Nothing Special   »   [go: up one dir, main page]

KR20110135728A - Novel lactobacillus spp. strains for producing sweet-tasting protein, brazzein and a method for producing the brazzein using the same - Google Patents

Novel lactobacillus spp. strains for producing sweet-tasting protein, brazzein and a method for producing the brazzein using the same Download PDF

Info

Publication number
KR20110135728A
KR20110135728A KR1020100055618A KR20100055618A KR20110135728A KR 20110135728 A KR20110135728 A KR 20110135728A KR 1020100055618 A KR1020100055618 A KR 1020100055618A KR 20100055618 A KR20100055618 A KR 20100055618A KR 20110135728 A KR20110135728 A KR 20110135728A
Authority
KR
South Korea
Prior art keywords
brazain
lactobacillus
brazzein
nisin
strain
Prior art date
Application number
KR1020100055618A
Other languages
Korean (ko)
Other versions
KR101422188B1 (en
Inventor
소재성
이유원
김관영
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100055618A priority Critical patent/KR101422188B1/en
Publication of KR20110135728A publication Critical patent/KR20110135728A/en
Application granted granted Critical
Publication of KR101422188B1 publication Critical patent/KR101422188B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A Lactobacillus sp. which produces sweet-tasting protein, Brazzein, is provided to highly produce Brazzein. CONSTITUTION: A Lactobacillus reuteri which expresses Brazzein has an amino acid sequence of sequence number 1. A method for preparing Brazzein comprises: a step of culturing Lactobacillus reuteri(KCTC18192P) strain in a medium containing 3-15 ug/ml of erythromycin and 10-50 ng/ml of nisin; and a step of isolating Brazzein form the culture liquid. The nisin is treated for three to four hours.

Description

감미 단백질 브라자인을 생성하는 락토바실러스 속 균주 및 이를 이용한 브라자인 생성방법{Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same}Novel Lactobacillus spp.strains for producing sweet-tasting protein, Brazein and a method for producing the Brazzein using the same}

본 발명은 감미 단백질 브라자인(Brazzein)을 생성하는 락토바실러스 속(Lactobacillus spp.) 균주 및 이를 이용한 브라자인 생성방법에 관련된 것이다.
The present invention relates to a strain of Lactobacillus spp. That produces sweet protein brazain and a method for producing brazain using the same.

당(sucrose)의 섭취는 비만, 충치, 당뇨병 등과 같은 문제와 연관되어 있다. 이러한 문제는 당의 섭취를 감소시키고, 당 대체품의 섭취를 증가시키는 것으로 이어졌다. 인공적인 감미제로는 사카린(saccharin), 시클라메이트(cyclamate), 아스파탐(aspartame), 수크랄로스(sucralose), 스테비오사이드(stevioside)가 있으며, 스테비오사이드는 당보다 훨씬 단맛을 내는 현재 가장 인기 있는 감미 대체품이다. 그러나, 다수의 인공적인 감미제가 방광암, 뇌 종양 및 정신 질환과 연관되어 있다는 연구 결과로 인하여(National Cancer Institute Fact Sheet. 2006; Soffritti et al. 2005), 안전하면서 건강에 도움이 되는, 새로운 대체 감미제에 대한 필요가 대두되었다. Sugar intake is associated with problems such as obesity, tooth decay and diabetes. These problems have led to reduced sugar intake and increased sugar intake. Artificial sweeteners include saccharin, cyclamate, aspartame, sucralose and stevioside, which are currently the most popular sweet substitutes that are much sweeter than sugar. to be. However, due to the finding that many artificial sweeteners are associated with bladder cancer, brain tumors and mental illness (National Cancer Institute Fact Sheet. 2006; Soffritti et al. 2005), new alternative sweeteners that are safe and beneficial to health There was a need for it.

감미 단백질은 다양한 아프리카 및 남아시아 과일로부터 분리되며, 당(sucrose)보다 중량기준으로 약 500 ~ 4000배 이상 더 달기 때문에, 이러한 감미 단백질들을 자연적인 감미제로 사용되어왔다(Faus 2000). 그 중 브라자인(Brazzein)은 가장 작은 감미 식물 단백질(6,473Da)로써, 54개의 아미노산으로 구성되어 있다. 이는 서양 아프리카 식물 펜타이플란드라 브라제아나 바일론(Pentadiplandra brazzeana Baillon)으로부터 분리되었으며(Ming and Hellekant 1994), 중량기준으로 수크로즈(sucrose)보다 500배 더 달며, 분자 내의 이황산 결합으로 인해서 열과 pH에 대하여 더욱 안정적이다. 이러한 이유로, 유력한 당 대체제로써, 브라자인에 대한 연구가 활발히 이루어지고 있다(Assadi-Porter et al. 2000; Berlec et al. 2006; Ming and Hellekant 1994).Sweet protein is isolated from various African and South Asian fruits and has been used as a natural sweetener because it is about 500 to 4000 times more sweet by weight than sucrose (Faus 2000). Brazein is the smallest sweet plant protein (6,473 Da) and is composed of 54 amino acids. It is a Western African plant, Pentai Plandra, Brazeana and Pentadiplandra. It is isolated from brazzeana Baillon (Ming and Hellekant 1994), 500 times sweeter than sucrose by weight, and more stable against heat and pH due to disulfide bonds in the molecule. For this reason, as a potent sugar substitute, studies on brazain are being actively conducted (Assadi-Porter et al. 2000; Berlec et al . 2006; Ming and Hellekant 1994).

E. coli(Assadi-Porter et al. 2000), 메이즈(maize)(Lamphear et al. 2005) 및 락토코커스 락티스(Lactococcus lactis (Berlec et al. 2006)에서 재조합 브라자인을 발현시킨 보고가 있다. 브라자인을 발현시키기 위하여, L. lactis에서는 니신-조절 발현 시스템(nisin-controlled expression system, NICE)을 적용하였다(de Ruyter et al. 1996). 또한, 발효(fermentation) 조건의 최적화 및 플라스미드/균주 조합의 변화에 의해서 브라자인 단백질의 발현량을 증가시켰다는 결과가 보고되었으나(Berlec et al. 2008, Berlec et al. 2009), 브라자인 단백질의 발현량은 여전히 상대적으로 낮은 수치였다.
There are reports of expression of recombinant brazain in E. coli (Assadi-Porter et al. 2000), maize (Lamphear et al. 2005) and Lactococcus lactis (Berlec et al. 2006). To express brazain, a nisin-controlled expression system (NICE) was applied in L. lactis (de Ruyter et al. 1996.) In addition, optimization of fermentation conditions and plasmid / strains It was reported that the expression of brazain protein was increased by the change of the combination (Berlec et al. 2008, Berlec et al. 2009), but the expression level of brazain protein was still relatively low.

락토바실러스 속(Lactobacillus spp.)에 속한 균들은 이들의 추정 건강-기여 속성(putative health-conferring properties)으로 인하여, 프로바이오틱스(probiotics)로서 최근 많은 관심을 받고 있다(Sanders 1999). 다수의 종들에 관하여 많은 연구가 선행되어 있으며, 완전한 게놈(genome) 서열 및 이미 확립된 유전적 기술들이 활용 가능하다(Kleerebezem et al. 2003; Wei et al. 1995). 널리 알려진 락토바실리(Lactobacilli)의 산업적 및 의료학적 중요성의 관점에서, 락토비실리의 특징을 잘 파악하는 것은 매우 중요한 관심의 하나이다(Wei et al., 1995).
Bacteria belonging to the genus Lactobacillus spp. Have recently received a lot of attention as probiotics due to their putative health-conferring properties (Sanders 1999). Many studies have been preceded by a number of species, and complete genome sequences and already established genetic techniques are available (Kleerebezem et al. 2003; Wei et al. 1995). In view of the industrial and medical importance of the well-known Lactobacilli, it is of particular interest to understand the characteristics of lactobisilli (Wei et al., 1995).

이에, 본 발명자들은 감미제를 대체를 위한, 브라자인을 발현하는 새로운 균주를 생성하기 위하여, 락토바실러스 류테리(Lactobacillus reuteri)에 브라자인을 발현하는 플라스미드를 형질전환시킨 후, 니신(nisin)을 처리하였을 때 브라자인 발현량이 증가하며, 이러한 발현량의 증가는 니신의 농도 및 처리시간과 관련될 뿐만 아니라, 사용한 락토바실러스 속 중 삽입된 플라스미드의 안정성이 가장 높은 락토바실러스 류테리(Lactobacillus reuteri)에서 브라자인 생산량이 가장 높다는 것을 확인함으로써, 본 발명을 완성하였다.
Accordingly, the present inventors transformed the plasmid expressing the brazain into Lactobacillus reuteri, and then treated the nisin to produce a new strain expressing the brazain for replacing the sweetener. When the expression of brazain increases, the increase in expression is not only related to the concentration and treatment time of nisin, but also in the Lactobacillus reuteri, which has the highest stability of the inserted plasmid in the genus Lactobacillus. The present invention was completed by confirming that phosphorus production was the highest.

Assadi-Porter F M, Aceti DJ, Cheng H, Markley JL (2000) Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch Biochem Biophys 376:252-258. Assadi-Porter F M, Aceti DJ, Cheng H, Markley JL (2000) Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch Biochem Biophys 376: 252-258. Berlec A, Jevnikar Z, Majhenic AC, Rogelj I, Strukelj B (2006) Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol 73:158-165.Berlec A, Jevnikar Z, Majhenic AC, Rogelj I, Strukelj B (2006) Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol 73: 158-165. Berlec A, Tompa G, Slapar N, Fonovic UP, Rogelj I, Strukelj B (2008) Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46:227-231.Berlec A, Tompa G, Slapar N, Fonovic UP, Rogelj I, Strukelj B (2008) Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in Lactococcus lactis. Lett Appl Microbiol 46: 227-231. Berlec A, Strukelj B (2009) Large increase in brazzein expression achieved by chaning the plasmid/strain combination of the NICE system in Lactococcus lactis. Lett Appl Microbiol 48:750-755.Berlec A, Strukelj B (2009) Large increase in brazzein expression achieved by chaning the plasmid / strain combination of the NICE system in Lactococcus lactis. Lett Appl Microbiol 48: 750-755. Bryan EM, Bae T, Kleerebezem M, Dunny GM (2000) Improved vectors for nisin-controlled-expression in Gram-positive bacteria. Plasmid 44:183-190.Bryan EM, Bae T, Kleerebezem M, Dunny GM (2000) Improved vectors for nisin-controlled-expression in Gram-positive bacteria. Plasmid 44: 183-190. Chang CE, Pavlova SI, Tao L, Kim EK, Kim SC, Yun HS, So JS (2002) Molecular identification of vaginal Lactobacillus spp. isolated from Korean women. J Microbiol Biotechnol 12:312-317. Chang CE, Pavlova SI, Tao L, Kim EK, Kim SC, Yun HS, So JS (2002) Molecular identification of vaginal Lactobacillus spp. isolated from Korean women. J Microbiol Biotechnol 12: 312-317. Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53:145-151.Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53: 145-151. Kleerebezem M, Boekhorst J, van Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990-1995.Kleerebezem M, Boekhorst J, van Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100: 1990-1995. Lamphear BJ, Barker DK, Brooks CA et al (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. J Plant Biotechnol 3:103-114. Lamphear BJ, Barker DK, Brooks CA et al (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. J Plant Biotechnol 3: 103-114. Lee YW, Im SH, Xin CF, So JS (2009) Determination of optimal electrotransformation conditions for various Lactobacillus spp. Korean J Biotechnol Bioeng 24:182-188. Lee YW, Im SH, Xin CF, So JS (2009) Determination of optimal electrotransformation conditions for various Lactobacillus spp. Korean J Biotechnol Bioeng 24: 182-188. Ming D, Hellekant G (1994) Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355:106-108.Ming D, Hellekant G (1994) Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett 355: 106-108. National Cancer Institute Fact Sheet (2006) Artificial sweeteners and cancer: questions and answers. http://www.cancer.gov/cancertopics/factsheet/Risk/artificial-sweeteners#ref1. Accessed 7 January 2010.National Cancer Institute Fact Sheet (2006) Artificial sweeteners and cancer: questions and answers. http://www.cancer.gov/cancertopics/factsheet/Risk/artificial-sweeteners#ref1. Accessed 7 January 2010. Pavan S, Hols P, Delcour J, Geoffroy M, Grangette C, Kleerebezem M, Mercenier A (2000) Adaptation of the nisin-controlled expression in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66:4427-4432.Pavan S, Hols P, Delcour J, Geoffroy M, Grangette C, Kleerebezem M, Mercenier A (2000) Adaptation of the nisin-controlled expression in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 66: 4427-4432. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, New York. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor, New York. Sanders TA (1999) Food production and food safety. BMJ 318:1689◎693.Sanders TA (1999) Food production and food safety. BMJ 318: 1689 ◎ 693. Soffritti M, Belpoggi F, Esposti DD, Lambertini L (2005) Aspartame induces lymphomas and leukaemias in rats. Eur J Oncol 10:107-116. Soffritti M, Belpoggi F, Esposti DD, Lambertini L (2005) Aspartame induces lymphomas and leukaemias in rats. Eur J Oncol 10: 107-116. Wei M, Rush CM, Norman JM, Hafner LM, Epping RJ, Timms P (1995) An improved methods for the transformation of Lactobacillus strains using electroporation. J Microbiol Meth 21:97-109.Wei M, Rush CM, Norman JM, Hafner LM, Epping RJ, Timms P (1995) An improved methods for the transformation of Lactobacillus strains using electroporation. J Microbiol Meth 21: 97-109.

본 발명의 목적은 감미 단백질 브라자인(Brazzein)을 생성하는 락토바실러스 속(Lactobacillus spp.) 균주 및 이를 이용한 브라자인 생산 방법을 제공하는 것이다.
An object of the present invention is to provide a Lactobacillus spp. Strain producing a sweet protein Brazain (Brazzein) and a method for producing brazain using the same.

상기 목적을 달성하기 위하여, 본 발명은 수탁번호 KCTC18192P로 기탁된 브라자인을 발현하는 락토바실러스 류테리(Lactobacillus reuteri) 균주를 제공한다.In order to achieve the above object, the present invention provides a Lactobacillus reuteri strain expressing the brazain deposited with accession number KCTC18192P.

아울러, 본 발명은 상기 균주를 이용한 브라자인 생산방법을 제공한다.
In addition, the present invention provides a method for producing brazain using the strain.

본 발명은 락토바실러스 류테리(Lactobacillus reuteri) 균주에 브라자인을 발현하는 플라스미드를 형질전환한 후, 30 ~ 40 ng/㎖ 농도의 니신을 3 ~ 4시간 처리하였을 때, 브라자인 단백질의 생산량이 가장 높으며, 이러한 효과는 종래의 L.lactis 균주에서 생성되는 브라자인 보다 현저히 높으므로, 본 발명에 따른 락토바실러스 속 균주를 브라자인을 생산하는데 유용하게 사용할 수 있다.
According to the present invention, after transforming a plasmid expressing brazain into a Lactobacillus reuteri strain, and then treating nisin at a concentration of 30 to 40 ng / ml for 3 to 4 hours, the production of brazain protein is most significant. It is high, and this effect is significantly higher than the brazain produced in the conventional L. lactis strain, the strain of the genus Lactobacillus according to the present invention can be usefully used for producing brazain.

도 1은 락토바실러스 속(Lactobacillus spp.) 균주에 형질전환된 브라자인(Brazzein) 단백질을 PCR을 이용하여 확인한 그림이다:
1번 레인: 1.1kb DNA 래더(ladder);
2번 레인: 100 bp DNA 래더;
3번 레인: 락토바실러스 파라카제이(Lactobacillus paracasei) KLB8;
4번 레인: 락토바실러스 플란타룸(Lactobacillus plantarum) KLB 213; 및
5번 레인: 락토바실러스 류테리(Lactobacillus reuteri) KCT3594.
도 2는 니신을 처리하는 시간에 따른 락토바실러스 속의 브라자인 발현을 확인한 결과이다:
도 2의 A는 락토바실러스 속의 브라자인 발현을 웨스턴 블랏에 의해서 확인한 그림이다;
KLB8: 락토바실러스 파라카제이(Lactobacillus paracasei);
KLB 21: 락토바실러스 플란타룸(Lactobacillus plantarum);
KCT3594: 락토바실러스 류테리(Lactobacillus reuteri);
도 2의 B는 상기 웨스턴 블랏의 이미지를 상대적으로 분석한 그래프이다;
KLB8: 락토바실러스 파라카제이(Lactobacillus paracasei);
KLB 21: 락토바실러스 플란타룸(Lactobacillus plantarum); 및
KCT3594: 락토바실러스 류테리(Lactobacillus reuteri);
도 3은 다양한 니신 농도에 따른 락토바실러스 속의 브라자인 발현을 확인한 결과이다:
도 3의 A는 다양한 니신 농도에서 브라자인의 발현을 웨스턴 블랏을 통해서 확인한 그림이다;
KLB8: 락토바실러스 파라카제이(Lactobacillus paracasei);
KLB 21: 락토바실러스 플란타룸(Lactobacillus plantarum);
KCT3594: 락토바실러스 류테리(Lactobacillus reuteri);
도 3의 B는 상기 웨스턴 블랏의 이미지를 상대적으로 분석한 그래프이다;
KLB8: 락토바실러스 파라카제이(Lactobacillus paracasei);
KLB 21: 락토바실러스 플란타룸(Lactobacillus plantarum); 및
KCT3594: 락토바실러스 류테리(Lactobacillus reuteri).
도 4는 다른 락토바실러스(Lactobacillus spp.) 속 균주 및 L. lactis에서 브라자인의 발현을 비교한 결과이다:
도 4의 A는 다른 락토바실러스 균주에서 브라자인의 발현 나타낸 웨스턴 블랏 그림이다;
1번 레인: 락토바실러스 파라카제이(Lactobacillus paracasei) KLB8;
2번 레인: 락토바실러스 플란타룸(Lactobacillus plantarum) KLB 213;
3번 레인: 락토바실러스 류테리(Lactobacillus reuteri) KCT3594;
4번 레인: 락토코쿠스 락틱스(Lactococcus . lactis );
도 4의 B는 상기 웨스턴 블랏의 이미지를 상대적으로 분석한 그래프이다;
KLB8: 락토바실러스 파라카제이(Lactobacillus paracasei);
KLB 21: 락토바실러스 플란타룸(Lactobacillus plantarum);
KCT3594: 락토바실러스 류테리(Lactobacillus reuteri); 및
IL1403: 락토코쿠스 락틱스(Lactococcus . lactis ).
도 5는 pMSP3545::Bra-ht의 안정성을 세 종류의 락토바실러스 속에서 비교한 그래프이다.
Figure 1 is a figure confirming the Brazin protein transformed in Lactobacillus spp. Strain by PCR using PCR:
Lane 1: 1.1 kb DNA ladder;
Lane 2: 100 bp DNA ladder;
Lane 3: Lactobacillus paracasei KLB8;
Lane 4: Lactobacillus plantarum ) KLB 213; And
Lane 5: Lactobacillus reuteri KCT3594.
Figure 2 shows the results of confirming brazain expression in the genus Lactobacillus over time treatment of nisin:
Figure 2 A is a figure confirming the expression of brazain in Lactobacillus by Western blot;
KLB8: Lactobacillus paracasei ;
KLB 21: Lactobacillus plantarum ;
KCT3594: Lactobacillus reuteri;
2B is a graph in which the image of the western blot is analyzed relatively;
KLB8: Lactobacillus paracasei ;
KLB 21: Lactobacillus plantarum ; And
KCT3594: Lactobacillus reuteri;
Figure 3 is a result confirming the expression of brazain in the genus Lactobacillus according to various concentrations of nisin:
3A is a diagram confirming the expression of brazain at various nisin concentrations by Western blot;
KLB8: Lactobacillus paracasei );
KLB 21: Lactobacillus plantarum );
KCT3594: Lactobacillus reuteri;
3B is a graph in which the image of the western blot is relatively analyzed;
KLB8: Lactobacillus paracasei );
KLB 21: Lactobacillus plantarum ); And
KCT3594: Lactobacillus reuteri.
Figure 4 is another Lactobacillus ( Lactobacillus) spp.) genotype strains and L. lactis in comparison with the expression of brazain:
4A is a Western blot plot showing the expression of brazain in other Lactobacillus strains;
Lane 1: Lactobacillus paracasei ) KLB8;
Lane 2: Lactobacillus plantarum ) KLB 213;
Lane 3: Lactobacillus reuteri KCT3594;
Lane 4: Lactobacillus Nose Rock Athletics Syracuse (. Lactococcus lactis);
4B is a graph in which the image of the western blot is relatively analyzed;
KLB8: Lactobacillus paracasei );
KLB 21: Lactobacillus plantarum );
KCT3594: Lactobacillus reuteri; And
IL1403: Lactobacillus Nose Rock Athletics Syracuse (Lactococcus lactis.).
5 is a graph comparing the stability of pMSP3545 :: Bra-ht in three types of Lactobacillus.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 서열번호 1로 기재되는 아미노산 서열을 갖는 브라자인을 발현하는 락토바실러스 류테리(Lactobacillus reuteri) 균주를 제공한다.The present invention provides a Lactobacillus reuteri strain expressing brazain having the amino acid sequence set forth in SEQ ID NO: 1.

상기 균주는 수탁번호 KCTC18192P로 기탁된 것이 바람직하나, 이에 한정되지 않는다. 본 발명에 따른 브라자인을 발현하는 락토바실러스 류테리(Lactobacillus reuteri)는 2010년 5월 27일 한국생명공학연구원에 기탁되었다(KCTC18192P).The strain is preferably deposited with accession number KCTC18192P, but is not limited thereto. Lactobacillus reuteri expressing brazain according to the present invention was deposited on May 27, 2010 to the Korea Research Institute of Bioscience and Biotechnology (KCTC18192P).

본 발명의 브라자인을 발현하는 락토바실러스 속 균주는 브라자인을 발현하는 pMSP3545::Bra-ht 플라스미드를 종래의 선행 문헌(Korean. J. Biotechnol. Bioeng 24:182-188)에 따라 락토바실러스 속에 전기천공법을 통해서 형질전환되는 것이 바람직하나, 이에 한정되지 않는다. 또한, 락토바실러스 속 균주는 락토바실러스 류테리(Lactobacillus reuteri)인 것이 바람직하나, 이에 한정되지 않는다. 형질전환된 락토바실러스 균주는 에리스로마이신 저항성인 것이 바람직하나, 이에 한정되지 않으며, 추가적으로 에리스로마이신을 1 ~ 20 ㎍/㎖ 첨가하는 것이 바람직하며, 3 ~ 15 ㎍/㎖ 첨가하는 것이 더욱 바람지하나, 이에 한정되지 않는다. 상기 브라자인을 발현하는 락토바실러스 속 균주에서 브라자인을 발현시키기 위하여 첨가되는 니신(nisin)은 락토바실러스 속 균주에 따른 초기 지수기(early exponential phase)에 첨가되는 것이 바람직하나, 이에 한정되지 않는다. 첨가되는 니신(nisin)은 5 ~ 70 ng/㎖인 것이 바람직하며, 10 ~ 50 ng/㎖ 첨가하는 것이 더욱 바람직하나, 이에 한정되지 않는다.The strain of Lactobacillus expressing the brazain of the present invention is characterized in that pMSP3545 :: Bra-ht plasmid expressing brazain is transferred to Lactobacillus according to the prior art document (Korean. J. Biotechnol. Bioeng 24: 182-188). Preferably, the method is transformed through a perforation method, but is not limited thereto. In addition, the strain of the genus Lactobacillus is preferably Lactobacillus reuteri ( Lactobacillus reuteri ), but is not limited thereto. The transformed Lactobacillus strain is preferably erythromycin resistant, but is not limited thereto. In addition, it is preferable to add 1 to 20 μg / ml of erythromycin, and more preferably to add 3 to 15 μg / ml, It is not limited to this. Nisin added to express brazain in the Lactobacillus strain expressing the brazain is preferably added to the early exponential phase according to the Lactobacillus strain, but is not limited thereto. Nisin added (nisin) is preferably 5 ~ 70 ng / ㎖, it is more preferably added 10 ~ 50 ng / ㎖, but is not limited thereto.

본 발명의 구체적인 실시양태에서 락토바실러스 속 균주에 브라자인을 발현하는 pMSP3545::Bra-ht 플라스미드를 전기천공법으로 도입한 후, 브라자인의 발현을 콜로니 PCR을 이용하여 확인한 결과, 도 1에 나타난 바와 같이 브라자인 단백질의 상응되는 크기인 500 bp에서 관찰된 PCR 산물이 따라 pMSP3545::Bra-ht가 락토바실러스 속 균주에서 브라자인을 발현하고 있음을 확인하였다(도 1 참조).In a specific embodiment of the present invention, after introducing pMSP3545 :: Bra-ht plasmid expressing brazain into the Lactobacillus strain, the expression of brazain was confirmed by colony PCR. As described above, it was confirmed that pMSP3545 :: Bra-ht expressed brazain in the Lactobacillus strain according to the PCR product observed at 500 bp corresponding size of the brazain protein (see FIG. 1).

또한, 본 발명의 구체적인 실시양태에서, 본 발명에 따른 락토바실러스 속 균주에서 브라자인 단백질의 발현량을 최적화하기 위하여, 니신 처리시간에 따른 브라자인 발현량을 비교한 결과, 니신을 처리한 후, 3 ~ 4시간 후 최고 발현량을 나타냈으며, 시간이 경과할수록 발현량이 점차 감소하는 것을 확인하였다(도 2 참조).In addition, in a specific embodiment of the present invention, in order to optimize the expression of brazain protein in the Lactobacillus strain according to the present invention, after comparing the amount of brazain expression according to the treatment time of nisin, after treating the nisin, After 3 to 4 hours, the highest expression level was shown, and the expression level gradually decreased as time passed (see FIG. 2).

또한, 본 발명의 구체적인 실시양태에서, 본 발명에 따른 락토바실러스 속 균주에서 브라자인 단백질의 발현량 최적화하기 위하여, 처리하는 니신의 농도에 변화를 주어 발현량을 비교한 결과, 25 ~ 40 ng/㎖의 농도에서 최대량을 발현하였으며, 그 이상의 농도에서 니신은 세포 성장을 심각하게 저해하여 브라자인의 생성량이 감소하는 결과를 확인하였다(도 3 참조).In addition, in a specific embodiment of the present invention, in order to optimize the expression level of the Brazain protein in the Lactobacillus sp. Strain according to the present invention, by varying the concentration of the treated nisin, the expression level is compared, 25 ~ 40 ng / The maximum amount was expressed at the concentration of ml, and at higher concentrations, nisin significantly inhibited cell growth, thereby confirming a decrease in the amount of brazain produced (see FIG. 3).

또한, 본 발명의 구체적인 실시양태에서, 락토바실러스 속의 다른 균주를 이용하여 브라자인 발현량을 측정한 결과, Lb. reuteri KCTC3594에서 발현량이 가장 높음을 확인하였다(도 4 참조).In addition, in a specific embodiment of the present invention, by measuring the expression of brazain using another strain of the genus Lactobacillus, Lb. reuteri It was confirmed that the expression level was the highest in KCTC3594 (see FIG. 4).

아울러, 본 발명의 구체적인 실시양태에서, 브라자인을 발현하는 플라스미드의 락토바실러스 속 균주 속에서의 안정성을 측정한 결과, 균주 속의 안정성에 따라서 브라자인의 발현량에 차이가 있으며, 브라자인의 발현량이 높은 Lb . reuteri KCTC3594에서 플라스미드의 안정성이 가장 높았다(도 5 참조).
In addition, in a specific embodiment of the present invention, as a result of measuring the stability in the strain of the genus Lactobacillus of the plasmid expressing brazain, there is a difference in the expression amount of brazain according to the stability of the strain, the expression amount of brazain high-Lb. The highest stability of the plasmid was in reuteri KCTC3594 (see FIG. 5).

아울러, 본 발명은 본 발명에 따른 락토바실러스 속 균주를 이용하여 브라자인을 생산하는 방법을 제공한다. In addition, the present invention provides a method for producing brazain using the Lactobacillus strain according to the present invention.

브라자인을 생산하는 방법은 하기의 단계를 포함하는 것이 바람직하나, 이에 한정되지 않는다:The method for producing brazain preferably includes, but is not limited to, the following steps:

1) 수탁번호 KCTC181921P로 기탁된 락토바실러스 류테리(Lactobacillus reuteri) 균주를 배양하는 단계; 및1) culturing the Lactobacillus reuteri strain deposited with accession number KCTC181921P; And

2) 배양액으로부터 브라자인 단백질을 분리하는 단계를 포함하는 브라자인 생산방법.2) A brazain production method comprising the step of separating the brazain protein from the culture.

상기 브라자인을 생산하는 방법에 있어서, 단계 1)의 배양은 에리스로마이신(erythromycin)을 3 ~ 15 ㎍/㎖이 포함된 배지에서 배양하는 것이 바람직하며, 5 ~ 10 ㎍/㎖이 포함된 배지에서 배양하는 것이 더욱 바람직하나, 이에 한정되지 않는다. 또한, 단계 1)의 배양은 10 ~ 70 ng/㎖의 니신(nisin)이 포함된 배지에서 배양하는 것이 바람직하며, 25 ~ 50 ng/㎖이 포함된 배지에서 배양하는 것이 더욱 바람직하나, 이에 한정되지 않는다. 또한, 단계 1)의 배양은 2 ~ 5시간 처리하여 배양하는 것이 바람직하며, 니신을 3 ~ 4시간 처리하여 배양하는 것이 더욱 바람직하나, 이에 한정되지 않는다.In the method for producing brazain, the culture of step 1) is preferably culturing erythromycin in a medium containing 3 to 15 ㎍ / ㎖, in a medium containing 5 to 10 ㎍ / ㎖ More preferably, but not limited to the culture. In addition, the culture of step 1) is preferably cultured in a medium containing 10 to 70 ng / ㎖ nisin (nisin), more preferably in a medium containing 25 to 50 ng / ㎖, but is not limited thereto. It doesn't work. In addition, the culture of step 1) is preferably incubated by treating for 2 to 5 hours, and more preferably for 3 to 4 hours of incubation, but not limited thereto.

본 발명의 구체적인 실시양태에서 브라자인을 생성하는 락토바실러스 속 균주는 종래 브라자인을 생성하는 L. latcis보다 브라자인을 생성량이 높았으며, 브라자인의 발현량을 최적화하기 위하여, 브라자인의 발현을 유도하는 니신의 처리시간 및 농도를 조절하여, 니신 처리 3 ~ 4시간 후에 발현량이 가장 높으며, 이때 첨가되는 니신의 농도는 25 ~ 40 ng/㎖인 것이 효과적임을 확인하였다. 아울러, 이러한 발현량은 락토바실러스 속 균주의 종류에 따라 차이를 보였으며, 그 원인은 삽인된 플라스미드의 락토바실러스 속 균주에서의 안정성의 차이로 인하여 발생함을 밝혔다(도 1,2,3,4 및 5 참조).
In a specific embodiment of the present invention, the strain of Lactobacillus genus that produces brazain has a higher amount of brazain than L. latcis , which produces brazain , and in order to optimize the expression of brazain , By adjusting the treatment time and concentration of the nisin to induce, it was confirmed that the expression level was the highest after 3-4 hours of nisin treatment, and the concentration of nisin added was 25-40 ng / ml. In addition, these expression levels showed a difference depending on the type of strains of the genus Lactobacillus, it was found that the cause is due to the difference in stability in the strains of the genus Lactobacillus of the inserted plasmid (Figs. 1,2,3,4). And 5).

이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 단, 하기의 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예 및 실험예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by Examples and Experimental Examples. However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the content of the present invention is not limited by the following Examples and Experimental Examples.

<< 실시예Example 1>  1> 락토바실러스Lactobacillus 속의 형질전환 Transformation of the genus

감미 단백질 브라자인(Brazzein)을 발현하는 신규한 균주를 제작하기 위하여, 감미 단백질을 발현하는 pMSP3545::Bra-ht 플라스미드를 "Determination of optimal electroformation conditions for various Lacobacillus spp."(Koran. J. Biotechnol. Bioeng 24:182-188)에 기재된 방법에 따라서 락토바실러스 속(Lactobacillus spp.) 락토바실러스 파라카제이(Lactobacillus paracasei), 락토바실러스 플란타룸(Lactobacillus plantarum) 및 락토바실러스 류테리(Lactobacillus reuteri)에 전기천공법(electrotransformation)을 통해서 형질전환하였다.In order to construct a novel strain expressing sweet protein Brazain, pMSP3545 :: Bra-ht plasmid expressing sweet protein was expressed in "Determination of optimal electroformation conditions for various Lacobacillus spp." (Koran. J. Biotechnol. Bioeng 24:. method in Lactobacillus (Lactobacillus spp according to set forth in 182-188)), Lactobacillus para casei (Lactobacillus paracasei), the electric Lactobacillus Planta room (Lactobacillus plantarum) and Lactobacillus flow Terry (Lactobacillus reuteri) Transformation was performed by electrotransformation.

상기 세 가지 속의 락토바실러스(Lactobacillus) 균주는 정지기(stationary phase)의 16~18시간 배양시기에 1% 글리신(Glycine)이 첨가된 MRS 브로스(Bioworld) 5 ㎖에 접종시켰다. 상기 세포는 초기 로그기(log phase)인, OD600 수치가 0.2~0.3가 되는 접종 후 약 3시간 후에 6,000g, 4℃에서 5분 동안 원심분리하여 펠렛(pellet)을 모았다. 상기 세포 펠렛은 차가운 워싱 버퍼[5 mM 소디움 포스페이트(sodium phosphate), pH 7.4, 1 mM MgCl2]를 이용하여 2회 세척한 후, 전기 천공(electroporation) 버퍼[S 버퍼, 0.5 M 수크로즈(sucrose)]를 이용하여 마지막으로 세척하였다. 1 ㎕의 pMSP3545::Bra-ht는 0.1 cm의 내부 전극봉 공간이 있는 Gene PulserTM 일회용 큐벳(cuvette)에서 차가운 세포 현택액 50 ㎕과 혼합된 후, 얼음 위에 5분 동안 두었다. 상기 혼합물은 12.5 kV/cm 피크 필드 세기(peak field strength)의 전기 자극을 주었다. 전기 천공법을 수행한 이후, 200 ㎕의 정상 MRS 브로스를 즉시 상기 세포에 첨가한 뒤에, 37℃에서 2시간 동안 반응 시켰다. 그 뒤에, 5 ㎍/㎖의 에리스로마이신(erythromycin)이 첨가된 MRS 아가(agar) 플레이트에 첨가하였다. 상기 플레이트는 2~3시간 동안 37℃에서 반응시켰다.
Lactobacillus strains of the three genera were inoculated in 5 ml of MRS broth (Bioworld) to which 1% glycine (Glycine) was added at 16-18 hours of incubation in the stationary phase. The cells were pelleted by centrifugation at 6,000 g and 4 ° C. for about 5 hours after the inoculation of the initial log phase (OD 600 ) of 0.2 to 0.3. The cell pellet was washed twice with cold washing buffer [5 mM sodium phosphate, pH 7.4, 1 mM MgCl 2 ], followed by electroporation buffer [S buffer, 0.5 M sucrose] )] And the final wash. 1 μl of pMSP3545 :: Bra-ht was mixed with 50 μl of cold cell suspension in a Gene Pulser disposable cuvette with 0.1 cm internal electrode space and then placed on ice for 5 minutes. The mixture gave electrical stimulation of 12.5 kV / cm peak field strength. After performing electroporation, 200 μl of normal MRS broth was immediately added to the cells, followed by reaction at 37 ° C. for 2 hours. Thereafter, 5 μg / ml of erythromycin was added to the MRS agar plate. The plates were reacted at 37 ° C. for 2-3 hours.

<< 실험예Experimental Example 1>  1> 감미Sweetness 단백질을 발현하는  Expressing protein 락토바실러스Lactobacillus 속의 확인 Check

pMSP3545::Bra-ht가 락토바실러스 속(Lactobacillus spp.)에 형질전환된 것을 확인하기 위하여, 콜로니 PCR 방법을 통하여 브라자인을 발현하는 단백질의 에리스로마이신 저항성 유전자(resistance gene)의 증폭을 이용하여 확인하였다. pMSP3545 :: Bra-ht In order to confirm that Lactobacillus spp. Was transformed, amplification of the erythromycin resistance gene of a protein expressing brazain was performed by colony PCR. Confirmed .

에리스로마이신 저항성 유전자를 확인하기 위하여, 단일 콜로니에 5×버퍼 10 ㎕, 10mM dNTP 1 ㎕, 10 pM 정방향 프라이머(서열 번호 2: 5'-GAAATTGGAACAGGTAAAGG-3') 1 ㎕, 10 pM 역방향 프라이머(서열 번호 3: 5'- ATGGGTCAATCGAGAATATC-3') 1 ㎕, Taq polymerase 2 unit 및 나머지 부피를 증류수로 채워 넣어 총 부피가 50 ㎕가 되도록 첨가하여 콜로니 PCR을 수행하였다. PCR 조건은 94℃ 5분에서 변성시킨 후, 94℃ 1분, 47.7℃ 1분, 72℃ 1분에서 35 사이클을 반복한 뒤, 72℃에서 마지막으로 증폭시켰다.To identify the erythromycin resistance gene, a single colony was placed in a 5 × buffer 10 μl, 10 mM dNTP 1 μl, 10 pM forward primer (SEQ ID NO 2: 5′-GAAATTGGAACAGGTAAAGG-3 ′) 1 μl, 10 pM reverse primer (SEQ ID NO: 3: 5'-ATGGGTCAATCGAGAATATC-3 ') 1 μl, Taq polymerase 2 unit and the remaining volume were filled with distilled water and added so that the total volume was 50 μl. PCR conditions were denatured at 94 ° C for 5 minutes, repeated 35 cycles at 94 ° C for 1 minute, 47.7 ° C for 1 minute, and 72 ° C for 1 minute, and then amplified at 72 ° C for the last time.

그 결과, 도 1에 나타난 바와 같이, 증폭된 에리스로마이신 저항성 유전자는 예상된 길이와 상응되는 약 500 bp의 사이즈를 보였으며, 이를 통하여 감미 단백질을 발현하는 pMSP3545::Bra-ht 플라스미드가 모든 락토바실러스 속에 성공적으로 형질전환되었음을 확인할 수 있었다(도 1).
As a result, as shown in Figure 1, the amplified erythromycin resistance gene showed a size of about 500 bp corresponding to the expected length, through which pMSP3545 :: Bra-ht plasmid expressing sweet protein It was confirmed that all Lactobacillus transformed successfully (Fig. 1).

<< 실험예Experimental Example 2>  2> 니신Nisin 처리시간에 따른  According to processing time 브라자인Brazain 발현량 변화 측정  Expression change measurement

상기 <실시예 1>에서 형질전환된 락토바실러스 속에서 생성된 브라자인 발현량을 니신(nisin) 처리시간 변화에 따라서 측정하였다. 상기 <실시예 1>에서 형질전환된 pMSP3545::Bra-ht를 포함하는 락토바실러스 속을 1:50의 비율로 새로운 배지에 희석하였으며, 1시간 30분 동안 배양되면서 초기 지수기(exponential phase)에 도달하도록 배양하였다. 상기 배양에 종래 발표된 보고에 기재된 NICE system의 적응에 필요한 시간을 참조하여, 1시간 30분 이후 초기 지수기(exponential phase)에 니신 25 ng/㎖을 첨가하였다(Pavan et al. 2000). 또한, 니신을 첨가하지 않은 배양을 음성 대조군으로 사용하였다. 상기 배양된 세포는 6,000 g에서 5분 동안 원심분리를 통하여 수득되었으며, 수득된 세포 펠렛은 0.1 M 포스페이트 버퍼(phosphate buffer)(pH 7.0)로 2회 세척된 후, 마지막으로 400 ㎕의 포스페이트 버퍼로 현탁되었다. 그 뒤, 세포는 30% 증폭, 30-s 정지, 30-s 중간 정지(intermediated pause)를 3분 동안 얼음 위에서 초음파분해(sonication)되었다. Transformed in <Example 1> The amount of brazain expression produced in Lactobacillus was measured according to the change in nisin treatment time. It includes pMSP3545 :: Bra-ht transformed in <Example 1> The genus Lactobacillus was diluted in fresh medium at a ratio of 1:50 and incubated for 1 hour 30 minutes to reach an initial exponential phase. Referring to the time required for adaptation of the NICE system described in the previously published report to the culture, 25 ng / ml nisin was added to the initial exponential phase after 1 hour 30 minutes (Pavan et al. 2000). In addition, the culture without adding nisin was used as a negative control. The cultured cells were obtained by centrifugation at 6,000 g for 5 minutes, and the obtained cell pellet was washed twice with 0.1 M phosphate buffer (pH 7.0) and finally with 400 μl of phosphate buffer. Suspended. Cells were then sonicated on ice for 30 minutes with 30% amplification, 30-s pause, 30-s intermediate pause.

상기 초음파 분해된 세포에서 브라자인 단백질의 발현량을 비교하기 위하여, 웨스턴 블랏을 수행하였다. 웨스턴 블랏은 Sambrook et al(1989) 및 Berlec et al(2006)에 기재된 방법에 따라서 수행되었다. 구체적으로 단백질 시료는 5×SDS-PAGE 로딩 버퍼와 혼합 된 후, 100℃에서 5분 동안 끓여서 변성과정을 거쳤다. 각각의 단백질은 16% SDS-PAGE 젤에 로딩 된 후, 0.2 uM PVDF membrane(Bio-Rad)으로 이동(transfer)시켰다. 단백질이 이동된 PVDF membrane은 비특이적 결합을 막기 위하여, 상온에서 1시간 동안 블로킹하였으며, 4℃에서 오버나잇(overnight)으로 항-Brazzein 항체와 반응시켰다(Berlec et al, 2006). PVDF membrane을 TBST 버퍼[20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween20, pH 7.6]로 세척한 후, HRP가 결합된 염소 항-토끼 IgG(Santacruz)를 1:10,000으로 희석시킨 용액과 상온에서 반응하였다. 반응 후, 상기 PVDF membrane을 세척한 뒤, 웨스턴 블랏 검출 용액(Neronex)을 이용하여 필름(AGFA)에 현상하였다.In order to compare the expression level of brazain protein in the sonicated cells, western blot was performed. Western blots were performed according to the methods described in Sambrook et al (1989) and Berlec et al (2006). Specifically, the protein sample was mixed with 5 × SDS-PAGE loading buffer and boiled at 100 ° C. for 5 minutes to undergo denaturation. Each protein was loaded onto a 16% SDS-PAGE gel and then transferred to a 0.2 uM PVDF membrane (Bio-Rad). The protein-transported PVDF membrane was blocked for 1 hour at room temperature to prevent nonspecific binding, and reacted with anti-Brazzein antibody overnight at 4 ° C (Berlec et al, 2006). PVDF membrane After washing with TBST buffer [20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween20, pH 7.6], the solution was reacted with HRP-bound goat anti-rabbit IgG (Santacruz) diluted 1: 10,000. . After the reaction, the PVDF membrane was washed and developed on the film (AGFA) using Western blot detection solution (Neronex).

니신 처리 시간에 따른 브라자인 발현량을 비교한 결과, 니신을 처리한 후 3 ~ 4시간 후 최고 발현량을 확인할 수 있었으며, 그 후 점진적으로 발현량이 감소하는 것을 관찰할 수 있었다. 니신을 처리하지 않은 시기의 브라자인의 양을 음성대조군으로하여, 웨스턴 블랏 결과를 수량화하여 비교한 결과, 도 2의 B에 나타난 바와 같이, 브라자인 발현량이 니신 처리후 점진적으로 증가하여 3 ~ 4시간에서 최고량을 발현하며, 점차 감소하는 것을 확인할 수 있었다(도 2). 이는 균주의 가수분해 능력 또는 생성 세포의 흡착에 의한 니신의 활성 감소에 기인한 것으로 추정되었다(Berlec et al, 2006)(도 2).
As a result of comparing the expression level of brazain according to the treatment time of nisin, the highest expression level was confirmed 3 to 4 hours after treatment with nisin, and then gradually decreased expression level was observed. As a result of comparing the amount of brazain at the time of not treated with nisin to the negative control group and quantifying Western blot results, as shown in B of FIG. 2, the amount of brazain gradually increased after treatment with nisin 3 to 4 Expressing the highest amount in time, it was confirmed that gradually decreased (Fig. 2). This was presumably due to the hydrolytic capacity of the strain or the decrease in the activity of nisin by adsorption of the resulting cells (Berlec et al, 2006) (FIG. 2).

<< 실험예Experimental Example 3>  3> 니신Nisin 농도에 따른  According to concentration 브라자인Brazain 발현량 차이 측정 Expression difference measurement

니신 농도가 락토바실러스 속에서 브라자인의 발현에 미치는 영향을 알아보기 위하여, 다양한 농도(10, 25, 40 및 50 ng/㎖)의 니신을 처리한 후, 브라자인의 발현량을 비교하였다. To determine the effect of nisin concentration on the expression of brazain in Lactobacillus, after treating various concentrations of nisin (10, 25, 40 and 50 ng / ml), the expression levels of brazain were compared.

상기 <실시예 1>에서 형질전환된 pMSP3545::Bra-ht를 포함한 락토바실러스 속을 1:50의 비율로 새로운 배지에 희석되었으며, 1시간 30분 동안 배양되면서 초기 지수기(exponential phase)까지 배양하였다. 니신을 처리한 후, 브라자인이 가장 많이 발현되는 시간은, 상기 결과를 참조하여 결정하였으며, 이에 따른 브라자인 발현 유도시간은 L. paracasei KLB 58의 경우 4시간, Lb . plantarum KLB213 및 Lb. reuteri KCTC3594는 3시간 니신을 처리한 후, 반응시켰다. 또한, 니신을 첨가하지 않은 배양을 음성 대조군으로 사용하였으며, 10, 25, 40 및 50 ng/㎖의 니신을 처리한 군을 실험군으로써 사용하였다. 상기 배양에서 세포는 6,000 g에서 5분 동안 원심분리를 통하여 수득되었으며, 수득된 세포 펠렛은 0.1 M 포스페이트 버퍼(pH 7.0)로 2회 세척된 후, 마지막으로 400 ㎕의 포스페이트 버퍼로 현탁되었다. 그 뒤, 세포는 30% 증폭, 30-s 정지, 30-s 중간 정지(intermediated pause)를 3분 동안 얼음 위에서 초음파분해되었다. The genus Lactobacillus transformed with pMSP3545 :: Bra-ht transformed in <Example 1> was diluted in a fresh medium at a ratio of 1:50, and cultured for 1 hour and 30 minutes until the initial exponential phase. It was. After processing the nisin, the time of the bra Most expression, was determined with reference to the results, whereby the bra expression induction time L. paracasei For KLB 58 4 times, according Lb. plantarum KLB213 and Lb. reuteri KCTC3594 was reacted after treatment with nisin for 3 hours. In addition, a culture without nisin was used as a negative control, and a group treated with 10, 25, 40 and 50 ng / ml of nisin was used as an experimental group. Cells in this culture were obtained by centrifugation at 6,000 g for 5 minutes, and the obtained cell pellet was washed twice with 0.1 M phosphate buffer (pH 7.0) and finally suspended with 400 μl of phosphate buffer. Cells were then sonicated on ice for 30 minutes with 30% amplification, 30-s pause, 30-s intermediate pause.

브라자인 단백질의 발현을 비교하기 위하여, 웨스턴 블랏을 수행하였다(Sambrook et al(1989) 및 Berlec et al(2006)). 구체적으로 단백질 시료는 5×SDS-PAGE 로딩 버퍼와 혼합 된 후, 100℃에서 5분 동안 끓여서 변성과정 후, 단백질을 16% SDS-PAGE 젤에서 분리된 후, 0.2 uM PVDF membrane(Bio-Rad)로 이동시켰다. 단백질이 이동된 PVDF membrane은 상온에서 1시간 동안 블로킹하였으며, 4℃에서 오버나잇으로 항-Brazzein 항체와 반응시켰다(Berlec et al, 2006). TBST 버퍼[20 mM Tris-HCl, 150 mM NaCl, 0.1% 트윈 20(Tween20), pH 7.6]로 PVDF membrane을 세척한 후, HRP가 결합된 염소 항-토끼 IgG(Santacruz)를 1:10,000으로 희석시킨 용액과 상온에서 반응시켰다. 반응 후, 상기 PVDF membrane을 세척한 뒤, 웨스턴 블랏 검출 용액(Neronex)을 이용하여 필름(AGFA)에 현상하였다.In order to compare the expression of the brazain protein, Western blots were performed (Sambrook et al (1989) and Berlec et al (2006)). Specifically, the protein sample was mixed with 5 × SDS-PAGE loading buffer, boiled at 100 ° C. for 5 minutes, denatured, and the protein was separated from the 16% SDS-PAGE gel, followed by a 0.2 uM PVDF membrane (Bio-Rad). Moved to. The protein-transported PVDF membrane was blocked for 1 hour at room temperature, and reacted with anti-Brazzein antibody at night at 4 ° C. (Berlec et al, 2006). After washing the PVDF membrane with TBST buffer [20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween20, pH 7.6], diluted HRP-bound goat anti-rabbit IgG (Santacruz) was diluted 1: 10,000. The solution was reacted at room temperature. After the reaction, the PVDF membrane was washed and developed on the film (AGFA) using Western blot detection solution (Neronex).

그 결과, 도 3에 나타난 바와 같이 니신이 첨가되지 않았을 때, 브라자인의 발현이 관찰되지 않았으며, 니신을 25 ng/㎖ 및 40 ng/㎖ 농도로 처리하였을 때, 브라자인이 가장 많이 발현되었으나, 40 ng/㎖ 농도 이상을 처리하였을 때에는 니신은 세포의 성장을 심각하게 저해하는 효과를 보였으며, 이러한 효과는 종래 발표된 L. lactis에서 보인 결과와 유사하였다(Berlec et al. 2006)(도 3).
As a result, when nisin was not added as shown in FIG. 3, the expression of brazain was not observed. When nisin was treated at 25 ng / ml and 40 ng / ml concentrations, the most of brazain was expressed. , Nisin showed a significant inhibitory effect on cell growth when treated at concentrations above 40 ng / ml, which was similar to the results shown in the previously published L. lactis (Berlec et al. 2006) (Fig. 3).

<< 실험예Experimental Example 4>  4> 락토바실러스Lactobacillus 속 균주 종류에 따른  By strain type 브라자인Brazain 발현량 변화 측정 Expression change measurement

브라자인 발현량을 다른 락토바실러스 속(Lactobacillus spp.) 균주 및 L. lactis IL1403에서 비교하였다. Lb . paracasei KLB58는 25 ng/㎖의 니신을 처리한 후, 4시간 동안 반응시켰으며, Lb . plantarum KLB213 및 Lb . reuteri KCTC3594는 40 ng/㎖의 니신을 처리한 후, 3시간 동안 반응시켰다. 상기 각각의 배양에서 세포는 6,000 g에서 5분 동안 원심분리를 통하여 수득되었으며, 수득된 세포 펠렛은 0.1 M 포스페이트 버퍼(pH 7.0)로 2회 세척된 후, 마지막으로 400 ㎕의 포스페이트 버퍼로 현탁되었다. 그 뒤, 세포는 30% 증폭, 30-s 정지, 30-s 중간 정지(intermediated pause)를 3분 동안 얼음 위에서 초음파분해되었다. The expression levels of brazain were compared in other Lactobacillus spp. Strains and L. lactis IL1403. Lb. paracasei is KLB58 was allowed to react for after treatment of the Nisin 25 ng / ㎖, 4 sigan, Lb. plantarum KLB213 and Lb. reuteri KCTC3594 was treated with 40 ng / ml of nisin and reacted for 3 hours. Cells in each of these cultures were obtained by centrifugation at 6,000 g for 5 minutes, and the obtained cell pellet was washed twice with 0.1 M phosphate buffer (pH 7.0) and finally suspended with 400 μl of phosphate buffer. . Cells were then sonicated on ice for 30 minutes with 30% amplification, 30-s pause, 30-s intermediate pause.

상기 시료에서 브라자인 단백질의 발현을 비교하기 위하여, 웨스턴 블랏을 수행하였다(Sambrook et al(1989) 및 Berlec et al(2006)). 구체적으로 단백질 시료는 5×SDS-PAGE 로딩 버퍼와 혼합 된 후, 100℃에서 5분 동안 끓여서 변성과정 후, 단백질을 16% SDS-PAGE 젤에서 분리된 후, 0.2 uM PVDF membrane(Bio-Rad)로 이동시켰다. 단백질이 이동된 PVDF membrane은 상온에서 1시간 동안 블로킹하였으며, 4℃에서 오버나잇으로 항-Brazzein 항체와 반응시켰다(Berlec et al, 2006). TBST 버퍼[20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween20, pH 7.6]로 PVDF membrane을 세척한 후, HRP가 결합된 염소 항-토끼 IgG(Santacruz)를 1:10,000으로 희석시킨 용액과 상온에서 반응시켰다. 반응이 끝난 후, 세척된 후, 웨스턴 블랏 검출 용액(Neronex)을 이용하여 필름(AGFA)에 현상하였다.In order to compare the expression of the brazain protein in the samples, Western blots were performed (Sambrook et al (1989) and Berlec et al (2006)). Specifically, the protein sample was mixed with 5 × SDS-PAGE loading buffer, boiled at 100 ° C. for 5 minutes, denatured, and the protein was separated from the 16% SDS-PAGE gel, followed by a 0.2 uM PVDF membrane (Bio-Rad). Moved to. The protein-transported PVDF membrane was blocked for 1 hour at room temperature, and reacted with anti-Brazzein antibody at night at 4 ° C. (Berlec et al, 2006). After washing the PVDF membrane with TBST buffer [20 mM Tris-HCl, 150 mM NaCl, 0.1% Tween20, pH 7.6], the solution was diluted 1: 10,000 with HRP-bound goat anti-rabbit IgG (Santacruz). Reaction at After the reaction was completed, and washed, it was developed on the film (AGFA) using Western blot detection solution (Neronex).

그 결과, 도 4에 나타난 바와 같이, 락토바실러스 류테리(Lactobacillus reuteri) 균주 KCTC3954에서 브라자인 발현 수준은 다른 균주보다 약 1.6배 높았으며, 이러한 결과는 락토바실리(Lactobacilli) 속의 종에 따라 발현량이 상이할 수 있다는 것을 의미한다. 아울러, 세 가지 락토바실러스 속에서 브라자인 발현량은 종래 브라자인을 성공적으로 발현한 L. lactis에서 보다 높았음을 확인할 수 있었다(Berlec et al., 2006)(도 4).
As a result, as shown in Figure 4, Lactobacillus reuteri strain ( Lactobacillus reuteri ) strain KCTC3954 expression level was about 1.6 times higher than other strains, these results are different in the expression level according to the species of the genus Lactobacilli (Lactobacilli) It means you can do it. In addition, the expression levels of brazain in the three Lactobacillus strains in L. lactis that successfully expressed the conventional brazain It was confirmed that it was higher (Berlec et al., 2006) (Fig. 4).

<< 실험예Experimental Example 5> 플라스미드 안정성 측정 5> Plasmid Stability Measurement

플라스미드 안정성은 "Adaptation of the nisin-controlled expression in Lactobacillus plantarum: a tool to study in vivo biological effects"(Appl. Environ Microbiol. 66:4427~4432)에 기재된 방법에 약간의 변형을 가하여 수행하였다. pMSP3545::Bra-ht을 포함한 세 가지 종류의 락토바실러스 속(Lactobacillus spp.) 균주를 37℃에서 MRS 브로스에서 배양하였다. 서브컬쳐(subculture)는 50 ㎕의 이전 컬쳐를 새로운 MRS 브로스 5 ㎖에 첨가함으로써 수행되었으며, 5번의 서브컬쳐동안 에리스로마이신 저항성 CFU(colony forming unit)의 비율은 정상 MRS 아가 플레이트 및 5 ㎍/㎖의 에리스로마이신이 포함된 MRS 아가 플레이트에 박테리아 희석한 것을 동일한 수로 심은 뒤에, 생성된 전체 CFU를 통해서 측정되었다.Plasmid stability was performed by making some modifications to the method described in "Adaptation of the nisin-controlled expression in Lactobacillus plantarum: a tool to study in vivo biological effects" (Appl. Environ Microbiol. 66: 4427-4442). Three strains of Lactobacillus spp., including pMSP3545 :: Bra-ht, were incubated in MRS broth at 37 ° C. Subcultures were performed by adding 50 μl of the previous culture to 5 ml of new MRS broth, and the ratio of erythromycin resistant colon forming unit (CFU) during 5 subcultures was determined by normal MRS agar plate and 5 μg / ml. Bacterial dilutions were planted in the same number of MRS agar plates containing erythromycin, and measured through the resulting total CFU.

플라스미드 안정성은 삽입된 플라스미드가 락토바실러스 속에서의 안정성 여부를 통하여 측정하였다. 5회 서브 컬쳐 후, Lb . reuteri KCTC3594는 약 60%의 안정성을 유지하였으나, 다른 두 균주에서는 안정성이 거의 유지되지 않았다. 따라서, pMSP3545::Bra-ht는 Lb . reuteri KCTC3594에서 다른 두 균주에 비하여 상대적으로 더욱 안정하였으며, 이는 상기 락토바실러스 류테리(Lactobacillus reuteri) 균주 KCTC3594에서 브라자인의 발현량이 다른 두 균주에 비하여 더욱 높다는 상기 <실험예 4>의 결과와 동일하였다. 따라서, 이는 플라스미드 안정성이 브라자인의 발현량에 영향을 끼치는 중요한 요소인 것을 알 수 있었다(도 5).
Plasmid stability was measured through the presence of the stability of the inserted plasmid in Lactobacillus. After the fifth subculture, Lb. reuteri KCTC3594 maintained about 60% stability, but little stability was maintained in the other two strains. Therefore, pMSP3545 :: Bra-ht is Lb. was relatively more stable than in reuteri KCTC3594 in two different strains, which was identical with the result of more higher the <Experiment 4> compared to the Lactobacillus flow Terry (Lactobacillus reuteri) two different amount from strain KCTC3594 expression of Bra strains . Thus, it was found that plasmid stability is an important factor affecting the expression level of brazain (FIG. 5).

상기에서 보는 바와 같이, 본 발명의 브라자인(Brazzein)을 생성하는 락토바실러스 류테리(Lactobacillus reuteri) 균주는 감미 단백질인 브라자인을 대량으로 생산할 수 있는 균주로서, 이를 이용하여 당 대체제인 브라자인을 대량으로 생산하는데 유용하게 사용될 수 있다.
As seen above, the Lactobacillus reuteri strain producing the brazain of the present invention ( Lactobacillus reuteri ) strain is a strain capable of producing a large amount of sweet protein brazain, by using the sugar substitute brazain It can be useful for mass production.

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC18192PKCTC18192P 2010052720100527

<110> INHA Industry Partenrship Institute <120> Novel Lactobacillus spp. strains for producing sweet-tasting protein, Brazzein and a method for producing the Brazzein using the same <130> 10p-04-04 <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> Brazzein <400> 1 atggcgcagg acaaatgtaa aaaagtatac gaaaactacc cggtatccaa atgtcagctg 60 gcaaaccagt gtaactacga ctgtaaactg gacaaacacg ctcgttccgg agaatgcttc 120 tacgacgaaa aacgtaacct gcagtgcatc tgcgactac 159 <110> INHA Industry Partenrship Institute <120> Novel Lactobacillus spp. strains for producing sweet-tasting          protein, Brazzein and a method for producing the Brazzein using          the same <130> 10p-04-04 <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 159 <212> DNA <213> Artificial Sequence <220> <223> Brazzein <400> 1 atggcgcagg acaaatgtaa aaaagtatac gaaaactacc cggtatccaa atgtcagctg 60 gcaaaccagt gtaactacga ctgtaaactg gacaaacacg ctcgttccgg agaatgcttc 120 tacgacgaaa aacgtaacct gcagtgcatc tgcgactac 159

Claims (6)

서열번호 1로 기재되는 아미노산 서열을 갖는 브라자인을 발현하는 락토바실러스 류테리(Lactobacillus reuteri) 균주.
A Lactobacillus reuteri strain expressing brazain having an amino acid sequence set forth in SEQ ID NO: 1.
제 1항에 있어서, 상기 균주는 수탁번호 KCTC18192P로 기탁된 것을 특징으로 하는 락토바실러스 류테리(Lactobacillus reuteri) 균주.
The Lactobacillus reuteri strain according to claim 1, wherein the strain is deposited with accession number KCTC18192P.
1) 제 1항의 균주를 배양하는 단계;
2) 배양액으로부터 브라자인 단백질을 분리하는 단계를 포함하는 브라자인 생산방법.
1) culturing the strain of claim 1;
2) A brazain production method comprising the step of separating the brazain protein from the culture.
제 3항에 있어서, 단계 1)의 배양은 3 ~ 15 ㎍/㎖의 에리스로마이신(erythromycin)이 포함된 배지에서 배양하는 것을 특징으로 하는 브라자인 생산방법.
The method of claim 3, wherein the culturing of step 1) is a brazain production method, characterized in that the culture in a medium containing 3 to 15 ㎍ / erythromycin (erythromycin).
제 3항에 있어서, 단계 1)의 배양은 10 ~ 50 ng/㎖의 니신(nisin)이 포함된 배지에서 배양하는 것을 특징으로 하는 브라자인 생산방법.
The method of claim 3, wherein the culturing of step 1) is a brazain production method, characterized in that the culture in a medium containing 10 to 50 ng / ㎖ of nisin (nisin).
제 3항에 있어서, 단계 1)의 배양은 니신을 3 ~ 4시간 처리하여 배양하는 것을 특징으로 하는 브라자인 생산방법.The method of claim 3, wherein the culturing of step 1) is a brazain production method characterized in that the culture by treating the nisin 3 to 4 hours.
KR1020100055618A 2010-06-11 2010-06-11 Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same KR101422188B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100055618A KR101422188B1 (en) 2010-06-11 2010-06-11 Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100055618A KR101422188B1 (en) 2010-06-11 2010-06-11 Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same

Publications (2)

Publication Number Publication Date
KR20110135728A true KR20110135728A (en) 2011-12-19
KR101422188B1 KR101422188B1 (en) 2014-07-22

Family

ID=45502600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100055618A KR101422188B1 (en) 2010-06-11 2010-06-11 Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same

Country Status (1)

Country Link
KR (1) KR101422188B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127002A1 (en) 2011-03-23 2012-09-27 Novozymes A/S Sweet-tasting polypeptide from gram-positive bacteria

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981087B1 (en) * 2008-02-29 2010-09-08 중앙대학교 산학협력단 Method for preparing novel mutated and multi-mutated Brazzein having higher sweetness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127002A1 (en) 2011-03-23 2012-09-27 Novozymes A/S Sweet-tasting polypeptide from gram-positive bacteria

Also Published As

Publication number Publication date
KR101422188B1 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
Golowczyc et al. Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic
Madoroba et al. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food
AU2006236629B2 (en) Methods and compositions to modulate adhesion and stress tolerance in bacteria
Murua et al. Isolation and identification of bacteriocinogenic strain of Lactobacillus plantarum with potential beneficial properties from donkey milk
JP5875975B2 (en) Probiotic microorganisms isolated from donkey milk
US8741622B2 (en) Stress tolerant Bifidobacteria
Waśko et al. Variability of S-layer proteins in Lactobacillus helveticus strains
JP6594911B2 (en) Lactic acid bacteria, innate immune activators derived from the lactic acid bacteria, infectious disease preventive and therapeutic agents, and food and drink
CN109536427B (en) Lactobacillus engineering bacterium with improved acid stress resistance
KR101422188B1 (en) Novel Lactobacillus spp.strains for producing sweet―tasting protein,Brazzein and a method for producing the Brazzein using the same
Chae et al. Construction of a bile-responsive expression system in Lactobacillus plantarum
Ramiah et al. Expression of the mucus adhesion gene mub, surface layer protein slp and adhesion-like factor EF-TU of Lactobacillus acidophilus ATCC 4356 under digestive stress conditions, as monitored with real-time PCR
Podlesny et al. LC-MS/MS analysis of surface layer proteins as a useful method for the identification of lactobacilli from the Lactobacillus acidophilus group
Shu et al. Screening and genome analysis of potential probiotic lactic acid bacteria with broad-spectrum antibacterial activity from Sichuan sun-dried vinegar grains (Cupei)
EP2682465A1 (en) Hydrogen peroxide resistance-imparting gene and method for using same
JP4676789B2 (en) Genes related to acid resistance of lactic acid bacteria
Polak-Berecka et al. Functional traits of Lactobacillus plantarum from fermented Brassica oleracea var. capitata L. in view of multivariate statistical analysis
Do Carmo et al. Genes involved in lactose catabolism and organic acid production during growth of Lactobacillus delbrueckii UFV H2b20 in skimmed milk
Lee et al. Expression of the sweet-tasting protein brazzein in Lactobacillus spp.
WO2014142186A1 (en) Bifidobacterium-breve-specific gene
WO2024204681A1 (en) Method for transforming bacterium belonging to genus bifidobacterium
WO2023163015A1 (en) Lactic acid bacteria, lactic acid bacteria composition, production method for lactic acid bacteria, method for improving acid resistance of lactic acid bacteria, screening method for lactic acid bacteria, and production method for fermented milk
Priya In Vitro Evaluation of Probiotic, Antimicrobial, and Antioxidant Properties of a Novel Lactobacillus plantarum Strain Isolated from Medicago sativa
KR101511970B1 (en) Strain and method for producing -amino butyric acid
CN117264973A (en) Construction and application of lactobacillus surface protein overexpression system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 4