진제의 영향은 분해촉진제 Cellex-A와 고분자 발포제를 90:10과 80:20비율로 분말 블렌딩 및 체질 공정 후 분해온도 (Td)와 가스 발생량를 측정하여 결정하였다. The effect of the decomposition promoter was determined by measuring the decomposition temperature (Td) and the amount of gas evolution after the powder blending and sieving process at a ratio of 90:10 and 80:20 to the decomposition accelerator Cellex-A and the polymer blowing agent.

1. 발포 거동 평가1. Evaluation of Foaming Behavior

고분자 발포제(PFA)와 발포제인 OBSH는 분쇄하여 200 mesh 체를 통과하여 입자크기가 74 μm보다 작게 만들어서 사용하였으며, 표 1에 나타낸 것과 같이, OBSH와 고분자 발포제(PFA)를 혼합한 고분자 재료들이 각각 준비되었다. 간략하게, 발포제들과 EVA 배합물은 EVA 수지에 오픈 롤에서 CaCO3, titanium dioxide 및 stearic acid 와 Cellex-A를 투입하여 잘 혼합시켰다. 10분 후 발포제와 DCP(dicumyl peroxide) 가교제를 혼합물에 투입하였고 3분간 추가로 혼합하였다. 롤에 의해 혼합물을 시트로 만든 후 압력 14.71 MPa에서 155~160 ℃ 온도에서 20분간 팽창 가교 또는 가교가 발생하는 밀폐된 몰드에 넣어 가압성형기에서 가열하였다. 발포 시간의 함수로 면적 발포 배율을 평가하기 위해, 배합비 1에 의해 준비된 각각의 고형 시트를 가로 세로가 2.3cm로 잘라서 몰드 안으로 넣고 가열하였다. 고분자들의 기계적 물성들을 측정하기 위해 발포제의 체적발포 배율 수치가 같아야 하며 배합비 1로부터 Tio2가 배제되어야 한다. 따라서, 표 1에 나타나 있듯이 배합 및 가공조건들이 배합비 2로 조정되었다. The polymer foam material (PFA) and the blowing agent OBSH were pulverized and passed through a 200 mesh sieve to make the particle size smaller than 74 μm. As shown in Table 1, the polymer materials mixed with the OBSH and the polymer foam agent (PFA) Ready. Briefly, EVA blends and EVA blends were mixed well with CaCO 3 , titanium dioxide and stearic acid and Cellex-A in an open roll on EVA resin. After 10 minutes, the blowing agent and DCP (dicumyl peroxide) cross-linking agent were added to the mixture and further mixed for 3 minutes. The mixture was formed into a sheet by rolls and then placed in an airtight mold at a pressure of 14.71 MPa at a temperature of 155 to 160 DEG C for 20 minutes to cause expansion crosslinking or crosslinking, followed by heating in a press. In order to evaluate the area expansion ratio as a function of the foaming time, each solid sheet prepared by mixing ratio 1 was cut into a square of 2.3 cm square and heated in a mold. In order to measure the mechanical properties of the polymers, the volume expansion ratio of the blowing agent should be the same and Tio2 should be excluded from the mixing ratio of 1. Therefore, as shown in Table 1, the mixing and processing conditions were adjusted to the blending ratio of 2.

표 1, OBSH 와 그 PFA의 폴리머의 배합 및 가공조건Table 1, blending of polymer of OBSH and its PFA and processing conditions

Figure pat00002
Figure pat00002

< 실험 결과 > <Experimental Results>

1. One. MAOBSHMAOBSH 와 고분자 발포제 And polymer blowing agent PolyPoly (( MAOBSHMAOBSH )의 특성 결정)

도 1은 MAOBSH (a)와 고분자발포제(PFA)인 poly(MAOBSH) (b)의 FT-IR 스펙트럼을 피이크 나타낸 것으로, 고분자발포제(PFA)인 poly(MAOBSH)의 FT-IR 스펙트럼은 특징적인 흡수 피이크(peaks)들 즉 1620cm-1 (C=O 스트레칭 진동), 1440cm-1 (CH2 scissoring), 1400 cm-1 (CH3 scissoring ), OBSH의 결합들 즉 1500 cm-1 (방향족 C=C 스트레칭 진동), 1150 과 1090 cm-1 (스트레칭 진동 O=S=O), 과 900~790 cm-1 (=C-H out-of plane 방향족 진동)을 보였고 동시에 해당 비닐기의 피이크(peak) 1680 cm-1 (비닐 C=C 스트레칭 진동)가 사라졌다. 고분자발포제(PFA)인 poly(MAOBSH) (b)의 1H-NMR 스펙트럼은 방향족 수소 7.3~7.8 ppm, NHNH의 수소 9.9~10.4 ppm, OBSH의 CH3 의 수소는 1.7 ppm와 고분자 주쇄 수소는 0.5~2 ppm를 보였고 동시에 모노머의 비닐기 수소들 피이크(peak) 5.4 와 5.6 ppm는 각각 사라졌다. FIG. 1 shows the FT-IR spectrum of MAOBSH (a) and poly (MAOBSH) (b), which is a polymeric blowing agent (PFA), as peaks. FT- IR spectra of poly (MAOBSH) Peaks, i.e., 1620 cm -1 (C = O stretching vibration), 1440 cm -1 (CH 2 scissoring), 1400 cm -1 (CH 3 scissoring), bonds of OBSH, ), 1150 and 1090 cm-1 (stretching vibration O = S = O) and 900-790 cm-1 (= CH out-of plane aromatic vibration), and the peak of the vinyl group was 1680 cm-1 (Vinyl C = C stretching vibration) disappeared. The 1 H-NMR spectrum of poly (MAOBSH) (b), a polymeric blowing agent (PFA), showed 7.3-7.8 ppm of aromatic hydrogen, 9.9-10.4 ppm of hydrogen in NHNH, 1.7 ppm of CH3 in OBSH and 0.5-2 ppm, and at the same time the peaks of vinyl groups of monomers 5.4 and 5.6 ppm, respectively, disappeared.

2. 발열 분해온도 및 가스발생량2. Exothermic decomposition temperature and gas generation amount

도 2는 OBSH, MAOBSH 및 poly(MAOBSH)의 분해 온도와 가스 발생량 그래프를 나타낸 것으로, 발포제 OBSH, 모노머인 MAOBSH 및 고분자발포제(PFA)인 poly(MAOBSH)에 관한 가스 발생량 그래프에서 5 ℃/min.로 일정한 승온을 가진 분해온도의 함수로써 분석되었다. 도 2에서 알 수 있듯이, 합성된 고분자발포제(PFA)인 poly(MAOBSH)가 일반 발포제 OBSH와 모노머MAOBSH 보다 분해온도가 높고 천천히 분해하였다. 이는 분자량의 증가 및 말단기에 Methacrylic 관능기의 도입에 기인된다고 생각된다. 고분자 발포제(PFA)의 가스 발생량은 260 ℃에서 74ml/g 이었다. 표 2는 발포제(OBSH), 모노머(MAOBSH) 및 고분자발포제(PFA)인 poly(MAOBSH)의 열분해 거동들을 나타내는 것으로, 표 2와 도 3에서 볼 수 있듯이, 고분자 발포제(PFA)인 poly(MAOBSH)(c)은 높은 분해온도와 2차 즉 245 ℃ 및 293 ℃에서 분해 거동을 보였으며, 또한 상업용 OBSH(a) 발포제와 그 모노머 MAOBSH(b)에 비해 완만한 질량 감소를 보였다. 이는 합성된 고분자 주쇄로부터 불안정한 sulfenic acid 가 고온에서 생성되는 사실에 기인된 것이다. FIG. 2 is a graph showing a decomposition temperature and a gas generation amount of OBSH, MAOBSH and poly (MAOBSH), and is a graph showing the gas generation amount graph of OBSH, MAOBSH as a monomer and poly (MAOBSH) as a polymer foam agent (PFA) As a function of decomposition temperature with constant temperature rise. As can be seen from FIG. 2, poly (MAOBSH), a synthesized polymer foam agent (PFA), decomposed more slowly than the general blowing agent OBSH and the monomer MAOBSH. This is believed to be attributable to an increase in the molecular weight and the introduction of a methacrylic functional group into the terminal group. The gas generating amount of the polymer blowing agent (PFA) was 74 ml / g at 260 占 폚. Table 2 shows the pyrolysis behavior of poly (MAOBSH), which is a blowing agent (OBSH), a monomer (MAOBSH) and a polymer foam agent (PFA). As shown in Table 2 and FIG. 3, poly (MAOBSH) (c) showed decomposition behavior at high decomposition temperatures and secondary decompositions at 245 ° C and 293 ° C, and showed a gentle mass reduction compared with the commercial OBSH (a) blowing agent and its monomer MAOBSH (b). This is due to the fact that unstable sulfenic acid is formed at high temperature from the polymer backbone.

표 2 . OBSH, MAOBSH 및 PFA의 열분해능 Table 2. Thermal Resolution of OBSH, MAOBSH and PFA

Figure pat00003
Figure pat00003

제시된 고분자발포제(PFA)인 poly(MAOBSH)의 분해 기구는 반응식 2와 같이 예상된다. The decomposition mechanism of poly (MAOBSH), the proposed polymeric blowing agent (PFA), is expected as shown in Reaction Scheme 2.

반응식 2 : 고분자발포제(Reaction formula 2: Polymer blowing agent ( PFAPFA )인 )sign polypoly (( MAOBSHMAOBSH )의 분해 메커니즘) Decomposition mechanism

Figure pat00004
Figure pat00004

반응식 2에서 볼 수 있듯이, 고분자발포제(PFA)인 poly(MAOBSH)는 polymeric sulfenic acid로 분해될 것으로 예상되었으며 동시에 질소 가스를 방출하는 데, 이것은 발포 주요 가스 성분이다. Polymeric sulfenic acid는 2차로 분해되어 고분자 주쇄로부터 sulfenic acid가 떨어져 나오며 연이어 polymeric disulfide와 thiosulfonate로 disproportionation되어 안정화되었다. 그럼으로, 저분자 OBSH와 달리, 위에서 보였듯이 고분자 발포제의 고형 잔사들은 주로 고분자 생성물들로 구성되어졌다. 이것이 우리가 연구해 온 이유로, 고분자 매트릭스에 상용성을 향상시킬 수 있는 대안의 발포제이다. DSC는 고분자발포제(PFA)인 poly(MAOBSH)가 분해하는 시점에서 생성되는 발열량을 측정할 수 있다. Poly (MAOBSH), a polymeric blowing agent (PFA), was expected to decompose into polymeric sulfenic acid and, at the same time, releases nitrogen gas, which is a major component of the blowing gas. Polymeric sulfenic acid was decomposed in the second order and sulfenic acid was separated from the polymer main chain and subsequently stabilized by disproportionation with polymeric disulfide and thiosulfonate. Thus, unlike low molecular weight OBSH, the solid residue of the polymer blowing agent consisted mainly of polymer products, as shown above. This is an alternative blowing agent that can improve compatibility in polymer matrices because of our research. DSC can measure the calorific value generated at the time when poly (MAOBSH) which is a polymer blowing agent (PFA) decomposes.

도 4와 표2에서 나타나 있듯이, 합성된 고분자발포제(PFA)인 poly(MAOBSH)(c)는 256 ℃의 발열온도를 보였고 저분자 발포제 OBSH(a)와 모노머 MAOBSH(b)와 비교하여 낮은 발열량 287J/g 을 보였다. TGA와 DSC 열분석으로부터 볼 때, 고분자발포제(PFA)인 poly(MAOBSH)(c)의 완만하고 높은 분해온도는 발포전에 혼합 공정에서 발포제의 조기 분해를 일으키지 않게 한다. As shown in FIG. 4 and Table 2, poly (MAOBSH) (c), which is a synthetic polymer foam (PFA), showed a heating temperature of 256 ° C and a low calorific value of 287 J / g. From the TGA and DSC thermal analyzes, the gentle and high decomposition temperature of poly (MAOBSH) (c), a polymeric blowing agent (PFA), does not cause premature decomposition of the blowing agent in the mixing process prior to foaming.

3. 발포 촉진제와 발포 성능에 관한 효과 3. Effects of foaming accelerator and foaming performance

도 5는 고분자발포제(PFA)인 poly(MAOBSH)의 분해에 관한 Stearic acid로 표면 처리된 우레아 (Cellex-A) 발포촉진제의 영향을 함량에 따라 측정하였다. FIG. 5 shows the effect of the Cellex-A foaming promoter surface-treated with stearic acid on the decomposition of poly (MAOBSH), which is a polymer foam agent (PFA), according to the content.

순수한 상태에서, 고분자발포제(PFA)인 poly(MAOBSH)는 245 ℃에서 분해한다. 그러나 고분자발포제(PFA)인 poly(MAOBSH)의 분해온도는 분해촉진제의 첨가에 따라 160 ℃까지 낮아 졌다. 비록 완만하게 분해되었지만 첨가된 분해촉진제의 증가에 따라 분해 온도는 낮아졌다. 왜냐하면 이 발포촉진제는 Zinc Oxide와 zinc p-toluenesulfinate 등 다른 촉진제들 중에서 가장 강한 촉진제이다. 덧붙여, 이 낮아진 분해온도는 발포 공정의 온도와 잘 맞는다. 이는 발포제의 추가 손실이나 추가 가열 없이 효과적인 발포 공정을 만들 수 있다. In its pure state, poly (MAOBSH), a polymeric blowing agent (PFA), decomposes at 245 ° C. However, the decomposition temperature of poly (MAOBSH), which is a polymer blowing agent (PFA), was lowered to 160 ℃ by addition of decomposition accelerator. Although decomposed slowly, the decomposition temperature was lowered with the increase of the added decomposition accelerator. This foam promoter is the strongest promoter among other accelerators such as zinc oxide and zinc p-toluenesulfinate. In addition, this lower decomposition temperature matches the temperature of the foaming process. This can lead to an effective foaming process without additional loss of foaming agent or additional heating.

도 6과 표 1에서 고분자발포제(PFA)인 poly(MAOBSH)의 발포 성능을 시간별 EVA 가압성형에서 보여주었는데, OBSH와 비교할 때, 초기 발포 속도가 늦고 발포배율이 6.7 phr에서 낮았다. 왜냐하면 고분자발포제(PFA)인 poly(MAOBSH)에 sulfonyl hydrazide 관능기 한 개가 methacrylic 기로 치환되었기 때문이다. 그러나 11.9 phr 사용량에서는 동일한 배율을 보였다. 게다가, 동일 발포 체적 배율 하에서 도 7 및 도 8에 나타나 있듯이, 도 7은 OBSH (a)와 poly(MAOBSH)(b)로 통합 EVA 스폰지의 표면 영역의 SEM 이미지를 나타내는 것으로, 상단의 사진은 기포 형성하기 전의 것, 하단의 사진은 발포 후의 사진을 나타낸다.In FIG. 6 and Table 1, the foaming performance of poly (MAOBSH) as a foam blowing agent (PFA) was shown in EVA pressure molding at a time. As compared with OBSH, the initial foaming rate was slow and the foaming magnification was low at 6.7 phr. This is because one of the sulfonyl hydrazide functional groups was substituted with a methacrylic group in poly (MAOBSH), a polymeric blowing agent (PFA). However, it showed the same magnification at 11.9 phr usage. 7 and 8 show SEM images of the surface area of the integrated EVA sponge with OBSH (a) and poly (MAOBSH) (b), and the top photo shows bubble And the photograph at the bottom shows a photograph after foaming.

도 8은 OBSH (a)와 poly(MAOBSH)(b)로 통합 EVA 스폰지의 교차 영역의 SEM 이미지를 나타내는 것으로, 상단의 사진은 기포 형성하기 전의 것, 하단의 사진은 발포 후의 사진을 나타낸다.FIG. 8 shows an SEM image of the cross-sectional area of the integrated EVA sponge with OBSH (a) and poly (MAOBSH) (b), with the top photograph before bubbling and the bottom photograph showing the post-foaming photograph.

따라서, 고분자발포제(PFA)인 poly(MAOBSH)(b)의 표면이 OBSH(a) 보다 더 우수하고 미세한 셀 구조를 보였다. 이는 EVA와의 고분자발포제(PFA)인 poly(MAOBSH)의 향상된 상용성과 새로운 고분자 발포제의 높은 함량 사용에 따른 많은 기핵 사이트들 때문이다. 그러나 고분자 매트릭스와 다른 첨가제들과의 상용성, 완만한 분해 및 가스 발생 특성들이 더 중요한 인자로 생각된다.      Therefore, the surface of poly (MAOBSH) (b), which is a polymer foam (PFA), is superior to OBSH (a) and has a fine cell structure. This is due to the enhanced compatibility of poly (MAOBSH), a polymeric blowing agent (PFA) with EVA, and the use of high content of new polymeric blowing agents. However, compatibility with polymer matrix and other additives, gentle decomposition and gas generation characteristics are considered to be more important factors.

4. 기계적 물성들4. Mechanical Properties

표 3에서 알 수 있듯이, 고분자발포제(PFA)인 poly(MAOBSH)로 혼입된 EVA 발포체의 기계적 물성들은 OBSH가 혼입된 EVA 발포체와 비교할 때, 신장율 및 영구압축 줄음율와 같은 물성들이 우수하고 다른 물성들은 비슷하다. 특히 영구압축 줄음율은 EVA 신발 솔 발포제에 가장 중요한 물성 중에 하나이다. 이런 결과들은 고분자발포제(PFA)인 poly(MAOBSH)의 완만한 분해와 고분자형태의 도입에 기인되었다. 왜냐하면 methacrylic 고분자들은 극성 관능기를 갖고 있어 혼합 공정 중에 EVA와의 상용성이 더 우수하고 접착 본딩이 더 양호하기 때문이다. As can be seen in Table 3, the mechanical properties of EVA foams incorporated with poly (MAOBSH), a polymeric blowing agent (PFA), are superior to those of EVA foams containing OBSH, such as elongation and permanent compression ratio, Similar. In particular, the permanent compression ratio is one of the most important physical properties for EVA shoe soles. These results were attributed to the gradual decomposition of poly (MAOBSH), a polymeric blowing agent (PFA) and the introduction of polymer forms. Because methacrylic polymers have polar functional groups, they are more compatible with EVA during the mixing process and have better adhesive bonding.

표 3. EVA 스폰지(Sponge)의 기계적 성질 (Based on Formulation 2) Table 3. Mechanical properties of EVA sponge (Based on Formulation 2)

Figure pat00005
Figure pat00005

5. 5. 모폴로지Morphology 연구( Research( MorphologicalMorphological studiesstudies ))

도 7에서와 같이, 고분자발포제(PFA)인 poly(MAOBSH)(b)가 혼입된 EVA의 표면은 균일하고 깨끗하고 부드럽다. 이는 OBSH(a)에 비해 고분자발포제(PFA)인 poly(MAOBSH)(b)가 EVAR과 다른 첨가제들과 상용이 더 우수하다는 것을 의미한다. OBSH가 혼합된 EVA 재료는 표면이 울퉁불퉁하고 깨끗하지 않고 거칠었다. 이는 EVA와의 상용성이 나쁘다는 의미이다. 고분자발포제(PFA)인 poly(MAOBSH)의 완만한 분해는 발포 후에도 깨끗하고 부드러운 표면을 유지하였다. 고분자발포제(PFA)인 poly(MAOBSH)가 혼입된 EVA 발포제에서의 평균 셀 크기는 240 ㎛으로 SEM 통계적인 이미지 분석에 의해 측정되었다. As shown in Fig. 7, the surface of the EVA in which poly (MAOBSH) (b), which is a polymeric blowing agent (PFA), is uniform is clean, smooth and smooth. This means that poly (MAOBSH) (b), a polymeric blowing agent (PFA), is more compatible with EVAR and other additives than OBSH (a). The EVA material mixed with OBSH had a rough, rough surface that was uneven. This means that compatibility with EVA is poor. The gentle decomposition of poly (MAOBSH), a polymeric blowing agent (PFA), maintained a clean and smooth surface even after foaming. The average cell size in the EVA foaming agent containing poly (MAOBSH), a polyolefin foam (PFA), was measured by SEM statistical image analysis at 240 ㎛.

이것은 OBSH가 혼입된 EVA 발포제의 평균 사이즈 320 ㎛보다 작았다. 이는 고분자발포제(PFA)인 poly(MAOBSH)로 혼입된 EVA 발포제의 단면 셀 구조는 미세하였는데, 이는 EVA와의 고분자발포제(PFA)인 poly(MAOBSH) 사이의 상용성이 개선되었기 때문이다(도 8 참조). This was smaller than the average size of the EVA blowing agent containing OBSH of 320 占 퐉. This is because the cross-sectional cell structure of the EVA blowing agent mixed with poly (MAOBSH), which is a polymer blowing agent (PFA), was finer because the compatibility between poly (MAOBSH), a polymer blowing agent (PFA) with EVA was improved ).

상기 실험결과를 종합하면, 열에 의해 분해될 수 있는 sulfonylhydrazide 관능기를 가지는 새로운 모노머 MAOBSH와 그 고분자발포제(PFA)인 poly(MAOBSH)는 합성되었고 특성 결정되었다. 합성된 고분자발포제(PFA)인 poly(MAOBSH)는 분해온도가 높았고 완만한 질량 감소 거동을 보였다. 발포 시험에서, 고분자 발포제가 혼입된 EVA재료의 표면이 더 우수하였고 미세한 셀 구조와 신장율과 영구압축 줄음율과 같은 기계적인 물성들이 더 우수하였다. As a result of the above experimental results, a novel monomer MAOBSH having a sulfonylhydrazide functional group decomposable by heat and its poly (MAOBSH) as a foam blowing agent (PFA) were synthesized and characterized. Poly (MAOBSH), a synthetic polymer foam (PFA), exhibited a high decomposition temperature and a gentle mass reduction behavior. In the foaming test, the surface of the EVA material containing the polymer blowing agent was better, and the mechanical properties such as the fine cell structure, the elongation and the permanent compressive strain were better.

이는 OBSH 보다 상용성이 더 양호하였고 많은 기핵 사이트 때문이었다. 본 발명에서는 고분자 발포제의 혼합 공정 중에 조기 발포가 없으며 발포 온도가 조절 가능하며 상대적으로 고분자들과 상용성이 우수한 장점들을 가진 새로운 고분자 발포제에 관한 것으로 차기 연구는 입자 크기에 관한 효과 및 셀크기 이방성, 셀 밀도 등과 같은 상세한 모폴로지 분석에 중점적으로 초점을 둘 예정이다.      This was more compatible with OBSH and was due to many nucleus sites. The present invention relates to a novel polymer blowing agent having advantages of being free from premature foaming during the mixing process of a polymer foaming agent, having a controlled foaming temperature and being relatively compatible with polymers, Cell density and other details of the morphology analysis.

Claims (2)

슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법에 있어서, 설포니 하이드라이즈(Sulfonyl Hydrazide) 관능기를 포함하는 MAOBSH {methacryloyl oxybis(benzenesulfonyl hydrazide)}는 MAC(methacryloyl chloride)와 OBSH {oxybis(benzenesulfonyl hydrazide)}와의 반응에 의해 합성되어지는 것으로, 먼저, 용매 THF (Tetrahydrofuran) 140 ㎖ 에 0.07 ㏖의 OBSH 25g, 0.0035 ㏖의 TEA (Triethylamine) 0.5 ㎖ 및 0.01g의 하이드로퀴논(hydroquinone)을 넣어 교반한 용액에 0.0745 ㏖의 MAC(methacryloyl chloride) 8 ㎖를 천천히 적가하여 온도가 40℃ 이상 급격히 상승하지 않도록 하였고, 적가 후, 증류수 20 ㎖에 0.07 ㏖의 중탄산나트륨 5.8 g 을 넣어 용해한 용액에 투입하였으며, 상기 과정 중에 용액은 투명한 색깔로 바뀌고 플라스크에서 층분리가 있어 나면, 반응을 종료시킨 후, 층분리하여 유기층을 건조하여, THF (Tetrahydrofuran) 용제를 휘발시킴으로 순수한 MAOBSH {methacryloyl oxybis (benzenesulfonyl hydrazide)}가 합성되어짐을 특징으로 하는 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법       BACKGROUND ART In a method for producing a polymer blowing agent containing sulfonyl hydrazide, MAOBSH {methacryloyl oxybis (benzenesulfonyl hydrazide)} containing a sulfonyl hydrazide functional group is reacted with methacryloyl chloride (MAC) and OBSH {oxybis First, 25 g of 0.07 mol OBSH, 0.5 ml of TEA (Triethylamine) and 0.01 g of hydroquinone are added to 140 ml of a solvent THF (Tetrahydrofuran), which is synthesized by a reaction with benzenesulfonyl hydrazide} To the stirred solution, 0.0745 mol of MAC (methacryloyl chloride) 8 ml was slowly added dropwise to prevent the temperature from rising sharply above 40 ° C. After dropping, 20 ml of distilled water was added with 5.8 g of sodium bicarbonate (0.08 mol) During the above process, the solution is turned into a transparent color. When the layer is separated from the flask, the reaction is terminated and the organic layer is dried by layer separation, A method for producing a polymer blowing agent comprising sulfonyl hydrazide characterized in that pure MAOBSH {methacryloyloxybis (benzenesulfonyl hydrazide)} is synthesized by volatilizing THF (tetrahydrofuran) solvent 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법에 있어서, 용매 THF (Tetrahydrofuran) 40 ㎖에 9.36 mmol의 MAOBSH {methacryloyl oxybis(benzenesulfonyl hydrazide)} 4 g과 0.187 mmol의 AIBN (Azobisisobutyronitrile) 0.06 g을 넣은 용액을 건조할 내열유리중합반응기(Pyrex polymerization vessel)에 투입하였다.
상기 반응기는 순수 질소가스로 정제(purging)하여 두 번 가스를 뺀 후, 밀봉하였고 수온조에서 70 ℃에서 24시간 동안 정치하였으며, 고분자 발포제(PFA)인 Poly(MAOBSH)는 과량의 diethyl ether에 침전시켜 여과하고, 항량이 될 때까지 30℃의 진공 오븐에서 건조하여, 고분자발포제(PFA)인 poly(MAOBSH)가 합성되어짐을 특징으로 하는 슬포니 하이드라이즈(Sulfonyl Hydrazide)를 포함하는 고분자 발포제의 제조방법
In a method for producing a polymer blowing agent containing sulfonyl hydrazide, 4 g of 9.36 mmol of MAOBSH {methacryloyloxybis (benzenesulfonyl hydrazide)} and 0.187 mmol of AIBN (Azobisisobutyronitrile) in a solvent THF (Tetrahydrofuran) g was placed in a Pyrex polymerization vessel to be dried.
The reactor was purged with pure nitrogen gas and the gas was removed twice. The reactor was then sealed at 70 ° C for 24 hours in a water bath. Poly (MAOBSH), a polymer foam agent (PFA), was precipitated in excess diethyl ether , And filtered and dried in a vacuum oven at 30 ° C. until a constant weight was obtained to synthesize poly (MAOBSH) as a polymer foam agent (PFA), to prepare a polymer blowing agent containing a sulfonyl hydrazide Way
KR1020120131305A 2012-11-20 2012-11-20 Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide KR101518698B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120131305A KR101518698B1 (en) 2012-11-20 2012-11-20 Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120131305A KR101518698B1 (en) 2012-11-20 2012-11-20 Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide

Publications (2)

Publication Number Publication Date
KR20140064226A true KR20140064226A (en) 2014-05-28
KR101518698B1 KR101518698B1 (en) 2015-05-08

Family

ID=50891706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120131305A KR101518698B1 (en) 2012-11-20 2012-11-20 Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide

Country Status (1)

Country Link
KR (1) KR101518698B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107949A1 (en) * 2017-12-01 2019-06-06 주식회사 동진쎄미켐 Foaming agent having less foul odor produced therefrom and foamed body made therewith

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180067153A (en) 2016-12-12 2018-06-20 주식회사 동진쎄미켐 Blowing agent composition containing triaminoguanidine salt compound
KR102540597B1 (en) * 2020-11-03 2023-06-12 주식회사 금양 Eco-friendly manufacturing method of foaming agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041545A (en) * 1989-04-06 1991-08-20 Atochem North America, Inc. 2-hydroxybenzophenone hydrazides and derivatives thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107949A1 (en) * 2017-12-01 2019-06-06 주식회사 동진쎄미켐 Foaming agent having less foul odor produced therefrom and foamed body made therewith

Also Published As

Publication number Publication date
KR101518698B1 (en) 2015-05-08

Similar Documents

Publication Publication Date Title
JP6320407B2 (en) Ethylene / α-olefin / polyene composition
CN1120184C (en) Vinyl alcohol polymer and its composition
TW593469B (en) Cross-linked foam structures of essentially linear polyolefins and process for manufacturing
US7939573B2 (en) Modified blowing agent surface-treated with metallic siloxylated compound and polymer resin composition including the same
JP6408481B2 (en) Ethylene / α-olefin / non-conjugated polyene composition and foam formed therefrom
KR101518698B1 (en) Manufacturing methods of polymer foaming agent that includes a Sulfonyl Hydrazide
US11084782B2 (en) Gas generating agent, and method for producing foam using the same
US2592526A (en) Process for polymerizing ethylene in aqueous emulsion
Ahn et al. Nanocomposite membranes consisting of poly (vinyl chloride) graft copolymer and surface-modified silica nanoparticles
US9505778B2 (en) Monomers, polymers and articles containing the same from sugar derived compounds
Jeong et al. Synthesis and characterization of polymeric foaming agent containing sulfonyl hydrazide moiety
US20220195160A1 (en) Polyethylene copolymers and terpolymers for shoes and methods thereof
Jeong et al. Synthesis and decomposition performance of a polymeric foaming agent containing a sulfonyl hydrazide moiety
CN102888015A (en) Composite foaming agent and polypropylene foam material prepared from same
EP4446350A1 (en) Hollow particles, method for producing hollow particles, and resin composition
CN113956543B (en) Hyperbranched ionic liquid/CNFs hybrid particle, microporous foaming flame retardant TPV and preparation method thereof
CN114149528B (en) Fluorine-containing hyperbranched polyethylene copolymer and preparation method thereof as well as preparation method of PVDF-based dielectric composite material
TW202319473A (en) Dynamically crosslinkable polymeric compositions, articles, and methods thereof
KR101217865B1 (en) A method for modifying a blowing agent
Wang et al. A novel and facile approach for preparing composite core–shell particles by sequentially initiated grafting polymerization
Smith et al. Synthesis of polyurethane particles in supercritical carbon dioxide using organocatalysts or organocatalytic surfactants
EP4458868A1 (en) Hollow particle
JP2011042733A (en) Method for producing oxygen-containing polyolefin and carbonyl group-containing polyolefin obtained by the method
Chanawannakul et al. Chlorohydrination of Natural Rubber Latex using N-chlorosuccnimide for Fuel-resistant Materials
US20230399449A1 (en) Polymer polyol and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180502

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 5