KR20110114816A - Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof - Google Patents
Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof Download PDFInfo
- Publication number
- KR20110114816A KR20110114816A KR1020100034158A KR20100034158A KR20110114816A KR 20110114816 A KR20110114816 A KR 20110114816A KR 1020100034158 A KR1020100034158 A KR 1020100034158A KR 20100034158 A KR20100034158 A KR 20100034158A KR 20110114816 A KR20110114816 A KR 20110114816A
- Authority
- KR
- South Korea
- Prior art keywords
- fuel cell
- fuel
- hydrogen
- generation system
- power generation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0668—Removal of carbon monoxide or carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M16/00—Structural combinations of different types of electrochemical generators
- H01M16/003—Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0656—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/40—Combination of fuel cells with other energy production systems
- H01M2250/402—Combination of fuel cell with other electric generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 연료전지 발전시스템을 이용한 이산화탄소 포집장치 및 그 방법에 관한 것으로, 연료가 저장되는 저장탱크(20)와, 상기 저장탱크(20)로부터 공급된 연료를 개질하도록 순산소 연소공정이 행해지는 연료개질기(40)와, 상기 연료개질기(40)로부터의 개질반응에 의해 생성된 수소 및 이산화탄소를 분리하고, 이산화탄소를 저장하는 CCS 모듈(60)과, 상기 CCS 모듈(60)로부터 수소를 공급받아 전력을 생산하여, 전력을 필요로하는 장비(120)에 공급하는 연료전지 발전시스템(80)과, 상기 연료전지 발전시스템(80)의 잉여전력을 공급받아 물을 전기분해하여 산소와 수소를 발생하는 수전해 시스템(100)을 포함한다.
본 발명에 의하면, 수전해 시스템에서 생성된 수소를 저장하여 추가 전력을 생산할 수 있어, 연료전지의 부하 추종성을 해결할 수 있고, 순도가 높은 산소가 생성되며, 이를 순산소 연소공정을 통해 연료개질에 활용하여 이산화탄소를 발생함으로써 이산화탄소의 포집이 용이하고, 연료의 메탄과 수증기의 두 물질에서 모두 수소를 추출할 수 있는 효과를 가진다.The present invention relates to a carbon dioxide capture device using a fuel cell power generation system and a method thereof, in which a pure oxygen combustion process is performed to reform a fuel supplied from the storage tank 20 and the fuel supplied from the storage tank 20. Fuel reformer 40, CCS module 60 for separating the hydrogen and carbon dioxide produced by the reforming reaction from the fuel reformer 40, and stores the carbon dioxide, and receives hydrogen from the CCS module 60 Fuel cell power generation system 80 to generate electric power and supply it to equipment 120 requiring power, and surplus power of the fuel cell power generation system 80 is supplied to electrolyze water to generate oxygen and hydrogen. It includes the electrolytic system 100 to.
According to the present invention, it is possible to produce additional power by storing the hydrogen generated in the hydroelectrolysis system, to solve the load followability of the fuel cell, high-purity oxygen is generated, which is produced in the fuel reforming through the pure oxygen combustion process By generating carbon dioxide by use, it is easy to capture carbon dioxide, and has the effect of extracting hydrogen from both methane and water vapor of fuel.
Description
본 발명은 선박 탑재용 연료전지 발전시스템에 관한 것으로서, 특히 연료전지(Fuel Cell)를 선박에 탑재하는데 적합한 연료전지 발전시스템을 이용하여 이산화탄소를 포집하는 포집장치 및 그 방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shipboard fuel cell power generation system, and more particularly, to a capture device and a method for capturing carbon dioxide using a fuel cell power generation system suitable for mounting a fuel cell on a ship.
일반적으로 연료전지는 산화에 의해서 생기는 화학에너지를 직접 전기에너지로 변환시키는 전지로서, NOx, SOx의 배출량이 획기적으로 줄어들기 때문에 기존의 화석연료를 이용한 발전설비보다 친환경적인 장점이 있으며, 화학전지와 달리 반응물이 외부에서 연속적으로 공급되고 반응생성물이 계외로 제거된다. 연료전지의 가장 대표적 형태가 수소-산소 연료전지이고 연료전지는 작동온도에 따라 고온형과 저온형(예컨대, 300℃이상은 고온형, 그 이하는 저온형)으로 나누어진다.In general, a fuel cell is a battery that directly converts chemical energy generated by oxidation into electrical energy. Since the emission of NOx and SOx is drastically reduced, there is an environmentally-friendly advantage over a power plant using fossil fuels. Otherwise, the reactants are continuously fed externally and the reaction product is removed out of the system. The most typical type of fuel cell is a hydrogen-oxygen fuel cell, and the fuel cell is divided into a high temperature type and a low temperature type (eg, a high temperature type at 300 ° C or higher, and a low temperature type) according to the operating temperature.
구체적인 작동원리로는 수소는 양극(Anode)을 통과하고 산소는 음극(Cathode)을 통과한다. 수소는 전기 화학적으로 산소와 반응하여 물을 생성하면서 전극에 전류를 발생시킨다. 전자가 전해질을 통과하면서 직류 전력이 발생하며 열도 부수적으로 생산된다. 직류 전류는 직류 전동기의 동력으로 사용되거나 인버터에 의해 교류 전류로 바꾸어 사용된다. 연료전지에서 발생된 열은 개질을 위한 증기를 발생시키거나 냉난방 열로 사용될 수 있으며, 사용되지 않을 경우에는 배기열로 배출된다.Specifically, hydrogen passes through the anode and oxygen passes through the cathode. Hydrogen reacts with oxygen electrochemically to generate water, generating current at the electrode. As electrons pass through the electrolyte, direct current power is generated and heat is incidentally produced. DC current is used as the power of a DC motor or converted into alternating current by an inverter. The heat generated from the fuel cell can be used to generate steam for reforming or to be used for heating and cooling. If not used, it is discharged as exhaust heat.
그리고 발전효율의 향상을 꾀한 것이나, 귀금속 촉매를 사용하지 않는 고온형의 용융탄산염 연료전지(Molten carbonate Fuel Cell: MCFC)를 제2세대의 연료전지라 하고, 보다 높은 효율로 발전을 하는 고분자 전해질막 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)를 제3세대의 연료전지라고 한다.In addition, a high temperature molten carbonate fuel cell (MCFC), which is intended to improve power generation efficiency, but does not use a noble metal catalyst, is called a second generation fuel cell, and has a high efficiency polymer electrolyte membrane. The fuel cell (Polymer Electrolyte Membrane Fuel Cell: PEMFC) is called the third generation fuel cell.
특히, MCFC는 대용량 출력이 가능하고, 수명도 다른 연료전지들에 비해 긴 수명을 가지고 있으므로, 선박용 연료전지로 사용하기 위한 연구가 다양하게 이루어지고 있다.In particular, since the MCFC is capable of large-capacity output and has a longer lifespan than other fuel cells, various studies have been made for use as a fuel cell for ships.
이러한 연료전지 발전시스템은 스택(stack), 연료탱크 및 연료 펌프 등을 구비하는데, 스택은 막-전극 어셈블리(membrane electrode assembly:MEA)와 세퍼레이터(separator)로 이루어진 셀이 수 개 내지 수십 개 적층된 구조를 가지며, 이러한 스택구조의 연료전지에서 셀의 적층 개수를 조절함으로써 원하는 전압을 용이하게 얻을 수 있다.The fuel cell power generation system includes a stack, a fuel tank, a fuel pump, and the like, in which a stack of several to several tens of cells consisting of a membrane electrode assembly (MEA) and a separator is stacked. It has a structure, it is possible to easily obtain the desired voltage by controlling the number of stacked cells in the fuel cell of the stack structure.
종래의 기술에 따른 연료전지 발전시스템을 첨부된 도면을 참조하여 설명하면 다음과 같다.Referring to the accompanying drawings, a fuel cell power generation system according to the prior art is as follows.
도 1은 종래 기술에 따른 연료전지 발전시스템을 나타내는 구성도이다. 도시된 바와 같이, 종래 기술에 따른 연료전지 발전시스템(10)은 연료 탱크(11)로부터 연료 펌프(12)의 펌핑에 의해 다수의 스택(13)으로 연료를 각각 공급한다.1 is a block diagram showing a fuel cell power generation system according to the prior art. As shown, the fuel cell
이와 같은 종래의 연료전지 발전시스템(10)은 연료 펌프(12)의 펌핑에 의해 스택(13) 각각으로 연료를 공급하여 스택(13)으로부터 필요한 전력이 발생되도록 한다.The conventional fuel cell
하지만, 액화천연가스(LNG)를 개질해서 수소를 뽑아내고 그 수소를 사용하여 연료전지를 가동할 경우 이산화탄소 배출의 저감효과가 크지 않은 문제점이 있다. 즉 연료전지를 위한 연료 개질 과정에서 화석연료 연소에서의 배출량과 비교하였을 때, 상당량의 이산화탄소가 발생하게 된다. 온실가스 중에서도 가장 중요한 저감 대상인 이산화탄소를 저감시키는 기술로서 여러가지가 알려져 있다. 이를 크게 분류하면, 연소전 포집/연소후 포집/순산소 연소법으로 나눌 수 있다.However, when the liquefied natural gas (LNG) is reformed to extract hydrogen, and the fuel cell is operated using the hydrogen, the effect of reducing carbon dioxide emission is not large. That is, a significant amount of carbon dioxide is generated when compared with the emissions from fossil fuel combustion during fuel reforming for fuel cells. Various technologies are known as technologies for reducing carbon dioxide, which is the most important reduction target among greenhouse gases. This can be broadly classified into pre-combustion capture / post-combustion capture / oxygen combustion.
연소전 포집법은 연료를 정제하여 탄소와 수소를 분리한 후 이산화탄소를 분리하는 방법으로, 석탄가스화 복합설비(IGCC)와 같은 플랜트 설비에 유용하고 저비용으로 포집이 가능하며, 연소후 포집법은 발전 후 배기가스에서 이산화탄소를 분리하는 방법으로 흡수, 흡착, 막분리, 심냉법 등이 있으나, 고비용이 소요되는 단점이 있고, 최신의 기술로 순산소 연소법은 95% 순도의 순산소만을 이용하여 연소함으로써 이산화탄소를 분리하는 방법으로서, 순산소의 분리공정이 전체 공정의 60%를 차지하는 만큼 순산소를 직접 공급할 수 있다면 다른 기타의 이산화탄소 분리방법보다 훨씬 효율적이고 용이하게 이산화탄소를 분리할 수 있다.Pre-combustion capture is a method of purifying fuel to separate carbon and hydrogen and then separating carbon dioxide. It is useful for plant equipment such as coal gasification complex (IGCC) and can be collected at low cost. Absorption, adsorption, membrane separation, deep cooling, etc. are methods of separating carbon dioxide from the exhaust gas. However, there is a disadvantage in that it takes a high cost. With the latest technology, the pure oxygen combustion method burns by using only 95% pure oxygen. As a method of separating carbon dioxide, since pure oxygen can directly supply oxygen as the separation process takes up 60% of the total process, carbon dioxide can be separated more efficiently and easily than other carbon dioxide separation methods.
이에 본 발명은, 연료전지 사용시에 부가적으로 발생하게 되는 순산소를 이용하여 이산화탄소를 분리, 저장할 수 있는 연료전지 발전시스템을 이용한 이산화탄소 포집장치 및 방법을 제공하는 것이 그 목적이다.
Accordingly, an object of the present invention is to provide a carbon dioxide capture device and method using a fuel cell power generation system that can separate and store carbon dioxide using pure oxygen generated additionally when using a fuel cell.
본 발명의 일 실시 태양에 따른 연료전지 발전시스템을 이용한 이산화탄소 포집 장치는 연료가 저장되는 저장탱크와, 상기 저장탱크로부터 공급된 연료를 개질하고자 순산소 개질반응을 행하는 연료개질기와, 상기 연료개질기로부터의 개질반응에 의해 생성된 수소 및 이산화탄소를 분리하고, 이산화탄소를 저장하는 CCS 모듈과, 상기 CCS 모듈로부터 수소를 공급받아 전력을 생산하여, 전력을 필요로하는 장비에 공급하는 연료전지 발전시스템과, 상기 연료전지 발전시스템의 잉여전력을 공급받아 물을 전기분해하여 산소와 수소를 발생하는 수전해 시스템을 포함한다.A carbon dioxide capture device using a fuel cell power generation system according to an embodiment of the present invention includes a storage tank in which fuel is stored, a fuel reformer for performing a pure oxygen reforming reaction to reform fuel supplied from the storage tank, and the fuel reformer from the fuel reformer. A fuel cell power generation system that separates hydrogen and carbon dioxide generated by reforming reaction of the fuel cell, separates carbon dioxide and stores carbon dioxide, receives hydrogen from the CCS module, produces power, and supplies the power to equipment requiring power; It includes a hydrolysis system for generating oxygen and hydrogen by electrolysis of water by receiving the surplus power of the fuel cell power generation system.
수전해 시스템은 발생된 산소를 연료개질기로 공급하고, 생성된 수소는 압축하여 저장하는 것이 바람직하고, 연료전지 발생시스템의 연료전지는 SOFC, MCFC 또는 PEMFC의 어느 하나인 것이 바람직하다.It is preferable that the hydrolysis system supplies the generated oxygen to the fuel reformer, and the generated hydrogen is compressed and stored, and the fuel cell of the fuel cell generation system is preferably one of SOFC, MCFC or PEMFC.
본 발명의 연료전지 발전시스템은 수전해시스템으로부터 생성된 수소를 공급받아 추가 전력을 생산할 수 있다. The fuel cell power generation system of the present invention may receive additional hydrogen generated from the hydrolysis system to produce additional power.
본 발명의 다른 실시 태양에 따른 연료전지 발전시스템을 이용한 이산화탄소 포집방법은 연료를 공급하는 연료개질기에 공급하는 과정과, 공급받은 연료와 순산소 개질반응을 행하는 과정과, 순산소 개질반응에 의해 생성된 이산화탄소와 수소를 분리하고, 상기 이산화탄소를 저장하는 과정과, 분리된 수소와 공기를 반응하여 전력을 발생하는 과정과, 발생된 전력중 잉여전력을 공급받아 물을 전기분해하여 산소와 수소를 생성하는 과정과, 생성된 산소를 상기 순산소 개질반응에 이용하는 과정을 포함한다.According to another aspect of the present invention, a method of capturing carbon dioxide using a fuel cell power generation system includes supplying a fuel to a fuel reformer for supplying fuel, performing a reforming reaction with the supplied fuel, and generating a pure oxygen reforming reaction. Separating carbon dioxide and hydrogen, storing the carbon dioxide, reacting the separated hydrogen and air to generate power, and receiving excess power among the generated power to electrolyze water to generate oxygen and hydrogen And using the generated oxygen in the pure oxygen reforming reaction.
이때, 생성된 수소를 이용하여 추가 전력을 생산하는 과정을 더 포함할 수 있다.
In this case, the method may further include generating additional power using the generated hydrogen.
본 발명에 의하면, 수전해 시스템에서 생성된 수소를 이용하여 추가 전력을 생산할 수 있으므로, 연료전지의 부하 추종성을 해결하고 잉여 전력을 생산할 수 있도록 수소를 저장할 수 있으며, 순도가 높은 산소가 생성되며, 이를 순산소 연소공정을 통해 연료개질에 활용하여 이산화탄소를 발생함으로써 이산화탄소의 포집이 용이하고, 연료의 메탄과 수증기의 두 물질에서 모두 수소를 추출할 수 있는 효과를 가진다.
According to the present invention, since additional power can be produced using hydrogen generated in the electrolytic system, hydrogen can be stored to solve the load followability of the fuel cell and produce surplus power, and high purity oxygen is generated. It is easy to capture carbon dioxide by generating carbon dioxide by using it for fuel reforming through the pure oxygen combustion process, and it has the effect of extracting hydrogen from both methane and water vapor of fuel.
도 1은 종래 기술에 따른 연료전지 발전시스템을 나타내는 구성도이고,
도 2는 본 발명의 실시예에 따라 연료전지 발전시스템을 이용한 이산화탄소 포집장치의 구성을 나타내는 블록도이고,
도 3은 도 2는 본 발명의 실시예에 따른 연료전지 발전시스템을 이용한 이산화탄소 포집방법의 과정을 도시한 흐름도이다.1 is a configuration diagram showing a fuel cell power generation system according to the prior art,
2 is a block diagram showing the configuration of a carbon dioxide capture device using a fuel cell power generation system according to an embodiment of the present invention,
3 is a flowchart illustrating a process of a carbon dioxide collection method using a fuel cell power generation system according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, when it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. Terms to be described later are terms defined in consideration of functions in the present invention, and may be changed according to intentions or customs of users or operators. Therefore, the definition should be made based on the contents throughout the specification.
도 2는 본 발명의 실시예에 따라 선박에 탑재되는 연료전지 발전시스템의 이산화탄소 포집장치의 구성을 나타내는 블록도이다.2 is a block diagram showing the configuration of a carbon dioxide capture device of a fuel cell power generation system mounted on a ship according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 이산화탄소 포집장치는 연료가 저장되는 저장탱크(20)와, 연료개질기(40)와, CCS 모듈(Carbon Dioxide Capturing and Storage Module)(60)과, 연료전지 발전시스템(80)과, 수전해시스템(100)을 포함한다.Referring to FIG. 2, the carbon dioxide capture device of the present invention includes a storage tank 20, a
저장탱크(20)는 메탄가스(CH4)를 주성분으로 하는 LNG 저장탱크이며, 이 LNG 저장탱크(20)로부터 연료개질기(40)에 액화천연가스가 공급되면, 연료개질기(40)에서는 최초 소량의 순산소를 주입하여 순산소 연소법으로 연소하여 다음과 같은 개질반응에 의해 이산화탄소와 수소를 생성한다.The storage tank 20 is an LNG storage tank mainly composed of methane gas (CH 4 ). When the liquefied natural gas is supplied from the LNG storage tank 20 to the
CH4 + 1/2 O2 → CO + 2H2 CH 4 + 1/2 O 2 → CO + 2H 2
CO + 2H2 + H2O → CO2 + 3H2 CO + 2H 2 + H 2 O → CO 2 + 3H 2
이와 같은 순산소 연소법은 메탄가스에 포함된 수소 뿐만 아니라 공정중에 공급되는 수증기로 부터의 수소를 뽑아낼 수 있으므로, 수소의 생산량이 많아진다.Such a pure oxygen combustion method can extract not only hydrogen contained in methane gas but also hydrogen from steam supplied during the process, so that the amount of hydrogen produced increases.
생성된 이산화탄소와 수소는 CCS 모듈(60)에서 분리되어, 이산화탄소는 CCS 모듈 저장탱크(62)에서 포집되고, 수소는 연료전지 발전시스템(80)으로 공급된다.The generated carbon dioxide and hydrogen are separated in the
연료전지 발전시스템(80)에서의 연료전지는 SOFC, MCFC 또는 PEMFC의 어느 하나인 것이 바람직하며, 이러한 연료전지에서는 CCS 모듈(60)로부터 공급된 수소와 공기중의 산소를 이용하여 전기를 생산하게 되는 데, 연료전지의 특성 상 필요전력 이상의 전력을 생산하여 모터 등과 같은 장비(120)에 공급된다. 공급된 수소와 산소에 의해 생성된 물은 수전해 시스템(100)으로 배출된다. The fuel cell in the fuel cell
한편 연료전지로서의 MCFC를 사용하는 경우, MCFC가 부하추종성이 없기 때문에 선박이나 기타 플랜트의 부하 변화에 따라 전력을 생산하지 못하게 된다. 그렇다 하더라도 본 발명은 연료전지 발전시스템(80)의 잉여전력을 수전해 시스템(100)으로 공급하여, 수전해 시스템(100)에서 물을 전기분해하여 산소와 수소를 생성하고, 이때 발생하는 수소를 별도의 수소저장탱크(도시하지 않음)에 저장하였다가 연료전지 발전시스템(80)의 연료전지에 사용하여 추가의 전력을 생산함으로써 부하 추종성의 문제를 해결할 수 있고, 또한 산소는 연료개질기(40)에서의 순산소 연소공정에 이용하고자 공급된다.On the other hand, when MCFC is used as a fuel cell, MCFC is not load-trackable, and thus power cannot be generated due to load changes of ships or other plants. Even so, the present invention supplies surplus power of the fuel cell
이와 같이 구성된 본 발명의 연료전지 발전시스템을 이용한 이산화탄소 포집 방법은 도 3에 도시된 바와 같은 공정순서로 구성된다.Carbon dioxide capture method using the fuel cell power generation system of the present invention configured as described above is configured in the process sequence as shown in FIG.
먼저, 과정(S100)에서, 저장탱크(20)에 저장된 메탄 가스를 주성분으로 하는 연료 가스를 연료개질기(40)에 공급하면, 연료개질기(40)는 공급받은 연료와 최초 공급받은 산소를 이용하여 순산소 연소공정을 행하여 이산화탄소와 수소를 생성한다(S200).First, in step S100, when the fuel gas mainly containing methane gas stored in the storage tank 20 is supplied to the
이어서, CCS 모듈(60)에서 이산화탄소와 수소를 분리하고, 분리된 이산화탄소는 CCS 모듈 저장탱크(62)에 저장하여 포집한다(S300).Subsequently, carbon dioxide and hydrogen are separated from the
그 다음 과정(S400)으로, 연료전지 발전시스템(80)에서 분리된 수소와 공기 중의 산소를 반응하여 전력을 발생하여, 필요전력은 모터 등의 장비(120)에 공급하고, 물을 전기분해하여 산소와 수소를 생성하고자, 잉여전력은 수전해 시스템(100)으로 공급한다.In the next step (S400), the hydrogen generated in the fuel cell
마직막으로, 수전해 시스템(100)에서는 생성된 산소를 순산소 개질반응에 이용하고자 연료개질기(40)에 공급되는 과정(S500)을 포함한다. Finally, the
또한 수전해 시스템(100)에서 생성된 수소를 별도의 수소저장탱크에 저장하였다가 연료전지 발전시스템(80)에 공급하여 추가 전력을 생산하는 과정(S600)을 더 포함할 수도 있다.In addition, the method may further include a step (S600) of storing additional hydrogen generated in the
이상 설명한 바와 같은 본 발명의 실시예에 따른 연료전지 발전시스템을 이용한 이산화탄소 포집장치 및 그 방법은 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되지 않으며, 후술되는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
The carbon dioxide capture device and method using the fuel cell power generation system according to the embodiment of the present invention as described above have been described with respect to specific embodiments, but various modifications are possible without departing from the scope of the present invention. . Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the scope of the following claims, but also by those equivalent to the scope of the claims.
20 : 저장탱크 40 : 연료개질기
60 : CCS 모듈 62 : CCS 모듈 저장탱크
80 : 연료전지 발전시스템 100 : 수전해 시스템
120 : 장비20: storage tank 40: fuel reformer
60: CCS module 62: CCS module storage tank
80: fuel cell power generation system 100: hydroelectric system
120: Equipment
Claims (6)
상기 저장탱크로부터 공급된 연료를 개질하고자 순산소 연소공정을 행하는 연료개질기와,
상기 연료개질기로부터의 개질반응에 의해 생성된 수소 및 이산화탄소를 분리하고, 이산화탄소를 저장하는 CCS 모듈과,
상기 CCS 모듈로부터 수소를 공급받아 전력을 생산하는 연료전지 발전시스템과,
상기 연료전지 발전시스템의 잉여전력을 공급받아 물을 전기분해하여 산소와 수소를 생성하는 수전해 시스템을 포함하는
연료전지 발전시스템을 이용한 이산화탄소 포집장치.
A storage tank in which fuel is stored;
A fuel reformer for performing a pure oxygen combustion process to reform fuel supplied from the storage tank;
A CCS module for separating the hydrogen and carbon dioxide produced by the reforming reaction from the fuel reformer and storing the carbon dioxide;
A fuel cell power generation system generating hydrogen by receiving hydrogen from the CCS module;
It includes a hydrolysis system for generating oxygen and hydrogen by electrolysis of water by receiving the surplus power of the fuel cell power generation system
CO2 capture device using fuel cell power generation system.
상기 수전해 시스템은 발생된 산소를 상기 연료개질기로 공급하고, 생성된 수소는 저장하는 것을 특징으로 하는
연료전지 발전시스템을 이용한 이산화탄소 포집장치.
The method of claim 1,
The electrolytic system supplies the generated oxygen to the fuel reformer, and stores the generated hydrogen.
CO2 capture device using fuel cell power generation system.
상기 연료전지 발생시스템의 연료전지는 SOFC, MCFC 또는 PEMFC의 어느 하나인 것을 특징으로 하는
연료전지 발전시스템을 이용한 이산화탄소 포집장치.
The method of claim 1,
The fuel cell of the fuel cell generation system is characterized in that any one of SOFC, MCFC or PEMFC
CO2 capture device using fuel cell power generation system.
상기 연료전지 발전시스템은
상기 수전해시스템으로부터 생성된 수소를 공급받아 추가 전력을 생산하는
연료전지 발전시스템을 이용한 이산화탄소 포집장치.
The method of claim 1,
The fuel cell power generation system
Producing additional power by receiving hydrogen generated from the hydroelectrolysis system
CO2 capture device using fuel cell power generation system.
상기 공급받은 연료와 산소를 이용하여 순산소 개질반응을 행하는 과정과,
상기 순산소 개질반응에 의해 생성된 이산화탄소와 수소를 분리하고, 상기 이산화탄소를 저장하는 과정과,
상기 분리된 수소와 공기를 반응하여 전력을 발생하는 과정과,
상기 발생된 전력중 잉여전력을 공급받아 물을 전기분해하여 산소와 수소를 생성하는 과정과,
상기 생성된 산소를 상기 순산소 개질반응에 이용하는 과정을 포함하는
연료전지 발전시스템을 이용한 이산화탄소 포집방법.
Supplying fuel to the fuel reformer,
Performing a pure oxygen reforming reaction using the supplied fuel and oxygen,
Separating carbon dioxide and hydrogen generated by the pure oxygen reforming reaction and storing the carbon dioxide;
Generating electricity by reacting the separated hydrogen and air;
Receiving excess power among the generated power to electrolyze water to generate oxygen and hydrogen;
Using the generated oxygen in the pure oxygen reforming reaction
CO2 capture method using fuel cell power generation system.
상기 생성된 수소를 이용하여 추가 전력을 생산하는 과정을 더 포함하는
연료전지 발전시스템을 이용한 이산화탄소 포집방법.6. The method of claim 5,
Further comprising the step of producing additional power using the generated hydrogen
CO2 capture method using fuel cell power generation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034158A KR20110114816A (en) | 2010-04-14 | 2010-04-14 | Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100034158A KR20110114816A (en) | 2010-04-14 | 2010-04-14 | Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20110114816A true KR20110114816A (en) | 2011-10-20 |
Family
ID=45029628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100034158A KR20110114816A (en) | 2010-04-14 | 2010-04-14 | Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20110114816A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013100714A1 (en) * | 2011-12-30 | 2013-07-04 | 두산중공업 주식회사 | Carbon dioxide recovery system using fuel cell |
WO2014014192A1 (en) * | 2012-07-19 | 2014-01-23 | 한국기계연구원 | Integrated reactor for transforming and reforming oxy-fuel-carbon dioxide catalyst |
KR101401451B1 (en) * | 2012-02-14 | 2014-05-29 | 두산중공업 주식회사 | Heat exchange type catalytic oxidizer and high concentration dioxide recycle apparatus using the same |
KR101408139B1 (en) * | 2011-12-30 | 2014-06-17 | 두산중공업 주식회사 | Carbon dioxide collecting system using fuel cell |
KR20160114632A (en) * | 2014-01-31 | 2016-10-05 | 퓨얼 셀 에너지, 인크 | Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen |
KR101955697B1 (en) * | 2018-06-04 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR101955696B1 (en) * | 2018-05-09 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR101955695B1 (en) * | 2018-03-19 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
WO2019182284A1 (en) * | 2018-03-19 | 2019-09-26 | 울산과학기술원 | Carbon dioxide utilization system, and complex power generation system comprising same |
KR102025559B1 (en) * | 2018-12-20 | 2019-09-26 | (주) 테크로스 | Method for treating ballast water and marine exhaust gas using electrolysis |
US10465305B2 (en) | 2015-11-17 | 2019-11-05 | Fuelcell Energy, Inc. | Hydrogen and carbon monoxide generation using an REP with partial oxidation |
KR102028709B1 (en) * | 2019-02-28 | 2019-11-05 | 울산과학기술원 | Ballast water treatment system using carbon dioxide utilization system |
KR20190128986A (en) * | 2018-05-09 | 2019-11-19 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
WO2020045945A1 (en) * | 2018-08-27 | 2020-03-05 | 울산과학기술원 | Hydrogen generating apparatus using carbon dioxide, and fuel cell system having same |
US10608272B2 (en) | 2015-11-16 | 2020-03-31 | Fuelcell Energy, Inc. | System for capturing CO2 from a fuel cell |
US10680265B2 (en) | 2015-11-16 | 2020-06-09 | Fuelcell Energy, Inc. | Energy storage using an REP with an engine |
WO2020138668A1 (en) * | 2018-12-27 | 2020-07-02 | 울산과학기술원 | Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same |
KR20200090505A (en) * | 2019-01-21 | 2020-07-29 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR20200090504A (en) * | 2019-01-21 | 2020-07-29 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
US10897055B2 (en) | 2017-11-16 | 2021-01-19 | Fuelcell Energy, Inc. | Load following power generation and power storage using REP and PEM technology |
US11043684B2 (en) | 2015-11-17 | 2021-06-22 | Fuelcell Energy, Inc. | Fuel cell system having enhanced CO2 capture |
CN113379237A (en) * | 2021-06-09 | 2021-09-10 | 国家电网有限公司 | Peak regulation adaptability judgment method and system for proton exchange membrane fuel cell |
WO2021206206A1 (en) * | 2020-04-08 | 2021-10-14 | 한화파워시스템 주식회사 | Combination-linked recycling system |
US11339333B2 (en) | 2016-04-21 | 2022-05-24 | Fuelcell Energy, Inc. | Fluidized catalytic cracking unit system with integrated reformer-electrolyzer-purifier |
US11495806B2 (en) | 2019-02-04 | 2022-11-08 | Fuelcell Energy, Inc. | Ultra high efficiency fuel cell power generation system |
WO2023128292A1 (en) * | 2021-12-31 | 2023-07-06 | 주식회사 카본에너지 | Method, apparatus and system for capturing carbon by using fuel cell |
KR20230152326A (en) | 2022-04-27 | 2023-11-03 | (주)로우카본 | Carbon dioxide capture and carbon resource conversion system for fuel cells and method therefor |
KR20230152869A (en) | 2022-04-27 | 2023-11-06 | (주)로우카본 | Carbon dioxide capture and carbon resource conversion system for fuel cells using Boil Off Gas generated from LNG |
CN117431555A (en) * | 2023-12-18 | 2024-01-23 | 中石油深圳新能源研究院有限公司 | Electrolytic hydrogen production device based on oilfield associated gas |
US12046737B2 (en) | 2022-11-23 | 2024-07-23 | Carbon Energy Inc. | Method, apparatus and system for capturing carbon using fuel cell |
-
2010
- 2010-04-14 KR KR1020100034158A patent/KR20110114816A/en not_active Application Discontinuation
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101408139B1 (en) * | 2011-12-30 | 2014-06-17 | 두산중공업 주식회사 | Carbon dioxide collecting system using fuel cell |
WO2013100714A1 (en) * | 2011-12-30 | 2013-07-04 | 두산중공업 주식회사 | Carbon dioxide recovery system using fuel cell |
KR101401451B1 (en) * | 2012-02-14 | 2014-05-29 | 두산중공업 주식회사 | Heat exchange type catalytic oxidizer and high concentration dioxide recycle apparatus using the same |
WO2014014192A1 (en) * | 2012-07-19 | 2014-01-23 | 한국기계연구원 | Integrated reactor for transforming and reforming oxy-fuel-carbon dioxide catalyst |
KR20160114632A (en) * | 2014-01-31 | 2016-10-05 | 퓨얼 셀 에너지, 인크 | Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen |
US10892507B2 (en) | 2014-01-31 | 2021-01-12 | Fuelcell Energy, Inc. | Reformer-electrolyzer-purifier (REP) assembly for hydrogen production, systems incorporating same and method of producing hydrogen |
US10608272B2 (en) | 2015-11-16 | 2020-03-31 | Fuelcell Energy, Inc. | System for capturing CO2 from a fuel cell |
US10680265B2 (en) | 2015-11-16 | 2020-06-09 | Fuelcell Energy, Inc. | Energy storage using an REP with an engine |
US10465305B2 (en) | 2015-11-17 | 2019-11-05 | Fuelcell Energy, Inc. | Hydrogen and carbon monoxide generation using an REP with partial oxidation |
US11043684B2 (en) | 2015-11-17 | 2021-06-22 | Fuelcell Energy, Inc. | Fuel cell system having enhanced CO2 capture |
US11339333B2 (en) | 2016-04-21 | 2022-05-24 | Fuelcell Energy, Inc. | Fluidized catalytic cracking unit system with integrated reformer-electrolyzer-purifier |
US10897055B2 (en) | 2017-11-16 | 2021-01-19 | Fuelcell Energy, Inc. | Load following power generation and power storage using REP and PEM technology |
KR101955695B1 (en) * | 2018-03-19 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
WO2019182284A1 (en) * | 2018-03-19 | 2019-09-26 | 울산과학기술원 | Carbon dioxide utilization system, and complex power generation system comprising same |
US11710840B2 (en) | 2018-03-19 | 2023-07-25 | Gt Co., Ltd. | Carbon dioxide utilization system, and complex power generation system using the same |
CN112119536A (en) * | 2018-03-19 | 2020-12-22 | 蔚山科学技术院 | Carbon dioxide utilization system and hybrid power generation system including same |
CN112119536B (en) * | 2018-03-19 | 2024-05-03 | Gt有限公司 | Carbon dioxide utilization system and composite power generation system comprising same |
KR101955696B1 (en) * | 2018-05-09 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR20190128986A (en) * | 2018-05-09 | 2019-11-19 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR101955697B1 (en) * | 2018-06-04 | 2019-03-07 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
WO2020045945A1 (en) * | 2018-08-27 | 2020-03-05 | 울산과학기술원 | Hydrogen generating apparatus using carbon dioxide, and fuel cell system having same |
KR102025559B1 (en) * | 2018-12-20 | 2019-09-26 | (주) 테크로스 | Method for treating ballast water and marine exhaust gas using electrolysis |
WO2020138668A1 (en) * | 2018-12-27 | 2020-07-02 | 울산과학기술원 | Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same |
KR20200090504A (en) * | 2019-01-21 | 2020-07-29 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
KR20200090505A (en) * | 2019-01-21 | 2020-07-29 | 울산과학기술원 | Secondary battery using carbon dioxide and complex electric power generation system having the same |
US11495806B2 (en) | 2019-02-04 | 2022-11-08 | Fuelcell Energy, Inc. | Ultra high efficiency fuel cell power generation system |
KR102028709B1 (en) * | 2019-02-28 | 2019-11-05 | 울산과학기술원 | Ballast water treatment system using carbon dioxide utilization system |
WO2021206206A1 (en) * | 2020-04-08 | 2021-10-14 | 한화파워시스템 주식회사 | Combination-linked recycling system |
CN113379237A (en) * | 2021-06-09 | 2021-09-10 | 国家电网有限公司 | Peak regulation adaptability judgment method and system for proton exchange membrane fuel cell |
CN113379237B (en) * | 2021-06-09 | 2023-11-24 | 国家电网有限公司 | Peak regulation adaptability judging method and system for proton exchange membrane fuel cell |
WO2023128292A1 (en) * | 2021-12-31 | 2023-07-06 | 주식회사 카본에너지 | Method, apparatus and system for capturing carbon by using fuel cell |
KR20230152326A (en) | 2022-04-27 | 2023-11-03 | (주)로우카본 | Carbon dioxide capture and carbon resource conversion system for fuel cells and method therefor |
KR20230152869A (en) | 2022-04-27 | 2023-11-06 | (주)로우카본 | Carbon dioxide capture and carbon resource conversion system for fuel cells using Boil Off Gas generated from LNG |
US12046737B2 (en) | 2022-11-23 | 2024-07-23 | Carbon Energy Inc. | Method, apparatus and system for capturing carbon using fuel cell |
CN117431555A (en) * | 2023-12-18 | 2024-01-23 | 中石油深圳新能源研究院有限公司 | Electrolytic hydrogen production device based on oilfield associated gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20110114816A (en) | Apparatus for capturing carbon dioxide using fuel cell power generation system in a ship and method thereof | |
Pinsky et al. | Comparative review of hydrogen production technologies for nuclear hybrid energy systems | |
KR101939687B1 (en) | Reformer-electrolyzer-purifier(rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen | |
KR102143864B1 (en) | System to capture CO2 from fuel cells | |
US7951283B2 (en) | High temperature electrolysis for syngas production | |
CN108604695B (en) | Energy storage with engine REP | |
KR101142472B1 (en) | Molten Carbonate Fuel Cell System with Hydrocarbon Reactor | |
KR101616309B1 (en) | Fuel cell apparatus | |
CA3005628C (en) | Fuel cell system having enhanced co2 capture | |
JP2014519177A (en) | Hybrid system of fuel cell and reciprocating gasoline / diesel engine | |
KR20120082582A (en) | Fuel cell system and ship having the same | |
KR20100095338A (en) | Apparatus and method for producing electricity of liquefied natural gas carrier | |
KR20120014840A (en) | Combined power generation system of thermal power plants with co2 capture and storage equipments and molten carbonate fuel cell power plants with hydrocarbon generation equipments | |
KR102289495B1 (en) | System for capturing carbon dioxide using fuel cell and method thereof | |
CN114725428A (en) | Zero-carbon-emission solid oxide fuel cell and renewable energy source combined power generation system with ammonia gas as carrier | |
KR101978374B1 (en) | Fuel cell-engine hybrid power generation system with multi-stage reformer structure | |
CN213340447U (en) | Integrated system of solid oxide fuel cell and solid oxide electrolytic cell | |
KR20220004507A (en) | Methanol fuel energy conversion system | |
US20240072339A1 (en) | Renewable energy integration with natural-gas based combined hydrogen and electricity production (chep) system and method | |
KR101739583B1 (en) | Fuel cell-engine hybrid power generation system with parallel reformer structure | |
KR101956240B1 (en) | Fuel cell system for ship | |
US20140072890A1 (en) | Fuel cell power generation system with oxygen inlet instead of air | |
WO2024120982A1 (en) | Fuel cell energy generation system | |
KR20140026862A (en) | Fuel cell system and method of operating the same | |
Becker et al. | Design and Performance Analysis of a 1 MW Solid Oxide Fuel Cell System for Combined Production of Heat, Hydrogen, and Power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |