Nothing Special   »   [go: up one dir, main page]

KR20110071977A - Solar thermal-combinded desalination system - Google Patents

Solar thermal-combinded desalination system Download PDF

Info

Publication number
KR20110071977A
KR20110071977A KR1020090128723A KR20090128723A KR20110071977A KR 20110071977 A KR20110071977 A KR 20110071977A KR 1020090128723 A KR1020090128723 A KR 1020090128723A KR 20090128723 A KR20090128723 A KR 20090128723A KR 20110071977 A KR20110071977 A KR 20110071977A
Authority
KR
South Korea
Prior art keywords
unit
desalination
seawater
water
solar
Prior art date
Application number
KR1020090128723A
Other languages
Korean (ko)
Other versions
KR101220246B1 (en
Inventor
이운장
Original Assignee
(주) 코네스코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 코네스코퍼레이션 filed Critical (주) 코네스코퍼레이션
Priority to KR1020090128723A priority Critical patent/KR101220246B1/en
Publication of KR20110071977A publication Critical patent/KR20110071977A/en
Application granted granted Critical
Publication of KR101220246B1 publication Critical patent/KR101220246B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • C02F1/265Desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A solar energy merge desalination system is provided to improve the environment-friendly property of the system, and to reduce the energy consumption amount. CONSTITUTION: A solar energy merge desalination system comprises the following: a reverse osmosis type desalinization unit desalinizing first seawater using a reverse osmosis method, and discharging first fresh water and concentrated water; and a solar energy distillation type desalination unit(130) using solar energy as an energy source for desalinizing inflow water using an evaporation method, and discharging second fresh water. The inflow water flowing into the solar energy distillation type desalination unit includes second seawater, and the concentrated water.

Description

태양열 병합 담수화 시스템 {SOLAR THERMAL-COMBINDED DESALINATION SYSTEM}Solar Combined Desalination System {SOLAR THERMAL-COMBINDED DESALINATION SYSTEM}

본 발명은 담수화 시스템에 관한 것으로서, 특히 태양열 증류식 담수화부를 포함하는 태양열 병합 담수화 시스템에 관한 것이다.The present invention relates to a desalination system, and more particularly, to a solar combined desalination system including a solar distillation desalination unit.

담수화는 해수와 같이 염도가 높아 인간이 사용하기 어려운 물로부터 담수와 같이 염도가 낮아 인간이 사용하기 적합한 물을 얻는 일련의 공정을 의미한다. 담수화는 많은 에너지를 필요하기 때문에 경제성이 낮지만, 자연적으로 충분한 담수를 얻기 어려운 지역에서는 담수화 공정을 통해 인공적으로 담수를 생산하여 사용하고 있다.Desalination refers to a process of obtaining water suitable for human use from water that is high in salinity such as seawater and difficult to use by humans. Desalination is economical because it requires a lot of energy, but in areas where it is difficult to obtain sufficient fresh water naturally, desalination is artificially produced and used.

현재 담수화 공정에는 역삼투(RO: Reverse Osmosis) 방식과 증류(distillation) 방식이 주로 사용되고 있다.Currently, the reverse osmosis (RO) and distillation methods are mainly used in the desalination process.

역삼투 방식은 역삼투 현상을 이용한 방식으로서, 최근 수요가 급증하고 있는 방식이다. 역삼투 현상은 반투막(멤브레인)을 사이에 두고 해수가 담수보다 높은 일정 압력차(삼투압)로 평형을 유지한 상태에서, 해수에 삼투압보다 높은 압력(역삼투압)을 가하면 해수에 포함된 순수한 물이 담수 쪽으로 이동하는 현상이다. 역삼투 방식에 의해 해수는 담수와 농축수로 분리되며, 농축수는 다시 바다로 배출 된다.Reverse osmosis is a method using a reverse osmosis phenomenon, a method that demand is increasing rapidly in recent years. The reverse osmosis phenomenon is when the seawater is equilibrated with a constant pressure difference (osmotic pressure) higher than that of fresh water with a semi-permeable membrane (membrane) in between, and when the seawater is subjected to a pressure higher than the osmotic pressure (reverse osmosis), the pure water contained in the seawater It is a phenomenon that moves toward fresh water. By reverse osmosis, seawater is separated into fresh water and concentrated water, and the concentrated water is discharged back to the sea.

증류 방식은 해수를 가열하여 증발시키고, 그 증기를 응축시켜서 담수를 얻는 방식이다. 현재 화석연료를 이용하여 해수를 가열하는 방식이 많이 사용되고 있으나, 최근에는 에너지 소비를 줄이기 위하여 태양열 에너지를 이용하여 해수를 가열하는 방식도 개발되고 있다.Distillation is a method of heating and evaporating seawater and condensing the steam to obtain fresh water. Currently, a method of heating seawater using fossil fuels is widely used, but recently, a method of heating seawater using solar energy has been developed to reduce energy consumption.

본 발명의 목적은 담수화 효율이 개선되고 친환경적인 태양열 병합 담수화 시스템을 제공하는 것이다.It is an object of the present invention to provide an improved solar desalination system with improved desalination efficiency.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일측면에 따르면,In order to achieve the above object, according to an aspect of the present invention,

제1 해수를 역삼투식으로 담수화하여 제1 담수와 농축수를 배출하는 역삼투식 담수화부; 및 태양열을 에너지원으로 하여 유입수를 증류식으로 담수화하여 제2 담수를 배출하는 태양열 증류식 담수화부를 포함하며, 상기 태양열 증류식 담수화부로 유입되는 상기 유입수는 제2 해수와 상기 역삼투식 담수화부로부터 배출된 농축수를 포함하는 것을 특징으로 하는 태양열 병합 담수화 시스템이 제공된다.Reverse osmosis desalination unit for desalination of the first seawater by reverse osmosis to discharge the first fresh water and concentrated water; And a solar distillation desalination unit for discharging the inflow water by distillation using solar heat as an energy source to discharge the second fresh water, wherein the inflow water flowing into the solar distillation desalination unit is discharged from the second seawater and the reverse osmosis desalination unit. Provided is a solar combined desalination system comprising concentrated concentrated water.

상기 태양열 증류식 담수화부는 태양열 집열기와, 태양열 집열기의 열에너지를 축적하는 축열 탱크와, 축열 탱크로부터 전달된 열에너지를 이용하여 상기 유입수를 증류하는 담수기를 구비할 수 있다.The solar distillation desalination unit may include a solar collector, a heat storage tank for accumulating thermal energy of the solar collector, and a fresh water distillation of the influent using heat energy transferred from the heat storage tank.

상기 태양열 증류식 담수화부는 열교환부와 응축부가 각각 마련된 다수의 담수기를 구비할 수 있다. 이때, 상기 다수의 담수기의 각 응축부는 증기가 이동할 수 있도록 시리즈로 연결될 수 있다.The solar distillation desalination unit may include a plurality of desalination units each provided with a heat exchange unit and a condensation unit. At this time, each condensation unit of the plurality of fresh water may be connected in series so that steam can move.

상기 태양열 병합 담수화 시스템은 상기 역삼투 담수화부에 상기 제1 해수를 제공하는 해수 저장부를 더 포함하며, 상기 태양열 증류식 담수화부는 응축부를 구비하며, 상기 해수 저장부에 저장된 해수가 상기 응축부의 냉각수로서 순환할 수 있다.The solar combined desalination system further includes a seawater storage unit providing the first seawater to the reverse osmosis desalination unit, wherein the solar distillation desalination unit includes a condensation unit, and the seawater stored in the seawater storage unit as cooling water of the condensation unit. Can circulate

본 발명의 구성을 따르면 앞서서 기재한 본 발명의 목적을 달성 할 수 있다. 구체적으로는 태양열 증류식 담수화부로 유입되는 유입수가 해수와 역삼투식 담수화로부터 배출된 농축수를 포함하므로 담수화 효율이 개선되고 친환경적인 태양열 병합 담수화 시스템이 제공된다.According to the configuration of the present invention can achieve the object of the present invention described above. Specifically, since the inflow into the solar distillation desalination unit includes concentrated water discharged from seawater and reverse osmosis desalination, desalination efficiency is improved and an environmentally friendly solar combined desalination system is provided.

이하, 첨부된 도면을 참조하여 본 발명에 따른 복합 담수화 시스템에 대한 일 실시예의 구성 및 작용을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation of an embodiment for a complex desalination system according to the present invention.

먼저, 본 발명에 따른 복합 담수화 시스템에 대한 일 실시예의 구성을 상세히 설명한다.First, the configuration of an embodiment of a complex desalination system according to the present invention will be described in detail.

도 1은 본 발명에 따른 태양열 병합 담수화 시스템에 대한 일 실시예를 개략적으로 도시한 블록도이다. 도 2는 도 1에 도시된 역삼투식 담수화부를 도시한 구성도이며, 도 3은 도 1에 도시된 태양열 증류식 담수화부를 도시한 구성도이다.1 is a block diagram schematically showing an embodiment of a solar combined desalination system according to the present invention. Figure 2 is a block diagram showing a reverse osmosis desalination unit shown in Figure 1, Figure 3 is a block diagram showing a solar thermal distillation desalination unit shown in FIG.

도 1 내지 도 3을 참조하면, 태양열 병합 담수화 시스템(100)은 해수 저장부(110)와, 역삼투식 담수화부(120)와, 태양열 병합 증류식 담수화부(130)와, 담수 저장부(140)를 포함한다. 도시되지는 않았으나, 태양열 병합 담수화 시스템(100)은 유체를 이송시키기 위해 다수의 펌프를 더 구비한다. 태양열 병합 담수화 시스템(100)은 역삼투식 담수화부(120)와 태양열 증류식 담수화부(130)를 혼합 사용함으로써 높은 담수화 효율을 갖는다.1 to 3, the solar combined desalination system 100 includes a seawater storage unit 110, a reverse osmosis desalination unit 120, a solar combined distillation desalination unit 130, and a freshwater storage unit 140. ). Although not shown, the solar combined desalination system 100 further includes a plurality of pumps for transferring the fluid. Solar combined desalination system 100 has a high desalination efficiency by using the reverse osmosis desalination unit 120 and the solar distillation desalination unit 130 mixed.

해수 저장부(110)는 담수화 설비 분야에서 통상적으로 사용되는 해수 저장조의 구성으로 이루어진다. 따라서, 본 명세서에서 해수 저장부(110)의 구성에 대한 상세한 설명은 생략된다. 해수 저장부(110)는 외부로부터 공급된 해수(SW)를 저장한다. 해수 저장부(110)에 저장된 해수는 역삼투식 담수화부(120) 및 태양열 증류식 담수화부(130)로 공급되어 담수화 된다. 또한, 해수 저장부(110)에 저장된 해수는 태양열 증류식 담수화부(130)에 냉각수로도 공급되며 순환한다. 해수 저장부(110)로부터 태양열 증류식 담수화부(130)로 공급되는 공급 냉각수(C1)의 온도는 태양열 증류식 담수화부(130)를 거친 후 상승한다. 온도가 상승한 상태로 해수 저장부(110)로 귀환한 귀환 냉각수(C2)에 의해 해수 저장부(110)에 저장된 해수의 온도는 외부로부터 공급되는 해수(SW)의 온도보다 높게 된다. 해수 저장부(110)에 저장된 해수의 온도가 높을 수록, 역삼투식 담수화부(120)의 생산효율이 높아지며, 고압펌프의 압력을 저하시켜 회수율을 증대시키고 동력이 절감된다. 특히, 겨울철에 해수 온도를 높여줌으로써, 겨울의 동력 부하를 절감할 수 있어 그 효과는 더욱 커진다.The seawater storage unit 110 is configured of a seawater storage tank commonly used in the field of desalination facilities. Therefore, detailed description of the configuration of the seawater storage unit 110 is omitted herein. Seawater storage unit 110 stores the seawater (SW) supplied from the outside. Seawater stored in the seawater storage unit 110 is supplied to the reverse osmosis desalination unit 120 and solar distillation desalination unit 130 is desalination. In addition, the seawater stored in the seawater storage unit 110 is supplied to the solar distillation desalination unit 130 as cooling water and circulated. The temperature of the supply cooling water C1 supplied from the seawater storage unit 110 to the solar distillation desalination unit 130 rises after passing through the solar distillation desalination unit 130. The temperature of the seawater stored in the seawater storage unit 110 by the return cooling water C2 returned to the seawater storage unit 110 in a state where the temperature is increased becomes higher than the temperature of the seawater SW supplied from the outside. The higher the temperature of the seawater stored in the seawater storage unit 110, the higher the production efficiency of the reverse osmosis desalination unit 120, the lower the pressure of the high-pressure pump to increase the recovery rate and save power. In particular, by increasing the sea temperature in the winter, the power load of the winter can be reduced, the effect is even greater.

역삼투식 담수화부(120)는 전처리장치(121)와, 저장 수조(122)와, 역삼투 기(123)를 구비한다. 역삼투식 담수화부(120)는 해수 저장부(110)로부터 제1 해수(SW1)을 제공받아 담수화하며 제1 담수(FW1)와 농축수(CW)를 배출한다.The reverse osmosis desalination unit 120 includes a pretreatment device 121, a storage tank 122, and a reverse osmosis machine 123. The reverse osmosis desalination unit 120 receives the first seawater SW1 from the seawater storage unit 110 to desalination and discharges the first freshwater FW1 and the concentrated water CW.

전처리장치(121)는 해수 저장부(110)로부터 이송된 제1 해수(SW1)에서 부유물질을 제거한다. 본 실시예에서는 전처리장치(121)로서 부유물질이 부착되는 중공사막이 설치된 역세형 여과기가 사용되는 것으로 설명한다. 역세형 여과기는 공극크기가 0.001 내지 0.5㎛ 이고, 폴리설폰(polysulfone), 폴리아크릴로니트릴(polyacrylonitrile), 폴리에틸렌(polyethylene) 및 폴리프로필렌(polypropylene)으로 이루어진 중공사막 군에서 선택되며, 친수성 처리를 한 재질의 막인 것이 바람직하다.The pretreatment apparatus 121 removes suspended matter from the first seawater SW1 transferred from the seawater storage unit 110. In the present embodiment, it will be described that a backwash filter provided with a hollow fiber membrane to which suspended matter is attached as the pretreatment device 121 is used. The backwash filter has a pore size of 0.001 to 0.5 µm and is selected from the group of hollow fiber membranes consisting of polysulfone, polyacrylonitrile, polyethylene and polypropylene, It is preferable that it is a film of a material.

저장 수조(122)는 전처리장치(121)에서 부유물질이 제거된 해수를 저장한다. 저장수조(122)는 역삼투기(125)가 유량 부족으로 가동이 중단되지 않도록 충분한 양의 해수를 저장한다.The storage tank 122 stores the seawater from which suspended matter is removed from the pretreatment apparatus 121. The storage tank 122 stores a sufficient amount of sea water so that the reverse osmosis unit 125 is not stopped due to lack of flow rate.

역삼투기(123)는 역삼투방식의 담수화 설비에서 통상적으로 사용되는 역삼투기의 구성으로 이루어진다. 따라서, 본 명세서에서 역삼투기(123)의 구성에 대한 상세한 설명은 생략된다. 역삼투기(123)는 저장 수조(122)로부터 유입된 해수를 처리하여 담수와 농축수로 분리한다. 역삼투기(123)에서 배출된 제1 담수(FW1)는 담수 저장부(140)로 이송된다. 역삼투기(123)에서 배출된 농축수(CW)는 태양열 증류식 담수화부(130)로 이송된다. 역삼투기(123)에서 배출된 농축수(CW)는 해수 저장부(110)에 저장된 해수보다 약 2 내지 5℃ 높다.Reverse osmosis 123 is composed of a reverse osmosis system that is commonly used in the reverse osmosis desalination plant. Therefore, detailed description of the configuration of the reverse osmosis unit 123 is omitted herein. The reverse osmosis unit 123 processes the seawater introduced from the storage tank 122 and separates the fresh water and the concentrated water. The first freshwater FW1 discharged from the reverse osmosis unit 123 is transferred to the freshwater storage unit 140. The concentrated water CW discharged from the reverse osmosis unit 123 is transferred to the solar distillation desalination unit 130. The concentrated water CW discharged from the reverse osmosis unit 123 is about 2 to 5 ° C. higher than the seawater stored in the seawater storage unit 110.

본 발명은 역삼투식 담수화부(120)의 구성을 상기 설명한 실시예로 제한하는 것은 아니다. 역삼투식 담수화부(120)는 역삼투 방식을 사용하는 통상의 모든 담수화 장비일 수 있으며, 이 또한 본 발명에 포함될 수 있다.The present invention is not limited to the configuration of the reverse osmosis desalination unit 120 to the embodiment described above. Reverse osmosis desalination unit 120 may be any conventional desalination equipment using a reverse osmosis method, which may also be included in the present invention.

태양열 증류식 담수화부(130)는 태양열 집열기(131)와, 축열 탱크(132)와, 다수의 담수기(133, 134, 135, 136)를 구비한다. 태양열 증류식 담수화부(130)는 태양열을 이용하여 제2 해수(SW1) 및 역삼투식 담수화부(120)로부터 공급된 농축수(CW)를 증류하여 담수화한다. 태양열을 에너지원으로 이용하므로, 친환경적인 담수화 시스템의 구현이 가능해진다.The solar thermal distillation desalination unit 130 includes a solar collector 131, a heat storage tank 132, and a plurality of fresh water generators 133, 134, 135, and 136. The solar thermal distillation desalination unit 130 distills the concentrated water (CW) supplied from the second seawater SW1 and the reverse osmosis desalination unit 120 using solar heat. By using solar heat as an energy source, it is possible to implement an eco-friendly desalination system.

태양열 집열기(131)는 태양열에 의한 열에너지를 모은다. 태양열 집열기(131)로는 통상적으로 사용되는 모든 형태의 태양열 집열기가 사용될 수 있는데, 본 실시예에서는 태양열 집열기(131)로 진공관 내에 집열판과 히트파이프가 설치된 진공관형 태양열 집열기(ETSC)가 사용되는 것으로 설명한다. 태양열 집열기(131)에 모아진 열에너지는 태양열 집열기(131)와 축열 탱크(132) 사이를 순환하는 열전달 매체에 의해 축열 탱크(132)로 전달된다. The solar collector 131 collects thermal energy by solar heat. As the solar collector 131, all types of solar collectors commonly used may be used. In this embodiment, the solar collector 131 is used as a solar collector 131, and a vacuum tube solar collector (ETSC) in which a heat collecting plate and a heat pipe are installed in a vacuum tube is used. do. The heat energy collected in the solar collector 131 is transferred to the heat storage tank 132 by a heat transfer medium circulating between the solar collector 131 and the heat storage tank 132.

축열 탱크(132)는 태양열 집열기(131)에 모아진 열에너지를 열전달 매체를 통해 받아 집적한다. 축열 탱크(132)로는 통상적으로 사용되는 모든 형태의 축열 탱크가 사용될 수 있다. 축열 탱크(132)에 집적된 열에너지는 다수의 담수기로 각각 전달된다. 태양열 집열기(131)로부터 열전달 매체에 저장된 열에너지는 축열 탱크(132)에 저장된 담수(일반물)로 전달한다. 이 과정은 일반적인 다수의 열교환기(미도시)를 통해 이루어질 수 있다. 즉, 열전달 매체에 저장된 태양열 에너지가 열 교환기(미도시)에서 축열 탱크(132)에 저장된 담수로 열에너지를 전달하게 되고, 이 열에너지가 담수기(133, 134, 135, 136)로 유입되어 공급된 해수와 열교환을 하게 된다.The heat storage tank 132 receives and accumulates thermal energy collected in the solar collector 131 through a heat transfer medium. As the heat storage tank 132, any type of heat storage tank commonly used may be used. Thermal energy accumulated in the heat storage tank 132 is transferred to a plurality of fresh water, respectively. Thermal energy stored in the heat transfer medium from the solar collector 131 is transferred to fresh water (general water) stored in the heat storage tank 132. This process can be accomplished through a number of common heat exchangers (not shown). That is, the solar energy stored in the heat transfer medium transfers the heat energy from the heat exchanger (not shown) to the fresh water stored in the heat storage tank 132, and the heat energy is supplied to and supplied to the fresh water 133, 134, 135, and 136. Heat exchange with sea water

다수의 담수기(133, 134, 135, 136)는 제1 담수기(133)와, 제2 담수기(134)와, 제3 담수기(135)와, 제4 담수기(136)를 구비한다. 다수의 담수기(133, 134, 135, 136)는 제2 해수(SW2)와 농축수(CW)를 포함하는 유입수(IW)를 증류하여 담수화한다.The multiple fresheners 133, 134, 135, and 136 include a first freshener 133, a second freshener 134, a third freshener 135, and a fourth freshener 136. do. The plurality of fresh water units 133, 134, 135, and 136 distills the inflow water IW including the second seawater SW2 and the concentrated water CW.

제1 담수기(133)는 제1 열교환부(133a)와, 제1 응축부(133b)를 구비한다. 제1 담수기(133)는 유입수(IW)를 제공받아 담수화한다. 유입수(IW)는 해수 저장부(110)로부터 제공되는 제2 해수(SW2)와 역삼투식 담수화부(120)로부터 배출된 농축수(CW)를 포함한다. 농축수(CW)는 제2 해수(SW2)보다 보통 약 2 내지 5℃ 높다. 온도가 상승된 유입수(IW)가 제공되므로 태양열 증류식 담수화부(130)의 증발효율이 높아진다. 이는 태양열 병합 담수화 시스템(100)의 전체 담수화 효율을 높여준다.The first dehydrator 133 includes a first heat exchanger 133a and a first condenser 133b. The first dehydrator 133 is desalted by receiving the influent (IW). The influent water IW includes the second seawater SW2 provided from the seawater storage 110 and the concentrated water CW discharged from the reverse osmosis desalination unit 120. The concentrated water (CW) is usually about 2-5 ° C. higher than the second seawater (SW2). Since the inlet water (IW) is increased in temperature, the evaporation efficiency of the solar distillation desalination unit 130 is increased. This increases the overall desalination efficiency of the solar combined desalination system 100.

제1 열교환부(133a)는 열교환기를 구비하며, 축열 탱크(132)로부터 전달된 열에너지를 이용하여 제1 담수기(133)로 공급된 해수 및 농축수를 증발시킨다.The first heat exchanger 133a includes a heat exchanger, and evaporates the seawater and the concentrated water supplied to the first freshwater generator 133 by using the heat energy transferred from the heat storage tank 132.

제1 응축부(133b)는 수증기를 응축시키는 응축판을 구비하며, 응축되어 생산된 담수는 담수 저장부(140)로 이송된다. 제1 응축부(133b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제2 담수기(134)로 이송된다. 제1 응축부(133b)의 응축판에는 공급 냉각수(C1)가 공급된다. 공급 냉각수(C1)는 해수 저장 부(110)에 저장된 해수로서, 제1 응축부(133b)를 거친 후 온도가 높아져서 해수 저장부(110)로 귀환한다.The first condensation unit 133b includes a condensation plate for condensing water vapor, and the fresh water produced by condensation is transferred to the fresh water storage unit 140. In the first condenser 133b, the uncondensed water vapor, the unevaporated sea water, and the concentrated water are transferred to the second fresh water generator 134. Supply cooling water C1 is supplied to the condensation plate of the first condensation part 133b. The supply cooling water C1 is seawater stored in the seawater storage 110, and after passing through the first condensation 133b, the temperature increases to return to the seawater storage 110.

제2 담수기(134)는 제2 열교환부(134a)와, 제2 응축부(134b)를 구비한다. 제2 담수기(134)은 제1 담수기(133)와 동일한 구성으로 이루어지므로, 본 명세서에서 제2 담수기(134)의 구성에 대한 상세한 설명은 생략된다. 제2 열교환부(134a)는 제1 열교환부(133a)를 거친 열에너지를 제공받아서 제1 응축부(133b)에서 이송된 해수 및 농축수를 증발시킨다. 제2 응축부(134b)는 제1 응축부(133b)로부터 이송된 수증기 및 제2 열교환부(134a)에 의해 발생된 수증기를 응축시킨다. 제2 응축부(134b)에서 응축되어 생산된 담수는 담수 저장부(140)로 이송된다. 제2 응축부(134b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제3 담수기(135)로 이송된다. 제2 응축부(134b)의 응축판에는 공급 냉각수(C1)가 공급된다. 공급 냉각수(C1)는 해수 저장부(110)에 저장된 해수로서, 제2 응축부(134b)를 거친 후 온도가 높아져서 해수 저장부(110)로 귀환한다.The second freshener 134 includes a second heat exchanger 134a and a second condenser 134b. Since the second desalination unit 134 has the same configuration as the first desalination unit 133, a detailed description of the configuration of the second desalination unit 134 is omitted herein. The second heat exchanger 134a receives the thermal energy passing through the first heat exchanger 133a to evaporate the seawater and the concentrated water transferred from the first condenser 133b. The second condenser 134b condenses the water vapor transferred from the first condenser 133b and the water vapor generated by the second heat exchanger 134a. Fresh water produced by condensation in the second condenser 134b is transferred to the fresh water storage 140. In the second condenser 134b, the uncondensed water vapor, the unvaporized sea water, and the concentrated water are transferred to the third freshwater receiver 135. Supply cooling water C1 is supplied to the condensation plate of the second condensation part 134b. The supply cooling water C1 is seawater stored in the seawater storage 110, and after passing through the second condensation 134b, the temperature increases to return to the seawater storage 110.

제3 담수기(135)는 제3 열교환부(135a)와, 제3 응축부(135b)를 구비한다. 제3 담수기(135)은 제1 담수기(133)와 동일한 구성으로 이루어지므로, 본 명세서에서 제3 담수기(134)의 구성에 대한 상세한 설명은 생략된다. 제3 열교환부(135a)는 제2 열교환부(134a)를 거친 열에너지를 제공받아서 제2 응축부(134b)에서 이송된 해수 및 농축수를 증발시킨다. 제3 응축부(135b)는 제2 응축부(134b)로부터 이송된 수증기 및 제3 열교환부(135a)에 의해 발생된 수증기를 응축시킨다. 제3 응축부(135b)에서 응축되어 생산된 담수는 담수 저장부(140)로 이송된다. 제3 응축 부(135b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제4 담수기(136)로 이송된다. 제3 응축부(135b)의 응축판에는 공급 냉각수(C1)가 공급된다. 공급 냉각수(C1)는 해수 저장부(110)에 저장된 해수로서, 제3 응축부(135b)를 거친 후 온도가 높아져서 해수 저장부(110)로 귀환한다.The third freshener 135 includes a third heat exchanger 135a and a third condenser 135b. Since the third desalination unit 135 has the same configuration as the first desalination unit 133, a detailed description of the configuration of the third desalination unit 134 is omitted herein. The third heat exchanger 135a receives the thermal energy passing through the second heat exchanger 134a to evaporate the seawater and the concentrated water transferred from the second condensation unit 134b. The third condenser 135b condenses the water vapor transferred from the second condenser 134b and the water vapor generated by the third heat exchanger 135a. Fresh water condensed in the third condenser 135b is transferred to the fresh water storage 140. In the third condensation unit 135b, the non-condensed water vapor, the non-evaporated sea water, and the concentrated water are transferred to the fourth fresh water generator 136. Supply cooling water C1 is supplied to the condensation plate of the third condensation part 135b. The supply cooling water C1 is seawater stored in the seawater storage 110, and after passing through the third condensation unit 135b, the temperature increases to return to the seawater storage 110.

제4 담수기(136)는 제4 열교환부(136a)와, 제4 응축부(136b)를 구비한다. 제4 담수기(136)은 제1 담수기(133)와 동일한 구성으로 이루어지므로, 본 명세서에서 제4 담수기(134)의 구성에 대한 상세한 설명은 생략된다. 제4 열교환부(136a)는 제3 열교환부(135a)를 거친 열에너지를 제공받아서 제3 응축부(135b)에서 이송된 해수 및 농축수를 증발시킨다. 제4 응축부(136b)는 제3 응축부(135b)로부터 이송된 수증기 및 제4 열교환부(136a)에 의해 발생된 수증기를 응축시킨다. 제4 응축부(136b)에서 응축되어 생산된 담수는 담수 저장부(140)로 이송된다. 제4 응축부(136b)의 응축판에는 공급 냉각수(C1)가 공급된다. 공급 냉각수(C1)는 해수 저장부(110)에 저장된 해수로서, 제4 응축부(136b)를 거친 후 온도가 높아져서 해수 저장부(110)로 귀환한다.The fourth freshwater receiver 136 includes a fourth heat exchanger 136a and a fourth condenser 136b. Since the fourth desalination unit 136 has the same configuration as the first desalination unit 133, a detailed description of the configuration of the fourth desalination unit 134 is omitted herein. The fourth heat exchanger 136a receives the thermal energy passing through the third heat exchanger 135a to evaporate the seawater and the concentrated water transferred from the third condensation unit 135b. The fourth condenser 136b condenses the water vapor transferred from the third condenser 135b and the water vapor generated by the fourth heat exchanger 136a. Fresh water condensed in the fourth condenser 136b is transferred to the fresh water storage 140. Supply cooling water C1 is supplied to the condensation plate of the fourth condensing part 136b. The supply cooling water C1 is seawater stored in the seawater storage unit 110, and after passing through the fourth condensation unit 136b, the temperature increases to return to the seawater storage unit 110.

상기와 같이 태양열 증류식 담수화부(130)가 다단 구조로 연결된 다수의 담수기를 구비하므로, 담수 생산량을 효율적으로 조절할 수 있는 부하추종 운전이 가능하다.As described above, since the solar distillation desalination unit 130 includes a plurality of desalination units connected in a multi-stage structure, load tracking operation capable of efficiently controlling freshwater production is possible.

본 실시예에서는 담수기가 4개인 것으로 설명하였으나, 본 발명은 이에 제한되는 것은 아니다. 담수기가 3개 이하 또는 5개 이상인 경우도 본 발명에 포함될 수 있다. 또한, 담수기가 2개 내지 3개 또는 5개 이상인 경우 담수기들은 상기 실 시예와 같은 다단 구조로 연결될 수 있음을 당업자라면 이해할 수 있을 것이다.In the present embodiment, but described as having four fresh water, the present invention is not limited thereto. The case of three or less freshwater groups may be included in the present invention. In addition, it will be understood by those skilled in the art that when the freshwater groups are 2 to 3 or 5 or more, the freshwater groups may be connected in a multi-stage structure as in the above embodiment.

담수 저장부(140)는 담수화 설비 분야에서 통상적으로 사용되는 담수 저장조의 구성으로 이루어진다. 따라서, 본 명세서에서 담수 저장부(140)의 구성에 대한 상세한 설명은 생략된다. 담수 저장부(140)는 역삼투식 담수화부(120)로부터 생산된 제1 담수(FW1)와 태양열 증류식 담수화부(130)로부터 생산된 제2 담수(FW2)가 저장된다. 담수 저장부(140)로부터 외부로 제공되는 담수(FW)는 용도에 따라 음용수, 생활용수 및 공업용수 등으로 사용된다.Fresh water storage 140 is made of a configuration of a fresh water storage tank commonly used in the field of desalination equipment. Therefore, detailed description of the configuration of the fresh water storage unit 140 is omitted herein. The freshwater storage unit 140 stores the first freshwater FW1 produced from the reverse osmosis desalination unit 120 and the second freshwater FW2 produced from the solar distillation desalination unit 130. Fresh water (FW) provided to the outside from the fresh water storage unit 140 is used as drinking water, domestic water, industrial water and the like depending on the purpose.

이제, 도 1 내지 도 3을 참조하여, 상기 태양열 병합 담수화 시스템에 대한 실시예의 작용의 상세히 설명한다.Referring now to FIGS. 1-3, the operation of the embodiment for the solar combined desalination system will now be described in detail.

해수(SW)가 해수 저장부(110)로 유입되어 저장된다. 해수 저장부(110)는 제1 해수(SW1)를 역삼투식 담수화부(120)로 공급하고, 제2 해수(SW2)를 태양열 증류식 담수화부(130)로 공급한다. 또한, 해수 저장부(110)는 태양열 증류식 담수화부(130)에 냉각수(C1)를 공급한다. 해수 저장부(110)로부터 태양열 증류식 담수화부(130)로 공급되는 공급 냉각수(C1)의 온도는 증류식 담수화부(130)를 거친 후 상승한다. 온도가 상승한 상태로 해수 저장부(110)로 귀환한 귀환 냉각수(C2)에 의해 해수 저장부(110)에 저장된 해수의 온도는 외부로부터 공급되는 해수(SW)의 온도보다 높게 된다. 해수 저장부(110)에 저장된 해수의 온도가 높을 수록, 역삼투식 담 수화부(120)의 생산효율이 높아지며, 고압펌프의 압력을 저하시켜 회수율을 증대시키고 동력이 절감된다. 특히, 겨울철에 해수 온도를 높여줌으로써, 겨울의 동력 부하를 절감할 수 있다.Sea water (SW) is introduced into the sea water storage unit 110 is stored. The seawater storage unit 110 supplies the first seawater SW1 to the reverse osmosis desalination unit 120, and supplies the second seawater SW2 to the solar thermal distillation desalination unit 130. In addition, the seawater storage unit 110 supplies the cooling water (C1) to the solar thermal distillation desalination unit (130). The temperature of the supply cooling water C1 supplied from the seawater storage unit 110 to the solar thermal distillation desalination unit 130 rises after passing through the distillation desalination unit 130. The temperature of the seawater stored in the seawater storage unit 110 by the return cooling water C2 returned to the seawater storage unit 110 in a state where the temperature is increased becomes higher than the temperature of the seawater SW supplied from the outside. The higher the temperature of the seawater stored in the seawater storage unit 110, the higher the production efficiency of the reverse osmosis desalination unit 120, the lower the pressure of the high-pressure pump to increase the recovery rate and save power. In particular, by increasing the sea temperature in the winter, it is possible to reduce the winter power load.

역삼투식 담수화부(120)로 공급된 제1 해수(SW1)는 전처리장치(121)에 의해 부유물질이 제거된 후, 저장 수조(122)로 이송되어 저장된다. 저장 수조(122)에 저장된 해수는 역삼투기(123)로 제공되며, 역삼투기(123)로 제공된 해수는 담수와 농축수로 분리된다. 역삼투기(123)로부터 제1 담수(FW1)와 농축수(CW)가 배출되며, 제1 담수(FW1)는 담수 저장부(140)로 이송되어 저장되며, 농축수(CW)는 해수 저장부(110)에 저장된 해수보다 온도가 약 2 내지 5℃ 높아져서 태양열 증류식 담수화부(130)로 제공된다.The first seawater SW1 supplied to the reverse osmosis desalination unit 120 is removed by the pretreatment unit 121 and then transferred to the storage tank 122 and stored. The seawater stored in the storage tank 122 is provided to the reverse osmosis unit 123, and the seawater provided to the reverse osmosis unit 123 is separated into fresh water and concentrated water. The first fresh water (FW1) and the concentrated water (CW) is discharged from the reverse osmosis unit 123, the first fresh water (FW1) is transferred to and stored in the fresh water storage unit 140, the concentrated water (CW) is seawater storage unit The temperature is about 2 to 5 ° C. higher than the seawater stored in the 110 to be provided to the solar distillation desalination unit 130.

태양열 증류식 담수화부(130)는 에너지원으로서 태양열 집열기(131)에 의해 모아진 태양열 에너지를 사용한다. 따라서, 친환경적인 담수화 시스템이 실현되며 에너지 효율을 높일 수 있게 된다. 태양열 집열기(131)에 의해 모아진 태양열 에너지는 축열 탱크(132)에 집적된다. 태양열 집열기(131)에 모아진 태양열은 축열 탱크(132)에 집적되고, 축열 탱크(132)에 집적된 태양열 에너지는 수증기의 형태로 제1, 제2, 제3, 제4 담수기(133, 134, 135, 136)의 각 열교환부(133a, 134a, 135a, 136a)에 단계적으로 전달된다.The solar distillation desalination unit 130 uses solar energy collected by the solar collector 131 as an energy source. Therefore, an eco-friendly desalination system is realized and energy efficiency can be improved. Solar energy collected by the solar collector 131 is integrated in the heat storage tank 132. The solar heat collected in the solar collector 131 is accumulated in the heat storage tank 132, and the solar energy accumulated in the heat storage tank 132 is first, second, third, and fourth fresh water collectors 133 and 134 in the form of water vapor. , 135, 136 are delivered in stages to each of the heat exchangers 133a, 134a, 135a, 136a.

태양열 증류식 담수화부(130)에 담수화 대상인 유입수(IW)가 유입된다. 유입수(IW)는 제2 해수(SW2)와 역삼투식 담수화부(120)로부터 배출된 농축수(CW)를 포함한다. 농축수(CW)는 제2 해수(SW2)보다 보통 약 2 내지 5℃ 높다. 따라서, 온도 가 상승된 유입수(IW)가 제공되어 태양열 증류식 담수화부(130)의 증발효율이 높아지고, 자연적으로 담수화 효율이 개선된다.Inflow water (IW) that is a desalination target is introduced into the solar distillation desalination unit 130. The influent water IW includes the concentrated water CW discharged from the second seawater SW2 and the reverse osmosis desalination unit 120. The concentrated water (CW) is usually about 2-5 ° C. higher than the second seawater (SW2). Therefore, the inlet water (IW) of which the temperature is increased is provided so that the evaporation efficiency of the solar distillation desalination unit 130 is increased, and the desalination efficiency is naturally improved.

유입수(IW)는 제1 담수기(133)로 유입된다. 제1 담수기(133)의 제1 열교환부(133a)는 축열 탱크(132)로부터의 열에너지를 제공받아서 해수 및 농축수를 증발시킨다. 제1 담수기(133)의 제1 응축부(133b)에서는 수증기가 응축되어 담수가 생산된다. 제1 응축부(133b)에서 생산된 담수는 담수 저장부(140)로 이송된다. 제1 응축부(133b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제2 담수기(134)로 이송된다.Influent water (IW) is introduced into the first fresh water 133. The first heat exchanger 133a of the first desalator 133 receives thermal energy from the heat storage tank 132 to evaporate seawater and concentrated water. Water vapor is condensed in the first condensation unit 133b of the first desalination unit 133 to produce fresh water. Fresh water produced in the first condensation unit 133b is transferred to the freshwater storage unit 140. In the first condenser 133b, the uncondensed water vapor, the unevaporated sea water, and the concentrated water are transferred to the second fresh water generator 134.

제1 담수기(133)로부터 제2 담수기(134)로 이송된 해수 및 농축수는 제2 열교환부(134a)에 의해 증발된다. 제2 담수기(134)의 제2 응축부(134b)에서는 제1 담수기(133)로부터 전달된 수증기와 제2 열교환부(134a)에 의해 발생한 수증기가 응축되어 담수가 생산된다. 제2 응축부(134b)에서 생산된 담수는 담수 저장부(140)로 이송된다. 제2 응축부(134b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제3 담수기(135)로 이송된다.The seawater and the concentrated water transferred from the first freshwater 133 to the second freshwater 134 are evaporated by the second heat exchanger 134a. In the second condensation unit 134b of the second desalination unit 134, the water vapor delivered from the first desalination unit 133 and the water vapor generated by the second heat exchange unit 134a are condensed to produce fresh water. Fresh water produced by the second condenser 134b is transferred to the fresh water storage 140. In the second condenser 134b, the uncondensed water vapor, the unvaporized sea water, and the concentrated water are transferred to the third freshwater receiver 135.

제2 담수기(134)로부터 제3 담수기(135)로 이송된 해수 및 농축수는 제3 열교환부(135a)에 의해 증발된다. 제3 담수기(135)의 제3 응축부(135b)에서는 제2 담수기(134)로부터 전달된 수증기와 제3 열교환부(135a)에 의해 발생한 수증기가 응축되어 담수가 생산된다. 제3 응축부(135b)에서 생산된 담수는 담수 저장부(140)로 이송된다. 제3 응축부(135b)에서 응축되지 않은 수증기와, 증발되지 않은 해수 및 농축수는 제4 담수기(136)로 이송된다.The seawater and the concentrated water transferred from the second freshwater 134 to the third freshwater 135 are evaporated by the third heat exchanger 135a. In the third condensation unit 135b of the third desalination unit 135, water vapor delivered from the second desalination unit 134 and water vapor generated by the third heat exchange unit 135a are condensed to produce fresh water. Fresh water produced by the third condenser 135b is transferred to the fresh water storage 140. In the third condensation unit 135b, the non-condensed water vapor, the non-evaporated sea water, and the concentrated water are transferred to the fourth fresh water generator 136.

제3 담수기(135)로부터 제5 담수기(136)로 이송된 해수 및 농축수는 제4 열교환부(136a)에 의해 증발된다. 제4 담수기(136)의 제4 응축부(136b)에서는 제3 담수기(135)로부터 전달된 수증기와 제4 열교환부(136a)에 의해 발생한 수증기가 응축되어 담수가 생산된다. 제4 응축부(134b)에서 생산된 담수는 담수 저장부(140)로 이송된다.The seawater and the concentrated water transferred from the third freshener 135 to the fifth freshener 136 are evaporated by the fourth heat exchanger 136a. In the fourth condenser 136b of the fourth freshener 136, steam delivered from the third freshener 135 and water vapor generated by the fourth heat exchanger 136a are condensed to produce fresh water. Freshwater produced by the fourth condenser 134b is transferred to the freshwater storage 140.

역삼투식 담수화부(120)에서 생산되어 배출되는 제1 담수(FW1)와, 태양열 증류식 담수화부(130)에서 생산되어 배출되는 제2 담수(FW2)는 담수 저장부(140)에 저장된다. 담수 저장부(140)로부터 배출되는 담수(FW)는 사용목적에 맞게 수요자에게 전달된다.The first freshwater FW1 produced and discharged from the reverse osmosis desalination unit 120 and the second freshwater FW2 produced and discharged from the solar distillation desalination unit 130 are stored in the freshwater storage unit 140. Fresh water discharged from the freshwater storage unit 140 is delivered to the consumer according to the purpose of use.

이상 본 발명을 상기 실시예들을 들어 설명하였으나, 본 발명은 이에 제한되는 것이 아니다. 당업자라면, 본 발명의 취지 및 범위를 벗어나지 않고 수정, 변경을 할 수 있으며 이러한 수정과 변경 또한 본 발명에 속하는 것임을 알 수 있을 것이다 The present invention has been described above with reference to the above embodiments, but the present invention is not limited thereto. Those skilled in the art will appreciate that modifications and changes can be made without departing from the spirit and scope of the present invention and that such modifications and changes also belong to the present invention.

도 1은 본 발명에 따른 태양열 병합 담수화 시스템에 대한 일 실시예를 개략적으로 도시한 블록도이다.1 is a block diagram schematically showing an embodiment of a solar combined desalination system according to the present invention.

도 2는 도 1에 도시된 역삼투식 담수화부를 도시한 구성도이다.Figure 2 is a block diagram showing a reverse osmosis desalination unit shown in FIG.

도 3은 도 1에 도시된 태양열 증류식 담수화부를 도시한 구성도이다.3 is a block diagram showing the solar distillation desalination unit shown in FIG.

<도면의 주요 부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 태양열 병합 담수화 시스템 110 : 해수 저장부100: solar combined desalination system 110: seawater storage unit

120 : 역삼투식 담수화부 130 : 태양열 증류식 담수화부120: reverse osmosis desalination unit 130: solar thermal distillation desalination unit

131 : 태양열 집열기 132 : 축열 탱크131: solar collector 132: heat storage tank

133, 134, 135, 136 : 담수기133, 134, 135, 136: fresh water

Claims (5)

제1 해수를 역삼투식으로 담수화하여 제1 담수와 농축수를 배출하는 역삼투식 담수화부; 및Reverse osmosis desalination unit for desalination of the first seawater by reverse osmosis to discharge the first fresh water and concentrated water; And 태양열을 에너지원으로 하여 유입수를 증류식으로 담수화하여 제2 담수를 배출하는 태양열 증류식 담수화부를 포함하며,It includes a solar distillation desalination unit to discharge the second fresh water by distillation of the inflow water distillation using solar heat as an energy source, 상기 태양열 증류식 담수화부로 유입되는 상기 유입수는 제2 해수와 상기 역삼투식 담수화부로부터 배출된 농축수를 포함하는 것을 특징으로 하는 태양열 병합 담수화 시스템.The influent water flowing into the solar distillation desalination unit is a combined solar desalination system, characterized in that it comprises a second sea water and the concentrated water discharged from the reverse osmosis desalination unit. 제1항에 있어서,The method of claim 1, 상기 태양열 증류식 담수화부는 태양열 집열기와, 태양열 집열기의 열에너지를 축적하는 축열 탱크와, 축열 탱크로부터 전달된 열에너지를 이용하여 상기 유입수를 증류하는 담수기를 구비하는 것을 특징으로 하는 태양열 병합 담수화 시스템.The solar distillation desalination unit comprises a solar collector, a heat storage tank for accumulating heat energy of the solar collector, and a fresh water distillation unit for distilling the inflow water using heat energy transferred from the heat storage tank. 제1항에 있어서,The method of claim 1, 상기 태양열 증류식 담수화부는 열교환부와 응축부가 각각 마련된 다수의 담수기를 구비하는 것을 특징으로 하는 태양열 병합 담수화 시스템.The solar thermal distillation desalination unit is a combined solar desalination system, characterized in that it comprises a plurality of fresh water provided with a heat exchange unit and a condensation unit. 제3항에 있어서,The method of claim 3, wherein 상기 다수의 담수기의 각 응축부는 증기가 이동할 수 있도록 시리즈로 연결된 것을 특징으로 하는 태양열 병합 담수화 시스템.Solar condensation desalination system, characterized in that each condensation unit of the plurality of fresh water is connected in series so that steam can move. 제1항에 있어서,The method of claim 1, 상기 역삼투 담수화부에 상기 제1 해수를 제공하는 해수 저장부를 더 포함하며,Further comprising a seawater storage unit for providing the first seawater to the reverse osmosis desalination unit, 상기 태양열 증류식 담수화부는 응축부를 구비하며,The solar distillation desalination unit has a condensation unit, 상기 해수 저장부에 저장된 해수가 상기 응축부의 냉각수로서 순환하는 것을 특징으로 하는 태양열 병합 담수화 시스템.The seawater desalination system, characterized in that the seawater stored in the seawater storage unit circulates as cooling water of the condensation unit.
KR1020090128723A 2009-12-22 2009-12-22 Solar thermal-combinded desalination system KR101220246B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090128723A KR101220246B1 (en) 2009-12-22 2009-12-22 Solar thermal-combinded desalination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090128723A KR101220246B1 (en) 2009-12-22 2009-12-22 Solar thermal-combinded desalination system

Publications (2)

Publication Number Publication Date
KR20110071977A true KR20110071977A (en) 2011-06-29
KR101220246B1 KR101220246B1 (en) 2013-01-22

Family

ID=44402962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090128723A KR101220246B1 (en) 2009-12-22 2009-12-22 Solar thermal-combinded desalination system

Country Status (1)

Country Link
KR (1) KR101220246B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058438A (en) * 2013-01-05 2013-04-24 中国电子工程设计院 Hot film coupling seawater desalination system
KR101489642B1 (en) * 2012-12-31 2015-02-04 두산중공업 주식회사 Complex fresh water production system using fuel cell apparatus
KR20150071134A (en) * 2013-12-18 2015-06-26 한국건설기술연구원 High effciency management system and management method for seawater desalination using renewable energy in remote places
WO2017026621A1 (en) * 2015-08-13 2017-02-16 박정원 Seawater desalination apparatus
KR20170019194A (en) 2015-08-11 2017-02-21 한국과학기술원 Solar thermal collector apparatus in solar updraft tower for distilling seawater and generating electricity
KR20200131030A (en) * 2019-05-13 2020-11-23 한국기계연구원 Fusion system and method of simultaneous supplying fresh water and electric power linked with HCPVT
CN114956222A (en) * 2022-01-17 2022-08-30 江苏海事职业技术学院 Sea water desalination treatment device for navigation
CN117228909A (en) * 2023-11-16 2023-12-15 烟台市弗兰德电子科技有限公司 Seawater desalination system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567653B1 (en) 2013-12-24 2015-11-09 두산중공업 주식회사 Plant for desalination of water
KR101918275B1 (en) * 2017-01-19 2018-11-13 주식회사 엘스콤 Hybrid system making fresh water and salt from sea water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325949A (en) * 1999-05-25 2000-11-28 Ebara Corp Apparatus for salt-to-fresh water distillation
JP4370284B2 (en) 2005-06-08 2009-11-25 三菱重工業株式会社 Solar heat and biomass desalination device, and greening method using solar heat and biomass desalination device
KR101032387B1 (en) * 2008-06-11 2011-05-31 한국기계연구원 Energy recovery device driven by rotary type plate valve
KR100905944B1 (en) * 2009-01-06 2009-07-06 뉴엔텍(주) Seawater desalination equipment using solar complex modules

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489642B1 (en) * 2012-12-31 2015-02-04 두산중공업 주식회사 Complex fresh water production system using fuel cell apparatus
CN103058438A (en) * 2013-01-05 2013-04-24 中国电子工程设计院 Hot film coupling seawater desalination system
CN103058438B (en) * 2013-01-05 2014-07-09 中国电子工程设计院 Hot film coupling seawater desalination system
KR20150071134A (en) * 2013-12-18 2015-06-26 한국건설기술연구원 High effciency management system and management method for seawater desalination using renewable energy in remote places
KR20170019194A (en) 2015-08-11 2017-02-21 한국과학기술원 Solar thermal collector apparatus in solar updraft tower for distilling seawater and generating electricity
WO2017026621A1 (en) * 2015-08-13 2017-02-16 박정원 Seawater desalination apparatus
KR20200131030A (en) * 2019-05-13 2020-11-23 한국기계연구원 Fusion system and method of simultaneous supplying fresh water and electric power linked with HCPVT
CN114956222A (en) * 2022-01-17 2022-08-30 江苏海事职业技术学院 Sea water desalination treatment device for navigation
CN117228909A (en) * 2023-11-16 2023-12-15 烟台市弗兰德电子科技有限公司 Seawater desalination system
CN117228909B (en) * 2023-11-16 2024-02-09 烟台市弗兰德电子科技有限公司 Seawater desalination system

Also Published As

Publication number Publication date
KR101220246B1 (en) 2013-01-22

Similar Documents

Publication Publication Date Title
KR101220246B1 (en) Solar thermal-combinded desalination system
US8277614B2 (en) Multi-stage flash desalination plant with feed cooler
US20110198208A1 (en) Method for desalinating water containing salt
CN103387308B (en) Multi-effect membrane distillation-multistage flash evaporation seawater desalination system
CN101417209B (en) Energy-saving pressure-reduction distillation device and method
CN104190258B (en) Liquid gap multiple-effect membrane distillation technique and device thereof
CN201587871U (en) Multi-stage vacuum distillation sea water desalinating device
EP0979801A1 (en) Sea water desalination system by condensing air moisture
Bahar et al. Desalination: conversion of seawater to freshwater
KR101695779B1 (en) Intelligent vacuum membrane distillation module and freshwater apparatus of seawater comprising the same
KR20160043650A (en) Marine power plant using evaporative desalination system
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
US11465924B2 (en) Hybrid process and system for recovering water
CN101985368A (en) Condenser type seawater desalting device with steam turbine generator unit
Triki et al. Performance and cost evaluation of an autonomous solar vacuum membrane distillation desalination plant
WO2001072638A1 (en) Desalination device
WO2017066534A1 (en) Hybrid cooling and desalination system
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
CN201882942U (en) Power-generation turboset condenser type sea water desalinating unit
KR101672852B1 (en) Desalination system by using dual source energy
US10022646B1 (en) Solar cooling and water salination system
WO2012066579A2 (en) Process for utilization of low pressure, low temperature steam from steam turbine for desalination of sea water
WO2008085106A1 (en) Method for purifying water by means of an ro device
CN103304089B (en) Multistage flash evaporation seawater desalting device with multiple-effect heat utilization
KR20160051022A (en) Efficient open cycle ocean thermal energy conversion (OTEC) using vacuum membrane distillation (VMD) for selective power generation and seawater desalination

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191230

Year of fee payment: 8