Nothing Special   »   [go: up one dir, main page]

KR20100071554A - Actuator fault diagnosis of uavs using adaptive unknown input observers - Google Patents

Actuator fault diagnosis of uavs using adaptive unknown input observers Download PDF

Info

Publication number
KR20100071554A
KR20100071554A KR1020080130322A KR20080130322A KR20100071554A KR 20100071554 A KR20100071554 A KR 20100071554A KR 1020080130322 A KR1020080130322 A KR 1020080130322A KR 20080130322 A KR20080130322 A KR 20080130322A KR 20100071554 A KR20100071554 A KR 20100071554A
Authority
KR
South Korea
Prior art keywords
failure
equation
output vector
control plane
unknown input
Prior art date
Application number
KR1020080130322A
Other languages
Korean (ko)
Other versions
KR101021801B1 (en
Inventor
조신제
Original Assignee
주식회사 대한항공
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대한항공 filed Critical 주식회사 대한항공
Priority to KR1020080130322A priority Critical patent/KR101021801B1/en
Publication of KR20100071554A publication Critical patent/KR20100071554A/en
Application granted granted Critical
Publication of KR101021801B1 publication Critical patent/KR101021801B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE: A failure diagnostic method of a control surface driver of a drone aircraft using an observation plane is provided to sense the location of the control surface where a malfunction has occurred. CONSTITUTION: A failure diagnostic method of a control surface driver of a drone aircraft using an observation plane comprises: a step of estimating the direction and speed of wind which affects the flying of an aircraft(S2); a step of detecting trouble on a control surface by comparing an estimation output vector and a pre-input model output vector(S4); a step of classifying the control surface with a malfunction by comparing the estimation output vector and the model output vector(S5); a step of estimating the fixed angle of the control surface when the malfunction occurs(S6); and a step of re-forming an algorithm in order to detect new malfunctions by reflecting the malfunction detected from a fault detection step(S7).

Description

적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법{Actuator fault diagnosis of UAVs using adaptive unknown input observers} Actuator fault diagnosis of UAVs using adaptive unknown input observers

본 발명은 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법에 관한 것으로, 더욱 자세하게는 조종면 구동기 고장 발생시 고장이 발생된 조종면을 인식할 뿐만 아니라 고정된 각도까지 추정함으로써 무인항공기의 생존성과 신뢰성을 높일 수 있는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법을 제공하는 것을 목적으로 한다.The present invention relates to a method for diagnosing a control plane driver failure of an unmanned aerial vehicle using an adaptive unknown input observer, and more particularly, to recognize a control plane in which a failure occurs when a control plane driver failure occurs, as well as estimating a fixed angle to the survival and reliability of the unmanned aerial vehicle. An object of the present invention is to provide a method for diagnosing a failure of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer.

항공기의 운항시 항공기의 조종면 구동기에 고장이 발생되어 조종면이 특정한 위치에 고정되어 움직이지 않을 수 있다. 일반적으로 상기 조종면 고장의 경우에 하드웨어 또는 소프트웨어상의 방법으로 자동조종이 가능토록 하는 연구가 진행되고 있다. During operation of the aircraft, a failure occurs in the control plane driver of the aircraft, so that the control plane is fixed at a specific position and may not move. In general, in the case of the control plane failure, a study to enable the automatic control by hardware or software method is in progress.

상기 소프트웨어의 방법은 하드웨어적인 방법에 비하여 중량을 감소시킬 수 있고, 공간을 효율적으로 이용할 수 있으며, 추가비용의 발생을 줄일 수 있는 점에서 선호되고 있다.The software method is preferred in that weight can be reduced, space can be used efficiently, and additional cost can be reduced compared to hardware methods.

상기와 같은 항공기의 조종면 구동기에 고장이 발생된 경우에는, 고장발생여부를 알아내는 고장검출, 어느 조종면에서 고장이 발생됐는지는 알아내는 고장분리 및 상기 고장이 발생된 조종면에 따라 알고리즘을 재형성하는 과정이 필요하다.If a failure occurs in the control plane driver of the aircraft, the failure detection to find out whether the failure occurred, the failure separation to find out which control failure occurred, and to re-form the algorithm according to the control plane where the failure occurred The process is necessary.

상기와 같은 조종면 구동기의 고장검출 및 고장분리를 위해서 많이 사용되는 방법 중 하나가 관측기(observer)를 이용한 것이다.   One of the methods widely used for fault detection and fault isolation of such a control plane driver is by using an observer.

상기 관측기라 함은 주어진 항공기의 수학적 동역학 모델을 이용하여 항공기의 상태를 추정 또는 관측하는 소프트웨어로 구현되는 기법을 의미한다.The observer means a technique implemented by software for estimating or observing the state of an aircraft using a mathematical dynamics model of a given aircraft.

도 1은 종래기술에 따른 무인항공기의 조종면 구동기 고장진단방법의 알고리즘이 도시된 블록선도이다.1 is a block diagram illustrating an algorithm of a control plane driver failure diagnosis method of an unmanned aerial vehicle according to the prior art.

종래기술에 따른 무인항공기의 조종면 구동기 고장진단방법은, 조종면 구동기가 고정되는 고장 발생을 모델링한 모델 출력벡터와 관측기에 의한 추정 출력벡터를 비교하여 조종면의 고장여부를 판단하는 고장판단단계를 포함한다. The control plane driver failure diagnosis method according to the prior art includes a failure determination step of determining whether a control plane is broken by comparing a model output vector modeling a failure occurrence to which the control plane driver is fixed and an estimated output vector by an observer. .

즉 상기 조종면이 고정되는 고장이 발생된 경우 상기 모델 출력벡터와 관측기에 의한 추정 출력벡터의 차인 잔차가 0이 되며, 이를 통해 고장여부를 인식하게 된다.That is, when a failure occurs in which the control surface is fixed, the residual, which is the difference between the model output vector and the estimated output vector by the observer, becomes 0, thereby recognizing the failure.

그러나 종래기술에 따른 무인항공기의 조종면 구동기 고장진단방법은 조종면의 고장여부만을 판단하거나, 두 개 이상의 조종면이 고정되는 고장 발생시 고정된 각도를 추정하지 못하기 때문에 재형성제어를 성공적으로 수행하기 어려운 경우가 대부분이다. However, in the case of the unmanned aerial vehicle's control plane driver failure diagnosis method, it is difficult to successfully perform the reforming control because it cannot determine only the failure of the control plane or cannot estimate the fixed angle when a failure occurs when two or more control planes are fixed. Is most of them.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 항공기의 운항시 돌풍 등의 외란이 발생되더라도 강건하게 고장진단을 수행할 수 있으며, 고장이 발생된 두 개 이상의 조종면의 위치를 파악할 수 있는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법을 제공하는 것을 목적으로 한다.The present invention was devised to solve the above problems, it is possible to perform a robust diagnosis even if disturbances such as gusts during operation of the aircraft, it is possible to grasp the position of the two or more control surface failure occurs An object of the present invention is to provide a method for diagnosing a failure of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer.

본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법은, 항공기의 운항 중 상기 항공기의 정상적인 조종을 방해하는 돌풍이 발생한 경우 상기 돌풍의 방향 및 속도를 추정하는 단계; 조종면 구동기가 고정되는 고장 발생을 모델링하되, 상기 추정된 돌풍의 방향 및 속도에 따라 기입력된 모델 출력벡터와 미지입력 관측기에 의한 추정 출력벡터를 비교하여 복수의 조종면 중에 하나의 조종면의 고장여부를 판단하는 고장검출단계; 상기 모델 출력벡터와 상기 추정 출력벡터를 비교하여 상기 복수의 조종면 중 고장이 발생된 조종면을 구분하는 고장분리단계; 적응기법을 통해 상기 고장이 발생된 조종면이 고정된 각도를 추정하는 고장위치 추정단계; 및 상기 고장검출단계에서 검출된 고장을 반영하여 새로운 고장을 검출할 수 있도록 알고리즘을 재형성하는 재형성단계를 포함한다.The method for diagnosing a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention includes estimating a direction and a speed of a gust when a gust that interferes with normal operation of the aircraft occurs during operation of the aircraft; Model a failure occurrence to which the control plane driver is fixed, and compare a previously inputted model output vector and an estimated output vector by an unknown input observer according to the estimated direction and speed of the wind gust to determine whether one of the control planes has failed A fault detection step of determining; A fault separation step of comparing the model output vector and the estimated output vector to distinguish a control surface in which a failure occurs among the plurality of control surfaces; A failure location estimating step of estimating an angle at which the control surface on which the failure has occurred is fixed through an adaptive technique; And a reforming step of reforming the algorithm to detect a new failure by reflecting the failure detected in the failure detection step.

상기 고장검출단계는, 상기 복수의 조종면 중 적어도 어느 하나의 조종면에 서 상기 모델 출력벡터와 추정 출력벡터의 차인 잔차가 0이고, 나머지 조종면에서 잔차가 0이 아닌 경우에 고장으로 판단할 수 있다.The fault detection step may be determined as a failure when the residual, which is the difference between the model output vector and the estimated output vector on at least one control surface of the plurality of control surfaces is 0, and the residual is not 0 on the remaining control surfaces.

상기 고장위치판단단계는, 상기 잔차가 0인 조종면을 고장위치로 판단할 수 있다.In the fault location determining step, the control surface having the residual value of 0 may be determined as a fault location.

상기 미지입력 관측기는 [수학식 7]로 이루어지고, 상기 적응기법은 [수학식 8]로 이루어질 수 있다The unknown input observer may be formed by Equation 7, and the adaptive technique may be made by Equation 8.

[수학식 7][Equation 7]

Figure 112008087494082-PAT00001
Figure 112008087494082-PAT00001

[수학식 8][Equation 8]

Figure 112008087494082-PAT00002
.
Figure 112008087494082-PAT00002
.

본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법은, 적응 미지입력 관측기를 통해 1초 내에 고정된 각도까지 추정함으로써 무인항공기의 생존성과 신뢰성을 향상시킬 수 있다.In the control plane driver failure diagnosis method of the unmanned aerial vehicle using the adaptive unknown input observer according to the present invention, the survivability and reliability of the unmanned aerial vehicle can be improved by estimating a fixed angle within 1 second through the adaptive unknown input observer.

본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법은 돌풍 등의 외란이 발생된 경우라도 조종면의 고장여부 및 고장이 발생된 조종면의 위치를 파악할 수 있는 장점이 있다.The failure detection method of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention has an advantage of determining whether the control plane is broken and the position of the control plane where the failure occurs even when a disturbance such as a gust is generated.

또한, 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법은, 둘 이상의 조종면에 고장이 발생되더라도 빠르게 고장난 조종면의 위치를 파악할 수 있는 이점이 있다.In addition, the control plane driver failure diagnosis method of the unmanned aerial vehicle using the adaptive unknown input observer according to the present invention, there is an advantage that it is possible to quickly determine the location of the control plane failure even if a failure occurs in two or more control surfaces.

이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in this specification and claims should not be construed in a common or dictionary sense, and the inventors will be required to properly define the concepts of terms in order to best describe their invention. Based on the principle that it can, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서, 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해해야한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various equivalents may be substituted for them at the time of the present application. It should be understood that there may be water and variations.

도 2는 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법의 알고리즘이 도시된 블록선도, 도 3은 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법의 미지입력 관측기와 적응기법이 도시된 블록선도이다.2 is a block diagram showing an algorithm of a control plane driver failure diagnosis method for an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention, Figure 3 is a control plane driver failure diagnosis method of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention The block diagram shows the unknown input observer and the adaptive technique.

본 발명의 실시예에서 i번째 조종면 구동기가 고정되는 고장 발생 시 항공기의 선형모델은 [수학식 1]에 의해 표현된다.In the embodiment of the present invention, when a failure occurs in which the i-th control plane driver is fixed, the linear model of the aircraft is represented by Equation 1.

[수학식 1][Equation 1]

Figure 112008087494082-PAT00003
Figure 112008087494082-PAT00003

여기서, x(t)는 상태변수, u(t)는 제어입력, d(t)는 돌풍과 같은 외란, y(t)는 출력벡터(측정치)이며, A,B,C는 시스템 행렬, E는 외란분산행렬, i = 1,...,p는 i번째 구동기 고장을,

Figure 112008087494082-PAT00004
는 B의 i번째 열을 0으로 한 B 행렬,
Figure 112008087494082-PAT00005
는 B의 i번째 열벡터,
Figure 112008087494082-PAT00006
는 i번째 입력 즉, 고장에 해당되는 고정된 각도이다.Where x (t) is a state variable, u (t) is a control input, d (t) is a disturbance such as a gust, y (t) is an output vector (measured value), and A, B, and C are system matrices. Is the disturbance variance matrix, i = 1, ..., p is the i-th driver failure,
Figure 112008087494082-PAT00004
Is a B matrix with the i th column of B as 0,
Figure 112008087494082-PAT00005
Is the i-th column vector of B,
Figure 112008087494082-PAT00006
Is the fixed angle corresponding to the i th input, that is, the fault.

본 실시예에서, 상기 y(t)는 상기 조종면 구동기가 고정되는 고장 발생을 모델링한 모델 출력벡터이다. 또한, E에는 상기 돌풍의 방향 및 속도가 입력된다.In the present embodiment, y (t) is a model output vector modeling the occurrence of the failure that the control plane driver is fixed. Further, in E, the direction and speed of the gust are input.

한편, 고정된 위치는 실제로 알 수 없으므로

Figure 112008087494082-PAT00007
를 추정한 추정치, 즉 조종면의 고정각도 추정치(
Figure 112008087494082-PAT00008
)를 구하는 것이 고장진단의 최종목적이 된다.On the other hand, the fixed position is actually unknown
Figure 112008087494082-PAT00007
Is an estimate of, ie a fixed angle estimate of the control plane (
Figure 112008087494082-PAT00008
) Is the final purpose of troubleshooting.

상기

Figure 112008087494082-PAT00009
를 구하기 전 조종면 구동기의 고장여부를 판단하는 고장검출단계 와 고장 난 조종면 구동기의 위치를 알아내는 고장분리단계가 수행되어야 한다.remind
Figure 112008087494082-PAT00009
The fault detection step for determining the failure of the control plane driver and the fault isolation step for locating the failing control plane driver should be performed before obtaining.

즉, 상기 고장검출단계에서는, 상기 조종면 구동기가 고정되는 고장 발생을 모델링한 모델 출력벡터 y(t)와 미지입력 관측기에 의한 추정벡터

Figure 112008087494082-PAT00010
의 차인 잔차
Figure 112008087494082-PAT00011
만 0인 경우에 조종면 구동기의 고장으로 판단한다.That is, in the fault detection step, the model output vector y (t) modeling the occurrence of the failure to which the control plane driver is fixed and the estimated vector by the unknown input observer
Figure 112008087494082-PAT00010
Residuals
Figure 112008087494082-PAT00011
If 0, it is regarded as a failure of the control plane driver.

또한, 상기 고장분리단계는, 미지입력 관측기를 이용하여 고장난 구동기에 대한 관측기가 생성하는 잔차만 0이 되고 나머지 구동기에 대한 잔차는 0이 되는 않는 것을 통해 고장 난 구동기의 위치를 알아내는 것이다.In addition, the fault separation step is to determine the location of the faulty driver by using only the unknown input observer, the residual generated by the observer for the faulty driver becomes zero, and the residual for the remaining driver does not become zero.

관측기를 설계하기 위한 상태방정식은 [수학식 2]와 같다.The state equation for designing the observer is shown in [Equation 2].

[수학식 2][Equation 2]

Figure 112008087494082-PAT00012
Figure 112008087494082-PAT00012

상기 [수학식 2]는 i번째 구동기가 고장의 경우 [수학식 1]이 됨을 알 수 있다.[Equation 2] can be seen that when the i-th driver is broken [Equation 1].

일반적으로 사용되는 미지입력 관측기는 아래의 [수학식 3]과 같다.A commonly used unknown input observer is shown in Equation 3 below.

[수학식 3]&Quot; (3) "

Figure 112008087494082-PAT00013
Figure 112008087494082-PAT00013

Figure 112008087494082-PAT00014
: 관측기의 상태변수(observer state vector),
Figure 112008087494082-PAT00014
: Observer state vector,

Figure 112008087494082-PAT00015
: 상태변수의 추정치(estimated state vector).
Figure 112008087494082-PAT00015
: Estimated state vector.

여기서, F, G, K, H는 상기 추정오차가 0이 되도록 설계되는 행렬이며, K = (

Figure 112008087494082-PAT00016
+
Figure 112008087494082-PAT00017
)이다.Where F, G, K, and H are matrices designed such that the estimation error is zero, and K = (
Figure 112008087494082-PAT00016
+
Figure 112008087494082-PAT00017
)to be.

상기 [수학식 2]와 [수학식 3]에 의해 추정오차 (

Figure 112008087494082-PAT00018
)는 [수학식 4]로 전개됨을 알 수 있다.Estimated Error (Equation 2) and [Equation 3]
Figure 112008087494082-PAT00018
) Can be seen as developed in [Equation 4].

[수학식 4][Equation 4]

Figure 112008087494082-PAT00019
Figure 112008087494082-PAT00019

즉, 추정오차

Figure 112008087494082-PAT00020
는 [수학식 5]와 같다.In other words, the estimation error
Figure 112008087494082-PAT00020
Is the same as [Equation 5].

[수학식 5][Equation 5]

Figure 112008087494082-PAT00021
Figure 112008087494082-PAT00021

여기서, 상기 [수학식 5]를 통해 상기 관측기의 추정오차가 상태변수, 출력 y(t) 및 외란벡터와 무관함을 알 수 있다.Here, it can be seen from Equation 5 that the estimation error of the observer is independent of the state variable, the output y (t) and the disturbance vector.

상기 [수학식 5]에서 i번째 구동기 고장에 대해

Figure 112008087494082-PAT00022
Figure 112008087494082-PAT00023
이므로 우변의 두 번째 항은 사라지고,
Figure 112008087494082-PAT00024
는 실제로 고정된 입력
Figure 112008087494082-PAT00025
가 되며 우변 끝항
Figure 112008087494082-PAT00026
는 추정치
Figure 112008087494082-PAT00027
가 된다. 상기 F의 특이치를 모두 음이 되도록 설계하고,
Figure 112008087494082-PAT00028
를 추정하면 i번째 조종면 구동기의 잔차
Figure 112008087494082-PAT00029
는 0이 된다.For the i-th driver failure in [Equation 5]
Figure 112008087494082-PAT00022
Is
Figure 112008087494082-PAT00023
, So the second term on the right side disappears,
Figure 112008087494082-PAT00024
Is actually a fixed input
Figure 112008087494082-PAT00025
To the right end term
Figure 112008087494082-PAT00026
Is an estimate
Figure 112008087494082-PAT00027
Becomes Design all the singular values of F to be negative,
Figure 112008087494082-PAT00028
Is estimated, the residual of the i th steering wheel driver
Figure 112008087494082-PAT00029
Becomes zero.

여기서 다른 조종면 구동기에 대한 잔차는 0이 아니기 때문에 상기 고장분리가 수행된다.The fault isolation is performed here because the residual for the other control plane driver is not zero.

즉, 상기 [수학식 5]에 j를 대입한 j번째 조종면 구동기의 잔차

Figure 112008087494082-PAT00030
는 [수학식 6]에 의해 0이 아니다.That is, the residual of the j-th control surface driver substituted j in [Equation 5]
Figure 112008087494082-PAT00030
Is not 0 by [Equation 6].

[수학식 6]&Quot; (6) "

Figure 112008087494082-PAT00031
Figure 112008087494082-PAT00031

즉, i번째 조종면 구동기가 고정되는 고장에 대해

Figure 112008087494082-PAT00032
Figure 112008087494082-PAT00033
는 같아질 수 있지만, 고장에 해당하는 고정된 값
Figure 112008087494082-PAT00034
와 실제 명령
Figure 112008087494082-PAT00035
는 같아질 수 없으므로
Figure 112008087494082-PAT00036
는 0이 될 수 없다. That is, for a fault that the i th control plane driver
Figure 112008087494082-PAT00032
Wow
Figure 112008087494082-PAT00033
Can be equal, but a fixed value corresponding to a failure
Figure 112008087494082-PAT00034
And the actual command
Figure 112008087494082-PAT00035
Cannot be equal to
Figure 112008087494082-PAT00036
Cannot be zero.

따라서

Figure 112008087494082-PAT00037
를 추정하면,
Figure 112008087494082-PAT00038
만이 0이 되어 고장검출 및 고장분리가 가능하다.therefore
Figure 112008087494082-PAT00037
Is estimated,
Figure 112008087494082-PAT00038
Only 0 is possible for fault detection and fault isolation.

다음, 적응기법을 통해 잔차

Figure 112008087494082-PAT00039
를 이용한
Figure 112008087494082-PAT00040
를 구하는 방법을 설명한다.Next, residuals through adaptive techniques
Figure 112008087494082-PAT00039
Using
Figure 112008087494082-PAT00040
How to obtain.

즉, 본 발명에 따른 적응 미지입력 관측기는 상기 미지입력 관측기와 적응기법을 통해 완성된다.That is, the adaptive unknown input observer according to the present invention is completed through the unknown input observer and the adaptive technique.

상기

Figure 112008087494082-PAT00041
는 모르는 값이므로
Figure 112008087494082-PAT00042
을 [수학식 3]에 대입하면 다음 [수학식 7]과 같다.remind
Figure 112008087494082-PAT00041
Is an unknown value
Figure 112008087494082-PAT00042
Substituting into [Equation 3] is the following [Equation 7].

[수학식 7][Equation 7]

Figure 112008087494082-PAT00043
Figure 112008087494082-PAT00043

F, G, K, H는 상기 추정오차

Figure 112008087494082-PAT00044
가 0이 되도록 설계되는 행렬이다.F, G, K, H is the estimated error
Figure 112008087494082-PAT00044
Is a matrix designed to be zero.

상기 조종면의 고정각도 추정치

Figure 112008087494082-PAT00045
는 다음 [수학식 8]의 적응기법을 통해 구할 수 있다.Fixed angle estimate of the control surface
Figure 112008087494082-PAT00045
Can be obtained through the adaptation method of Equation 8.

[수학식 8][Equation 8]

Figure 112008087494082-PAT00046
Figure 112008087494082-PAT00046

상기

Figure 112008087494082-PAT00047
는 수렴속도에 영향을 미치는 양수이고, C는 출력행렬, G는 상기 추정오차가 0이 되도록 설계되는 행렬,
Figure 112008087494082-PAT00048
는 잔차이며,
Figure 112008087494082-PAT00049
는 시스템행렬 B의 i번째 열벡터이고, P는 리아프노프 방정식, 즉 [수학식 9]를 만족시키는 대칭 양한정 행렬이다. remind
Figure 112008087494082-PAT00047
Is a positive number affecting the convergence speed, C is an output matrix, G is a matrix designed such that the estimation error is zero,
Figure 112008087494082-PAT00048
Is the residual,
Figure 112008087494082-PAT00049
Is the i-th column vector of the system matrix B, and P is a symmetric positive limiting matrix that satisfies the Lyapunov equation, [9].

[수학식 9][Equation 9]

Figure 112008087494082-PAT00050
Figure 112008087494082-PAT00050

상기 Q 또한 임의의 대칭 양한정 행렬이고, 잔차

Figure 112008087494082-PAT00051
는 다음 [수학식 10]과 같이 정의된다.Q is also an arbitrary symmetric definite matrix, the residual
Figure 112008087494082-PAT00051
Is defined as in Equation 10 below.

[수학식 10][Equation 10]

Figure 112008087494082-PAT00052
Figure 112008087494082-PAT00052

상기 [수학식 5]로부터

Figure 112008087494082-PAT00053
의 도함수는 다음 [수학식 11]과 같다.From Equation 5 above
Figure 112008087494082-PAT00053
The derivative of is given by Equation 11 below.

[수학식 11][Equation 11]

Figure 112008087494082-PAT00054
Figure 112008087494082-PAT00054

Figure 112008087494082-PAT00055
Figure 112008087494082-PAT00056
에 대한 추정오차이다.
Figure 112008087494082-PAT00055
Is
Figure 112008087494082-PAT00056
Estimated error for.

여기서 상기

Figure 112008087494082-PAT00057
Figure 112008087494082-PAT00058
는 지수적으로 수렴됨이 보장되어야 하며, 이를 위해 다음 [수학식 12]와 같은 리아노프함수를 도입하여
Figure 112008087494082-PAT00059
Figure 112008087494082-PAT00060
의 수렴 안정성을 보인다.Where above
Figure 112008087494082-PAT00057
Wow
Figure 112008087494082-PAT00058
Should be guaranteed to be exponentially converged. For this purpose, we introduce the Lyanov function
Figure 112008087494082-PAT00059
Wow
Figure 112008087494082-PAT00060
Shows convergence stability.

[수학식 12][Equation 12]

Figure 112008087494082-PAT00061
Figure 112008087494082-PAT00061

상기 [수학식 10], [수학식 11] 및

Figure 112008087494082-PAT00062
을 이용하면
Figure 112008087494082-PAT00063
는 [수학식 13]과 같다.Equation 10, Equation 11 and
Figure 112008087494082-PAT00062
If you use
Figure 112008087494082-PAT00063
Is the same as [Equation 13].

[수학식 13][Equation 13]

Figure 112008087494082-PAT00064
Figure 112008087494082-PAT00064

상기 [수학식 8]을 상기 [수학식 13]에 대입하면, 다음 [수학식 14]가 된다.Substituting Equation 8 into Equation 13, the following Equation 14 is obtained.

[수학식 14][Equation 14]

Figure 112008087494082-PAT00065
Figure 112008087494082-PAT00065

rank(C) = n 이므로,

Figure 112008087494082-PAT00066
역시 대칭 양한정 행렬이 되고, F의 특이치가 모두 음이므로 다음의 리아프노프 방정식 즉, [수학식 15]를 만족하는 대칭 향한정 행렬
Figure 112008087494082-PAT00067
가 존재한다.Since rank (C) = n,
Figure 112008087494082-PAT00066
Again, it becomes a symmetric positive limiting matrix, and since all of the singular values of F are negative, the symmetric heading matrix satisfying the following Liafnov equation,
Figure 112008087494082-PAT00067
Is present.

[수학식 15][Equation 15]

Figure 112008087494082-PAT00068
Figure 112008087494082-PAT00068

따라서, 본 발명에 따른 적응 미지입력 관측기의 수렴 안정성이 증명되었다.Thus, the convergence stability of the adaptive unknown input observer according to the present invention has been demonstrated.

다음 선형 시변시스템에 대한 다음 [수학식 16]에 의해

Figure 112008087494082-PAT00069
Figure 112008087494082-PAT00070
의 지수적 수렴성이 증명된다.By the following equation (16) for the next linear time-varying system
Figure 112008087494082-PAT00069
Wow
Figure 112008087494082-PAT00070
Exponential convergence is demonstrated.

[수학식 16][Equation 16]

Figure 112008087494082-PAT00071
Figure 112008087494082-PAT00071

여기서 F는 Hurwitz이고 M(t)는 bounded & Globally Lipschitz이다.Where F is Hurwitz and M (t) is bounded & Globally Lipschitz.

상기 [수학식 8]과 [수학식 11]로부터 오차 방정식은 다음 [수학식 17]과 같이 표현된다.Error equations from Equations 8 and 11 are expressed as Equation 17 below.

[수학식 17][Equation 17]

Figure 112008087494082-PAT00072
Figure 112008087494082-PAT00072

상기 [수학식 17]은 상기 [수학식 16]의 형태와 일치하므로

Figure 112008087494082-PAT00073
Figure 112008087494082-PAT00074
는 0에 지수적으로 수렴됨이 증명되었다.Equation 17 corresponds to the form of Equation 16.
Figure 112008087494082-PAT00073
Wow
Figure 112008087494082-PAT00074
Proved to converge exponentially to zero.

상기와 같이 구성된 본 발명에 따른 항공기의 조종면 고장진단방법의 작용효과를 설명하면 다음과 같다.Referring to the effect of the control plane failure diagnosis method of the aircraft according to the present invention configured as described above are as follows.

도 4는 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법이 도시된 순서도이다. 4 is a flowchart illustrating a method for diagnosing a failure of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention.

본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법은, 항공기의 운항 중 상기 항공기의 정상적인 조종을 방해하는 돌풍이 발생한 경우 상기 돌풍의 방향 및 속도를 추정하는 단계(S2)와, 조종면 구동기가 고정되는 고장 발생을 모델링하되, 상기 추정된 돌풍의 방향 및 속도에 따라 기입력된 모델 출력벡터와 미지입력 관측기에 의한 추정 출력벡터를 비교하여 복수의 조종면 중에 하나의 조종면의 고장여부를 판단하는 고장검출단계(S4)와, 상기 모델 출력벡터와 상기 추정 출력벡터를 비교하여 상기 복수의 조종면 중 고장이 발생된 조종면을 구분하는 고장분리단계(S5)와, 적응기법을 통해 상기 고장이 발생된 조종면이 고정된 각도를 추정하는 고장위치 추정단계(S6)와, 상기 고장검출단계에서 검출된 고장을 반영하여 새로운 고장을 검출할 수 있도록 알고리즘을 재형성하는 재형성단계(S7)를 포함한다.The method for diagnosing a failure of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention includes estimating the direction and speed of the gust when a gust that interferes with normal operation of the aircraft occurs during operation of the aircraft (S2) and Modeling a failure occurrence of the control plane driver is fixed, and compares the input model output vector and the estimated output vector by the unknown input observer according to the estimated direction and speed of the wind gusts to determine whether one of the control surfaces is a failure A fault detection step (S4) for determining a fault, a fault separation step (S5) for distinguishing a control surface in which a failure occurs among the plurality of control surfaces by comparing the model output vector and the estimated output vector, and the failure through an adaptive technique. The fault position estimating step (S6) of estimating the angle at which the generated control surface is fixed and the fault detected in the fault detecting step are reflected. And a reforming step (S7) of reforming the algorithm so that a new failure can be detected.

상기 고장검출단계(S4)는, 상기 복수의 조종면 중 적어도 어느 하나의 조종면에서 상기 모델 출력벡터와 추정 출력벡터의 차인 잔차가 0이고, 나머지 조종면 에서 잔차가 0이 아닌 경우에 고장으로 판단한다.The fault detection step (S4) determines that a failure is obtained when the residual, which is the difference between the model output vector and the estimated output vector on at least one of the control surfaces, is zero, and the residual is not zero on the remaining control surfaces.

상기 고장분리단계는, 상기 잔차가 0인 조종면을 고장위치로 판단한다.In the fault separation step, the control surface having the residual value of 0 is determined as a fault position.

즉, 상기 [수학식 12]내지 [수학식 17]에 통해 상기

Figure 112008087494082-PAT00075
Figure 112008087494082-PAT00076
가 지수적으로 수렴함을 통해 고장에 의해 고정된 조종면과 조종면의 고정각도를 추정할 수 있다.That is, through the above [Equation 12] to [Equation 17]
Figure 112008087494082-PAT00075
Wow
Figure 112008087494082-PAT00076
The exponential convergence makes it possible to estimate the control plane fixed by the fault and the fixed angle of the control plane.

상기와 같이 고장검출단계(S4), 고장분리단계(S5), 고장위치 추정단계(S6) 및 재형성단계(S7)가 완료되면, 고장난 조종면에 따라 관측기의 구조를 변경하는 관측기 구조 변경단계(S8)가 더 포함될 수 있다.When the fault detection step (S4), the fault separation step (S5), the fault location estimation step (S6) and the remodeling step (S7) is completed as described above, the observer structure changing step of changing the structure of the observer according to the failed control plane ( S8) may be further included.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

도 1은 종래기술에 따른 무인항공기의 조종면 구동기 고장진단방법의 알고리즘이 도시된 블록선도,1 is a block diagram showing an algorithm of a control plane driver failure diagnosis method of an unmanned aerial vehicle according to the prior art,

도 2는 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법의 알고리즘이 도시된 블록선도,2 is a block diagram showing an algorithm of a control plane driver failure diagnosis method of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention;

도 3은 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법의 적응 미지입력 관측기가 도시된 블록선도이다.3 is a block diagram illustrating an adaptive unknown input observer of a method for diagnosing a control plane driver failure of an unmanned aerial vehicle using the adaptive unknown input observer according to the present invention.

도 4는 본 발명에 따른 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법이 도시된 순서도이다.4 is a flowchart illustrating a method for diagnosing a failure of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer according to the present invention.

Claims (4)

항공기의 운항 중 상기 항공기의 정상적인 조종을 방해하는 돌풍이 발생한 경우 상기 돌풍의 방향 및 속도를 추정하는 단계;Estimating the direction and speed of the gust when a gust that interferes with normal operation of the aircraft occurs during operation of the aircraft; 조종면 구동기가 고정되는 고장 발생을 모델링하되, 상기 추정된 돌풍의 방향 및 속도에 따라 기입력된 모델 출력벡터와 미지입력 관측기에 의한 추정 출력벡터를 비교하여 복수의 조종면 중에 하나의 조종면의 고장여부를 판단하는 고장검출단계;Model a failure occurrence to which the control plane driver is fixed, and compare a previously inputted model output vector and an estimated output vector by an unknown input observer according to the estimated direction and speed of the wind gust to determine whether one of the control planes has failed A fault detection step of determining; 상기 모델 출력벡터와 상기 추정 출력벡터를 비교하여 상기 복수의 조종면 중 고장이 발생된 조종면을 구분하는 고장분리단계;A fault separation step of comparing the model output vector and the estimated output vector to distinguish a control surface in which a failure occurs among the plurality of control surfaces; 적응기법을 통해 상기 고장이 발생된 조종면이 고정된 각도를 추정하는 고장위치 추정단계; 및A failure location estimating step of estimating an angle at which the control surface on which the failure has occurred is fixed through an adaptive technique; And 상기 고장검출단계에서 검출된 고장을 반영하여 새로운 고장을 검출할 수 있도록 알고리즘을 재형성하는 재형성단계를 포함하는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법.And a reforming step of reforming an algorithm to detect a new failure by reflecting the failure detected in the failure detection step. 청구항 1에 있어서,The method according to claim 1, 상기 고장검출단계는,The fault detection step, 상기 복수의 조종면 중 적어도 어느 하나의 조종면에서 상기 모델 출력벡터와 추정 출력벡터의 차인 잔차가 0이고, 나머지 조종면에서 잔차가 0이 아닌 경우 에 고장으로 판단하는 것을 특징으로 하는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법.Using an adaptive unknown input observer, characterized in that the failure is determined when the residual which is the difference between the model output vector and the estimated output vector is zero on at least one of the control surfaces and the residual is not 0 on the remaining control surfaces. How to troubleshoot control plane driver of unmanned aerial vehicle. 청구항 1에 있어서,The method according to claim 1, 상기 고장분리단계는,The fault separation step, 상기 잔차가 0인 조종면을 고장위치로 판단하는 것을 특징으로 하는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법.And a control plane driver failure diagnosis method of an unmanned aerial vehicle using an adaptive unknown input observer, characterized in that the control plane having the residual value of zero is determined as a failure location. 청구항 1에 있어서,The method according to claim 1, 상기 미지입력 관측기는 [수학식 7]로 이루어지고,The unknown input observer is made of [Equation 7], 상기 적응기법은 [수학식 8]로 이루어지는 것을 특징으로 하는 적응 미지입력 관측기를 이용한 무인항공기의 조종면 구동기 고장진단방법The adaptive technique is a failure diagnosis method of a control plane driver of an unmanned aerial vehicle using an adaptive unknown input observer, characterized in that [Equation 8]. [수학식 7][Equation 7]
Figure 112008087494082-PAT00077
Figure 112008087494082-PAT00077
[수학식 8][Equation 8]
Figure 112008087494082-PAT00078
.
Figure 112008087494082-PAT00078
.
KR1020080130322A 2008-12-19 2008-12-19 Actuator fault diagnosis of UAVs using adaptive unknown input observers KR101021801B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080130322A KR101021801B1 (en) 2008-12-19 2008-12-19 Actuator fault diagnosis of UAVs using adaptive unknown input observers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080130322A KR101021801B1 (en) 2008-12-19 2008-12-19 Actuator fault diagnosis of UAVs using adaptive unknown input observers

Publications (2)

Publication Number Publication Date
KR20100071554A true KR20100071554A (en) 2010-06-29
KR101021801B1 KR101021801B1 (en) 2011-03-17

Family

ID=42369033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080130322A KR101021801B1 (en) 2008-12-19 2008-12-19 Actuator fault diagnosis of UAVs using adaptive unknown input observers

Country Status (1)

Country Link
KR (1) KR101021801B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526239A (en) * 2016-12-16 2017-03-22 山东科技大学 Distributed speed sensor fault diagnosis method of unmanned aerial vehicle formation system
CN106527137A (en) * 2016-11-25 2017-03-22 天津大学 Observer-based quadrotor unmanned aerial vehicle fault-tolerant control method
CN106679886A (en) * 2015-11-07 2017-05-17 北京自动化控制设备研究所 Nonlinear fault detecting and identifying method of self-confirming air data system
CN111273671A (en) * 2020-03-03 2020-06-12 大连海事大学 Non-periodic communication remote observer of intelligent ship
CN112000107A (en) * 2020-09-07 2020-11-27 中国船舶重工集团公司第七0七研究所九江分部 Steering control loop fault diagnosis method and diagnosis system based on steering engine model
CN112052573A (en) * 2020-08-26 2020-12-08 东南大学 Distributed fault identification method based on finite time observer
CN113093706A (en) * 2021-04-05 2021-07-09 西北工业大学 Flight control system actuator tiny fault diagnosis method based on comprehensive observer
CN114906349A (en) * 2022-06-28 2022-08-16 北京京航计算通讯研究所 Self-adaptive fault-tolerant control method for loss fault of high-efficiency elevator of mobile aircraft
CN115729200A (en) * 2021-08-26 2023-03-03 哈尔滨工业大学 Method and device for building unmanned aerial vehicle steering engine fault detection model and method and device for detecting unmanned aerial vehicle steering engine fault
CN116203848A (en) * 2023-04-28 2023-06-02 西北工业大学 Fault sensing and protecting integrated driving method for aircraft elevator
CN116224762A (en) * 2023-04-28 2023-06-06 西北工业大学 Integrated driving method for aircraft rudder fault sensing and protection
CN116257038A (en) * 2023-05-15 2023-06-13 深圳市瓴鹰智能科技有限公司 Steering engine control and diagnosis method and device based on lightweight convolutional neural network
CN114035550B (en) * 2021-11-15 2023-11-21 江苏科技大学 Autonomous underwater robot actuating mechanism fault diagnosis method based on ESO
CN118377263A (en) * 2024-06-21 2024-07-23 辰极智航(北京)科技有限公司 Unmanned aerial vehicle fault self-checking type flight control system
US12103545B2 (en) 2021-06-28 2024-10-01 Daegu Gyeongbuk Institute Of Science And Technology Method and apparatus for monitoring unmanned ground vehicle
CN118732673A (en) * 2024-09-04 2024-10-01 杭州市北京航空航天大学国际创新研究院(北京航空航天大学国际创新学院) Unmanned rotorcraft power unit fault diagnosis method and system and unmanned rotorcraft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669582A (en) * 1995-05-12 1997-09-23 The Boeing Company Method and apparatus for reducing unwanted sideways motion in the aft cabin and roll-yaw upsets of an airplane due to atmospheric turbulence and wind gusts
US6085127A (en) 1997-03-18 2000-07-04 Aurora Flight Sciences Corporation Fault tolerant automatic control system utilizing analytic redundancy
US6622972B2 (en) 2001-10-31 2003-09-23 The Boeing Company Method and system for in-flight fault monitoring of flight control actuators

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679886A (en) * 2015-11-07 2017-05-17 北京自动化控制设备研究所 Nonlinear fault detecting and identifying method of self-confirming air data system
CN106527137A (en) * 2016-11-25 2017-03-22 天津大学 Observer-based quadrotor unmanned aerial vehicle fault-tolerant control method
CN106527137B (en) * 2016-11-25 2019-08-16 天津大学 Quadrotor drone fault tolerant control method based on observer
CN106526239B (en) * 2016-12-16 2019-05-03 山东科技大学 A kind of distributed speed sensor fault diagnostic method of unmanned plane fleet system
CN106526239A (en) * 2016-12-16 2017-03-22 山东科技大学 Distributed speed sensor fault diagnosis method of unmanned aerial vehicle formation system
CN111273671A (en) * 2020-03-03 2020-06-12 大连海事大学 Non-periodic communication remote observer of intelligent ship
CN112052573A (en) * 2020-08-26 2020-12-08 东南大学 Distributed fault identification method based on finite time observer
CN112052573B (en) * 2020-08-26 2024-02-13 东南大学 Distributed fault identification method based on limited time observer
CN112000107A (en) * 2020-09-07 2020-11-27 中国船舶重工集团公司第七0七研究所九江分部 Steering control loop fault diagnosis method and diagnosis system based on steering engine model
CN113093706B (en) * 2021-04-05 2023-06-30 西北工业大学 Flight control system actuator micro fault diagnosis method based on comprehensive observer
CN113093706A (en) * 2021-04-05 2021-07-09 西北工业大学 Flight control system actuator tiny fault diagnosis method based on comprehensive observer
US12103545B2 (en) 2021-06-28 2024-10-01 Daegu Gyeongbuk Institute Of Science And Technology Method and apparatus for monitoring unmanned ground vehicle
CN115729200A (en) * 2021-08-26 2023-03-03 哈尔滨工业大学 Method and device for building unmanned aerial vehicle steering engine fault detection model and method and device for detecting unmanned aerial vehicle steering engine fault
CN115729200B (en) * 2021-08-26 2024-05-31 哈尔滨工业大学 Unmanned aerial vehicle steering engine fault detection model construction method and device, and unmanned aerial vehicle steering engine fault detection method and device
CN114035550B (en) * 2021-11-15 2023-11-21 江苏科技大学 Autonomous underwater robot actuating mechanism fault diagnosis method based on ESO
CN114906349A (en) * 2022-06-28 2022-08-16 北京京航计算通讯研究所 Self-adaptive fault-tolerant control method for loss fault of high-efficiency elevator of mobile aircraft
CN116224762A (en) * 2023-04-28 2023-06-06 西北工业大学 Integrated driving method for aircraft rudder fault sensing and protection
CN116203848A (en) * 2023-04-28 2023-06-02 西北工业大学 Fault sensing and protecting integrated driving method for aircraft elevator
CN116257038A (en) * 2023-05-15 2023-06-13 深圳市瓴鹰智能科技有限公司 Steering engine control and diagnosis method and device based on lightweight convolutional neural network
CN118377263A (en) * 2024-06-21 2024-07-23 辰极智航(北京)科技有限公司 Unmanned aerial vehicle fault self-checking type flight control system
CN118732673A (en) * 2024-09-04 2024-10-01 杭州市北京航空航天大学国际创新研究院(北京航空航天大学国际创新学院) Unmanned rotorcraft power unit fault diagnosis method and system and unmanned rotorcraft

Also Published As

Publication number Publication date
KR101021801B1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
KR101021801B1 (en) Actuator fault diagnosis of UAVs using adaptive unknown input observers
Abbaspour et al. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV
Freeman et al. Model-based and data-driven fault detection performance for a small UAV
JP5982213B2 (en) Method and system for determining flight parameters of an aircraft
Fravolini et al. Data-driven schemes for robust fault detection of air data system sensors
Jiang et al. Fault estimation and accommodation for linear MIMO discrete-time systems
CN103970997B (en) A kind of depopulated helicopter sensor fault fast diagnosis method
Xu et al. Decentralized asymptotic fault tolerant control of near space vehicle with high order actuator dynamics
Han et al. Fault detection and identification of aircraft control surface using adaptive observer and input bias estimator
US20220139230A1 (en) Aircraft control system with residual error containment
CN101241369A (en) Flight control system executor deadlock trouble real-time detection method
CN111897221A (en) Spacecraft fault diagnosis method based on combined observer
Al Younes et al. Sensor fault diagnosis and fault tolerant control using intelligent-output-estimator applied on quadrotor UAV
Caliskan et al. Sensor and actuator FDI applied to an UAV dynamic model
CN115629547B (en) Control surface fault-oriented aircraft airborne fault-tolerant control method and system
CN111930094A (en) Unmanned aerial vehicle actuator fault diagnosis method based on extended Kalman filtering
Caliskan et al. Aircraft icing detection, identification, and reconfigurable control based on Kalman filtering and neural networks
Rudin et al. A sensor fault detection for aircraft using a single Kalman filter and hidden Markov models
KR102194238B1 (en) System and method for estimating a danger of aircraft loss of stability
Fabiani et al. A NLPCA hybrid approach for AUV thrusters fault detection and isolation
Sun et al. Robust adaptive fault estimation for a commercial aircraft oscillatory fault scenario
Van Eykeren et al. Actuator fault detection by aerodynamic model identification
Freeman et al. Analytical fault detection for a small UAV
Yu et al. Retrospective cost model refinement for aircraft fault signature detection
Zhang et al. Fault monitoring and diagnosis of aerostat actuator based on pca and state observer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140310

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150310

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190307

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 10