Nothing Special   »   [go: up one dir, main page]

KR20140005009A - Pressure nitriding heat treatment process - Google Patents

Pressure nitriding heat treatment process Download PDF

Info

Publication number
KR20140005009A
KR20140005009A KR1020120072694A KR20120072694A KR20140005009A KR 20140005009 A KR20140005009 A KR 20140005009A KR 1020120072694 A KR1020120072694 A KR 1020120072694A KR 20120072694 A KR20120072694 A KR 20120072694A KR 20140005009 A KR20140005009 A KR 20140005009A
Authority
KR
South Korea
Prior art keywords
heat treatment
gas
pressure
vacuum environment
vacuum
Prior art date
Application number
KR1020120072694A
Other languages
Korean (ko)
Other versions
KR101414253B1 (en
Inventor
박재용
Original Assignee
주식회사 하이박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이박 filed Critical 주식회사 하이박
Priority to KR1020120072694A priority Critical patent/KR101414253B1/en
Publication of KR20140005009A publication Critical patent/KR20140005009A/en
Application granted granted Critical
Publication of KR101414253B1 publication Critical patent/KR101414253B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The present invention provides a vacuum nitration heat treatment process capable of obtaining effects of reducing costs, gas, and energy with short processes and low processing temperature; enabling nitrification treatment of high quality in a clean process; minimizing deformation of products by nitrifying the products in vacuum in order to maintain the good quality; and being used for various proposes by enabling the products to be widely used.

Description

진공 질화 열처리 방법{pressure nitriding heat treatment process}[0001] The present invention relates to a vacuum nitriding heat treatment process,

본 발명은 진공 질화 열처리 방법에 관한 것으로서, 더욱 상세히는 낮은 공정온도 및 짧은 공정으로 비용 및 가스, 에너지 절감 효과를 득할 수 있으며, 무공해 청정 공정, 고품질의 질화 처리가 가능하며, 진공분위기 하에서 질화처리토록 하여 제품의 변형을 최소화하고 좋은 품질을 유지할 수 있고, 적용 제품을 범용화하여 다목적으로 사용이 가능함은 물론 후처리가 불필요하고 고부가가치를 창출할 수 있도록 한 진공 질화 열처리 방법을 제공코자 하는 것이다.
The present invention relates to a vacuum nitriding heat treatment method, and more particularly, to a vacuum nitriding heat treatment method which can obtain cost, gas and energy saving effects by a low process temperature and a short process, and can perform a pollution-free cleaning process, a high quality nitriding process, It is intended to provide a vacuum nitriding heat treatment method capable of minimizing deformation of a product and maintaining a good quality, generalizing the application product, enabling multi-purpose use, as well as creating a high added value without requiring post-treatment.

질화(nitriding)란, 활성화 질소를 강 중에 확산시켜 강 표면에 고경도 질화층을 얻는 표면처리 기술이다.Nitriding is a surface treatment technique in which activated nitrogen is diffused into a steel to obtain a hardened nitrided layer on a steel surface.

이러한 질화를 강에 행할 경우 내마모성, 내피로성, 고온 강도 및 내식성을 향상시키며 변태점 이하의 저온에서 처리가 가능하여 열변형이 적어 정밀 부품, 자동차 부품, 금형 등에 널리 사용되고 있다. 또한, 질화는 코팅층의 밀착력을 향상시키며 하지층 경화에 우수한 성질을 보여 복합처리에 적용이 증대되고 있는 실정이다.When such nitriding is carried out in steel, it is widely used for precision parts, automobile parts, and molds because it can be treated at low temperature below the transformation point, improving wear resistance, fatigue resistance, high temperature strength and corrosion resistance. In addition, nitriding improves the adhesion of the coating layer and is excellent in hardening of the undercoat layer, and thus application to the complex treatment is increasing.

한편, 질화는 침탄과 비교할 시에 적용 강종의 범위가 넓고, 처리온도 역시 침탄의 경우 850~950℃에서 이루어지나 질화는 460~600℃ 범위에서 이루어지며, 추가 열처리 및 후처리도 필요하지 않다.(어닐링 효과 포함)On the other hand, nitriding has a wide range of applied steel in comparison with carburizing, and the treatment temperature is also in the range of 850 to 950 ° C for carburizing, but in the range of 460 to 600 ° C for nitriding, and further heat treatment and post treatment are not necessary. (Including annealing effect)

그리고 경화 깊이는 침탄의 경우 0.4~1.5mm로 깊으나, 질화는 0.01~0.03mm로 얇다는 특징이 있고, 내충격성(인성) 역시 침탄은 취약하나 질화는 보통이다.And the depth of hardening is 0.4 ~ 1.5mm deep in carburizing, but it is characterized by thinness of 0.01 ~ 0.03mm in nitriding. Impact resistance (toughness) is also poor in carburizing but nitriding is common.

특히 변형은 침탄이 큰 반면에 질화는 저온공정으로 인해 극소이며, 내식성은 침탄의 경우 높은 탄소 함유로 스트레스 코로이젼 크랙킹(stress corrosion cracking) 유발로 보통이지만, 저탄소강의 내식성 향상으로 우수하며, 내마모성 역시 침탄에 비해 우수하다.Particularly, while the deformation is largely carburized, the nitriding is very small due to the low-temperature process, and the corrosion resistance is the high carbon content in the case of carburizing, which is usually caused by stress corrosion cracking. However, the corrosion resistance is improved by improving the corrosion resistance of the low carbon steel, It is also better than carburizing.

질화는 크게 가스질화, 염욕질화, 이온질화가 나누어지는바, 가스질화의 경우 높은 경도, 내마모성, 피로강도, 대용량 가능, 형상의 제약이 적은 장점이 있으나, 암모니아(독성가스) 사용제어의 어려움 및 장시간 소요, 전용 강종이 필요하다는 단점을 안고 있었으며, 염욕질화는 단시간, 내소착성, 피로강도, 강종 제한이 없고 설비비 적음, 어떤 형상도 적용이 가능한 장점이 있지만, 배수처리에서 CN-제거 대책, 환경오염과 백색층에 포러스(Porous) 층이 과잉한 문제, 반복 질화 시 소재 경도가 저하되는 문제점이 있다.The nitriding is divided into gas nitriding, salt bath nitriding, and ion nitriding. In the case of gas nitriding, however, it is advantageous in that it has high hardness, abrasion resistance, fatigue strength, large capacity and shape restriction. However, it is difficult to control the use of ammonia (toxic gas) And it is necessary to use special steel for long time. The salt bathing is advantageous in that it can be applied in any shape, without short time, resistance to sickness, fatigue strength, rigidity, and facility cost. However, There is a problem that the countermeasure, environmental pollution, the problem of excessive porosity layer in the white layer, and the hardness of the material in the case of repeated nitriding are reduced.

이온질화는 질화성 양호, 공정 제어 및 상 제어의 용이성, N2 가스를 사용하는 장점이 있지만, 제품(질화 대상물) 상호간 전계 영향, 온도 균일도 문제, 아크 발생, 미세 홀(hole)에 질화가 어려운 단점이 있다.
Ion nitration is advantageous in that nitriding is good, process control and phase control are easy, and N 2 gas is used. However, there is a problem in that it is difficult to nitrify a product (nitriding object) There are disadvantages.

기존에도 제품을 질화 열처리로를 사용하여 질화를 행하고 있으나, 질화시 정확한 플럭스(flux)량의 조절이 어려움이 있어, 그로 인해 상조절의 어려움이 수반되었던 것이다.In the conventional method, the product is nitrided by using a nitriding heat treatment furnace, but it is difficult to control the amount of flux in the nitriding process.

그리고 대기압 질화 및 염욕 질화 시 사용 가스량과 오염 물질의 사용문제도 간과할 수 없고, 화합물층 형성시 질소의 강 내부로의 확산속도는 100배에서 10,000배까지 감소하게 되며, 대기압 질화의 경우 장입량 등을 고려하지 않고 시간당 10,000리터 정도의 가스를 사용하고 있는 실정이다.In addition, atmospheric nitrification and nitrification of the salt bath can not be neglected, and the diffusion rate of nitrogen into the steel is reduced from 100 times to 10,000 times during the formation of the compound layer. In case of atmospheric pressure nitrification, The gas is used in an amount of about 10,000 liters per hour without consideration.

또한, 대기압 금속 열처리시 발생하는 유해환경(화염, 분진, 가스, 소음 등)이 발생하는 점과 함께 오일 및 염욕 사용 시 발생하는 화재 및 인재와 같은 위험 요인을 안고 있었던 것이다.
In addition, the hazardous environment (flame, dust, gas, noise, etc.) generated during the atmospheric pressure metal heat treatment occurred, and there were risk factors such as fire and talent when using oil and salt bath.

대한민국 특허 공개번호 10-2011-0126229Korean Patent Publication No. 10-2011-0126229 대한민국 특허 공개번호 10-2002-0088935Korean Patent Publication No. 10-2002-0088935

이에 본 발명에서 제공하는 진공 질화 열처리 방법은 낮은 공정온도 및 짧은 공정시간으로 침탄을 대체하여 낮은 공정 비용 및 가스 및 에너지 절감을 도모할 수 있도록 하는 것이다.Therefore, the vacuum nitriding heat treatment method provided by the present invention can replace carburization at a low process temperature and a short process time, thereby reducing the process cost, gas and energy.

또한, 암모니아 가스 사용을 최소화하여 무공해 청정 공정으로 이루어지는 진공 질화 열처리 방법을 제공코자 한다.
In addition, it is intended to provide a vacuum nitriding heat treatment method which minimizes the use of ammonia gas and which is made of a pollution-free cleaning process.

본 발명에서 제공하는 진공 질화 열처리 방법은 질화 열처리코자 하는 제품을 열처리로의 히터챔버 내부로 투입한 후 열처리로 내부의 가스를 외부로 배출시켜 중진공 상태의 진공분위기를 조성하는 공정과;In the vacuum nitridation heat treatment method provided in the present invention, a product to be subjected to nitridation heat treatment is introduced into a heater chamber of a heat treatment furnace, and then a gas inside the heat treatment furnace is discharged to the outside to form a vacuum atmosphere in a medium vacuum state.

열처리로 내부가 중진공의 진공분위기가 조성되면 질소가스를 투입하여 대기압 이상의 압력을 갖도록 조성하는 공정과;Forming a vacuum atmosphere of a medium vacuum in the inside of the heat treatment furnace so as to have a pressure higher than atmospheric pressure by injecting nitrogen gas;

히터챔버 내부의 히터를 가동하여 내부 온도를 가온하면서 벤트를 개폐하여 일정 압력으로 유지하는 공정과;Operating the heater in the heater chamber to open and close the vent while keeping the internal temperature at a constant pressure;

열처리로 내부의 질소가스를 배기, 감압시켜 중진공 환경을 조성하는 공정과;Exhausting and reducing the nitrogen gas in the heat treatment furnace to form a medium vacuum environment;

조성된 중진공 환경에 아산화질소가스를 투입, 내부 압력을 승압시켜 저진공 환경을 조성하고 히터를 가동하여 내부를 가온시키는 산화공정과;An oxidation process in which nitrous oxide gas is introduced into the formed vacuum environment to raise the internal pressure to create a low vacuum environment and the heater is operated to warm the interior;

아산화질소가스(N2O)를 배기시킨 후 내부 압력을 감압하여 중진공 환경을 조성하고, 조성된 중진공 환경에 암모니아가스(NH3)를 투입, 승압시켜 저진공 환경에서 히팅하는 환원공정과;A reducing step of evacuating nitrous gas (N 2 O), decompressing the internal pressure to create a medium vacuum environment, adding ammonia gas (NH 3 ) to the formed vacuum environment, boosting the pressure, and heating in a low vacuum environment;

암모니아가스와 아산화질소가스를 연속 동시 투입하여 히터챔버 내부에서 상호 혼합시키며 히터챔버 내부 압력을 일정 압력으로 조절하여 제품에 소정 두께의 질화층을 형성하는 질화공정과;A nitriding step of continuously injecting ammonia gas and nitrous oxide gas into the heater chamber and mixing them in the heater chamber and adjusting a pressure inside the heater chamber to a predetermined pressure to form a nitride layer having a predetermined thickness on the product;

히터챔버 내부에서 혼합된 암모니아가스와 아산화질소가스를 배기, 감압하여 중진공 환경을 조성하는 공정과;Exhausting and reducing the mixed ammonia gas and nitrous oxide gas in the heater chamber to form a medium vacuum environment;

중진공 환경에서 질소가스를 투입하여 승압, 냉각을 행한 후 질소가스를 대기로 배기시키고 제품을 인출하는 공정을 포함하는 것을 특징으로 한다.
A step of injecting nitrogen gas in a medium vacuum environment to increase pressure and cooling, and then evacuating nitrogen gas to the atmosphere and withdrawing the product.

본 발명에서 제공하는 진공 질화 열처리 방법은 제품을 진공분위기 하에서 100~300 torr의 진공에서 정확한 플럭스량을 조절하여 상 조절 및 표면 품질의 조절이 가능하며, 진공분위기에서 질화를 행하도록 하여 기존의 질화에 비해 60~70% 수준의 공정으로 단축할 수 있고, 가스 사용량은 기존에 비해 1/10 수준으로 질화처리가 가능하고, 후교정 및 후가공이 불필요한 질화 열처리가 가능하는 등 다수의 효과를 제공할 수 있는 것이다.
The vacuum nitriding heat treatment method provided in the present invention is capable of adjusting the phase control and surface quality by adjusting the amount of flux in a vacuum of 100 to 300 torr under a vacuum atmosphere and performing nitriding in a vacuum atmosphere, , It is possible to shorten the process to 60 ~ 70% level compared with the conventional process, and it is possible to nitrificate the gas to a level about 1/10 of that of the conventional process, and to perform a nitriding heat treatment requiring no post- You can.

도 1은 본 발명을 실현하기 위한 열처리로 예시도
도 2는 도 1의 작용 예시도
도 3은 본 발명에서 제공하는 진공 질화 열처리 공정에 있어서, 단계별 상태 및 온도 범위를 도시한 그래프
Fig. 1 is a view showing an example of a heat treatment furnace for realizing the present invention
Fig. 2 is an operational example of Fig. 1
FIG. 3 is a graph showing the state and temperature range of each step in the vacuum nitridation heat treatment process provided by the present invention

본 발명에서 제공하는 진공 질화 열처리 방법은 제품을 진공분위기에서 100~300 torr의 진공에서 정확한 플럭스(flux)량을 조절하여 상 조절 및 표면 품질의 조절이 가능토록 한 것을 특징으로 한다.The vacuum nitriding heat treatment method provided in the present invention is characterized in that the product can control the phase and the surface quality by controlling the flux amount in a vacuum of 100 to 300 torr in a vacuum atmosphere.

또한 본 발명은 진공분위기에서 질화를 행하도록 하여 기존의 질화에 비해 60~70% 수준의 공정으로 단축할 수 있도록 하고, 가스 사용량은 기존에 비해 1/10 수준으로 가능하고, 후교정 및 후가공이 불필요한 질화 열처리로를 제공하는 것을 특징으로 한다.Further, according to the present invention, it is possible to shorten the process to a level of 60 ~ 70% compared to the conventional nitriding by performing nitriding in a vacuum atmosphere, and the gas consumption can be reduced to 1/10 level compared with the conventional nitriding process. Thereby providing an unnecessary nitriding heat treatment furnace.

본 발명의 바람직한 실시예를 이하 첨부된 도면과 함께 상세히 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 진공 질화 열처리 방법을 설명하기 위해, 상기 공정을 수행하기 위한 열처리로본체(10)의 구성 설명을 행한 후 공정을 설명키로 한다.
In order to explain the vacuum nitriding heat treatment method of the present invention, a description will be given of the steps after the description of the constitution of the heat treatment furnace body 10 for carrying out the above process.

열처리로본체(10)의 내부에는 진공 히터챔버(20)가 전후 개폐문(30)(40)으로 개폐 가능하게 설치되고, 상기 히터챔버(20) 내부에는 수개의 전극(22)과 연결되는 히터(21)를 설치하여 제품(400)을 가열토록 한다.A vacuum heater chamber 20 is provided inside the heat treatment furnace body 10 so as to be openable and closable by the front and rear door openings 30 and 40. The heater chamber 20 is provided with a heater 21) to heat the product (400).

그리고 열처리로본체(10) 일 측으로는 열처리로본체(10) 내부를 진공분위기로 조성할 수 있도록 진공펌프(미도시)와 연결되는 벤트(50)가 설치된다.A vent 50 connected to a vacuum pump (not shown) is installed on one side of the heat treatment furnace 10 so that the inside of the heat treatment furnace 10 can be formed in a vacuum atmosphere.

상기 히터챔버(20) 내부로 투입되는 작용기체 중 아산화질소(N2O)와 암모니아(NH3)를 투입하기 위한 가스투입관(60)이 설치되며, 상기 가스투입관(60)은 아산화질소(N2O) 및 암모니아(NH3)를 별도로 투입할 수 있도록 이중관체로 이루어진다.A gas inlet pipe 60 for introducing nitrous oxide (N 2 O) and ammonia (NH 3 ) is installed in the working gas introduced into the heater chamber 20, and the gas inlet pipe 60 is made of nitrous oxide (N 2 O) and ammonia (NH 3 ) separately.

열처리로본체(10) 내부로 제품의 질화를 위해 질소(N2) 가스를 투입하기 위한 질소가스투입관(70)이 형성된다.A nitrogen gas inlet pipe 70 for introducing nitrogen (N 2 ) gas for nitriding the product is formed in the heat treatment furnace body 10.

상기 전후의 개폐문(3)(40)은 각각 개폐실린더(31)(41)에 의해 개폐작동이 이루어지도록 한다.The front and rear doors (3) and (40) are opened and closed by the open / close cylinders (31) and (41), respectively.

상기 후방 개폐문(40)에는 히터챔버(20) 내부의 가스를 원활하게 대류작용시키기 위한 컨벡션터빈(convection turbine; 80)이 설치되며, 상기 컨벡션터빈(80)에 의해 가스를 열처리로본체(10) 내부에서 순환시킬 수 있는 팬(81)이 히터챔버(20) 내측으로 위치하도록 설치된다.The rear opening and closing door 40 is provided with a convection turbine 80 for smoothly causing the gas in the heater chamber 20 to be convectively operated and the gas is introduced into the heat treatment furnace body 10 by the convection turbine 80, A fan 81 capable of circulating therein is installed so as to be located inside the heater chamber 20.

그리고 상기 컨벡션터빈(80)을 냉각수로 냉각시키기 위한 쿨링챔버(cooling chamber; 90)가 컨벡션터빈(80)의 외측으로 형성된다.A cooling chamber 90 for cooling the convection turbine 80 with cooling water is formed outside the convection turbine 80.

상기 컨벡션터빈(80)은 후방 개폐문(40)과 고정되어 있어 개폐문(40)이 개폐실린더(41)에 의해 각 운동하며 개폐작동이 될 시에 컨벡션터빈(80)을 냉각하기 위한 쿨링챔버(90)에 냉각수를 공급하기 위한 냉각수공급관(100)은 열처리로본체(10)의 상부 일측으로 경사지게 배관이 되어 있어, 냉각수공급관(100)과 열처리로본체(10) 사이에 기밀을 유지하기 위해 신축이 가능한 소재를 사용하여 자바라 형으로 구성된 자유굴곡관(200)가 플랜지이음으로 설치된다.The convection turbine 80 is fixed to the rear opening and closing door 40 so that the opening and closing door 40 is angularly moved by the opening and closing cylinder 41. When the opening and closing door 40 is opened and closed, The cooling water supply pipe 100 for supplying the cooling water to the heat treatment furnace main body 10 is inclined to one side of the upper part of the heat treatment furnace body 10 so that the expansion and contraction is performed to maintain airtightness between the cooling water supply pipe 100 and the heat treatment furnace body 10. [ A free bending tube 200 constructed of a bellows type using a possible material is installed by flange jointing.

상기 냉각수공급관(100) 역시 이중관으로 형성되어 컨벡션터빈(80)을 냉각하는 냉각수가 공급 및 배출될 수 있도록 한다.
The cooling water supply pipe 100 is also formed as a double pipe so that cooling water for cooling the convection turbine 80 can be supplied and discharged.

상기 구성을 갖는 진공 질화 열처리로를 사용하여 본 발명의 진공 질화 열처리 방법을 하기와 같은 순서를 거쳐 열처리가 이루어지며, 이를 이하에 상세히 설명키로 한다.The vacuum nitridation heat treatment method of the present invention using the vacuum nitridation heat treatment furnace having the above-described structure is subjected to heat treatment through the following procedure, which will be described in detail below.

우선 질화 열처리를 행하고자 하는 제품(400)을 전방 개폐문(30)의 개폐실린더(31)를 작동시켜 개방시킨 후 히터챔버(20) 내부로 제품(400)을 투입한 후 개폐문(30)을 폐쇄시킨다.The product 400 to be subjected to the nitriding heat treatment is operated by opening and closing the cylinder 31 of the front door 30 and then the product 400 is inserted into the heater chamber 20 and then the door 30 is closed .

진공펌프(미도시)를 가동하여 벤트(50)를 통해 열처리로본체(10) 내부의 가스를 외부로 배출시켜 중진공 상태의 진공분위기를 조성한다.A vacuum pump (not shown) is operated to discharge the gas inside the heat treatment furnace 10 to the outside through the vent 50, thereby creating a vacuum atmosphere in a medium vacuum state.

열처리로본체(10) 내부가 중 진공의 진공분위기가 조성되면 질소가스투입관(70)을 통해 질소가스를 투입하여 대기압(765 torr) 이상의 압력을 갖도록 조성한다.When the inside of the heat treatment furnace body 10 is evacuated to a vacuum atmosphere of a medium vacuum, nitrogen gas is introduced through a nitrogen gas inlet pipe 70 so as to have a pressure of atmospheric pressure (765 torr) or more.

히터챔버(20) 내부의 히터(21)를 가동하여 내부 온도가 가온되면서 열처리로본체(10) 압력이 높아지면 벤트(50)를 개방하여 원하는 압력에 이를 때까지 배기를 행한 후 벤트(50)를 폐쇄하여 히터챔버(20) 내부 압력을 설정 압력으로 조절토록 한다.When the pressure of the heat treatment furnace 10 is increased while the internal temperature is increased by operating the heater 21 in the heater chamber 20, the vent 50 is opened to exhaust the exhaust gas until a desired pressure is reached, So as to adjust the internal pressure of the heater chamber 20 to the set pressure.

차기 산화공정을 위해 질소가스를 벤트(50)를 통해 배기시켜 감압되도록하여 중진공 환경을 조성한 후 아산화질소가스를 가스투입관(60)을 통해 투입하여 히터챔버(20) 내부의 압력을 승압시켜 저 진공 환경을 조성하고 히터(21)를 가동하여 내부를 가온시킨다.A nitrogen gas is exhausted through a vent 50 to reduce the pressure to create a medium vacuum environment. Subsequently, nitrous oxide gas is introduced through the gas inlet pipe 60 to increase the pressure inside the heater chamber 20, A vacuum environment is established and the heater 21 is operated to warm the inside.

상기한 산화공정이 종료되면 차기 환원공정을 위해 아산화질소가스(N2O)를 벤트(50)를 통해 배기시킨 후 내부 압력을 감압하여 중 진공 환경조성을 조성하고, 재차 가스투입관(60)을 통해 암모니아가스(NH3)를 투입, 승압시켜 저 진공 환경에서 히팅을 행하게 된다.After the oxidation process is finished, nitrous oxide gas (N 2 O) is exhausted through the vent 50 for the next reduction process, and the inner pressure is reduced to form a medium vacuum environment composition. Ammonia gas (NH 3 ) is introduced and pressurized to perform heating in a low vacuum environment.

차기의 질화공정(이른바 침질)을 위해 암모니아가스와 아산화질소가스를 가스투입관(60)을 통해 연속적으로 동시 투입하여 히터챔버(20) 내부에서 상호 혼합되도록 한다.Ammonia gas and nitrous oxide gas are continuously and simultaneously injected through the gas inlet pipe 60 for the next nitriding process (so-called soaking) so as to be mixed with each other in the heater chamber 20.

히터챔버(20) 내부 압력이 일정 압력 이상이 되면 벤트(50)를 통해 배기를 행하며, 원하는 압력이 되면 벤트(50)를 폐쇄토록 하여 일정 압력을 유지토록 조절하게 된다. 이와 같은 조건에서 소정 시간이 지속 되면 제품(400)에 소정 두께의 질화층이 형성된다.When the pressure inside the heater chamber 20 becomes equal to or higher than a predetermined pressure, the vent is exhausted through the vent 50. When the pressure inside the heater chamber 20 becomes a desired pressure, the vent 50 is closed to adjust the pressure to be maintained. If the predetermined period of time is continued under such conditions, a nitrided layer having a predetermined thickness is formed on the product 400.

질화공정이 종료되면 히터챔버(20) 내부에서 혼합된 암모니아가스와 아산화질소가스를 벤트(50)를 통해 배기시킨 후 감압하여 중 진공 환경을 조성한다.When the nitriding process is completed, ammonia gas and nitrous oxide gas mixed in the heater chamber 20 are exhausted through the vent 50, and the pressure is reduced to form a medium vacuum environment.

중 진공 환경에서 질소가스투입관(70)을 통해 질소가스를 투입하여 승압시키면서 냉각을 행한 후 냉각이 종료되면 질소가스를 대기로 벤트(50)를 통해 배기시킨 후 개폐문(30)을 개방하여 제품(400)을 인출하게 된다.
Nitrogen gas is introduced through a nitrogen gas inlet pipe 70 in a vacuum environment to cool down while the pressure is increased. After completion of the cooling, nitrogen gas is exhausted to the atmosphere through the vent 50 and then the door 30 is opened, (400).

한편, 상기한 공정 설명에 있어서, 히터(21)의 히팅 동작에 관해 공정별로 나누어 설명을 하였지만 실제로 히터챔버(20) 내부의 압력이 사전에 설정한 일정 압력(200 torr) 이상만 되면 히팅 작동은 계속 이루어지게 되는 것이며, 그 온도 및 시간은 도 3의 그래프에 상세하게 도시되어 있다.
Although the heating operation of the heater 21 has been described step by step in the above description of the process, if the pressure inside the heater chamber 20 is equal to or more than a predetermined pressure (200 torr) And the temperature and time are shown in detail in the graph of Fig.

그리고 본 발명의 진공 질화 열처리 공정을 수행하는 열처리본체로(10)에 있어서, 컨벡션터빈(80)에 의해 회전구동하는 팬(81)은 히터챔버(20) 내부에 공급된 반응 가스가 제품(400)에 균일하게 작용토록 순환시키는 역할을 수행하게 되며, 후방 개폐문(40)이 개방되었을 시에는 반응 가스를 히터챔버(20) 내부에서 배기시키는 역할을 하게 되어 히터챔버(20) 내부를 냉각시키는 역할을 수행하게 된다.In the heat treatment main body furnace 10 for performing the vacuum nitridation heat treatment process of the present invention, the fan 81 rotationally driven by the convection turbine 80 causes the reaction gas supplied into the heater chamber 20 to flow into the product 400 And when the rear opening / closing door 40 is opened, the reaction gas is discharged from the inside of the heater chamber 20, thereby cooling the inside of the heater chamber 20 .

상기 히터챔버(20) 내부의 반응 가스가 히터챔버(20)에서 전후 개폐문(30)(40)의 개방으로 인해 히터챔버(20) 외부로 배기가 되면 열처리로본체(10) 후방에 설치된 열교환기(300)와 열교환을 행하게 되어 단시간에 반응 가스를 냉각시킬 수 있는 것이다.
When the reaction gas in the heater chamber 20 is exhausted to the outside of the heater chamber 20 due to the opening of the front and rear doors 30 and 40 in the heater chamber 20, Heat exchange is performed between the reaction gas and the reaction gas.

이상과 같이 본 발명의 원리를 예시하기 위한 바람직한 실시 예와 관련하여 도시하고 또한 설명하였으나, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 즉, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. That is, those skilled in the art will appreciate that many modifications and variations can be made in the present invention without departing from the spirit or scope of the appended claims. Accordingly, all such appropriate changes and modifications and equivalents may be resorted to, falling within the scope of the invention.

1: 열처리로 본체 20: 히터챔버
21 : 히터 22 : 전극
30,40 : 개폐문 31,41: 개폐실린더
50 : 벤트 60 : 가스투입관
70 : 질소가스투입관 80 : 컨벡션터빈
81 : 팬 90 : 쿨링챔버
100 : 냉각수공급관 200 : 자유굴곡관
300 : 열교환기 400 : 제품
1: heat treatment furnace body 20: heater chamber
21: heater 22: electrode
30, 40: opening / closing door 31, 41: opening / closing cylinder
50: vent 60: gas inlet pipe
70: nitrogen gas inlet pipe 80: convection turbine
81: Fan 90: Cooling chamber
100: Cooling water supply pipe 200: Free bending pipe
300: heat exchanger 400: product

Claims (1)

질화 열처리코자 하는 제품을 열처리로의 히터챔버 내부로 투입한 후 열처리로 내부의 가스를 외부로 배출시켜 중진공 상태의 진공분위기를 조성하는 공정과;
열처리로 내부가 중진공의 진공분위기가 조성되면 질소가스를 투입하여 대기압 이상의 압력을 갖도록 조성하는 공정과;
히터챔버 내부의 히터를 가동하여 내부 온도를 가온하면서 벤트를 개폐하여 일정 압력으로 유지하는 공정과;
열처리로 내부의 질소가스를 배기, 감압시켜 중진공 환경을 조성하는 공정과;
조성된 중진공 환경에 아산화질소가스를 투입, 내부 압력을 승압시켜 저진공 환경을 조성하고 히터를 가동하여 내부를 가온시키는 산화공정과;
아산화질소가스(N2O)를 배기시킨 후 내부 압력을 감압하여 중진공 환경을 조성하고, 조성된 중진공 환경에 암모니아가스(NH3)를 투입, 승압시켜 저진공 환경에서 히팅하는 환원공정과;
암모니아가스와 아산화질소가스를 연속 동시 투입하여 히터챔버 내부에서 상호 혼합시키며 히터챔버 내부 압력을 일정 압력으로 조절하여 제품에 소정 두께의 질화층을 형성하는 질화공정과;
히터챔버 내부에서 혼합된 암모니아가스와 아산화질소가스를 배기, 감압하여 중진공 환경을 조성하는 공정과;
중진공 환경에서 질소가스를 투입하여 승압, 냉각을 행한 후 질소가스를 대기로 배기시키고 제품을 인출하는 공정을 포함하는 것을 특징으로 하는 진공 질화 열처리 방법.
A step of introducing a product to be subjected to nitriding heat treatment into a heater chamber of a heat treatment furnace and discharging the gas inside the heat treatment furnace to the outside to thereby form a vacuum atmosphere in a medium vacuum state;
Forming a vacuum atmosphere of a medium vacuum in the inside of the heat treatment furnace so as to have a pressure higher than atmospheric pressure by injecting nitrogen gas;
Operating the heater in the heater chamber to open and close the vent while keeping the internal temperature at a constant pressure;
Exhausting and reducing the nitrogen gas in the heat treatment furnace to form a medium vacuum environment;
An oxidation process in which nitrous oxide gas is introduced into the formed vacuum environment to raise the internal pressure to create a low vacuum environment and the heater is operated to warm the interior;
A reducing step of evacuating nitrous gas (N 2 O), decompressing the internal pressure to create a medium vacuum environment, adding ammonia gas (NH 3 ) to the formed vacuum environment, boosting the pressure, and heating in a low vacuum environment;
A nitriding step of continuously injecting ammonia gas and nitrous oxide gas into the heater chamber and mixing them in the heater chamber and adjusting a pressure inside the heater chamber to a predetermined pressure to form a nitride layer having a predetermined thickness on the product;
Exhausting and reducing the mixed ammonia gas and nitrous oxide gas in the heater chamber to form a medium vacuum environment;
A step of injecting nitrogen gas in a medium vacuum environment to increase pressure and cooling, and then exhausting nitrogen gas to the atmosphere and withdrawing the product.
KR1020120072694A 2012-07-04 2012-07-04 pressure nitriding heat treatment process KR101414253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120072694A KR101414253B1 (en) 2012-07-04 2012-07-04 pressure nitriding heat treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120072694A KR101414253B1 (en) 2012-07-04 2012-07-04 pressure nitriding heat treatment process

Publications (2)

Publication Number Publication Date
KR20140005009A true KR20140005009A (en) 2014-01-14
KR101414253B1 KR101414253B1 (en) 2014-07-11

Family

ID=50140721

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120072694A KR101414253B1 (en) 2012-07-04 2012-07-04 pressure nitriding heat treatment process

Country Status (1)

Country Link
KR (1) KR101414253B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200056123A (en) * 2018-11-14 2020-05-22 한국생산기술연구원 Nitriding method of martensite stainless steel and martensite stainless steel using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160082405A (en) 2014-12-26 2016-07-08 (주)중부엔티엔 Oxy-nitriding heat treatment furnace and Oxy-nitriding heat treatment method using it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217672A (en) * 1998-01-30 1999-08-10 Sony Corp Chemical vapor growth method of nitrided metallic film and production of electronic device using this
KR100610645B1 (en) * 2004-12-23 2006-08-09 한국생산기술연구원 Method and apparatus for nitriding by post-plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200056123A (en) * 2018-11-14 2020-05-22 한국생산기술연구원 Nitriding method of martensite stainless steel and martensite stainless steel using the same

Also Published As

Publication number Publication date
KR101414253B1 (en) 2014-07-11

Similar Documents

Publication Publication Date Title
CN100590208C (en) 42CrMoE heat treatment technique
CN107245691B (en) Surface strengthening method for metal material composite heat treatment
CN105200201B (en) A kind of carbo-nitriding heat-treating methods for screw
JP7092500B2 (en) Methods and equipment for carburizing and nitriding one or more steel parts at low pressure and high temperature
JPH0344457A (en) Method for nitriding steel
JPWO2015046593A1 (en) Method of nitriding steel member
JP2000129418A (en) Vacuum carburizing method for steel parts and apparatus therefor
JP3465112B2 (en) Steel surface hardening method
KR101414257B1 (en) pressure nitriding furnace
JP2015052150A (en) Surface hardening treatment method for steel member and surface hardening treatment device
US7108756B2 (en) Method for heat-treating work pieces made of temperature-resistant steels
KR101414253B1 (en) pressure nitriding heat treatment process
JP6228403B2 (en) Surface hardening method and surface hardening structure of carbon steel
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
CN204298449U (en) Increase the soft nitriding furnace system of gas area coverage
JP5593717B2 (en) Heat treatment method for steel
KR20090033638A (en) Method for surface hardening by high temperature nitriding in vacuum
CN109295411A (en) A kind of automobile transmission gear under Q&P&T technique
KR100432956B1 (en) Metal carburizing method
EP3502302A1 (en) Nitriding process for carburizing ferrium steels
JP2753647B2 (en) Gas nitrocarburizing method
CN110819936B (en) Corrosion-resistant soft nitriding process method in ammonia-nitrogen-carbon dioxide atmosphere
JPH0463260A (en) Gas carburizing method
KR100526389B1 (en) Method for heat treatment in gasnitriding
KR102293648B1 (en) Low Deformation Heat Treatment of Steel Parts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180725

Year of fee payment: 5