Nothing Special   »   [go: up one dir, main page]

KR20120054883A - Preparation method of separator, separator formed therefrom, and electrochemical device having the same - Google Patents

Preparation method of separator, separator formed therefrom, and electrochemical device having the same Download PDF

Info

Publication number
KR20120054883A
KR20120054883A KR1020100116249A KR20100116249A KR20120054883A KR 20120054883 A KR20120054883 A KR 20120054883A KR 1020100116249 A KR1020100116249 A KR 1020100116249A KR 20100116249 A KR20100116249 A KR 20100116249A KR 20120054883 A KR20120054883 A KR 20120054883A
Authority
KR
South Korea
Prior art keywords
separator
solvent
binder polymer
producing
inorganic particles
Prior art date
Application number
KR1020100116249A
Other languages
Korean (ko)
Other versions
KR101708882B1 (en
Inventor
이주성
홍장혁
윤수진
유보경
김종훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020100116249A priority Critical patent/KR101708882B1/en
Publication of KR20120054883A publication Critical patent/KR20120054883A/en
Application granted granted Critical
Publication of KR101708882B1 publication Critical patent/KR101708882B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/104Pretreatment of other substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE: A manufacturing method of a separator is provided to prevent the short circuit of both electrodes at overheating, to minimize pores-obstructing phenomenon by improving phenomenon binder polymer in slurry flows into pores of a porous substrate, thereby reducing the resistance increase of a separator due to the formation of porous organic-inorganic composite layer. CONSTITUTION: A manufacturing method of a separator comprises: a step of preparing porous substrate; a step of coating non-solvent(7) on at least one side of the porous substrate; a step of coating dispersed inorganic particles, slurry containing binder polymer dissolved in a solvent on a coated non-solvent; a step of drying the solvent and the non-solvent, connecting the inorganic particles each other by the binder polymer, thereby forming porous organic-inorganic composite layer on the porous substrate containing pores formed due to interstitial volume between the inorganic particles. The porous substrate is a polyolefin-based porous film.

Description

세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자{PREPARATION METHOD OF SEPARATOR, SEPARATOR FORMED THEREFROM, AND ELECTROCHEMICAL DEVICE HAVING THE SAME}Method for manufacturing a separator, a separator formed therefrom, and an electrochemical device having the same {PREPARATION METHOD OF SEPARATOR, SEPARATOR FORMED THEREFROM, AND ELECTROCHEMICAL DEVICE HAVING THE SAME}

본 발명은 리튬 이차전지와 같은 전기화학소자의 세퍼레이터 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자에 관한 것으로서, 보다 상세하게는 무기물 입자와 바인더 고분자의 혼합물을 포함하는 다공성 유기-무기 복합층이 다공성 기재의 적어도 일면에 코팅된 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자에 관한 것이다. The present invention relates to a method for manufacturing a separator of an electrochemical device such as a lithium secondary battery, a separator formed therefrom, and an electrochemical device having the same, and more particularly, to a porous organic-inorganic composite including a mixture of inorganic particles and a binder polymer. The present invention relates to a method for manufacturing a separator coated with at least one surface of a porous substrate, a separator formed therefrom, and an electrochemical device having the same.

최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목받고 있는 분야이고 그 중에서도 충방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비에너지를 향상시키기 위하여 새로운 전극과 전지의 설계에 대한 연구개발로 진행되고 있다.Recently, interest in energy storage technology is increasing. As the field of application extends to the energy of mobile phones, camcorders, notebook PCs, and even electric vehicles, efforts for research and development of electrochemical devices are becoming more concrete. The electrochemical device is the most attracting field in this respect, and the development of a secondary battery capable of charging and discharging has been the focus of attention, and in recent years in the development of such a battery in order to improve the capacity density and specific energy The research and development of the design of the battery is progressing.

현재 적용되고 있는 이차전지 중에서 1990 년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다. 그러나 이러한 리튬 이온 전지는 유기 전해액을 사용하는 데 따르는 발화 및 폭발 등의 안전 문제가 존재하고, 제조가 까다로운 단점이 있다. 최근의 리튬 이온 고분자 전지는 이러한 리튬 이온 전지의 약점을 개선하여 차세대 전지의 하나로 꼽히고 있으나 아직까지 전지의 용량이 리튬 이온 전지와 비교하여 상대적으로 낮고, 특히 저온에서의 방전 용량이 불충분하여 이에 대한 개선이 시급히 요구되고 있다.Among the currently applied secondary batteries, the lithium secondary battery developed in the early 1990s has advantages such as higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd and sulfuric acid-lead batteries using an aqueous electrolyte solution . However, such a lithium ion battery has safety problems such as ignition and explosion when using an organic electrolytic solution, and it is disadvantageous in that it is difficult to manufacture. Recently, the lithium ion polymer battery has been considered as one of the next generation batteries by improving the weakness of the lithium ion battery, but the capacity of the battery is still relatively lower than that of the lithium ion battery, and the discharge capacity is improved due to insufficient discharge capacity at low temperatures. This is urgently needed.

상기와 같은 전기화학소자는 많은 회사에서 생산되고 있으나 그들의 안전성 특성은 각각 다른 양상을 보인다. 이러한 전기화학소자의 안전성 평가 및 안전성 확보는 매우 중요하다. 가장 중요한 고려사항은 전기화학소자가 오작동시 사용자에게 상해를 입혀서는 안된다는 것이며, 이러한 목적으로 안전규격은 전기화학소자 내의 발화 및 발연 등을 엄격히 규제하고 있다. 전기화학소자의 안전성 특성에 있어서, 전기화학소자가 과열되어 열폭주가 일어나거나 세퍼레이터가 관통될 경우에는 폭발을 일으키게 될 우려가 크다. 특히, 전기화학소자의 세퍼레이터로서 통상적으로 사용되는 폴리올레핀계 다공성 막은 재료적 특성과 연신을 포함하는 제조공정 상의 특성으로 인하여 100도 이상의 온도에서 극심한 열 수축 거동을 보임으로서, 양극과 음극 사이의 단락을 일으키는 문제점이 있다. Such electrochemical devices are produced in many companies, but their safety characteristics are different. It is very important to evaluate the safety and safety of such an electrochemical device. The most important consideration is that an electrochemical device should not cause injury to the user in case of malfunction. For this purpose, safety standards strictly regulate the ignition and smoke in the electrochemical device. In the safety characteristics of the electrochemical device, there is a high possibility that an explosion occurs when the electrochemical device is overheated to cause thermal runaway or the separator penetrates. In particular, polyolefin-based porous membranes commonly used as separators for electrochemical devices exhibit extreme heat shrinkage behavior at temperatures of 100 degrees or more due to material properties and manufacturing process characteristics including elongation. There is a problem that causes.

이와 같은 전기화학소자의 안전성 문제를 해결하기 위하여, 다수의 기공을 갖는 다공성 기재의 적어도 일면에, 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 다공성 유기-무기 복합 코팅층을 형성한 세퍼레이터가 제안되었다. 예를 들어, 한국 공개특허 2007-0019958호에는 다공성 기재 상에 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 폴리올레핀 막과 같은 다공성 기재 위에 코팅하고 건조시켜, 다공성 유기-무기 복합 코팅층을 다공성 기재 위에 마련한 세퍼레이터에 관한 제조방법이 개시되어 있다. In order to solve the safety problem of the electrochemical device, a separator having a porous organic-inorganic composite coating layer formed by coating a mixture of inorganic particles and a binder polymer on at least one surface of a porous substrate having a plurality of pores has been proposed. For example, Korean Patent Publication No. 2007-0019958 discloses a porous organic-inorganic composite coating layer by coating and drying a slurry in which inorganic particles are dispersed on a porous substrate and a binder polymer dissolved in a solvent on a porous substrate such as a polyolefin membrane. A manufacturing method relating to a separator provided on a porous substrate is disclosed.

유기-무기 복합 다공성 코팅층이 형성된 세퍼레이터에 있어서, 다공성 기재 위에 형성된 다공성 코팅층에 존재하는 무기물 입자들이 다공성 코팅층의 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 함으로서 전기화학소자 과열시 다공성 기재가 열 수축되는 것을 억제하거나 열 폭주시 양 전극의 단락을 방지하게 된다. 또한, 무기물 입자들 사이에는 빈 공간(interstitial volume)이 존재하여 미세 기공을 형성한다.In the separator with the organic-inorganic composite porous coating layer, the inorganic particles present in the porous coating layer formed on the porous substrate serves as a kind of spacer to maintain the physical form of the porous coating layer, so that the porous substrate is heated when the electrochemical device is overheated. This prevents shrinkage or prevents short circuiting of both electrodes during thermal runaway. In addition, an interstitial volume exists between the inorganic particles to form fine pores.

이와 같이, 유기-무기 복합 다공성 코팅층은 세퍼레이터의 열적 안전성에 기여하나, 유기-무기 복합 다공성 코팅층 형성시 바인더 고분자가 다공성 기재의 기공으로 유입되어 기공들의 일부를 막음으로서, 세퍼레이터의 저항을 증가시키는 경향이 있다.As such, the organic-inorganic composite porous coating layer contributes to the thermal stability of the separator, but when forming the organic-inorganic composite porous coating layer, the binder polymer is introduced into the pores of the porous substrate to block some of the pores, thereby increasing the resistance of the separator. There is this.

따라서, 본 발명이 해결하고자 하는 과제는 전술한 문제점을 해결하여, 유기-무기 복합 다공성 코팅층 형성시 다공성 기재의 기공들이 바인더 고분자에 의해 막히는 현상을 최소화할 수 있는 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자를 제공하는데 있다.Accordingly, the problem to be solved by the present invention is to solve the above-mentioned problems, the method of manufacturing a separator that can minimize the phenomenon that the pores of the porous substrate is blocked by the binder polymer when forming the organic-inorganic composite porous coating layer, the separator formed therefrom And to provide an electrochemical device having the same.

상기 과제를 달성하기 위하여, 본 발명의 세퍼레이터 제조방법은,In order to achieve the above object, the separator manufacturing method of the present invention,

(S1) 기공들을 갖는 다공성 기재를 준비하는 단계; (S1) preparing a porous substrate having pores;

(S2) 상기 다공성 기재의 적어도 일면 위에 비용매를 코팅하는 단계;(S2) coating a non-solvent on at least one surface of the porous substrate;

(S3) 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 상기 코팅된 비용매 위에 코팅하는 단계; 및(S3) coating a slurry having inorganic particles dispersed therein and a binder polymer dissolved in a solvent on the coated non-solvent; And

(S4) 상기 비용매 및 용매를 동시에 건조처리하여, 상기 무기물 입자들이 바인더 고분자에 의해 서로 연결 및 고정되면서 무기물 입자 사이의 빈 공간(interstitial volume)으로 인해 형성된 기공들을 포함하는 다공성 유기-무기 복합층이 상기 다공성 기재 위에 형성되도록 하는 단계를 포함한다. (S4) drying the non-solvent and the solvent at the same time so that the inorganic particles are connected and fixed to each other by a binder polymer, and the porous organic-inorganic composite layer including pores formed due to the interstitial volume between the inorganic particles. Allowing the porous substrate to be formed on the substrate.

본 발명의 세퍼레이터 제조방법에 있어서, 상기 다공성 기재는 폴리올레핀계 다공성 막인 것이 바람직하고, 다공성 기재의 두께는 1 내지 100 ㎛인 것이 바람직하다.In the separator production method of the present invention, the porous substrate is preferably a polyolefin-based porous membrane, the thickness of the porous substrate is preferably 1 to 100 ㎛.

본 발명의 세퍼레이터 제조방법에 있어서, 바인더 고분자의 용해도 지수는 15 내지 45 Mpa1/2인 것을 사용하는 것이 바람직하다. 이러한 바인더 고분자로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다.In the separator production method of the present invention, the solubility index of the binder polymer is preferably 15 to 45 Mpa 1/2 . Such binder polymers include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, and polymethylmethacrylate. , Polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide ( polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyano Ethyl polyvinyl alcohol (cyanoethylpo) Lyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, etc. may be used alone or in combination of two or more of them. have.

본 발명의 세퍼레이터 제조방법에 있어서, 상기 바인더 고분자와 비용매의 용해도 지수 차이는 5.5 Mpa1/2 이상 것이 바람직하고, 상기 바인더 고분자와 용매의 용해도 지수 차이는 5.0 Mpa1/2 이하인 것이 바람직하다. 비용매로는 물, 메탄올, 에탄올, 에틸렌 클리콜, 글리세롤 등을 각각 단독으로 또는 이들 중 2종 이상을 병용하여 사용할 수 있고, 용매로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane) 등을 각각 단독으로 또는 이들 중 2종 이상을 병용하여 사용할 수 있다.In the separator manufacturing method of this invention, it is preferable that the difference in the solubility index of the said binder polymer and a nonsolvent is 5.5 Mpa 1/2 or more, and the difference in the solubility index of the said binder polymer and a solvent is 5.0 Mpa 1/2 or less. Non-solvents include water, methanol, ethanol, ethylene glycol, glycerol And the like may be used alone or in combination of two or more thereof, and as a solvent, acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, etc. ), N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone (NMP), cyclohexane) and the like can be used alone or two or more of them in combination.

본 발명의 세퍼레이터 제조방법에 있어서, 무기물 입자들의 평균입경은 0.001 내지 10 ㎛인 것이 바람직하고, 무기물 입자들과 바인더 고분자의 중량비는 50:50 내지 99:1인 것이 바람직하다.In the separator manufacturing method of the present invention, the average particle diameter of the inorganic particles is preferably 0.001 to 10 ㎛, and the weight ratio of the inorganic particles and the binder polymer is preferably 50:50 to 99: 1.

본 발명의 세퍼레이터 제조방법에 있어서, 비용매의 코팅 두께는 5 내지 250 ㎛인 것이 바람직하고, 슬러리의 코팅 두께는 건조 후 최종적으로 형성되는 다공성 유기-무기 복합층의 두께가 0.1 내지 20 ㎛이 되도록 하는 것이 바람직하다. In the separator production method of the present invention, the coating thickness of the non-solvent is preferably 5 to 250 ㎛, the coating thickness of the slurry so that the thickness of the porous organic-inorganic composite layer finally formed after drying is 0.1 to 20 ㎛ It is desirable to.

이와 같은 방법으로 제조된 본 발명의 세퍼레이터는 양극과 음극 사이에 개재시켜 리튬 이차전지나 수퍼 캐패시터 소자와 같은 전기화학소자를 제조할 수 있다.The separator of the present invention prepared by the above method may be interposed between the positive electrode and the negative electrode to manufacture an electrochemical device such as a lithium secondary battery or a super capacitor device.

본 발명의 방법에 따라 제조된 세퍼레이터는 다음과 같은 특성을 나타낸다.The separator produced according to the method of the present invention exhibits the following characteristics.

첫째, 전기화학소자 과열시 다공성 유기-무기 복합층이 다공성 기재가 열 수축되는 것을 억제하며, 열 폭주시 양 전극의 단락을 방지한다. First, the porous organic-inorganic composite layer suppresses heat shrinkage of the porous substrate when the electrochemical device is overheated, and prevents shorting of both electrodes during thermal runaway.

둘째, 유기-무기 복합 다공성 코팅층 형성시 슬러리 내의 바인더 고분자가 다공성 기재의 기공들로 유입되는 현상이 개선되어 다공성 기재의 기공들이 막히는 현상이 최소화된다. 이에 따라, 다공성 유기-무기 복합층 형성에 따른 세퍼레이터의 저항 증가가 저감된다.Second, when the organic-inorganic composite porous coating layer is formed, the phenomenon that the binder polymer in the slurry flows into the pores of the porous substrate is improved, thereby minimizing the clogging of the pores of the porous substrate. Accordingly, the increase in resistance of the separator due to the porous organic-inorganic composite layer is reduced.

도 1은 본 발명의 일 실시예에 따라 세퍼레이터를 제조하는 방법을 개략적으로 도시한 공정도이다.1 is a process diagram schematically showing a method of manufacturing a separator according to an embodiment of the present invention.

이하, 본 발명에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the configurations described in the embodiments described herein are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations.

본 발명의 세퍼페이터 제조방법을 상세히 설명하면 다음과 같다.Hereinafter, the method for producing a separator according to the present invention will be described in detail.

먼저, 기공들을 갖는 다공성 기재를 준비한다(S1 단계). First, a porous substrate having pores is prepared (step S1).

이러한 다공성 기재로는 다양한 고분자로 형성된 다공성 막이나 부직포 등 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어 전기화학소자 특히, 리튬 이차전지의 분리막으로 사용되는 폴리올레핀계 다공성 막이나, 폴리에틸렌테레프탈레이트 섬유로 이루어진 부직포 등을 사용할 수 있으며, 그 재질이나 형태는 목적하는 바에 따라 다양하게 선택할 수 있다. 예를 들어 폴리올레핀계 다공성 막(membrane)은 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 초고분자량 폴리에틸렌과 같은 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 등의 폴리올레핀계 고분자를 각각 단독으로 또는 이들을 혼합한 고분자로 형성할 수 있으며, 부직포 역시 폴리올레핀계 고분자 또는 이보다 내열성이 높은 고분자를 이용한 섬유로 제조될 수 있다. 다공성 기재의 두께는 특별히 제한되지 않으나, 바람직하게는 1 내지 100 ㎛, 더욱 바람직하게는 5 내지 50 ㎛이고, 다공성 기재에 존재하는 기공 크기 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95%인 것이 바람직하다. As the porous substrate, any porous substrate commonly used in electrochemical devices such as a porous membrane or a nonwoven fabric formed of various polymers may be used. For example, a polyolefin-based porous membrane or a nonwoven fabric made of polyethylene terephthalate fiber, which is used as an electrochemical device, in particular, a separator of a lithium secondary battery, may be used. For example, the polyolefin-based porous membrane (membrane) is a polyolefin-based polymer such as polyethylene, polypropylene, polybutylene, polypentene, such as high density polyethylene, linear low density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, or a mixture thereof. The polymer may be formed, and the nonwoven fabric may also be made of a fiber using a polyolefin-based polymer or a polymer having higher heat resistance. The thickness of the porous substrate is not particularly limited, but is preferably 1 to 100 μm, more preferably 5 to 50 μm, and the pore size and pore present in the porous substrate are also not particularly limited, but are 0.001 to 50 μm and 10, respectively. It is preferably from 95%.

이어서, 다공성 기재의 적어도 일면 위에 비용매를 코팅한다(S2 단계).Subsequently, a non-solvent is coated on at least one surface of the porous substrate (step S2).

본 발명에 있어서, 비용매(non-solvent)는 후술하는 바인더 고분자에 대한 비용매를 의미한다. 바인더 고분자에 대한 비용매로는 바인더 고분자와의 용해도 지수 차이가 5.5 Mpa1/2 이상인 것을 사용하는 것이 바람직하다. 비용매로는 물, 메탄올, 에탄올, 에틸렌 클리콜, 글리세롤 등을 각각 단독으로 또는 이들 중 2종 이상을 병용하여 사용할 수 있다.In the present invention, non-solvent means a non-solvent for the binder polymer described later. As the non-solvent for the binder polymer, it is preferable to use one having a solubility index difference of 5.5 Mpa 1/2 or more with the binder polymer. As a non-solvent, water, methanol, ethanol, ethylene glycol, glycerol, etc. can be used individually or in combination of 2 or more of these, respectively.

비용매의 코팅 두께는 비용매 코팅에 따른 효과와 건조속도에 따른 효율성을 고려할 때 5 내지 250 ㎛인 것이 바람직하다.The coating thickness of the non-solvent is preferably 5 to 250 μm in consideration of the effect of the non-solvent coating and the efficiency according to the drying rate.

그런 다음, 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 상기 코팅된 비용매 위에 코팅한다(S3 단계).Then, the inorganic particles are dispersed and the binder polymer is dissolved in a solvent is coated on the coated non-solvent (step S3).

무기물 입자들은 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전기화학소자의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 무기물 입자로서 유전율이 높은 무기물 입자를 사용하는 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.The inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are not particularly limited as long as the oxidation and / or reduction reactions do not occur in the operating voltage range (for example, 0 to 5 V on the basis of Li / Li + ) of the applied electrochemical device. In particular, when inorganic particles having a high dielectric constant are used as the inorganic particles, the ionic conductivity of the electrolyte may be improved by contributing to an increase in the dissociation degree of the electrolyte salt, such as lithium salt, in the liquid electrolyte.

전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 바람직하게는 10 이상인 고유전율 무기물 입자를 포함하는 것이 바람직하다. 유전율 상수가 5 이상인 무기물 입자의 비제한적인 예로는 BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3 (PLZT, 여기서, 0 < x < 1, 0 < y < 1임), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), 하프니아(HfO2), SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합체 등이 있다.For the reasons described above, the inorganic particles preferably include high dielectric constant inorganic particles having a dielectric constant of 5 or more, preferably 10 or more. Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT, where 0 <x <1, 0 <y <1), Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 (PMN-PT), Hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO , NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2, SiC Or mixtures thereof.

또한, 무기물 입자로는 리튬 이온 전달 능력을 갖는 무기물 입자, 즉 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 사용할 수 있다. 리튬 이온 전달 능력을 갖는 무기물 입자의 비제한적인 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0 < x < 2, 0 < y < 3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0 < x < 2, 0 < y < 1, 0 < z < 3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0 < x < 4, 0 < y < 13), 리튬란탄티타네이트(LixLayTiO3, 0 < x < 2, 0 < y < 3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0 < x < 4, 0 < y < 1, 0 < z < 1, 0 < w < 5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0 < x < 4, 0 < y < 2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0 < x < 3, 0 < y < 2, 0 < z < 4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass(LixPySz, 0 < x < 3, 0 < y < 3, 0 < z < 7) 또는 이들의 혼합물 등이 있다. In addition, the inorganic particles may be inorganic particles having lithium ion transfer capability, that is, inorganic particles containing lithium elements but having a function of transferring lithium ions without storing lithium. Non-limiting examples of inorganic particles having a lithium ion transfer capacity include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), Lithium aluminum titanium phosphate (Li x Al y Ti z (PO 4 ) 3 , 0 <x <2, 0 <y <1, 0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 (LiAlTiP) x O y series glass such as O 5 (0 <x <4, 0 <y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3) , Li germanium thiophosphate such as Li 3.25 Ge 0.25 P 0.75 S 4 (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5 ), Lithium nitride such as Li 3 N (Li x N y , 0 <x <4, 0 <y <2), SiS 2 based glass such as Li 3 PO 4 -Li 2 S-SiS 2 (Li x Si P 2 S 5 series glass (Li x P y S z , 0 <x, such as y S z , 0 <x <3, 0 <y <2, 0 <z <4), LiI-Li 2 SP 2 S 5, etc. <3, 0 <y <3, 0 <z <7) or mixtures thereof.

또한, 무기물 입자의 평균입경은 특별한 제한이 없으나 균일한 두께의 코팅층 형성 및 적절한 공극률을 위하여, 0.001 내지 10 ㎛ 범위인 것이 바람직하다. 0.001 ㎛ 미만인 경우 분산성이 저하될 수 있고, 10 ㎛를 초과하는 경우 형성되는 코팅층의 두께가 증가할 수 있다. In addition, the average particle diameter of the inorganic particles is not particularly limited, but for forming a coating layer of uniform thickness and proper porosity, it is preferably in the range of 0.001 to 10 μm. When the thickness is less than 0.001 μm, the dispersibility may be decreased, and when the thickness is more than 10 μm, the thickness of the coating layer formed may be increased.

바인더 고분자는 유리 전이 온도(glass transition temperature, Tg)가 -200 내지 200 ℃인 고분자를 사용하는 것이 바람직한데, 이는 최종적으로 형성되는 코팅층의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다.As the binder polymer, it is preferable to use a polymer having a glass transition temperature (T g ) of -200 to 200 ° C, because it can improve mechanical properties such as flexibility and elasticity of the finally formed coating layer. .

또한, 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기화학소자의 성능을 더욱 향상시킬 수 있다. 따라서, 바인더 고분자는 가능한 유전율 상수가 높은 것이 바람직하다. 실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 바인더 고분자의 유전율 상수가 높을수록 전해질에서의 염 해리도를 향상시킬 수 있다. 이러한 바인더 고분자의 유전율 상수는 1.0 내지 100 (측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상인 것이 바람직하다.In addition, the binder polymer does not necessarily have an ion conducting ability, but when a polymer having an ion conducting ability is used, the performance of the electrochemical device may be further improved. Therefore, the binder polymer is preferably as high as possible dielectric constant. In fact, since the dissociation degree of the salt in the electrolyte depends on the dielectric constant of the solvent of the electrolyte, the higher the dielectric constant of the binder polymer, the higher the dissociation of the salt in the electrolyte. The dielectric constant of the binder polymer may be in the range of 1.0 to 100 (measurement frequency = 1 kHz), particularly preferably 10 or more.

전술한 기능 이외에, 바인더 고분자는 액체 전해액 함침시 겔화됨으로써 높은 전해액 함침율(degree of swelling)을 나타낼 수 있는 특징을 가질 수 있다. 이에 따라, 용해도 지수가 15 내지 45 MPa1/2 인 고분자를 사용하는 것이 바람직하며, 더욱 바람직한 용해도 지수는 15 내지 25 MPa1/2 및 30 내지 45 MPa1/2 범위이다. 따라서, 폴리올레핀류와 같은 소수성 고분자들보다는 극성기를 많이 갖는 친수성 고분자들을 사용하는 것이 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과할 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵기 때문이다. In addition to the above-described function, the binder polymer may have a feature that can exhibit a high degree of swelling of the electrolyte by gelling upon impregnation of the liquid electrolyte. Accordingly, it is preferred to use polymers having a solubility index of 15 to 45 MPa 1/2 , more preferred solubility indices in the range of 15 to 25 MPa 1/2 and 30 to 45 MPa 1/2 . Therefore, it is preferable to use hydrophilic polymers having more polar groups than hydrophobic polymers such as polyolefins. This is because when the solubility index is less than 15 MPa 1/2 and more than 45 MPa 1/2 , it is difficult to be swelled by a conventional battery liquid electrolyte.

이러한 바인더 고분자의 비제한적인 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose) 등을 들 수 있으며, 이들을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. Non-limiting examples of such binder polymers include polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacryl Polymethylmethacrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate) , Polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan ), Cyanoethylpolybi Cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, carboxyl methyl cellulose, and the like, each of which may be used alone or among them. Two or more kinds can be mixed and used.

무기물 입자들과 바인더 고분자의 중량비는 예를 들어 50:50 내지 99:1 범위가 바람직하며, 더욱 바람직하게는 70:30 내지 95:5이다. 바인더 고분자에 대한 무기물 입자의 함량비가 50:50 미만일 경우 고분자의 함량이 많아지게 되어 형성되는 코팅층의 기공 크기 및 기공도가 감소될 수 있다. 무기물 입자의 함량이 99 중량부를 초과할 경우 바인더 고분자 함량이 적기 때문에 형성되는 코팅층의 내필링성이 약화될 수 있다. The weight ratio of the inorganic particles and the binder polymer is preferably in the range of 50:50 to 99: 1, more preferably 70:30 to 95: 5. When the content ratio of the inorganic particles to the binder polymer is less than 50:50, the pore size and porosity of the coating layer formed by increasing the content of the polymer may be reduced. When the content of the inorganic particles exceeds 99 parts by weight, since the binder polymer content is small, the peeling resistance of the coating layer formed may be weakened.

본 발명에 있어서, 용매는 바인더 고분자를 용해시킬 수 있는 액체를 의미한다. 바인더 고분자의 용매로는 사용하고자 하는 바인더 고분자와 용해도 지수가 유사하며, 끓는점(boiling point)이 낮은 것이 바람직하다. 이는 균일한 혼합과 이후 용매 제거를 용이하게 하기 위해서이다. 또한, 용매는 전술한 비용매보다 끓는 점이 동일하거나 낮은 것이 바람직하다. 이는 후술하는 건조 과정에서 용매가 비용매와 동시에 또는 용매가 비용매보다 빠른 속도로 건조되는 것이 바람직하기 때문이다. In the present invention, the solvent means a liquid capable of dissolving the binder polymer. As a solvent of the binder polymer, a solubility index is similar to that of the binder polymer to be used, and a boiling point is preferably low. This is to facilitate uniform mixing and subsequent solvent removal. In addition, the solvent is preferably the same or lower boiling point than the non-solvent described above. This is because the solvent is preferably dried at the same time as the non-solvent or at a faster rate than the non-solvent in the drying process described later.

사용 가능한 용매의 비제한적인 예로는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane) 또는 이들의 혼합체 등이 있다. Non-limiting examples of solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone ( N-methyl-2-pyrrolidone, NMP), cyclohexane, or a mixture thereof.

본 발명의 세퍼레이터 제조방법에 있어서, 슬러리 코팅의 용이성과 슬러리 내의 바인더 고분자의 겔화 방지 등을 고려할 때, 바인더 고분자와 용매의 상호간 용해도 지수 차이는 5 Mpa1/2 이하인 것이 바람직하다. In the separator manufacturing method of the present invention, in consideration of ease of slurry coating and gelling of the binder polymer in the slurry, the solubility index difference between the binder polymer and the solvent is preferably 5 Mpa 1/2 or less.

무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리는 바인더 고분자를 용매에 용해시킨 다음 무기물 입자를 첨가하고 이를 분산시켜 제조할 수 있으나, 이에 제한되지 않는다. 무기물 입자들은 적정 크기로 파쇄된 상태에서 첨가할 수 있으나, 바인더 고분자의 용액에 무기물 입자를 첨가한 후 무기물 입자를 볼밀법 등을 이용하여 파쇄하면서 분산시키는 것이 바람직하다.The slurry in which the inorganic particles are dispersed and the binder polymer is dissolved in the solvent may be prepared by dissolving the binder polymer in the solvent and then adding the inorganic particles and dispersing the binder polymer, but is not limited thereto. The inorganic particles may be added in a state of being crushed to an appropriate size, but after adding the inorganic particles to the solution of the binder polymer, it is preferable to disperse the inorganic particles while crushing by using a ball mill method.

다공성 기재에 코팅하는 슬러리의 코팅 두께는 전지의 안정성 향상의 과와 저항을 고려할 때, 건조 후 최종적으로 형성되는 다공성 유기-무기 복합층의 두께가 0.1 내지 20 ㎛이 되도록 조절하는 것이 바람직하다. The coating thickness of the slurry coated on the porous substrate is preferably adjusted so that the thickness of the porous organic-inorganic composite layer finally formed after drying is 0.1 to 20 μm in consideration of the resistance and resistance of improving the stability of the battery.

전술한 (S2) 단계에 따른 비용매의 코팅 및 (S3) 단계에 따른 슬러리의 코팅은 슬롯 다이 코팅, 슬라이드 코팅, 커튼 코팅 등 다양한 방법을 이용하여 연속적으로 또는 비연속적으로 수행할 수 있다. 특히, 생산성의 측면에서 (S2) 및 (S3)의 코팅은 연속적으로 또는 동시에 수행하는 것이 바람직한데, 가장 바람직한 예가 도 1에 도시되어 있다.Coating of the non-solvent according to the step (S2) and the slurry according to the step (S3) described above may be performed continuously or discontinuously using various methods such as slot die coating, slide coating, curtain coating, and the like. In particular, in terms of productivity, the coating of (S2) and (S3) is preferably carried out continuously or simultaneously, the most preferred example of which is shown in FIG.

도 1을 참조하면, (S2) 단계에 따른 비용매의 코팅 및 (S3) 단계에 따른 슬러리의 코팅을 수행하기 위하여 2개의 슬롯(3a, 3b)을 갖는 다이(1)가 이용된다. 제1 슬롯(3a)을 통해 비용매(7)가 공급된다. 또한, 제2 슬롯(3b)을 통해 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리(5)가 공급된다. 회전하는 롤러에 다공성 기재(9)가 공급되면, 다공성 기재(9) 위에 비용매(7)가 코팅되고, 연속적으로 비용매(7) 위에 슬러리(5)가 코팅된다.Referring to FIG. 1, a die 1 having two slots 3a and 3b is used to perform coating of a non-solvent according to step (S2) and coating of a slurry according to step (S3). The non-solvent 7 is supplied through the first slot 3a. In addition, the slurry 5 in which the inorganic particles are dispersed through the second slot 3b and the binder polymer is dissolved in the solvent is supplied. When the porous substrate 9 is supplied to the rotating roller, the nonsolvent 7 is coated on the porous substrate 9, and the slurry 5 is coated on the nonsolvent 7 continuously.

마지막으로, 다공성 기재 위에 코팅된 비용매 및 슬러리에 존재하는 용매를 동시에 건조처리하여, 상기 무기물 입자들이 바인더 고분자에 의해 서로 연결 및 고정되면서 무기물 입자 사이의 빈 공간(interstitial volume)으로 인해 형성된 기공들을 포함하는 다공성 유기-무기 복합층이 상기 다공성 기재 위에 형성되도록 한다(S4 단계).Finally, the solvent in the slurry and the non-solvent coated on the porous substrate are simultaneously dried to remove pores formed due to the interstitial volume between the inorganic particles while the inorganic particles are connected and fixed to each other by the binder polymer. To include a porous organic-inorganic composite layer is formed on the porous substrate (step S4).

본 발명의 제조방법에 따라 형성되는 다공성 유기-무기 복합층의 성상을 설명하면 다음과 같다. Referring to the properties of the porous organic-inorganic composite layer formed according to the production method of the present invention are as follows.

(S3) 결과물은 다공성 기재 위에 비용매가 코팅되어 있고, 그 위에 슬러리가 코팅되어 있는 구조이다. 비용매층은 슬러리에 용해된 바인더 고분자가 다공성 기재와 접촉하는 것을 최소화하는 일종의 베리어층 역할을 하게 된다. 또한, 비용매층으로 확산되는 일부 바인더 고분자는 비용매에 의해 겔화 또는 석출되어 다공성 기재의 기공으로 진입하기 어렵게 될 것으로 추정된다. (S3) The result is a structure in which a non-solvent is coated on a porous substrate, and a slurry is coated thereon. The non-solvent layer serves as a kind of barrier layer that minimizes contact of the binder polymer dissolved in the slurry with the porous substrate. In addition, some of the binder polymer diffused into the non-solvent layer is estimated to gel or precipitate by the non-solvent to be difficult to enter the pores of the porous substrate.

(S3) 결과물을 건조기에 통과시키면, 비용매 위에 코팅된 슬러리가 먼저 열이나 열풍을 받게 된다. 따라서, 외곽부에 코팅된 슬러리 내의 용매가 비용매보다 빠른 속도로 건조된다. 이에 따라, 비용매 코팅층이 완전히 건조되기 전에, 슬러리 코팅층의 최외곽부에 존재하는 무기물 입자들부터 바인더 고분자에 의해 서로 연결 및 고정되면서 무기물 입자 사이의 빈 공간(interstitial volume)으로 인해 기공들이 형성된다. 즉, 코팅된 비용매층으로 인하여 건조시 슬러리 내의 바인더 고분자가 다공성 기재의 기공부로 확산되는 것이 최소화된다. 이로 인하여 다공성 기재의 기공들이 슬러리 내의 바인더 고분자에 의해 막히는 현상이 최소화되므로, 다공성 유기-무기 복합층 형성에 따른 세퍼레이터의 저항이 증가되는 문제점이 개선된다. (S3) When the resultant is passed through the dryer, the slurry coated on the non-solvent first receives heat or hot air. Thus, the solvent in the slurry coated on the outer portion dries at a faster rate than the nonsolvent. Accordingly, before the non-solvent coating layer is completely dried, pores are formed due to the interstitial volume between the inorganic particles while being connected and fixed to each other by the inorganic particles from the inorganic particles present at the outermost portion of the slurry coating layer. . In other words, due to the coating non-solvent layer, the binder polymer in the slurry is minimized to diffuse into the pores of the porous substrate during drying. This minimizes the clogging of the pores of the porous substrate by the binder polymer in the slurry, thereby improving the problem that the resistance of the separator due to the porous organic-inorganic composite layer is increased.

전술한 공정을 거쳐 다공성 기재 위에 형성이 완료된 다공성 유기-무기 복합층은 바인더 고분자가 무기물 입자들이 서로 결착된 상태를 유지할 수 있도록 이들을 서로 부착(즉, 바인더 고분자가 무기물 입자 사이를 연결 및 고정)시키고 있으며, 또한 다공성 유기-무기 복합층은 바인더 고분자에 의해 다공성 기재와 결착된 상태를 유지한다. 다공성 유기-무기 복합층의 무기물 입자들은 서로 접촉한 상태로 최밀 충전된 구조로 존재하며, 무기물 입자들이 접촉된 상태에서 생기는 틈새 공간(interstitial volume)이 다공성 유기-무기 복합층의 기공이 된다. The porous organic-inorganic composite layer formed on the porous substrate through the above-described process is attached to each other (ie, the binder polymer is connected and fixed between the inorganic particles) so that the binder polymer can maintain the inorganic particles bound to each other. In addition, the porous organic-inorganic composite layer remains bound to the porous substrate by the binder polymer. The inorganic particles of the porous organic-inorganic composite layer are in close contact with each other, and the inorganic particles are in close contact with each other, and the interstitial volume generated when the inorganic particles are in contact with each other becomes the pores of the porous organic-inorganic composite layer.

전술한 방법에 따라 제조된 세퍼레이터는 예를 들어 양극과 음극 사이에 개재시켜 와인딩하거나 라미네이팅하므로서 전기화학소자를 제조할 수 있다. 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.The separator manufactured according to the above-described method may be manufactured, for example, by winding or laminating between an anode and a cathode to produce an electrochemical device. Electrochemical devices include all devices that undergo an electrochemical reaction, and specific examples include capacitors such as all kinds of primary, secondary cells, fuel cells, solar cells, or supercapacitor elements. Particularly, a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery is preferable.

본 발명의 세퍼레이터와 함께 적용될 양극과 음극의 양 전극으로는 특별히 제한되지 않으며, 당업계에 알려진 통상적인 방법에 따라 전극활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다. 상기 전극활물질 중 양극활물질의 비제한적인 예로는 종래 전기화학소자의 양극에 사용될 수 있는 통상적인 양극활물질이 사용 가능하며, 특히 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬철산화물 또는 이들을 조합한 리튬복합산화물을 사용하는 것이 바람직하다. 음극활물질의 비제한적인 예로는 종래 전기화학소자의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 특히 리튬 금속 또는 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 그래파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착물질 등이 바람직하다. 양극 전류집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 전류집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The positive electrode and the negative electrode to be applied together with the separator of the present invention is not particularly limited, and according to a conventional method known in the art can be prepared in the form of an electrode active material bound to the electrode current collector. Non-limiting examples of the positive electrode active material of the electrode active material may be a conventional positive electrode active material that can be used for the positive electrode of the conventional electrochemical device, in particular lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or combinations thereof It is preferable to use one lithium composite oxide. Non-limiting examples of the negative electrode active material may be a conventional negative electrode active material that can be used for the negative electrode of the conventional electrochemical device, in particular lithium metal or lithium alloys, carbon, petroleum coke, activated carbon, Lithium adsorbents such as graphite or other carbons are preferred. Non-limiting examples of the positive electrode current collector is a foil made by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector by copper, gold, nickel or copper alloy or a combination thereof Foils produced.

본 발명의 전기화학소자에서 사용될 수 있는 전해액은 A+B-와 같은 구조의 염으로서, A+는 Li+, Na+, K+와 같은 알칼리 금속 양이온 또는 이들의 조합으로 이루어진 이온을 포함하고 B-는 PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -와 같은 음이온 또는 이들의 조합으로 이루어진 이온을 포함하는 염이 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라하이드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC), 감마-부티로락톤 또는 이들의 혼합물로 이루어진 유기 용매에 용해 또는 해리된 것이 있으나, 이에만 한정되는 것은 아니다.Electrolyte that may be used in the electrochemical device of the present invention is A + B - A salt of the structure, such as, A + comprises a Li +, Na +, an alkali metal cation or an ion composed of a combination thereof, such as K + B - it is PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C Salts containing ions consisting of anions such as (CF 2 SO 2 ) 3 - or a combination thereof are propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl Carbonate (DPC), dimethylsulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethylcarbonate (EMC), gamma-butyrolactone or Some are dissolved or dissociated in an organic solvent composed of a mixture thereof, but are not limited thereto.

상기 전해액 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전지 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전지 조립 전 또는 전지 조립 최종 단계 등에서 적용될 수 있다.The electrolyte injection may be performed at an appropriate stage of the battery manufacturing process, depending on the manufacturing process and the required physical properties of the final product. That is, it may be applied before the battery assembly or at the end of battery assembly.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.

실시예 1Example 1

PVdF-CTFE (폴리비닐리덴플로라이드-클로로트리플로로에틸렌 공중합체) 및 Cyanoethylpullulan (시아노에틸풀루란)을 10:2의 중량비로 각각 아세톤에 첨가하여 50℃에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. Al2O3 분말과 BaTiO3 분말을 9:1의 중량비로 혼합한 무기물 입자들을 고분자/무기물 입자 = 10/90 중량비가 되도록 기 제조된 고분자 용액에 첨가하고, 12시간 이상 ball mill법을 이용하여 무기물 입자들을 파쇄 및 분산하여 슬러리를 제조하였다. 이렇게 제조된 슬러리의 무기물 입자의 입경은 평균 600nm이었다. PVdF-CTFE (polyvinylidene fluoride-chlorotrifluoroethylene copolymer) and Cyanoethylpullulan (cyanoethyl pullulan) were added to acetone in a weight ratio of 10: 2, respectively, and dissolved at 50 ° C. for at least 12 hours. Was prepared. Inorganic particles in which Al 2 O 3 powder and BaTiO 3 powder were mixed in a weight ratio of 9: 1 were added to the polymer solution prepared so that the polymer / inorganic particles = 10/90 weight ratio, and the ball mill method was used for 12 hours or more. The slurry was prepared by crushing and dispersing the inorganic particles. The particle diameter of the inorganic particles of the slurry thus prepared was 600 nm on average.

별도로 준비한 메탄올과, 준비한 슬러리를 도 1에 도시된 슬롯 다이를 통하여 두께 12㎛ 폴리에틸렌 다공성 막(기공도 45%)의 일면에 연속적으로 코팅하였다. 메탄올의 코팅 두께는 10㎛이었고, 슬러리의 코팅량은 최종적으로 형성되는 다공성 유기-무기 복합층의 두께가 4 ㎛이 되도록 60 ㎛으로 하였다.Separately prepared methanol and the prepared slurry were continuously coated on one surface of a 12 μm thick polyethylene porous membrane (porosity 45%) through the slot die shown in FIG. 1. The coating thickness of methanol was 10 μm, and the coating amount of the slurry was 60 μm so that the thickness of the finally formed porous organic-inorganic composite layer was 4 μm.

이어서, 코팅이 완료된 기재를 50도의 온도로 조절된 건조기에 통과시켜 비용매와 용매를 건조시킴으로서, 세퍼레이터를 완성하였다. The coated substrate was then passed through a drier controlled at a temperature of 50 degrees to dry the nonsolvent and the solvent to complete the separator.

완성된 세퍼레이터의 걸리(Gurley) 값은 205 sec/100mL로 양호하게 나타났다. 또한, 세퍼레이터의 저항은 0.7 Ω으로 양호한 수준이었다.
The Gurley value of the finished separator was good at 205 sec / 100 mL. Moreover, the resistance of the separator was 0.7 kW, which was a good level.

비교예 1Comparative Example 1

메탄올을 코팅하지 않고, 슬러리만 도 1에 도시된 슬롯 다이를 통하여 코팅한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 완성하였다. 슬러리의 코팅량은 최종적으로 형성되는 다공성 유기-무기 복합 층의 두께가 4㎛이 되도록 조절하였다. The separator was completed in the same manner as in Example 1, except that only the slurry was coated through the slot die shown in FIG. 1 without coating methanol. The coating amount of the slurry was adjusted so that the thickness of the finally formed porous organic-inorganic composite layer was 4 μm.

완성된 세퍼레이터의 걸리(Gurley) 값은 230 sec/100mL이고, 세퍼레이터의 저항은 1.0 Ω으로 증가하였다.The Gurley value of the completed separator was 230 sec / 100 mL, and the resistance of the separator increased to 1.0 kPa.

비교예 2Comparative Example 2

슬롯 다이 코팅 대신, 폴리에틸렌 다공성 막을 슬러리에 딥 코팅 방식으로 양면 코팅한 것을 제외하고는, 비교예 1과 동일한 방법으로 세퍼레이터를 완성하였다. 양면에 각각 코팅된 슬러리의 량은 최종적으로 형성되는 다공성 유기-무기 복합층의 두께가 각각 2 ㎛(양면 두께의 합이 4 ㎛)이 되도록 조절하였다. Instead of slot die coating, the separator was completed in the same manner as in Comparative Example 1 except that the polyethylene porous membrane was coated on both sides of the slurry by dip coating. The amount of the slurry coated on each side was adjusted so that the thickness of the finally formed porous organic-inorganic composite layer was 2 m (the sum of the thicknesses of both sides was 4 m).

완성된 세퍼레이터의 걸리(Gurley) 값은 290 sec/100mL이고, 세퍼레이터의 저항은 1.4 Ω으로 증가하였다.
The Gurley value of the completed separator was 290 sec / 100 mL, and the resistance of the separator increased to 1.4 mA.

전술한 방법으로 제조한 실시예 및 비교예들의 세퍼레이터를 각각 양극과 음극 사이에 개재시킨 다음, 권취하여 전극 구조체를 조립하였다. 음극으로는 흑연으로 된 음극 활물질 입자를 이용한 음극 활물질층을 구리 박막 위에 형성하여 사용하였고, 양극으로는 리튬코발트옥사이드를 이용한 양극 활물질층을 알루미늄 박막 위에 형성하여 사용하였다. 에틸렌카보네이트/에틸메틸카보네이트 = 1/2(부피비)로 혼합된 유기용매에 리튬헥사플루오로포스페이트 1몰을 용해시킨 비수 전해액을 조립된 전극 구조체에 주입하여, 리튬 이차전지를 제조하였다.
The separators of the examples and the comparative examples manufactured by the above-described method were interposed between the positive electrode and the negative electrode, respectively, and then wound to assemble an electrode structure. As a negative electrode, a negative electrode active material layer using graphite negative electrode active material particles was formed on a copper thin film, and a positive electrode active material layer using lithium cobalt oxide was formed on an aluminum thin film. A non-aqueous electrolyte in which 1 mol of lithium hexafluorophosphate was dissolved in an organic solvent mixed with ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio) was injected into the assembled electrode structure to prepare a lithium secondary battery.

전술한 방법으로 제조한 각각의 리튬 이차전지에 대하여, C-rate 특성을 측정하였고, 그 결과를 하기 표 1에 나타냈다. For each lithium secondary battery manufactured by the above-described method, the C-rate characteristics were measured, and the results are shown in Table 1 below.

Figure pat00001
Figure pat00001

표 1의 결과를 참조하면, 저율 방전에서는 큰 차이를 나타내지 않으나, 고율 방전 조건에서는 저항이 낮은 실시예 1의 분리막을 채용한 전지가 비교예들에 비해 방전용량이 높게 나타났다.Referring to the results of Table 1, the low discharge rate does not show a large difference, but the discharge capacity of the battery employing the separator of Example 1 having low resistance under the high rate discharge condition was higher than that of the comparative examples.

Claims (16)

(S1) 기공들을 갖는 다공성 기재를 준비하는 단계;
(S2) 상기 다공성 기재의 적어도 일면 위에 비용매를 코팅하는 단계;
(S3) 무기물 입자들이 분산되어 있으며 바인더 고분자가 용매에 용해된 슬러리를 상기 코팅된 비용매 위에 코팅하는 단계; 및
(S4) 상기 비용매 및 용매를 동시에 건조처리하여, 상기 무기물 입자들이 바인더 고분자에 의해 서로 연결 및 고정되면서 무기물 입자 사이의 빈 공간(interstitial volume)으로 인해 형성된 기공들을 포함하는 다공성 유기-무기 복합층이 상기 다공성 기재 위에 형성되도록 하는 단계를 포함하는 세퍼레이터의 제조방법.
(S1) preparing a porous substrate having pores;
(S2) coating a non-solvent on at least one surface of the porous substrate;
(S3) coating a slurry having inorganic particles dispersed therein and a binder polymer dissolved in a solvent on the coated non-solvent; And
(S4) drying the non-solvent and the solvent at the same time so that the inorganic particles are connected and fixed to each other by a binder polymer, and the porous organic-inorganic composite layer including pores formed due to the interstitial volume between the inorganic particles. Method for producing a separator comprising the step of forming on the porous substrate.
제 1항에 있어서,
상기 다공성 기재는 폴리올레핀계 다공성 막인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The porous substrate is a method for producing a separator, characterized in that the polyolefin-based porous membrane.
제 1항에 있어서,
상기 다공성 기재의 두께는 1 내지 100 ㎛인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The thickness of the porous substrate is a method for producing a separator, characterized in that 1 to 100 ㎛.
제 1항에 있어서,
상기 바인더 고분자의 용해도 지수는 15 내지 45 Mpa1/2인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
Method for producing a separator, characterized in that the solubility index of the binder polymer is 15 to 45 Mpa 1/2 .
제 1항에 있어서,
상기 바인더 고분자는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-co-trichloroethylene), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리부틸아크릴레이트 (polybutylacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드 (polyethylene oxide), 폴리아릴레이트(polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸플루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 플루란 (pullulan) 및 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose)로 이루어진 군으로부터 선택된 어느 하나의 바인더 고분자 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The binder polymer may be polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, Polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, ethylene vinyl acetate copolymer, polyethylene oxide oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethyl Polyvinyl alcohol (cyanoethylpolyviny) lalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, and carboxyl methyl cellulose, any one binder polymer selected from the group consisting of two or more thereof A method for producing a separator, characterized in that the mixture.
제 1항에 있어서,
상기 바인더 고분자와 비용매의 용해도 지수 차이는 5.5 Mpa1/2 이상인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The solubility index difference between the binder polymer and the non-solvent is 5.5 Mpa 1/2 or more method for producing a separator.
제 1항에 있어서,
상기 바인더 고분자와 용매의 용해도 지수 차이는 5.0 Mpa1/2 이하인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The solubility index difference between the binder polymer and the solvent is 5.0 Mpa 1/2 or less method for producing a separator.
제 1항에 있어서,
상기 비용매는 물, 메탄올, 에탄올, 에틸렌 클리콜, 및 글리세롤으로 이루어진 군으로부터 선택된 어느 하나의 비용매 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The non-solvent is a non-solvent selected from the group consisting of water, methanol, ethanol, ethylene glycol, and glycerol, or a mixture of two or more thereof.
제 1항에 있어서,
상기 용매는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드 (methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (N-methyl-2-pyrrolidone, NMP) 및 시클로헥산 (cyclohexane)으로 이루어진 군으로부터 선택된 어느 하나의 용매 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The solvent is acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone (N-methyl-2- A method for producing a separator, characterized in that any one selected from the group consisting of pyrrolidone, NMP) and cyclohexane or a mixture of two or more thereof.
제 1항에 있어서,
상기 비용매의 끓는점은 상기 용매의 끓는점 이상인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The boiling point of the non-solvent is a method for producing a separator, characterized in that more than the boiling point of the solvent.
제 1항에 있어서,
상기 무기물 입자들의 평균입경은 0.001 내지 10 ㎛인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The average particle diameter of the inorganic particles is a method for producing a separator, characterized in that 0.001 to 10 ㎛.
제 1항에 있어서,
상기 무기물 입자들과 바인더 고분자의 중량비가 50:50 내지 99:1 인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
Method for producing a separator, characterized in that the weight ratio of the inorganic particles and the binder polymer is 50:50 to 99: 1.
제 1항에 있어서,
상기 비용매의 코팅 두께는 5 내지 250 ㎛인 것을 특징으로 하는 세퍼레이터의 제조방법.
The method of claim 1,
The coating thickness of the non-solvent is a method for producing a separator, characterized in that 5 to 250 ㎛.
제1항 내지 제13항 중 어느 한 항의 세퍼레이터의 제조방법에 따라 형성된 세퍼레이터.The separator formed according to the manufacturing method of the separator of any one of Claims 1-13. 양극;
음극; 및
상기 양극과 음극 사이에 개재되며, 제1항 내지 제13항 중 어느 한 항의 세퍼레이터의 제조방법에 따라 형성된 세퍼레이터를 구비하는 전기화학소자.
anode;
cathode; And
An electrochemical device interposed between the positive electrode and the negative electrode and having a separator formed according to the method of manufacturing a separator according to any one of claims 1 to 13.
제 15항에 있어서,
상기 전기화학소자는 리튬 이차전지인 것을 특징으로 하는 전기화학소자.
16. The method of claim 15,
The electrochemical device is an electrochemical device, characterized in that the lithium secondary battery.
KR1020100116249A 2010-11-22 2010-11-22 Preparation method of separator KR101708882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100116249A KR101708882B1 (en) 2010-11-22 2010-11-22 Preparation method of separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100116249A KR101708882B1 (en) 2010-11-22 2010-11-22 Preparation method of separator

Publications (2)

Publication Number Publication Date
KR20120054883A true KR20120054883A (en) 2012-05-31
KR101708882B1 KR101708882B1 (en) 2017-02-21

Family

ID=46270554

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100116249A KR101708882B1 (en) 2010-11-22 2010-11-22 Preparation method of separator

Country Status (1)

Country Link
KR (1) KR101708882B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455043B1 (en) * 2012-07-31 2014-10-27 주식회사 엘지화학 Slurry for coating separator, separator using the slurry and electrochemical device including the separator
CN106784534A (en) * 2016-08-29 2017-05-31 东莞市卓高电子科技有限公司 The preparation method of PVDF and its copolymer ceramic coating membrane
CN106784533A (en) * 2017-01-20 2017-05-31 东莞市卓高电子科技有限公司 A kind of production technology containing PMMA and its copolymer coated barrier film
CN107785522A (en) * 2016-08-29 2018-03-09 比亚迪股份有限公司 A kind of lithium ion battery separator and lithium ion battery and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777971B1 (en) * 2006-12-11 2007-11-28 한밭대학교 산학협력단 Gellable separators containing functional inorganic additives and rechargeable lithium batteries using them
KR20120015729A (en) * 2010-08-13 2012-02-22 에스케이이노베이션 주식회사 Pore-protected multi-layered composite separator and the method for manufacturing the same
KR20120036061A (en) * 2010-10-07 2012-04-17 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and electrochemical device having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777971B1 (en) * 2006-12-11 2007-11-28 한밭대학교 산학협력단 Gellable separators containing functional inorganic additives and rechargeable lithium batteries using them
KR20120015729A (en) * 2010-08-13 2012-02-22 에스케이이노베이션 주식회사 Pore-protected multi-layered composite separator and the method for manufacturing the same
KR20120036061A (en) * 2010-10-07 2012-04-17 주식회사 엘지화학 Preparation method of separator, separator formed therefrom, and electrochemical device having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455043B1 (en) * 2012-07-31 2014-10-27 주식회사 엘지화학 Slurry for coating separator, separator using the slurry and electrochemical device including the separator
CN106784534A (en) * 2016-08-29 2017-05-31 东莞市卓高电子科技有限公司 The preparation method of PVDF and its copolymer ceramic coating membrane
CN107785522A (en) * 2016-08-29 2018-03-09 比亚迪股份有限公司 A kind of lithium ion battery separator and lithium ion battery and preparation method thereof
CN106784534B (en) * 2016-08-29 2019-09-13 东莞市卓高电子科技有限公司 The preparation method of PVDF copolymer ceramic coating membrane
CN107785522B (en) * 2016-08-29 2021-05-14 比亚迪股份有限公司 Lithium ion battery diaphragm, lithium ion battery and preparation method thereof
CN106784533A (en) * 2017-01-20 2017-05-31 东莞市卓高电子科技有限公司 A kind of production technology containing PMMA and its copolymer coated barrier film

Also Published As

Publication number Publication date
KR101708882B1 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
KR101073208B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR101708884B1 (en) Method for manufacturing separator, separator manufactured by the method and method for manufacturing electrochemical device including the separator
KR101173202B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
JP6430346B2 (en) Electrode including porous coating layer, method for producing the electrode, and electrochemical device including the electrode
KR101173201B1 (en) Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same
KR101358764B1 (en) Separator and electrochemical device having the same
KR20100024358A (en) A separator having porous coating layer, a manufacturing method thereof, and electrochemical device containing the same
KR101603627B1 (en) Lithum secondary battery comprising electrode structure including insulating layer
KR20120035858A (en) A electrochemical device for progressing cycle characteristic
KR20150045786A (en) Electrode of electrochemical device including insulating layer and manufacturing thereof
KR101623101B1 (en) Preparation method of separator, separator formed therefrom, and electrochemical device having the same
KR101708882B1 (en) Preparation method of separator
KR101028923B1 (en) A preparation method of separator having porous coating layer
KR20120035359A (en) A electrochemical device for progressing cycle characteristic

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right