KR20130127031A - Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof - Google Patents
Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof Download PDFInfo
- Publication number
- KR20130127031A KR20130127031A KR1020120049824A KR20120049824A KR20130127031A KR 20130127031 A KR20130127031 A KR 20130127031A KR 1020120049824 A KR1020120049824 A KR 1020120049824A KR 20120049824 A KR20120049824 A KR 20120049824A KR 20130127031 A KR20130127031 A KR 20130127031A
- Authority
- KR
- South Korea
- Prior art keywords
- tin
- nickel
- alloy
- present
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/60—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 주석 및 니켈의 합금 전극을 이용하여 리튬 이온 이차 전지의 음극소재 및 이의 제조 방법을 제공하는데 있다.
The present invention provides a negative electrode material of a lithium ion secondary battery and a method of manufacturing the same using an alloy electrode of tin and nickel.
전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 삽입 및 탈리될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다.Cells generate electricity by using materials that can electrochemically react to the positive and negative electrodes. A typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are inserted and desorbed at a positive electrode and a negative electrode.
상기 리튬 이차 전지는 리튬 이온의 가역적인 삽입 및 탈리가 가능한 물질을 양극 활물질과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해질 또는 폴리머 전해질을 충전시켜 제조한다.The lithium secondary battery is manufactured by using a material capable of reversible insertion and detachment of lithium ions as a positive electrode active material and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
리튬이온 이차전지의 음극소재로 주로 이용되고 있는 graphite의 경우 이론용량 한계에 이르렀기 때문에, 그 이상으로 용량을 증가시키기 위한 새로운 음극재료의 개발이 진행되고 있다. Graphite의 대체 물질로서, Sn의 경우 graphite 전극 대비 무게 당, 혹은 부피 당 용량이 2~3배 높아 주목받고 있으나, 충방전 시 부피변화가 300% 이상 발생하여 전극에 균열이 발생하고 이로써 전극의 수명이 짧다는 문제가 있다.
Since graphite, which is mainly used as a negative electrode material of a lithium ion secondary battery, has reached a theoretical capacity limit, development of a new negative electrode material for increasing capacity beyond that is being progressed. As an alternative to graphite, Sn has attracted attention because its capacity per weight or volume is 2 to 3 times higher than that of graphite electrodes. There is a problem with this short.
이에 본 발명자들은 상기 짧은 전극 수명을 향상시키기 위한 대안으로 Sn전극에 Li과 반응하지 않는, 즉 Li에 대해 inactive한 원소를 합금화 함으로써, 충방전 시 발생하는 Li과 Sn의 부피변화를 완충하도록 하여 전극의 수명을 향상시킬 수 있는 합금 전극을 개발하였다. Accordingly, the present inventors alloy the element which does not react with Li to the Sn electrode, that is, inactive to Li as an alternative to improve the short electrode life, thereby buffering the volume change of Li and Sn generated during charging and discharging. An alloy electrode has been developed that can improve the life of the alloy.
본 발명에서는 inactive한 원소로써 Ni을 사용한 Sn-Ni 합금전극을 전기도금방법을 이용하여 개발하고자 한다.
In the present invention, to develop a Sn-Ni alloy electrode using Ni as an inactive element using an electroplating method.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.
본 발명의 일 양태에 따르면,본 발명은 주석(Sn) 및 니켈(Ni) 합금 전극을 포함하는 리튬 이온 이차전지용 음극소재를 제공한다.According to one aspect of the present invention, the present invention provides a negative electrode material for a lithium ion secondary battery comprising a tin (Sn) and nickel (Ni) electrode.
본 발명의 다른 양태에 따르면, 본 발명은 금속 이온 용액에 전류를 통해 주석 및 니켈 이온의 합금을 도금시키는 것을 특징으로 하는 리튬 이온 이차전지용 음극 소재를 제조하는 방법을 제공한다.
According to another aspect of the present invention, the present invention provides a method for producing a negative electrode material for a lithium ion secondary battery, characterized in that the metal ion solution is plated with an alloy of tin and nickel ions through a current.
본 발명의 특징 및 이점은 하기와 같다.The features and advantages of the present invention are as follows.
(i) 본 발명의 합금 전극은 공정을 간소화하고 비용을 절감할 수 있는 장점이 있다.(i) The alloy electrode of the present invention has the advantage of simplifying the process and reducing the cost.
(ii) 본 발명의 합금 전극은 용량이 증가하면서 동시에 전극의 수명 증가의 효과가 뛰어나다.
(ii) The alloy electrode of the present invention is excellent in the effect of increasing the life of the electrode while increasing the capacity.
도 1은 리튬과 반응하지 않는 금속 원소의 부피 변화 완충 메커니즘을 보여주는 개략도이다.
도 2는 주석-니켈 합금의 SEM 사진이다.
도 3은 본 발명의 전기 도금 장비의 모식도이다.
도 4는 조성에 따른 주석-니켈 합금 전극의 충방전 특성을 알아보기 위하여 충방전 사이클에 따른 용량 변화에 대한 그래프이다.
도 5는 주석 69 중량%-니켈 31 중량%의 합금 전극의 XRD 분석 그래프이다. 1 is a schematic diagram showing a volume change buffering mechanism of a metal element that does not react with lithium.
2 is a SEM photograph of a tin-nickel alloy.
3 is a schematic diagram of the electroplating equipment of the present invention.
Figure 4 is a graph of the capacity change according to the charge and discharge cycle to determine the charge and discharge characteristics of the tin-nickel alloy electrode according to the composition.
5 is an XRD analysis graph of an alloy electrode of tin 69 wt-nickel 31 wt%.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예에 따른 흡음재 그 제조방법을 상세히 설명하기로 한다.
Hereinafter, a method of manufacturing a sound absorbing material according to a preferred embodiment of the present invention with reference to the accompanying drawings will be described in detail.
본 발명의 일 양태에 따르면,본 발명은 주석(Sn) 및 니켈(Ni)합금 전극을 포함하는 리튬 이온 이차전지용 음극소재를 제공한다.According to one aspect of the present invention, the present invention provides a negative electrode material for a lithium ion secondary battery comprising a tin (Sn) and nickel (Ni) alloy electrode.
본 발명의 바람직한 구현예에 따르면, 상기 주석은 40 ~ 90 중량%, 니켈 10 ~ 60 중량% 이다.According to a preferred embodiment of the present invention, the tin is 40 to 90% by weight, nickel is 10 to 60% by weight.
보다 바람직하게는 주석 60-85 중량%, 니켈 15-40 중량를 사용한다.More preferably 60-85 wt% tin and 15-40 wt% nickel are used.
니켈은 리튬과 반응하지 않는 물질이다. 니켈 금속을 주석과 합금화하여 이차전지 음극소재로 이용하면 주석-니켈이 반응 시에, 니켈은 반응에 참여하지 않고 리튬이 주석과 반응 시에 발생하는 부피 변화를 완충하는 역할을 한다. Nickel is a substance that does not react with lithium. When nickel metal is alloyed with tin and used as a negative electrode material of a secondary battery, when tin-nickel is reacted, nickel does not participate in the reaction and buffers the volume change generated when lithium is reacted with tin.
상기 주석, 니켈의 함량비를 따르는 경우 전극의 균열발생이 억제되고 수명이 연장된다.When the content ratio of tin and nickel is followed, cracking of the electrode is suppressed and life is extended.
본 발명에서 기질 전극에 도금시킨 합금의 두께는 0.05 ~10 ㎛인 것을 특징으로 한다. 보다 바람직하게는 합금의 두께는 0.5 ~ 3 ㎛이도록 한다.
In the present invention, the thickness of the alloy plated on the substrate electrode is characterized in that 0.05 ~ 10 ㎛. More preferably the thickness of the alloy is 0.5 to 3 ㎛.
본 발명의 다른 양태에 따르면, 본 발명은 금속 이온 용액에 전류를 통해 주석 및 니켈 이온의 합금을 도금시키는 것을 특징으로 하는 리튬 이온 이차전지용 음극 소재를 제조하는 방법을 제공한다.According to another aspect of the present invention, the present invention provides a method for producing a negative electrode material for a lithium ion secondary battery, characterized in that the metal ion solution is plated with an alloy of tin and nickel ions through a current.
본 발명의 바람직한 구현예에 따르면, 상기 금속 이온 용액에 주석(Sn), 니켈(Ni) 이온이 포함되어 있다.According to a preferred embodiment of the present invention, the metal ion solution includes tin (Sn) and nickel (Ni) ions.
Sn-Ni 합금 전극은 Ni3Sn4 층을 형성하며, 주석-니켈 합금은 리튬과 가역적인 반응을 일으켜 전극의 용량 및 수명을 증가시킨다. The Sn-Ni alloy electrode forms a Ni 3 Sn 4 layer, and the tin-nickel alloy causes a reversible reaction with lithium to increase the capacity and life of the electrode.
본 발명의 바람직한 구현예에 따르면, 상기 주석은 60 ~ 80 중량%, 니켈 20 ~ 40 중량% 이다.According to a preferred embodiment of the present invention, the tin is 60 to 80% by weight, nickel is 20 to 40% by weight.
보다 바람직하게는 주석 60-70 중량%, 니켈 30-40 중량%를 사용한다.More preferably, 60-70 wt% tin and 30-40 wt% nickel are used.
본 발명의 바람직한 구현예에 따르면, 상기 도금 용액은 주석 이온 소스로서 SnCl2·2H2O, 상기 니켈 이온 소스로서 NiCl2·6H2O을 이용한다.According to a preferred embodiment of the present invention, the plating solution uses SnCl 2 · 2H 2 O as the tin ion source and NiCl 2 · 6H 2 O as the nickel ion source.
본 발명의 바람직한 구현예에 따르면, 상기 도금 방법은 전기 도금 방법을 이용한다. 전기 도금법은 제조 공정이 간단하고 첨가제를 사용하지 않아 그 부분을 전극 물질이 차지하게 되어 부피 당 용량이 증가하게 된다.According to a preferred embodiment of the present invention, the plating method uses an electroplating method. The electroplating method is simple in the manufacturing process and no additives are used to occupy the portion of the electrode material to increase the capacity per volume.
본 발명의 바람직한 구현예에 따르면, 상기 도금 시간은 1초 - 3분인 것을 특징으로 한다. 보다 바람직하게는 도금 시간은 10 - 30초 동안에 합금된 금속을 기질에 도금시킨다.
According to a preferred embodiment of the present invention, the plating time is characterized in that 1 second-3 minutes. More preferably the plating time plated the alloyed metal on the substrate for 10-30 seconds.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .
(1) (One) 실시예Example 1 : 주석-니켈 합금 전극의 제조 1: Preparation of tin-nickel alloy electrode
여러 가지 조성의 주석-니켈 합금전극을 제조하기 위하여, 한가지 조성의 도금 용액 내에서 전류밀도를 변경하는 방법을 이용할 수 있지만, 이 경우 각 도금층의 표면형상이 매우 달라 실험 변수로 작용할 수 있다. In order to manufacture the tin-nickel alloy electrodes of various compositions, a method of changing the current density in the plating solution of one composition may be used, but in this case, the surface shape of each plating layer is very different, which may act as an experimental variable.
조성이 다른 각 전극의 표면형상의 변수를 없애기 위해서 비슷한 전류밀도에서 도금을 수행하여 전극을 제조하였다.In order to eliminate the surface shape of each electrode having a different composition, the electrode was manufactured by plating at a similar current density.
SnCl2?2H2O 의 함량을0.175 M, 0.135 M, 0.090 M, 0.068 M이 포함된 도금용액 4가지를 준비하고, 각각 NiCl2?6H2O 0.075 M, K4P2O7 0.5 M, glycine 0.125 M, NH4OH 5 ㎖/L을 첨가하여 도금용액을 준비한다. 하기 표 1에서는 Sn-Ni 도금 용액의 성분 및 도금 조건을 기재하였다. Four plating solutions containing 0.175 M, 0.135 M, 0.090 M, and 0.068 M of SnCl 2 ? 2H 2 O were prepared, and NiCl 2 ? 6H 2 O 0.075 M, K 4 P 2 O 7 A plating solution is prepared by adding 0.5 M, glycine 0.125 M, and NH 4 OH 5 ml / L. Table 1 below describes the components and plating conditions of the Sn-Ni plating solution.
함량content
((
atat
%)%)
K4P2O7 0.5M,
Glycine 0.125 M,
NH4OH 5㎖/LNiCl 2? 6H 2 O 0.075M,
K 4 P 2 O 7 0.5M,
Glycine 0.125 M,
NH 4 OH 5ml / L
상기 표 1에서 보듯이, Bath 1에서 1 mA/cm2의 직류 정전류밀도를 인가하여 주석 90 중량%, 니켈 10중량% 의 합금을 제조했고, 3 mA/cm2의 직류 정전류밀도를 인가하여 주석 82 중량%, 니켈 18중량% 의 합금을 제조했다. Bath 3에서 5 mA/cm2의 직류 정전류밀도를 인가하여 주석 69 중량%, 니켈 31중량% 의 합금을 제조했고, Bath 4에서 5 mA/cm2의 직류 정전류밀도를 인가하여 주석 58 중량%, 니켈 42중량% 의 합금을 제조했으며, Bath 5에서 5 mA/cm2의 직류 정전류밀도를 인가하여 주석 48 중량%, 니켈 52중량% 의 합금을 제조했다.As shown in Table 1, an alloy of 90% by weight of tin and 10% by weight of nickel was prepared by applying a DC constant current density of 1 mA / cm 2 in Bath 1, and by applying a DC constant current density of 3 mA / cm 2 . An alloy of 82% by weight and 18% by weight of nickel was prepared. From Bath 3 applied to tin 69% by weight of a direct current constant current density of 5 mA / cm 2, it was produced an alloy of nickel 31% by weight of tin 58% by weight by applying a direct current constant current density in Bath 4 5 mA / cm 2, An alloy of 42 wt% nickel was prepared, and an alloy of 48 wt% tin and 52 wt% nickel was prepared by applying a DC constant current density of 5 mA / cm 2 in Bath 5.
전극 제조 시 Cu 동박을 집전체로 이용했으며, 각 전극의 두께는 1㎛로 하였다.
Cu copper foil was used as a current collector at the time of electrode manufacture, and the thickness of each electrode was 1 micrometer.
(2) (2) 실시예Example 2: 주석-니켈 합금 전극의 2: tin-nickel alloy electrode 충방전Charging and discharging 시험 결과 Test result
상기와 같이 제조한 5가지 조성의 주석-니켈 합금 전극을 음극으로 사용한 전지를 제조하고, 50 ㎃/g의 충방전 속도로 0.01 V ~ 1.2 V vs. Li+/Li를 인가하며 충방전 실험을 수행하였다. 하기 표 2에서 Sn-Ni의 조성비를 달리하였을 때의 전지 용량을 측정한 결과를 제시하였다.A battery using the tin-nickel alloy electrodes of the five compositions prepared as described above as a negative electrode was prepared, and at a charge and discharge rate of 50 mA / g, 0.01 V to 1.2 V vs. Charge / discharge experiments were performed with Li + / Li applied. Table 2 shows the results of measuring the battery capacity when the composition ratio of Sn-Ni was changed.
(10(10
thth
cyclecycle
기준) standard)
상기 표 2에서 Sn 69 중량%, Ni 31 중량%에서 430 mA h/g으로 나타났으며, 사이클의 횟수를 10회 반복한 결과 사이클 특성이 우수하게 나타났다. 주석의 비율을 높이면 용량이 증가하는 경향을 보이지만 충방전 횟수를 증가시켰을 때 효과가 감소한 것으로 나타났다.
Table 2 shows 430 mA h / g at 69 wt% Sn and 31 wt% Ni. The cycle characteristics were excellent as a result of repeating the number of
Claims (9)
A negative electrode material for a lithium ion secondary battery comprising tin (Sn) and nickel (Ni) electrodes.
The negative electrode material of claim 1, wherein the alloy is 50 to 90% by weight of tin and 10 to 50% by weight of nickel.
The negative electrode material of claim 1, wherein the alloy electrode has a thickness of 0.05 μm to 10 μm.
A method of manufacturing a negative electrode material for a lithium ion secondary battery, characterized in that the metal ion solution is plated with an alloy of tin and nickel ions through a current.
The method according to claim 4, wherein the metal ion solution is a tin (Sn) or nickel (Ni) ion solution.
The method of claim 4, wherein the alloy is 50 to 90% by weight of tin, 10 to 50% by weight of nickel.
The method of claim 4, wherein the tin ion source is SnCl 2 · 2H 2 O, and the nickel ion source is NiCl 2 · 6H 2 O.
The method of claim 4, wherein the plating method is an electroplating method.
The method of claim 4, wherein the plating time is 1 second to 3 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120049824A KR20130127031A (en) | 2012-05-10 | 2012-05-10 | Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120049824A KR20130127031A (en) | 2012-05-10 | 2012-05-10 | Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130127031A true KR20130127031A (en) | 2013-11-22 |
Family
ID=49854701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120049824A KR20130127031A (en) | 2012-05-10 | 2012-05-10 | Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130127031A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210022074A (en) * | 2019-02-01 | 2021-03-02 | 장 춘 페트로케미컬 컴퍼니 리미티드 | Electrodeposited copper foil, and electrode and lithium ion secondary battery including the same |
-
2012
- 2012-05-10 KR KR1020120049824A patent/KR20130127031A/en not_active Application Discontinuation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210022074A (en) * | 2019-02-01 | 2021-03-02 | 장 춘 페트로케미컬 컴퍼니 리미티드 | Electrodeposited copper foil, and electrode and lithium ion secondary battery including the same |
US11283080B2 (en) | 2019-02-01 | 2022-03-22 | Chang Chun Petrochemical Co., Ltd. | Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same |
US11362337B2 (en) | 2019-02-01 | 2022-06-14 | Chang Chun Petrochemical Co., Ltd. | Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Issues and solutions toward zinc anode in aqueous zinc‐ion batteries: a mini review | |
US11264617B2 (en) | All-solid-state secondary battery | |
US10164262B2 (en) | Method for producing a porous metal body | |
Zhang et al. | A facile annealing strategy for achieving in situ controllable Cu 2 O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes | |
Zhuo et al. | Highly porous dendritic Ni–Sn anodes for lithium-ion batteries | |
US8377567B2 (en) | Highly corrosion-resistant porous metal member | |
Wu et al. | Porous NiO/Ag composite film for electrochemical capacitor application | |
KR20190069485A (en) | Battery collectors and batteries | |
JP2017179473A (en) | Metallic porous body and manufacturing method therefor, negative electrode material and lithium ion secondary battery | |
Lee et al. | Ultrathin electrochemical layer tailoring of lithiophilic materials with 3D hierarchical configuration for lithium metal batteries: Sn/Cu 6 Sn 5@ Cu 2+ 1 O nanowires on Cu foam | |
JP2017027654A (en) | Carbon material-coated metal porous body, collector, electrode, and power storage device | |
KR101789115B1 (en) | Electrolyte composition | |
JP2013008811A (en) | Collector for capacitor, electrode using the same, and capacitor | |
JP2007087789A (en) | Negative electrode for lithium ion secondary battery and its manufacturing method | |
CN109119635A (en) | battery | |
JP2013008540A (en) | Collector for nonaqueous electrolyte secondary battery and electrode using the same | |
Kim et al. | Electrochemical behavior of residual salts and an effective method to remove impurities in the formation of porous copper electrode for lithium metal batteries | |
JP2013095954A (en) | Copper alloy foil, manufacturing method of the same, electrode for lithium ion secondary battery with copper alloy foil as collector, and lithium ion secondary battery | |
KR20130127031A (en) | Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof | |
Çamurcu et al. | Achieving Long Cycle Life of Zn-Ion Batteries through Three-Dimensional Copper Foam | |
KR100328680B1 (en) | Zinc electrode for alkali zinc secondary battery | |
Kim et al. | Self‐Converted Scaffold Enables Dendrite‐Free and Long‐Life Zn‐Ion Batteries | |
CN108642533A (en) | A kind of Sn-Cu electroplate liquids, lithium ion battery kamash alloy electrode and preparation method thereof and lithium ion battery | |
JP2013008813A (en) | Capacitor | |
KR20130127029A (en) | Three composite metal alloy electrode for lithium anode of secondary battery and the preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |