KR20130086397A - The power efficiency improvement by using absorption heat pump in power plant system - Google Patents
The power efficiency improvement by using absorption heat pump in power plant system Download PDFInfo
- Publication number
- KR20130086397A KR20130086397A KR1020120007116A KR20120007116A KR20130086397A KR 20130086397 A KR20130086397 A KR 20130086397A KR 1020120007116 A KR1020120007116 A KR 1020120007116A KR 20120007116 A KR20120007116 A KR 20120007116A KR 20130086397 A KR20130086397 A KR 20130086397A
- Authority
- KR
- South Korea
- Prior art keywords
- condenser
- heat pump
- power generation
- absorption heat
- steam
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/04—Heat pumps of the sorption type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/02—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
- F25B15/06—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/02—Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
본 발명은 열병합 발전소 및 기타 화력 발전소에서 발전 및 열공급을 위한 싸이클 과정에 흡수식 히트펌프를 사용하여 기존의 냉각탑 및 해수 냉각 방식보다 높은 에너지 효율 향상 달성 및 폐열회수를 통한 발전 효율 향상에 관한 것으로 발전 및 열공급 효율의 향상의 달성을 목적으로 한다 The present invention relates to the achievement of higher energy efficiency and improved power generation efficiency through waste heat recovery by using absorption heat pumps in cycle processes for power generation and heat supply in cogeneration and other thermal power plants. We aim at achievement of improvement of heat supply efficiency
1) 열병합 발전소 및 기타 화력 발전소에서 발전 및 열공급을 위하여 발전 모드 또는 열공급 모드로 시스템을 운영하는데 대부분의 발전소에서 해수냉각 방식 또는 냉각탑 냉각 방식을 사용함으로써 많은 양의 에너지가 버려지게 된다. 1) Cogeneration and other thermal power plants operate the system in power generation mode or heat supply mode for power generation and heat supply. Most of the power plants use seawater cooling or cooling tower cooling to dissipate large amounts of energy.
2) 이러한 버려지는 에너지를 회수하여 발전이나 열공급 모드의 계통에 재투입함으로써 발전 효율 및 열공급 효율의 향상을 달성하여 연료의 사용을 절감할 수 있게 된다. 연료사용의 절감을 통하여 연소과정에서 발생하는 다이옥신과 같은 유해가스 및 이산화탄소의 배출을 억제할 수 있다. 발전과정의 배출가스는 지구온난화 및 인체에 유해한 영향을 많이 끼치는데 발전 및 열공급 효율을 높임으로써 적은 연료로 동일한 전기 에너지의 생성 및 난방열을 공급할 수 있다. 2) It is possible to reduce the use of fuel by recovering the discarded energy and returning it to the system of power generation or heat supply mode to achieve the improvement of power generation efficiency and heat supply efficiency. Reduction of fuel use can reduce emissions of harmful gases such as dioxins and carbon dioxide during combustion. Emissions from power generation have a lot of harmful effects on global warming and the human body. By increasing the power generation and heat supply efficiency, the same electric energy can be generated and heating can be supplied with less fuel.
3) 보다 높은 에너지 효율 및 재활용율을 달성함으로써 동일한 비용 투자로 기존 싸이클을 사용하는 발전소의 효율 향상 및 신규 발전소의 건립에 적용함으로써 경쟁력 있는 발전 시스템의 구축이 가능하다. 3) By achieving higher energy efficiency and recycling rate, it is possible to build a competitive power generation system by applying efficiency improvement and construction of new power plant using existing cycles at the same cost investment.
일반 화력 발전소의 발전시스템은 첨부된 예시 도 2. 에 나타난 바와 같이 보일러로부터 연소된 열을 이용하여 스팀을 생산한다. 이 스팀이 터빈을 거쳐 발전기를 이용하여 전기를 생산하게 된다. 터빈의 경우 일반적으로 저압터빈, 중압터빈, 고압터빈으로 구성되어 있다. 터빈에서 전기를 만들기 위하여 일을 한 스팀은 복수기를 거치면서 냉각수(해수 냉각 또는 냉각탑 냉각)에 의해 응축된 다음 여러 단계의 급수히터를 거치면서 승온되어 보일러로 환수된다.The power generation system of a general thermal power plant produces steam using the heat burned from a boiler as shown in the attached example FIG. The steam passes through a turbine to produce electricity using a generator. Turbine is generally composed of a low pressure turbine, a medium pressure turbine and a high pressure turbine. The steam, which has worked to generate electricity in the turbine, is condensed by cooling water (sea water cooling or cooling tower cooling) through a condenser, then heated up through several stages of water heaters and returned to the boiler.
첨부된 예시 도 1. 에 나타난 바와 같이 이러한 과정을 거치면서 전기를 생산하는 해수 냉각 방식의 화력 발전소에서 발전효율은 40% 이하가 되는데 이러한 발전효율을 향상시키기 위하여 열병합 및 복합화력 형태의 발전 시스템의 사용이 증가하고 있는 추세이다.As shown in FIG. 1, power generation efficiency is less than 40% in a seawater-cooled thermal power plant that generates electricity through this process. Usage is on the rise.
첨부된 예시 도 2.의 발전효율 싸이클에서 보일러와 복수기의 온도차가 클수록 발전효율이 높아지는데 이러한 특성을 나타내기 위하여 복수기의 온도를 낮추기 위하여 해수 냉각 또는 냉각탑 냉각 방식을 채택함으로써 많은 양은 에너지가 버려지게 된다. Attached Example In the power generation efficiency cycle of FIG. 2, the larger the temperature difference between the boiler and the condenser is, the higher the generating efficiency is. In order to exhibit this characteristic, a large amount of energy is discarded by adopting seawater cooling or cooling tower cooling to lower the condenser temperature. do.
특히 이산화탄소 배출에 의한 지구 온난화를 방지하기 위하여 기존의 석탄화력 발전소 및 가스터빈 발전소에 본 발명을 적용하여 에너지 효율 향상을 달성이 가능하게 된다. 열수요가 없는 지역에 건립된 발전소의 경우 회수된 폐열을 이용하여 발전 계통의 계통수에 재투입함으로써 복수기 끝단에서 해수로 버려지는 20 ~ 30 oC 정도의 저온 폐열의 회수가 가능해지고 이 폐열을 흡수식 히트펌프를 이용하여 승온시켜 계통수에 투입함으로써 기존의 터빈에서 나오는 추기 스팀을 사용하여 열교환 방식을 통해 계통수의 온도를 올리는 방식을 보완함으로써 보일러에서 사용되는 연료의 양을 절감할 수 있다.In particular, in order to prevent global warming due to carbon dioxide emissions by applying the present invention to existing coal-fired power plants and gas turbine power plants it is possible to achieve an energy efficiency improvement. In the case of a power plant built in a region without heat demand, the recovered waste heat is re-injected into the system water of the power generation system to recover the low temperature waste heat of 20 to 30 o C, which is discarded into the seawater at the end of the condenser, and absorbs the waste heat. By raising the temperature by using a pump and inputting it into the system water, the amount of fuel used in the boiler can be reduced by supplementing the method of raising the temperature of the system water through heat exchange using the bleed steam from the existing turbine.
본 발명은 종래의 해수 또는 냉각탑 냉각 방식을 채택하는 화력발전 시스템에서 냉각수 형태로 버려지던 에너지를 흡수식 히트펌프를 사용하여 열을 회수한 다음 계통수를 승온시켜 발전 시스템의 급수가열 과정에 투입함으로써 발전효율 향상을 달성하고자 한다. The present invention recovers the heat of the waste water in the thermal power system adopting the conventional sea water or cooling tower cooling method using an absorption heat pump, and then heat up the system water and input it into the feed water heating process of the power generation system. We want to achieve improvements.
상기 설명한 흡수식 히트펌프를 사용함으로써 기존의 화력발전 시스템에서 급수가열 과정에서 계통수를 승온시키고자 사용하는 추기스팀의 양이 줄일 수 있다. 이렇게함으로써 터빈에서 취출하는 추기스팀의 양이 감소하게 되는데 이 추기스팀을 발전에 사용함으로써 터빈의 출력량을 높여 전체적인 발전효율을 달성하고자 한다.By using the above-described absorption type heat pump, the amount of additional steam used to raise the system water in the feedwater heating process in the existing thermal power generation system can be reduced. By doing so, the amount of extraction steam taken out from the turbine is reduced. By using this extraction steam for power generation, the power output of the turbine is increased to achieve the overall power generation efficiency.
본 발명은 종래의 해수 또는 냉각탑 냉각 방식을 채택하는 화력발전 시스템에서 냉각수 형태로 버려지던 에너지를 흡수식 히트펌프를 사용하여 열을 회수한 다음 계통수를 승온시켜 발전 시스템의 급수가열 과정에 투입함으로써 발전효율 향상을 달성하고자 한다. The present invention recovers the heat of the waste water in the thermal power system adopting the conventional sea water or cooling tower cooling method using an absorption heat pump, and then heat up the system water and input it into the feed water heating process of the power generation system. We want to achieve improvements.
상기 설명한 흡수식 히트펌프를 사용함으로써 기존의 화력발전 시스템에서 급수가열 과정에서 계통수를 승온시키고자 사용하는 추기스팀의 양이 줄일 수 있다. 이렇게함으로써 터빈에서 취출하는 추기스팀의 양이 감소하게 되는데 이 추기스팀을 발전에 사용함으로써 터빈의 출력량을 높여 전체적인 발전효율을 달성하고자 한다.By using the above-described absorption type heat pump, the amount of additional steam used to raise the system water in the feedwater heating process in the existing thermal power generation system can be reduced. By doing so, the amount of extraction steam taken out from the turbine is reduced. By using this extraction steam for power generation, the power output of the turbine is increased to achieve the overall power generation efficiency.
기존의 발전소 시스템에서 효율을 높이기 위하여 각 터빈에서 스팀의 일부를 추기하여 복수기에서 보일러로 유입되는 계통수(터빈에 공급되어 터빈에 회전력을 주도록 사용된 다음 나온 스팀이 복수기를 거치면서 발생된 물)와 상기 일부 추기된 스팀이 열교환되어 다시 보일러로 유입되어 계통수의 온도를 높여주는 형태로 구성되어 있다.
In order to increase the efficiency in the existing power plant system, a part of steam is extracted from each turbine, and the system water flowing from the condenser to the boiler (water generated while passing through the condenser, which is supplied to the turbine and used to give the turbine power) and The additional steam is heat-exchanged and flows back into the boiler to increase the temperature of the system water.
본 발명을 상기와 같은 발전 싸이클에 적용함으로써 By applying the present invention to the power generation cycle as described above
1) 버려지는 에너지의 재회수를 통한 발전효율을 높이고 흡수식 히트펌프를 이용하여 승온된 계통수를 보일러 계통에 재투입함으로써 발전 연료를 절감 할 수 있다. 1) The power generation efficiency can be improved by recovering the discarded energy and power generation fuel can be saved by re-injecting the heated system water into the boiler system by using the absorption heat pump.
2) 발전 연료 절감을 통한 이산화탄소 배출을 절감함으로써 지구 온난화 방지 및 해수 및 강물 냉각에 의한 수온 상승에 따른 환경파괴를 방지할 수 있다.
2) By reducing carbon dioxide emissions through power generation fuel savings, it is possible to prevent global warming and to prevent environmental damage caused by rising water temperature by cooling sea water and river water.
도 1 발전소 연료별 발전효율(%)
도 2 기존 발전 시스템(재생, 재열 랭킨 싸이클) 구성
도 3 기존 발전 시스템 싸이클에 대한 T-S선도
도 4 흡수식 히트펌프를 이용한 발전 시스템(재생, 재열 랭킨 싸이클)
도 5 흡수식 히트펌프 및 스팀열교환기를 이용한 발전시스템(재생, 재열 랭
킨 싸이클)Figure 1 Power Generation Efficiency by Fuel (%)
Figure 2 configuration of the existing power generation system (regeneration, reheat Rankine cycle)
Figure 3 TS diagram of the existing power generation system cycle
4 power generation system using the absorption heat pump (regeneration, reheat Rankine cycle)
5 is a power generation system using an absorption heat pump and a steam heat exchanger (regeneration, reheating cooling)
Kin cycle)
예시 도 2.에 첨부된 것처럼 발전싸이클은 보일러, 저압터빈, 고압터빈, 발전기, 복수기등의 일련의 과정을 거치면서 전기를 생산하게 되는데 기존의 발전 싸이클과 본 발명에서 제안하고자 하는 발명 싸이클에 대해 설명하고자 한다.Example As shown in FIG. 2, the power generation cycle generates electricity through a series of processes, such as a boiler, a low pressure turbine, a high pressure turbine, a generator, and a condenser, with respect to the existing power cycle and the invention cycle to be proposed in the present invention. I will explain.
- 기존 발전 -Existing power generation 싸이클Cycle 설명 Explanation
보일러에서 가열되어 발생한 증기는 보일러내의 과열기에서 과열되어 내부에너지를 증가시켜 고온 고압으로 되어서 터빈에 보내진다. 이 고온 고압증기가 터빈에서 팽창함으로써 일을 하게 되는데 발전기를 통해 전기를 만들게 된다. 이 결과 저압저온으로된 증기는 복수기에 보내져서 응축되어 해수 또는 냉각탑을 통하여 배출되고 발전 계통수는 급수펌프로 다시 보일러로 보내져서 상기과정을 되풀이하면서 발전싸이클을 구성하게 된다.
The steam generated by heating in the boiler is overheated in the superheater in the boiler to increase the internal energy, which is sent to the turbine at high temperature and high pressure. This high-temperature, high-pressure steam works by expanding in a turbine, which generates electricity through a generator. As a result, the steam at low pressure and low temperature is sent to the condenser, condensed and discharged through the seawater or cooling tower, and the power generation system water is sent back to the boiler to form a power generation cycle while repeating the above process.
이 과정에 대한 발전효율은The generation efficiency for this process
Process
Isostatic process
Isotropic course
Isostatic process
Isotropic course
상기 발전효율의 수식에 의해 효율이 높을려면 터빈의 효율이 높아야 하는데 터빈의 효율은According to the above formula of power generation efficiency, if the efficiency is high, the turbine efficiency should be high.
터빈의 효율은 터빈 입구와 출구에서의 엔탈피의 차이가 되므로 엔탈피의 차이가 크려면 입구와 출구의 온도차가 높아야 한다.Since the efficiency of the turbine is the difference between the enthalpy at the turbine inlet and the outlet, the temperature difference between the inlet and the outlet must be high for the difference in enthalpy to be large.
터빈에서 입구와 출구의 온도차가 결국에는 복수기에서의 출구 온도를 결정하게 되는데 발전효율을 높이기 위하여 많은 양의 에너지를 복수기를 통하여 해수 또는 냉각수 형태로 버리게 됨으로써 발전효율을 높이게 된다. 발전 싸이클 과정에서 투입된 에너지의 40% 정도를 해수 냉각이나 냉각탑 냉각에 의해 외부로 버려지는데 일반적으로 복수기의 온도는 계절에 따라 20 ~ 30oC 정도의 온도를 유지하게 된다.
The temperature difference between the inlet and the outlet in the turbine ultimately determines the outlet temperature of the condenser. In order to increase the generating efficiency, a large amount of energy is discarded in the form of seawater or cooling water through the condenser to increase the generating efficiency. About 40% of the energy input during the power generation cycle is discarded to the outside by sea water cooling or cooling tower cooling. In general, the temperature of the condenser is maintained at a temperature of 20 to 30 o C depending on the season.
- 흡수식 히트펌프 이용 발전 -Power generation using absorption heat pump 싸이클Cycle 설명 - Explanation -
상기 설명한 것처럼 기존의 발전 싸이클에서 가장 많은 열손실은 복수기 내에서 발생한다. 이는 증기의 잠열이 냉각수에 주어져 버려지는 열량이다. 이 열을 급수가열기에 이용하면 보일러에서 버려졌던 열을 다시 사용함으로써 효율이 높아진다. 복수기에서 버려졌던 열을 흡수식 히트펌프를 이용하여 급수가열기에서 재사용하는 방법을 본 발명에서 제안하고자 한다.As described above, the most heat loss in the existing power generation cycle occurs in the condenser. This is the amount of heat that latent heat of steam is given to the cooling water. Using this heat in feed water heaters increases efficiency by reusing the heat that has been discarded in the boiler. The present invention proposes a method of reusing the waste heat from the condenser in a feedwater heater using an absorption heat pump.
흡수식 히트펌프는 스팀과 같은 고온의 구동열원을 이용하여 저온 열원을 승온시켜 유용한 온도의 에너지원으로 변환시켜 주는 장치로서 증발기(Evaporator:13), 흡수기(Absorber:12), 재생기(Generator:10), 응축기(Condenser:11) 및 용액열교환기등으로 구성이 되어 있다. Absorption heat pump is a device that converts a low temperature heat source into a useful temperature energy source by using a high temperature driving heat source such as steam, evaporator (13), absorber (12), regenerator (Generator: 10). It consists of condenser (11) and solution heat exchanger.
예시 도 3.에 첨부된 것처럼, 기존 발전 싸이클의 복수기에서 버려지는 저온 열원을 흡수식 히트펌프의 증발기(13)에서 회수하여 흡수기(12)에서 1차로 가열하고, 응축기(11)에서 2차로 가열한다. 증발기(13)는 펌프에 의하여 복수기(5) 사이를 순환하는 냉각수를 공급받아 냉매용액을 가열 증발시켜서 배관을 통하여 흡수기(12)로 열을 공급한다. 흡수기(12)로 공급된 냉매증기는 급수가열기에서 공급된 계통수를 가열하여 응축되고 재생기(10)에서 공급되는 진한 냉매용액을 희석하여 묽은 냉매 용액이 된다. 재생기(10)로 공급된 묽은 냉매 용액은 저압터빈(3)에서 나오는 추기스팀에 의하여 가열되고 고온의 진한 냉매 용액과 냉매 증기로 분리된다. 또한 냉매 증기는 배관을 통하여 응축기(11)로 보내진다. 응축기(11)에서 냉매 증기는 배관을 통하여 공급된 계통수를 가열하고 응축되어 다음단계의 급수가열기(6)로 보내진다.Example As shown in FIG. 3, the low-temperature heat source discarded in the condenser of the existing power generation cycle is recovered in the
예시 도 4.는 예시 도 3.에 설명한 것처럼 응축기(11)의 끝단에서 급수가열기로 공급되는 계통수의 온도를 승온시키기 위하여 저압터빈(3)의 추기스팀을 이용한다. 스팀열교환기(50)를 이용하여 저압터빈(3)에서 나온 추기스팀과 응축기(11)에서 승온된 계통수를 열교환시킴으로써 고온의 계통수를 다음 단계의 급수가열기(6)로 공급이 가능해진다.Exemplary Fig. 4 uses the bleed steam of the
상기 설명한 것처럼 도면에 도시된 본 발명의 일 실시 예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.
As described above, an embodiment of the present invention illustrated in the drawings should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of the present invention as long as they are obvious to those skilled in the art.
1 : 보일러
2 : 고압터빈
3 : 저압터빈
4 : 발전기
5 : 복수기
6 : 급수가열기
10 : 재생기(Generator)
11 : 응축기(Condenser)
12 : 흡수기(Absorber)
13 : 증발기(Evaporator)
50 : 스팀열교환기(Steam Heat Exchanger)1: boiler
2: high pressure turbine
3: low pressure turbine
4: generator
5: avengers
6: water heater
10: Generator
11: condenser
12: Absorber
13: Evaporator
50: Steam Heat Exchanger
Claims (8)
재생기, 흡수기, 응축기, 증발기, 용액열교환기를 포함하는 흡수식 히트펌프와 상기 증발기와 냉각수가 순환하도록 설치된 복수기를 포함하고
상기 용액열교환기는 흡수기와 재생기 사이에 설치되어 있으며
상기 스팀은 터빈에서 추기된 스팀은 재생기를 통과하면서 냉각되어 환류 되도록 되어 있고 상기 공급된 계통수는 흡수기와 응축기를 통과하면서 가열되어 다음 단계의 급수가열기로 공급 되도록 되어 있는,
흡수식 히트펌프를 포함하는 발전효율 향상 시스템It is a system equipped with a high temperature part (steam extracted from the turbine) and a low temperature part (low temperature heat source through a plurality of condensers) for driving an absorption heat pump in a power generation system including a boiler, a turbine, a generator, a condenser, a feed water heater, and the like.
An absorption heat pump including a regenerator, an absorber, a condenser, an evaporator, and a solution heat exchanger, and a condenser installed to circulate the evaporator and cooling water,
The solution heat exchanger is installed between the absorber and the regenerator
The steam is extracted from the turbine is cooled to reflux while passing through the regenerator and the supplied system water is heated while passing through the absorber and condenser to be supplied to the feed water heater of the next stage,
Power generation efficiency improvement system including absorption heat pump
상기 복수기의 출구온도는 15oC ~ 30oC 범위이고 응축기의 출구온도는 65oC ~ 90oC 범위인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템
The method of claim 1, wherein
The outlet temperature of the condenser is 15 o C ~ 30 o C range and the outlet temperature of the condenser is 65 o C ~ 90 o C range, power generation efficiency improvement system using an absorption heat pump comprising a heat exchanger, characterized in that
상기 냉매는 리튬브로마이드 용액인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템The method according to claim 2, wherein
The refrigerant is a power generation efficiency improvement system using an absorption heat pump including a heat exchanger, characterized in that the lithium bromide solution
상기 재생기에서 냉매의 압력은 500 ~ 550mmHG 범위이고 농도는 55 ~ 65% 범위인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템 The method of claim 3, wherein
In the regenerator, the pressure of the refrigerant is in the range of 500 to 550 mmHG and the concentration is in the range of 55 to 65%.
흡수식 히트펌프의 응축기를 통과하면서 가열된 계통수를 추가 가열하기 위하여, 터빈에서 추기된 스팀을 열교환 하기 위한 스팀열교환기가 설치 되어 있으며
재생기, 흡수기, 응축기, 증발기, 용액열교환기를 포함하는 흡수식 히트펌프와 상기 증발기와 냉각수가 순환하도록 설치된 복수기를 포함하고
상기 용액열교환기는 흡수기와 재생기 사이에 설치되어 있으며
상기 스팀은 터빈에서 추기된 스팀은 재생기를 통과하면서 냉각되어 환류 되도록 되어 있고 상기 공급된 계통수는 흡수기와 응축기를 통과하면서 가열되어 스팀열교환기를 통과한 후 다음 단계의 급수가열기로 공급 되도록 되어 있는,
흡수식 히트펌프를 포함하는 발전효율 향상 시스템It is a system equipped with a high temperature part (steam extracted from the turbine) and a low temperature part (low temperature heat source through a plurality of condensers) for driving an absorption heat pump in a power generation system including a boiler, a turbine, a generator, a condenser, a feed water heater, and the like.
In order to further heat the heated system water while passing through the condenser of the absorption heat pump, a steam heat exchanger is installed to heat exchange the steam extracted from the turbine.
An absorption heat pump including a regenerator, an absorber, a condenser, an evaporator, and a solution heat exchanger, and a condenser installed to circulate the evaporator and cooling water,
The solution heat exchanger is installed between the absorber and the regenerator
The steam is extracted from the turbine is cooled to reflux while passing through the regenerator and the feed water is heated while passing through the absorber and condenser is passed through the steam heat exchanger to be supplied to the feed water heater of the next stage,
Power generation efficiency improvement system including absorption heat pump
상기 복수기의 출구온도는 15oC ~ 30oC 범위이고 응축기의 출구온도는 65oC ~ 90oC 범위인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템The method of claim 5, wherein
The outlet temperature of the condenser is 15 o C ~ 30 o C range and the outlet temperature of the condenser is 65 o C ~ 90 o C range, power generation efficiency improvement system using an absorption heat pump comprising a heat exchanger, characterized in that
상기 냉매는 리튬브로마이드 용액인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템The method of claim 6, wherein
The refrigerant is a power generation efficiency improvement system using an absorption heat pump including a heat exchanger, characterized in that the lithium bromide solution
상기 재생기에서 냉매의 압력은 500 ~ 550mmHG 범위이고 농도는 55 ~ 65% 범위인 것을 특징으로 하는 열교환기를 포함하는 흡수식 히트펌프를 이용한 발전효율 향상 시스템 The method of claim 7, wherein
In the regenerator, the pressure of the refrigerant is in the range of 500 to 550 mmHG and the concentration is in the range of 55 to 65%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120007116A KR20130086397A (en) | 2012-01-25 | 2012-01-25 | The power efficiency improvement by using absorption heat pump in power plant system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120007116A KR20130086397A (en) | 2012-01-25 | 2012-01-25 | The power efficiency improvement by using absorption heat pump in power plant system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130086397A true KR20130086397A (en) | 2013-08-02 |
Family
ID=49213653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120007116A KR20130086397A (en) | 2012-01-25 | 2012-01-25 | The power efficiency improvement by using absorption heat pump in power plant system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130086397A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101499810B1 (en) * | 2013-08-17 | 2015-03-17 | (주) 씨테크놀로지시스템 | Hybrid type condenser system |
CN106440471A (en) * | 2016-05-30 | 2017-02-22 | 李华玉 | Combined heating and power system |
CN106765445A (en) * | 2016-12-27 | 2017-05-31 | 梅河口市阜康酒精有限责任公司 | A kind of thinning process waste recycling system |
KR20180009142A (en) * | 2016-07-18 | 2018-01-26 | 한국에너지기술연구원 | Steam Turbine Power Generation system |
KR20180078039A (en) * | 2016-12-29 | 2018-07-09 | 포스코에너지 주식회사 | Waste heat recovery system using absorption heat pump |
CN109681943A (en) * | 2018-12-24 | 2019-04-26 | 珠海格力电器股份有限公司 | Heating system |
CN110849022A (en) * | 2019-12-06 | 2020-02-28 | 华北电力科学研究院有限责任公司 | Heat gradient utilization system for indirect air cooling system |
CN112325269A (en) * | 2020-09-29 | 2021-02-05 | 华电电力科学研究院有限公司 | Waste heat extraction system of gas turbine power plant and operation method |
CN112378120A (en) * | 2020-11-23 | 2021-02-19 | 沧州华润热电有限公司 | Heat recovery system and power supply system |
CN113623894A (en) * | 2021-07-01 | 2021-11-09 | 华电电力科学研究院有限公司 | Multi-level waste heat recovery system for refrigeration of thermal power plant coupling data center and control method |
CN114110714A (en) * | 2021-11-29 | 2022-03-01 | 西安西热节能技术有限公司 | Low-pressure cylinder low-flow working condition waste heat deep recovery heat supply system and application method thereof |
CN115264565A (en) * | 2022-07-25 | 2022-11-01 | 西安西热节能技术有限公司 | Low-pressure cylinder zero-output unit waste heat deep recovery optimized heating system |
-
2012
- 2012-01-25 KR KR1020120007116A patent/KR20130086397A/en not_active Application Discontinuation
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101499810B1 (en) * | 2013-08-17 | 2015-03-17 | (주) 씨테크놀로지시스템 | Hybrid type condenser system |
CN106440471A (en) * | 2016-05-30 | 2017-02-22 | 李华玉 | Combined heating and power system |
KR20180009142A (en) * | 2016-07-18 | 2018-01-26 | 한국에너지기술연구원 | Steam Turbine Power Generation system |
CN106765445A (en) * | 2016-12-27 | 2017-05-31 | 梅河口市阜康酒精有限责任公司 | A kind of thinning process waste recycling system |
KR20180078039A (en) * | 2016-12-29 | 2018-07-09 | 포스코에너지 주식회사 | Waste heat recovery system using absorption heat pump |
CN109681943A (en) * | 2018-12-24 | 2019-04-26 | 珠海格力电器股份有限公司 | Heating system |
CN110849022A (en) * | 2019-12-06 | 2020-02-28 | 华北电力科学研究院有限责任公司 | Heat gradient utilization system for indirect air cooling system |
CN112325269A (en) * | 2020-09-29 | 2021-02-05 | 华电电力科学研究院有限公司 | Waste heat extraction system of gas turbine power plant and operation method |
CN112378120A (en) * | 2020-11-23 | 2021-02-19 | 沧州华润热电有限公司 | Heat recovery system and power supply system |
CN113623894A (en) * | 2021-07-01 | 2021-11-09 | 华电电力科学研究院有限公司 | Multi-level waste heat recovery system for refrigeration of thermal power plant coupling data center and control method |
CN113623894B (en) * | 2021-07-01 | 2022-08-12 | 华电电力科学研究院有限公司 | Multi-level waste heat recovery system for refrigeration of thermal power plant coupling data center and control method |
CN114110714A (en) * | 2021-11-29 | 2022-03-01 | 西安西热节能技术有限公司 | Low-pressure cylinder low-flow working condition waste heat deep recovery heat supply system and application method thereof |
CN115264565A (en) * | 2022-07-25 | 2022-11-01 | 西安西热节能技术有限公司 | Low-pressure cylinder zero-output unit waste heat deep recovery optimized heating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130086397A (en) | The power efficiency improvement by using absorption heat pump in power plant system | |
KR102071105B1 (en) | Gas-steam combined cycle centralized heat supply device and heat supply method | |
KR101567712B1 (en) | Hybrid power generation system and method using a supercritical CO2 cycle | |
AU2011239263B2 (en) | Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system | |
JP4738222B2 (en) | Power system | |
CN101832158A (en) | Steam-organic Rankine cascade power cycle generating system and method | |
CN108005744B (en) | Supercritical CO 2 Circulating machine furnace cold energy recovery and power generation integrated heat supply method | |
KR20110026773A (en) | Heat recovery system of plant using heat pump | |
CN103206317A (en) | Cascaded recycling system for waste heat of internal combustion generating set | |
JP6058680B2 (en) | Improved ocean thermal energy conversion method and system | |
KR20140085001A (en) | Energy saving system for using waste heat of ship | |
KR101499810B1 (en) | Hybrid type condenser system | |
CN205779061U (en) | Coal mine gas gradient thermoelectric cold supply system | |
JP3905967B2 (en) | Power generation / hot water system | |
KR101603253B1 (en) | Condenser Waste-heat Recovery System | |
JP2010038160A (en) | System and method for use in combined or rankine cycle power plant | |
McDaniel et al. | A combined cycle power conversion system for the next generation nuclear power plant | |
KR101967024B1 (en) | Supercritical CO2 power generation system of direct fired type | |
CN110925041B (en) | Combined cycle high-efficiency coal-fired power generation system | |
CN110318961B (en) | Steam turbine set of power station and power generation method thereof | |
JP2002122006A (en) | Power generation equipment utilizing low-temperature exhaust heat | |
KR101103768B1 (en) | Electric Generating System Using Heat Pump Unit | |
CN110821584A (en) | Supercritical carbon dioxide Rankine cycle system and combined cycle system | |
CN210317417U (en) | Coal-fired power generation system | |
KR20140086203A (en) | Energy saving system for using waste heat of ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
E601 | Decision to refuse application |