KR20100089541A - Plasma enhanced chemical vapor deposition apparatus - Google Patents
Plasma enhanced chemical vapor deposition apparatus Download PDFInfo
- Publication number
- KR20100089541A KR20100089541A KR1020090008844A KR20090008844A KR20100089541A KR 20100089541 A KR20100089541 A KR 20100089541A KR 1020090008844 A KR1020090008844 A KR 1020090008844A KR 20090008844 A KR20090008844 A KR 20090008844A KR 20100089541 A KR20100089541 A KR 20100089541A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- power
- vapor deposition
- chemical vapor
- deposition apparatus
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 플라즈마 화학 기상 증착 장치에 관한 것이다.The present invention relates to a plasma chemical vapor deposition apparatus.
플라즈마 화학 기상 증착(plasma enhanced chemical vapor deposition, PECVD) 장치는 태양 전지, 박막 트랜지스터 등에 이용되는 비정질 실리콘, 미세 결정 실리콘, 다결정 박막 실리콘, 질화 실리콘 등의 반도체막을 형성하거나 형성된 막의 일부를 식각하기 위해 사용된다.Plasma enhanced chemical vapor deposition (PECVD) devices are used to form semiconductor layers such as amorphous silicon, microcrystalline silicon, polycrystalline thin film silicon, and silicon nitride used in solar cells, thin film transistors, etc., or to etch portions of the formed film. do.
이러한 PECVD 장치는 약 13.56MHz의 무선 주파수(radio frequency, RF)를 이용하지만, 성막 속도나 식각 속도와 같은 반응 속도와 막의 특성 등을 향상시키기 위해 약 27MHz 이상의 초고주파(very radio frequency, VRF)를 이용하기도 한다.The PECVD apparatus uses a radio frequency (RF) of about 13.56 MHz, but uses a very radio frequency (VRF) of about 27 MHz or more to improve reaction speed and film characteristics such as deposition rate and etching rate. Sometimes.
무선 주파수나 초고주파를 이용하는 PECVD 장치를 이용하여 원하는 기판에 막을 형성하거나 형성된 막을 식각할 때, 플라즈마 형성을 위한 방전 전극과 기판 간의 거리를 가능하면 좁게, 예를 들어 약 10mm 이하로 하여 반응 속도를 향상시켰다.When forming a film on a desired substrate or etching the formed film by using a PECVD apparatus using radio frequency or ultra high frequency, the distance between the discharge electrode and the substrate for plasma formation is as narrow as possible, for example, about 10 mm or less to improve the reaction speed. I was.
하지만, 방전 전극과 기판 간의 거리가 좁아질수록 반응 속도는 향상되지만, 방전 전극으로부터 배출되는 공정 가스의 불균일한 확산 정도 등에 의해 형성되는 막의 형성 정도나 식각 정도가 위치에 따라 달라지는 문제가 발생한다. 이로 인해, 기판과 방전 전극간의 거리가 가까울수록 반응 속도는 향상되지만 막 특성은 감소하여 PECVD 장치의 동작 성능이 떨어지는 문제가 있다.However, as the distance between the discharge electrode and the substrate becomes narrower, the reaction speed is improved, but a problem arises in that the degree of formation or etching of the film formed by the non-uniform diffusion degree of the process gas discharged from the discharge electrode varies depending on the position. As a result, the closer the distance between the substrate and the discharge electrode is, the faster the reaction speed is, but the film characteristics are reduced, resulting in a problem in that the operation performance of the PECVD apparatus is lowered.
본 발명이 이루고자 하는 기술적 과제는 PECVD 장치의 성능을 향상시키기 위한 것이다.The technical problem to be achieved by the present invention is to improve the performance of the PECVD apparatus.
본 발명이 이루고자 하는 다른 기술적 과제는 PECVD 장치의 생산성을 향상시키기 위한 것이다.Another technical problem to be achieved by the present invention is to improve the productivity of a PECVD apparatus.
본 발명의 한 특징에 따른 플라즈마 화학 기상 증착 장치는 정해진 크기의 전원을 공급받고, 복수의 전극을 구비한 적어도 하나의 제1 전극부, 그리고 각 제1 전극부를 중심으로 마주보고 있고, 상기 각 제1 전극부로부터 일정 거리 이격되어 배치되어 있는 복수의 제2 전극부를 포함한다.A plasma chemical vapor deposition apparatus according to an aspect of the present invention is supplied with power of a predetermined size, facing at least one first electrode portion having a plurality of electrodes, and facing each first electrode portion, It includes a plurality of second electrode portion which is disposed spaced apart from the one electrode portion by a predetermined distance.
상기 제1 전극부와 상기 복수의 제2 전극부는 공정실의 세로 방향으로 배치되어 있는 것이 좋다.The first electrode portion and the plurality of second electrode portions may be disposed in the longitudinal direction of the process chamber.
상기 하나의 제1 전극부와 마주하는 상기 두 개의 제2 전극부의 각면에 기판이 배치되는 것이 바람직하다.Preferably, the substrate is disposed on each side of the two second electrode portions facing the first electrode portion.
상기 일정 거리는 약 10㎜ 내지 50㎜일 수 있다. The predetermined distance may be about 10 mm to 50 mm.
상기 전원은 0˚ 내지 180˚의 위상차를 갖는 제1 전원 및 제2 전원을 포함할수 있다.The power source may include a first power source and a second power source having a phase difference of 0 ° to 180 °.
상기 제1 전력과 상기 제2 전력은 상기 복수의 전극의 일단에 교대로 인가되는 것이 바람직하다.Preferably, the first power and the second power are alternately applied to one end of the plurality of electrodes.
상기 제1 전원 및 상기 제2 전원에 기초하여 상기 제1 전극부의 각 전극에 공급되는 전력의 크기는 약 3kW 내지 10kW일 수 있다.The amount of power supplied to each electrode of the first electrode part based on the first power source and the second power source may be about 3kW to 10kW.
상기 제1 전원 또는 상기 제2 전력이 인가되지 않은 상기 제1 전극부의 복수의 전극의 타단은 플로팅(floating)되어 있거나 접지되어 있을 수 있다.The other end of the plurality of electrodes of the first electrode portion to which the first power source or the second power is not applied may be floating or grounded.
상기 제2 전극부는 히터부를 구비하는 것이 좋다.Preferably, the second electrode part includes a heater part.
상기 제1 전극부의 각 전극은 공정 가스가 통과하는 복수의 홀을 구비하는 것이 좋다.Each electrode of the first electrode portion may include a plurality of holes through which process gas passes.
상기 제1 전극부의 각 전극은 냉각제가 통과하는 홀을 더 구비할 수 있다.Each electrode of the first electrode unit may further include a hole through which a coolant passes.
상기 제1 전극부의 각 전극은 원통 형상 또는 다각 기둥 형상을 가질 수 있다. Each electrode of the first electrode part may have a cylindrical shape or a polygonal column shape.
상기 각 전극은 도전 물질로 이루어지고, 상기 각 전극의 표면은 절연 물질로 코팅된 구조를 가지는 것이 좋다.Each electrode may be made of a conductive material, and the surface of each electrode may have a structure coated with an insulating material.
상기 도전 물질은 산화 처리된(anodized) 알루미늄, SUS(steel special use stainless) 및 금속 물질 중 적어도 하나로 이루어지는 것이 좋다.The conductive material may be made of at least one of anodized aluminum, steel special use stainless steel, and a metal material.
상기 절연 물질은 SiO2, Al2O3, ZiO2, 수정 및 테프론(teflon) 중 적어도 하 나로 이루어질 수 있다.The insulating material may be made of at least one of SiO 2 , Al 2 O 3 , ZiO 2 , quartz, and teflon.
상기 제1 전극부는 2개 이상일 수 있다.The first electrode unit may be two or more.
상기 제1 전극부와 상기 제2 전극부는 교대로 배치되어 있고, 상기 제2 전극부의 개수가 상기 제1 전극부의 개수보다 1개 더 많은 것이 바람직하다.Preferably, the first electrode portion and the second electrode portion are alternately arranged, and the number of the second electrode portions is one more than the number of the first electrode portions.
상기 각 제1 전극부와 마주하는 상기 두 개의 제2 전극부의 각 면에 기판이 배치되는 것이 좋다.The substrate may be disposed on each side of the two second electrode portions facing the first electrode portions.
상기 복수의 제2 전극부는 접지되어 있는 것이 좋다.Preferably, the plurality of second electrode portions are grounded.
이러한 본 발명의 특징에 따르면, 제1 전극부에서 기판 간의 간격이 넓어지므로 성막 정도나 식각 정도의 균일도가 향상되며, 제작되는 기판의 개수가 증가하여 플라즈마 화학 기상 증착 장치의 생산성이 향상된다.According to the characteristics of the present invention, since the distance between the substrates in the first electrode portion is widened, the degree of deposition or etching degree is improved, and the number of substrates to be manufactured is increased, thereby improving productivity of the plasma chemical vapor deposition apparatus.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 " 전기적으로 연결"되어 있는 경우도 포함한다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. .
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise. In addition, the terms “… unit”, “… unit”, “module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한 어떤 부분이 다른 부분 위에 "전체적"으로 형성되어 있다고 할 때에는 다른 부분의 전체 면(또는 전면)에 형성되어 있는 것뿐만 아니라 가장 자리 일부에는 형성되지 않은 것을 뜻한다.In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like parts are designated by like reference numerals throughout the specification. When a layer, film, region, plate, or the like is referred to as being "on" another portion, it includes not only the case directly above another portion but also the case where there is another portion in between. On the contrary, when a part is "just above" another part, there is no other part in the middle. In addition, when a part is formed "overall" on another part, it means that not only is formed on the entire surface (or front) of the other part but also is not formed on the edge part.
그러면 첨부한 도면을 참고로 하여 본 발명에 따른 실시예에 따른 PECVD 장치에 대하여 설명한다.Next, a PECVD apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 한 실시예에 따른 PECVD 장치를 개략적으로 나타낸 사시도이다.1 is a perspective view schematically showing a PECVD apparatus according to an embodiment of the present invention.
도 1에 도시한 것처럼, 본 발명의 한 실시예에 따른 PECVD 장치(1)는 공정 실(10) 내에 세로 방향으로, 즉 공정실(10)의 측면과 평행하게 배치된 방전 전극부(110), 방전 전극부(110)와 대향하게 방전 전극부(110)의 양측에 세로 방향으로 각각 배치된 복수의 접지 전극부(121)를 구비한다.As shown in FIG. 1, the PECVD apparatus 1 according to an embodiment of the present invention has a
방전 전극부(110)는 공정실(10)의 거의 중앙 부근에 일직선(A)으로 배치되어 있고, 공정실(10)의 상부(11)에서 하부(12)까지 연장되어 있다. The
방전 전극부(110)는 일자형인 복수의 방전 전극(111)을 구비한다. 도 1에서, 각 방전 전극(111)은 원형 형상을 갖는 전극봉이므로, 이하, '전극봉'이라고 칭한다. 하지만, 이와는 달리, 전극봉은 직사각형이나 정사각형의 사각 기둥과 같은 다각 기둥 형상과 같이 다양한 형상을 가질 수 있다.The
각 전극봉(111)의 내부는 주입구(130)를 통해 외부로부터 주입되는 공정 가스가 전극봉(111)의 내부로 주입되는 공간을 구비하고 있다. 본 실시예에서, 각 전극봉(111)은 전극봉(111)의 길이 방향을 따라 물과 같은 냉각제가 주입되어 배출되는 냉각용 홀(도시하지 않은)이 적어도 하나 형성될 수 있다. Each
각 전극봉(111)에는 복수의 홀(112)이 형성되어 있다. 따라서 외부로부터 주입된 공정 가스는 홀(112)을 통해 공정실(10) 내부로 배출되어 방전 전극부(110)와 대향하고 있는 각 기판(140)쪽으로 확산된다.A plurality of
도 1에서, 복수의 전극봉(111)은 하나의 주입구(130)를 통해 공정 가스를 주입 받지만, 이와는 달리, 복수의 전극봉(111)은 두 개 이상의 주입구를 통해 공정 가스를 주입 받을 수 있다. 예를 들어, 각 전극봉(111)마다 주입구가 연결되어 있거나, 하나의 주입구에 정해진 개수만큼의 전극봉(111)이 연결될 수 있다.In FIG. 1, the plurality of
각 전극봉(111)은 도전 물질로 이루어지고, 그 표면은 세라믹(ceramic) 물질을 이용한 세라믹 코팅(ceramic coating)과 같이 절연 물질 등으로 코팅되어 있다. 이때, 절연 물질의 코팅 두께는 수십㎛에서 수백㎛로서, 전극봉(111)의 플라즈마 생성 동작에 영향을 미치지 않은 두께면 상관없다. 도전 물질의 예는 산화 처리된(anodized) 알루미늄, SUS(steel special use stainless), 또는 금속 물질 등일 수 있고, 절연 물질은 SiO2, Al2O3, ZiO2, 수정, 테프론(teflon) 등일 수 있다. 이로 인해, 공정실(10) 내부에 형성된 플라즈마로 인해 각 전극봉(111)이 손상되는 것을 방지한다. 이에 더하여, 플라즈마로 인해 각 전극봉(111)의 표면에 부착된 물질이 기판(140)쪽으로 떨어져 기판(140)이 오염되는 것이 방지된다.Each
이러한 방전 전극부(110)는 정해진 시간마다 정해진 위상차를 갖는 두 개의 전원을 인가받아 해당 크기의 전력을 공급받는다. 이때, 인가되는 전력의 크기는 약 3 내지 10kW일 수 있고, 전력간의 위상 차는 약 0 내지 180˚일 수 있다.The
방전 전극부(110)의 양측면에는 각각 하나의 접지 전극부(121)가 일정 거리를 두고 배치되어 있다. 이들 접지 전극부(121)는 방전 전극부(110)를 중심으로 하여 측면에 각각 배치되어 있고, 금속등과 같은 도전 물질로 이루어져 접지되어 있다. 또한 각 접지 전극부(121)는 내부에 히터를 구비하고 있다. 따라서 금속 등과 같은 도전 물질로 이루어진 케이스에 히터를 내장한 후 접지되어 있다. 각 접지 전극부(121)의 접지로 인해, 대향하는 방전 전극부(110)의 전위 상태에 따라 접지 전극부(121)의 전위가 변하지 않고 안정적으로 고정되어, 공정실 벽면과 접지 전극 부(121) 사이와 같은 불필요한 곳에 발생될 수 있는 플라즈마의 생성을 방지한다. 하지만 대안적으로, 접지 전극부(121)를 플로팅될 수 있다.One
방전 전극부(110)와 각 접지 전극부(121) 간의 거리는 서로 동일하며, 약 10nm 내지 50nm일 수 있다. The distance between the
각 접지 전극부(121)는 열을 발생한다. 이때, 각 접지 전극부(121)의 동작에 의해 공정실(10)의 온도는 약 200℃까지 상승한다.Each
도 1에 도시하지 않았지만, 공정실(10)은 공정실 내부의 압력을 일정 상태로 유지하기 위한 배기구를 적어도 하나 구비하고 있다.Although not shown in FIG. 1, the
다음, 도 2를 참고로 하여 PECVD 장치의 구동부에 대하여 설명한다.Next, a driving unit of the PECVD apparatus will be described with reference to FIG. 2.
도 2는 본 발명의 한 실시예에 따른 PECVD 장치의 구동부에 대한 블록도이다.2 is a block diagram of a driving unit of a PECVD apparatus according to an embodiment of the present invention.
도 2에 도시한 것처럼, 본 발명의 한 실시예에 따른 PECVD 장치의 구동부는 위상 시프터(phase shifter)(210), 위상 시프트(210)에 연결된 제1 전원 공급부 (221), 제1 전원 공급부(221)에 연결된 제1 정합(impedance matching)부 (222), 제1 정합부(222)에 연결된 제1 전력 분배부(223), 위상 시프트(210)에 연결된 제2 전원 공급부(231), 제2 전원 공급부(231)에 연결된 제2 정합부(232), 그리고 제2 정합부(232)에 연결된 제2 전력 분배부(233)를 구비한다.As shown in FIG. 2, the driving unit of the PECVD apparatus according to the exemplary embodiment of the present invention includes a
위상 시프터(210)는 제1 전원 공급부(221)와 제2 전원 공급부(231)에서 각각 출력되는 전원의 위상치가 0 내지 180˚가 되도록 제1 전원 공급부(221)와 제2 전원 공급부(231)의 동작을 제어한다.The
제1 및 제2 전원 공급부(221, 231)는 위상 시프터(210)의 동작에 의해 정해진 위상차를 갖는 동일한 크기의 전원을 각각 인가하여 방전 전극부110)에 해당 크기의 전력을 각각 공급한다.The first and second
제1 및 제2 정합부(222, 232)는 각각 입력단과 출력단간의 임피던스(impedance) 차이를 조정하여 제1 및 제2 전원 공급부(221, 231)로부터 인가되는 전원이 효율적으로 방전 전극부(110)로 인가될 수 있도록 한다.The first and
제1 전력 분배부(223)와 제2 전력 분배부(233)는 서로 이웃하는 전극봉(111)의 일단에 연결되어 있다. 예들 들어, 제1 전력 분배부(223)가 홀수 번째 전극봉(111)의 일단에 연결되어 있으면, 제2 전력 분배부(233)는 짝수 번째 전극봉(111)의 일단에 연결되어 있고, 반대로, 제1 전력 분배부(223)가 짝수 번째 전극봉(111)의 일단 연결되어 있으면, 제2 전력 분배부(233)는 홀수 번째 전극봉(111)의 일단에 연결되어 있다. 도 2에서, 제1 및 제2 전력 분배부(223, 233)에 연결되어 있지 않은 전극봉(111)의 타단은 플로팅(floating)되어 있지만 이와는 달리 접지되어 있을 수 있다. 전극봉(111)의 타단이 접지되어 있을 경우, 각 전극봉(111)에 전류가 흘러, 전극봉(111) 주위에 자기장이 형성되며, 이로 인해 유도 결합된 플라즈마(inductive coupled plasma)가 형성되어 플라즈마 밀도를 높일 수 있다.The
이러한 제1 및 제2 전력 분배부(223, 233)는 해당 제1 또는 제2 전원 공급부(221, 231)와 각 연결된 전극봉(111)간의 거리 차이를 동일하게 보상하여 제1 또는 제2 전원 공급부(221, 231)와 각 연결된 전극봉(111) 간의 전원 공급 거리가 동일하도록 한다. 이로 인해, 제1 또는 제2 전원 공급부(221, 231)와 각 전극 봉(111) 간의 거리 차이로 인한 전원 공급 인가 시간 차이나 위상 차이로 인한 오동작을 방지한다.The first and second
이러한 구조를 갖는 PECVD 장치의 동작에 대하여 도 1 및 도 2를 참고로 하여 설명한다.The operation of the PECVD apparatus having such a structure will be described with reference to FIGS. 1 and 2.
먼저, 제1 및 제2 전원 공급부(221, 231)는 정해진 크기의 전원을 출력한다. 즉, 제1 전원 공급부(221)는 제1 전원을 출력하고, 제2 전원 공급부(231)는 제2 전원을 출력한다. 출력된 제1 및 제2 전원은 제1 및 제2 정합부(222, 232)에 각각 입력되어 임피던스 정합이 이루어진 후, 제1 및 전력 전력 분배부(223, 233)를 거쳐 각 연결된 전극봉(111)의 일측단에 인가되어 해당 크기의 전력을 해당 전극봉(111)에 공급한다. 본 실시예에서, 제1 및 제2 전원의 주파수는 무선 주파수 내지 초고주파수일 수 있다First, the first and second
이와 같이, 서로 인접한 전극봉(111)에 정해진 크기의 위상차를 갖는 전원이 인가되어 해당 크기의 전력이 인접한 전극봉(111)에 공급됨에 따라 전극봉(111) 사이 및 전극봉(111)과 기판(140) 사이에 플라즈마가 생성된다.As such, power having a phase difference of a predetermined size is applied to
본 실시예에서, 서로 인접한 전극봉(111)에 인가되는 전력 크기는 서로 동일하지만 서로 다를 수 있다. 예를 들어, 각 전극봉(111)에 인가되는 전력의 크기는 약 3 내지 10kW의 범위를 가질 수 있다. 이때, 제1 및 제2 전원 공급부(221, 231)에서 출력되는 제1 및 제2 전원의 크기는 생성하고자 하는 플라즈마 밀도에 따라 달라질 수 있다. 또한, 본 실시예에서, 제1 및 제2 전원 공급부(221, 231)에서 출력되는 제1 및 제2 전원의 위상차는 약 0 내지 180˚를 갖는다. 예를 들어, 플라 즈마 형성 위치에 따라 제1 및 제2 전원 공급부(221, 231)에서 출력되는 제1 및 제2 전원의 위상차가 달라진다. 한 예로서, 제1 및 제2 전원 공급부(221, 231)에서 출력되는 제1 및 제2 전원의 위상 차가 0˚일 때, 플라즈마는 전극봉(111)의 가운데 부분에 형성된다. 이때, 플라즈마는 전극봉(111)에 대해 수직 방향으로 형성된다. 이런 상태에서, 제1 및 제2 전원의 위상차 크기에 따라 플라즈마 형성 위치가 이동한다.In the present embodiment, the magnitude of power applied to the
플라즈마의 형성 위치가 어느 한 부분에 고정되어 있을 경우, 플라즈마가 형성된 부분에서 공정 가스의 분해 동작은 더욱 활발해져, 플라즈마가 형성된 부분과 그렇지 않은 부분에서의 공정 속도가 다르게 된다. 이로 인해, 기판(140) 위에 형성되는 막의 두께나 식각 정도가 서로 달라지게 된다. 따라서, 본 실시예에서 제1 및 제2 전원간의 위상차를 정해진 시간주기로 변경하여 프라즈마 형성 위치를 주기적으로 변경하므로, 위치에 무관하게 균일하게 플라즈마가 형성된다.When the position at which the plasma is formed is fixed at any one portion, the decomposition operation of the process gas becomes more active at the portion where the plasma is formed, so that the process speed at the portion where the plasma is formed is different from the portion where the plasma is not formed. As a result, the thickness or etching degree of the film formed on the
따라서, 진공 상태의 공정실(10)에 막을 적층하거나 식각하기 위한 공정 가스가 주입되면, 생성되는 플라즈마와 열에 의해 공정 가스가 분해되어 기판(140) 위에 막이 형성되거나 원하는 부분이 제거된다. 이때, 기판(140)은 반도체, 유리, 금속과 같은 기판이나 또는 플라스틱과 같은 플렉서블(flexible) 기판일 수 있다.Therefore, when a process gas for stacking or etching a film is injected into the
이미 설명한 것처럼, 제1 및 제2 전원의 위상차에 따라 플라즈마의 형성 위치가 바뀌므로, 기판(140) 전면에 형성되는 막의 두께나 식각 정도가 균일하게 이루어진다.As described above, since the formation position of the plasma is changed according to the phase difference between the first and second power sources, the thickness or etching degree of the film formed on the entire surface of the
더욱이, 기판(140)과 방전 전극부(110) 간의 거리가 약 10㎜ 내지 50mm로 약 7.5mm 정도인 종래보다 넓기 때문에, 각 전극봉(111)에서 배출되는 공정 가스의 확산 범위 또한 넓어져 형성되는 막의 두께나 식각 정도의 균일도가 종래보다 향상된다. 또한 기판(140)과 방전 전극부(110)간의 거리가 증가함에 따라, 방전 전극부(110)의 동작으로 발생하는 열이 기판(140)에 미치는 영향력이 감소하여, 전극봉(111)을 냉각하기 위한 냉각용 도관과 같은 별도의 냉각 장치를 제거하거나 냉각 장치의 구조를 간소화한다.Furthermore, since the distance between the
본 실시예에 따른 PECVD 장치의 경우, 방전 전극부(110)를 중심으로 양측에 기판(140)이 배치되는 접지 전극부(121)가 놓여지므로, 한번의 공정으로 두 개의 기판(140)을 처리할 수 있어 생산성이 향상된다.In the PECVD apparatus according to the present exemplary embodiment, since the
또한, 기판(140)과 방전 전극부(110) 간의 거리가 약 10㎜ 내지 50mm로 넓으므로, 공정 가스의 확산 분포 범위가 넓어져 성막 정도나 식각 정도의 균일도가 향상된다. In addition, since the distance between the
다음, 도 3을 참고로 하여, 본 발명의 한 실시예에 따른 PECVD 장치의 다른 예를 설명한다. 도 1을 참고로 하여 설명한 PECVD 장치(1)와 같은 기능을 행하는 구성 요소에 대해서는 동일한 도면 부호를 부여하고 그에 대한 자세한 설명도 생략한다. Next, another example of a PECVD apparatus according to an embodiment of the present invention will be described with reference to FIG. 3. Components that perform the same function as the PECVD apparatus 1 described with reference to FIG. 1 are given the same reference numerals and detailed description thereof will be omitted.
도 3은 본 발명의 한 실시예에 따른 PECVD 장치의 다른 예에 대한 개략적인 사시도이다.3 is a schematic perspective view of another example of a PECVD apparatus according to an embodiment of the present invention.
도 3을 참고로 하면, 본 실시예의 예에 따른 PECVD 장치(1a)는, 도 1에 도시한 PECVD 장치(1)와 유사하게, 공정실(10) 내부에 방전 전극부(110)와 접지 전극 부(121)를 구비한다.Referring to FIG. 3, the
하지만, 도 1에 도시한 것과는 달리, 본 예에서, 방전 전극부(110)의 개수는 두 개이며, 각 방전 전극부(110)에는 별도의 주입구(130)가 연결되어 있다. 또한 두 개의 방전 전극부(110) 사이에 하나의 접지 전극부(121)가 배치되어 있다. 즉, 방전 전극부(110)와 접지 전극부(121)가 교대로 배치되어 있고, 방전 전극부(110)의 개수보다 접지 전극부(121)의 개수가 1개 더 많다. 이때, 방전실(10)의 최좌측부와 최우측부인 최외각부에 바로 인접하게 배치된 접지 전극부(121)를 제외하고, 나머지 접지 전극부(121)의 양면에 각각 기판(140)이 배치된다. 즉, 두 개의 방전 전극부(110) 사이에 배치된 하나의 접지 전극부(121)의 양면에 기판(140)이 각각 배치되어 있다. 결국, 하나의 방전 전극부(110)와 마주하는 두 개의 접지 전극부(121)의 각 면에 기판(140)이 배치되게 된다. 따라서, 도 3의 경우, 한번의 공정으로 제작되는 기판(140)의 개수는 4장이 되어, 기판 제작 속도가 향상된다.However, unlike the example shown in FIG. 1, in this example, the number of
도 3에 도시한 PECVD 장치(1a)는 하나의 공정실(10)에 두 개의 방전 전극부(110)와 세 개의 접지 전극부(121)를 구비하고 있지만, 이와는 달리 한번의 공정으로 제작하고자 하는 기판(140)의 개수에 따라 하나의 공정실(10)에 세 개 이상의 방전 전극부(110)와 네 개 이상의 접지 전극부(121)를 구비할 수 있다. 이 경우에도 방전 전극부(110)와 접지 전극부(121)는 교대로 배치되어 있고, 방전 전극부(110)의 개수보다 접지 전극부(121)의 개수가 1개 더 많다.Although the
이때, 각 방전 전극부(110)의 동작을 위해, 정해진 위상차를 갖고 각 연결된전극봉(111)에 제1 및 제2 전원을 공급하는 PECVD 구동부는 도 2에 도시한 것과 동 일하며, 각 방전 전극부(110)를 구동시켜 대응하는 접지 전극부(121) 사이에 플라즈마를 생성하는 동작 또한 도 2를 참고로 하여 설명한 것과 동일하므로, 이에 대한 자세한 설명은 생략한다.At this time, for the operation of each
도 3을 참고로 하여 설명한 PECVD 장치는 기판(140)과 방전 전극부(110) 간의 거리가 넓어져 성막 정도나 식각 정도의 균일도가 되며, 이에 더하여, 하나의 공정실(1a)에서 제작되는 기판(140)의 개수는 3개 이상이므로, 기판 제작 속도는 더욱 향상된다.In the PECVD apparatus described with reference to FIG. 3, the distance between the
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
도 1은 본 발명의 한 실시예에 따른 PECVD 장치를 개략적으로 나타낸 사시도이다.1 is a perspective view schematically showing a PECVD apparatus according to an embodiment of the present invention.
도 2는 본 발명의 한 실시예에 따른 PECVD 장치의 구동부에 대한 블록도이다. 2 is a block diagram of a driving unit of a PECVD apparatus according to an embodiment of the present invention.
도 3은 본 발명의 한 실시예에 따른 PECVD 장치의 다른 예에 대한 개략적인 사시도이다.3 is a schematic perspective view of another example of a PECVD apparatus according to an embodiment of the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090008844A KR101514080B1 (en) | 2009-02-04 | 2009-02-04 | Plasma enhanced chemical vapor deposition apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090008844A KR101514080B1 (en) | 2009-02-04 | 2009-02-04 | Plasma enhanced chemical vapor deposition apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100089541A true KR20100089541A (en) | 2010-08-12 |
KR101514080B1 KR101514080B1 (en) | 2015-04-21 |
Family
ID=42755414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090008844A KR101514080B1 (en) | 2009-02-04 | 2009-02-04 | Plasma enhanced chemical vapor deposition apparatus |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101514080B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122954A1 (en) * | 2012-02-13 | 2013-08-22 | Applied Materials, Inc. | Linear pecvd apparatus |
CN110029328A (en) * | 2019-05-22 | 2019-07-19 | 上海稷以科技有限公司 | It is a kind of for improving the boxlike electrode of positive and negative planar depositions uniformity |
KR20210085245A (en) * | 2019-12-30 | 2021-07-08 | (주)에스테크 | Plasma generator enable to uniform plasma |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3844274B2 (en) * | 1998-06-25 | 2006-11-08 | 独立行政法人産業技術総合研究所 | Plasma CVD apparatus and plasma CVD method |
JP2002121677A (en) * | 2000-10-16 | 2002-04-26 | Mitsubishi Heavy Ind Ltd | Method and apparatus for forming cvd film |
JP3759075B2 (en) * | 2002-06-26 | 2006-03-22 | 京セラ株式会社 | Cat-PECVD method, film formed using the same, thin film device including the film, and film processing system |
-
2009
- 2009-02-04 KR KR1020090008844A patent/KR101514080B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122954A1 (en) * | 2012-02-13 | 2013-08-22 | Applied Materials, Inc. | Linear pecvd apparatus |
CN110029328A (en) * | 2019-05-22 | 2019-07-19 | 上海稷以科技有限公司 | It is a kind of for improving the boxlike electrode of positive and negative planar depositions uniformity |
KR20210085245A (en) * | 2019-12-30 | 2021-07-08 | (주)에스테크 | Plasma generator enable to uniform plasma |
Also Published As
Publication number | Publication date |
---|---|
KR101514080B1 (en) | 2015-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI440405B (en) | Capacitively coupled plasma reactor | |
KR100979186B1 (en) | Capacitively coupled plasma reactor | |
JP5519498B2 (en) | Inductively coupled dual zone processing chamber with a single planar antenna | |
TWI448215B (en) | Apparatus for plasma processing | |
US20210280389A1 (en) | Large-area vhf pecvd chamber for low-damage and high-throughput plasma processing | |
KR20080043597A (en) | Apparatus and method for generation a plasma | |
US20100104772A1 (en) | Electrode and power coupling scheme for uniform process in a large-area pecvd chamber | |
KR101514080B1 (en) | Plasma enhanced chemical vapor deposition apparatus | |
JP7121446B2 (en) | High density plasma chemical vapor deposition chamber | |
JP3143649U (en) | Slot electrode | |
JP2006286705A (en) | Plasma deposition method and deposition structure | |
KR101775361B1 (en) | Plasma process apparatus | |
KR100963848B1 (en) | Capacitively coupled plasma reactor with multi laser scanning line | |
KR101585891B1 (en) | Compound plasma reactor | |
TW201508809A (en) | Plasma processing device and plasma processing method | |
KR101552726B1 (en) | Plasma enhanced chemical vapor deposition apparatus | |
US20100006142A1 (en) | Deposition apparatus for improving the uniformity of material processed over a substrate and method of using the apparatus | |
KR101173643B1 (en) | Plasma reactor having multi-plasma area | |
KR20090079696A (en) | Plasma treatment apparatus having linear antenna | |
KR20100008052A (en) | Chemical vapor deposition apparatus | |
KR101161169B1 (en) | Multi capacitively coupled electrode assembly and processing appartus the same | |
JP4554712B2 (en) | Plasma processing equipment | |
US20230272530A1 (en) | Large-area high-density plasma processing chamber for flat panel displays | |
KR101093601B1 (en) | Multi capacitively coupled plasma processing appartus and method thereof | |
KR101002260B1 (en) | Compound plasma reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
LAPS | Lapse due to unpaid annual fee |