Nothing Special   »   [go: up one dir, main page]

KR20100058751A - Method of fabricating absorption layer of solar cell - Google Patents

Method of fabricating absorption layer of solar cell Download PDF

Info

Publication number
KR20100058751A
KR20100058751A KR1020080117267A KR20080117267A KR20100058751A KR 20100058751 A KR20100058751 A KR 20100058751A KR 1020080117267 A KR1020080117267 A KR 1020080117267A KR 20080117267 A KR20080117267 A KR 20080117267A KR 20100058751 A KR20100058751 A KR 20100058751A
Authority
KR
South Korea
Prior art keywords
compound
solar cell
sputtering
absorbing layer
layer
Prior art date
Application number
KR1020080117267A
Other languages
Korean (ko)
Other versions
KR101060180B1 (en
Inventor
김선훈
이병택
기현철
김효진
고항주
김회종
김태언
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020080117267A priority Critical patent/KR101060180B1/en
Publication of KR20100058751A publication Critical patent/KR20100058751A/en
Application granted granted Critical
Publication of KR101060180B1 publication Critical patent/KR101060180B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A manufacturing method of an absorbing layer of solar battery is provided to improve the property of the solar battery by preventing a thermal budget and improving a step coverage. CONSTITUTION: An absorbing layer(250) is formed on a substrate(240) within a vacuum chamber(200) by the sputtering process. The vacuum chamber keeps the vacuum with a pumping system(210). Sputtering targets(262, 264, 266, 268) use the selenium binary selenides or the compound in which the sulfur is added to the selenium binary selenides.

Description

태양전지의 흡수층 제조방법 {Method of fabricating absorption layer of solar cell}Method of fabricating absorption layer of solar cell {Method of fabricating absorption layer of solar cell}

본 발명은 태양전지의 흡수층 제조방법에 관한 것으로, 특히, 태양전지의 흡수층으로서 I-Ⅲ-Ⅵ족 칼코게나이드(chalcopyrite)계 반도체를 재료로 사용할 경우 우수한 특성을 갖도록 이를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing an absorbing layer of a solar cell, and more particularly, to a method of manufacturing the absorbing layer of a solar cell having excellent properties when using a I-III-VI chalcogenide-based semiconductor as a material. .

최근 대체 에너지에 대한 관심이 고조되고 있는 가운데, 저가이면서도 고효율의 태양전지에 대한 연구가 활발해지고 있다. 현재의 태양전지는 대부분 벌크 타입의 결정질 실리콘 기판을 이용하여 만들어지고 있는데, 이러한 태양전지는 효율이 높고, 신뢰성이 좋다는 장점을 갖지만, 저가화가 어렵고, 흡수층의 두께가 대체로 200∼300㎛ 정도로 얇게 만들기 어려우며, 공정이 단속적으로 이루어진다는 단점을 갖는다. 이에 비해서, 박막 태양전지는 아몰퍼스 실리콘(a-Si), 박막 다결정 실리콘(thin film poly-Si), 2셀렌화 구리인듐·갈륨(CIGS), 카드늄·텔루라이드 화합물(CdTe), 유기물질 등을 재료로 사용하여 만들어지는 것으로서, 흡수층의 두께가 대체로 2∼3㎛ 정도로 얇게 제조될 수 있으며, 유리, 금속 또는 플라스틱과 같은 저가의 기판을 이용하여 연속 대량 생산될 수 있고, 저에너지 소비형 공정으 로 제조될 수 있다는 장점을 갖는다.Recently, as interest in alternative energy is increasing, research on low-cost and high-efficiency solar cells is being actively conducted. Current solar cells are mostly made of bulk type crystalline silicon substrates, but these solar cells have the advantages of high efficiency and reliability, but they are difficult to lower in cost, and the thickness of absorbing layer is generally about 200 ~ 300㎛. It is difficult and has the disadvantage that the process is intermittent. In contrast, thin film solar cells include amorphous silicon (a-Si), thin film polycrystalline silicon (thin film poly-Si), indium copper selenide gallium (CIGS), cadmium telluride compounds (CdTe), and organic materials. It is made of material, and the thickness of absorbing layer can be made as thin as 2 ~ 3㎛ thin, can be continuously mass produced using low cost substrates such as glass, metal or plastic, and it is a low energy consumption process. It has the advantage that it can be manufactured.

이중에서, CIGS는 CuInSe2로 대표되는 I-Ⅲ-Ⅵ족 칼코게나이드(chalcopyrite)계 반도체 중의 하나로서, 1.04eV 정도의 직접 천이형 에너지 밴드갭(Eg)을 가진다. 이러한 칼코게나이드(chalcopyrite)계 반도체에는 CIGSS(Cu(InxGa1-x)(SeyS1-y)2), CIS도 포함된다. 이러한 칼코게나이드계 반도체는 광흡수계수가 1x105-1 정도로 높아서 광흡수용 박막으로 사용할 경우 고효율을 나타내며, 이상적인 밴드갭인 1.40eV을 맞추기 위해, Ga을 In으로, Se을 S로 일부 치환할 수도 있다. 참고적으로 CuGaSe2의 에너지 밴드갭은 1.6eV이며, CuGaS2의 에너지 밴드갭은 2.5eV이다. 이러한 물질은 화합물을 이루는 성분원소의 조성 제어만으로 용이하게 밴드갭 조절이 가능하며, 대체적으로 10년 이상의 장기적 안정성을 가지므로 신뢰성이 높다.Among them, CIGS is one of the I-III-VI chalcogenide-based semiconductors represented by CuInSe 2 and has a direct transition energy band gap (Eg) of about 1.04 eV. Such chalcogenide-based semiconductors include CIGSS (Cu (In x Ga 1-x ) (Se y S 1-y ) 2 ) and CIS. The chalcogenide-based semiconductor has a high light absorption coefficient of about 1x10 5-1 and shows high efficiency when used as a light absorption thin film.In order to meet the ideal bandgap of 1.40eV, part of Ga is replaced with In and Se is replaced with S. You may. For reference, the energy band gap of 1.6eV is CuGaSe 2, CuGaS 2 is an energy band gap of 2.5eV. Such materials can be easily controlled by the bandgap only by controlling the composition of the constituent elements constituting the compound, and have high reliability since they have a long-term stability of more than 10 years.

도 1은 통상적인 박막 태양전지의 일 예를 나타낸 단면도이다. 도 1을 참조하면, 박막 태양전지(10)는 2∼3㎜ 두께의 소다석회유리(sodalime glass) 기판(100) 상에 금속 배면 전극(110), 흡수층(120), 완충층(130), 윈도우층(140) 및 상부 전극(150)을 순차적으로 적층시킨 구조를 갖는다. 금속 배면 전극(110)은 대략 1㎛ 정도의 두께를 갖는 Mo 층을 스퍼터링으로 형성하여 만들어지며, 흡수층(120)으로는 2∼3㎛ 정도의 두께를 갖는 CIGS 층을 형성한다. 또한, 완충층(130)으로는 CBD(Chemical Bath Deposition)에 의해 형성된 50㎚ 정도의 CdS 층이 이용된다. 윈도우층(130)으로는 스퍼터링에 의해 형성된 50㎚ 정도의 n-형 ZnO:Al 층이 이용된다. 이와 같은 구조의 박막 태양전지(10)에서 흡수층(120)은 주로 금속 원소나 이원화합물에 동시 증발법(co-evaporation)을 적용하여 형성하거나, Cu-In-Ga 합금을 동시 스퍼터링(co-sputtering)에 의해 형성한 후, Se 펠릿을 할로겐 램프에 의해 가열하여 Cu-In-Ga 합금을 셀렌화시킴에 의해 형성하게 된다. 그러나 증발법에 의해 흡수층(120)을 형성할 경우, 스퍼터링 공정보다 높은 온도를 필요로 하기 때문에, 써멀 버짓(thermal budget)이 문제시 될 수 있으며, 또한 증발법은 금속과 같은 특정 재료에만 적용이 가능한 반면에 스퍼터링은 어떤 물질에나 적용이 가능하다는 차이가 있다. 그리고, 스텝 커버리지(step coverage) 및 방사성 손상이나 오염물질의 발생면에서도 스퍼터링이 증발법보다 우수하다는 차이를 보인다. 한편, Cu-In-Ga 합금을 동시 스퍼터링에 의해 형성한 후 이를 셀렌화시키는 공정은 흡수층(120)을 두 개의 분리된 공정에 의해 형성하는 것이기 때문에, 공정이 복잡할 뿐 아니라 장비 사이에서 이동 시에 이미 형성된 Cu-In-Ga 합금이 오염될 우려가 있다. 또한, Se 펠릿을 통해 Se의 함유량을 조절할 경우, CIGS 층 내에서의 Se의 조성을 정밀하게 제어하기 어렵다는 단점을 갖기도 한다.1 is a cross-sectional view showing an example of a conventional thin film solar cell. Referring to FIG. 1, the thin film solar cell 10 includes a metal back electrode 110, an absorbing layer 120, a buffer layer 130, and a window on a sodaime glass substrate 100 having a thickness of 2 to 3 mm. The layer 140 and the upper electrode 150 are sequentially stacked. The metal back electrode 110 is formed by sputtering an Mo layer having a thickness of about 1 μm, and the absorption layer 120 forms a CIGS layer having a thickness of about 2 μm to 3 μm. As the buffer layer 130, a CdS layer having a thickness of about 50 nm formed by a chemical bath deposition (CBD) is used. As the window layer 130, an n-type ZnO: Al layer of about 50 nm formed by sputtering is used. In the thin film solar cell 10 having such a structure, the absorbing layer 120 is formed mainly by applying co-evaporation to a metal element or a binary compound, or co-sputtering a Cu-In-Ga alloy. After formation, the Se pellets are heated by halogen lamps to form selenide Cu-In-Ga alloys. However, when the absorption layer 120 is formed by the evaporation method, the thermal budget may be a problem because the temperature is higher than that of the sputtering process, and the evaporation method may be applied only to a specific material such as a metal. The difference is that sputtering is applicable to any material. In addition, sputtering is superior to the evaporation method in terms of step coverage, radioactive damage, and generation of pollutants. On the other hand, since the process of forming a Cu-In-Ga alloy by simultaneous sputtering and selenizing it is to form the absorbing layer 120 by two separate processes, the process is not only complicated but also when moving between equipments. There is a fear that the already formed Cu-In-Ga alloy is contaminated. In addition, when controlling the Se content through the Se pellet, it also has the disadvantage that it is difficult to precisely control the composition of Se in the CIGS layer.

따라서, 본 발명이 해결하고자 하는 과제는, 태양전지의 흡수층을 제조함에 있어서, 과도한 열을 가하지 않고 단일 공정에서 진행되어 오염의 발생을 막을 수 있으며, 각 성분 원소들의 조성을 용이하게 정밀 제어할 수 있는 태양전지의 흡수 층 제조방법을 제공하는 것이다.Therefore, the problem to be solved by the present invention, in manufacturing the absorbing layer of the solar cell, can proceed in a single process without applying excessive heat to prevent the occurrence of contamination, it is possible to easily precisely control the composition of each component element It is to provide a method for producing an absorbing layer of a solar cell.

상기한 기술적 과제를 해결하기 위한 본 발명은, 기판 상에 Cu(In,Ga,Al)(Se,S)2를 흡수층으로 형성하여 화합물 태양전지를 제조하는 방법에 관한 것으로서, 셀레늄 이원화합물 또는 상기 셀레늄 이원화합물에 황이 첨가된 화합물을 타겟으로 이용한 스퍼터링에 의해 Cu(In,Ga,Al)(Se,S)2의 흡수층을 형성하는 것을 특징으로 한다.The present invention for solving the above technical problem, relates to a method for producing a compound solar cell by forming Cu (In, Ga, Al) (Se, S) 2 on the substrate as an absorption layer, selenium binary compound or The absorption layer of Cu (In, Ga, Al) (Se, S) 2 is formed by sputtering using the compound which sulfur was added to the selenium binary compound as a target.

본 발명에 따르면, 써멀 버짓(thermal budget)에 문제를 일으키지 않을 뿐 아니라 스텝 커버리지(step coverage) 및 방사성 손상이나 오염물질의 발생면에서도 기존 공정보다 우수한 태양전지의 흡수층 제조방법을 제공할 수 있기 때문에, 제조된 태양전지의 특성을 향상시킬 수 있으며, 그 단가도 낮출 수 있다.According to the present invention, it is possible to provide a method of manufacturing an absorbing layer of a solar cell, which does not cause a problem in thermal budget, but also provides superior solar cell absorbing layer in terms of step coverage, radiation damage, and generation of pollutants. The characteristics of the manufactured solar cell can be improved, and the unit cost thereof can be lowered.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석되어서는 아니 된다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited to these examples.

도 2는 본 발명에 따른 태양전지의 흡수층 제조방법을 설명하기 위한 도면이다. 도 2를 참조하면, 펌핑 시스템(210)에 의해 그 내부에 진공이 유지되는 진공챔버(200) 내의 기판(240) 상에 Cu(In,Ga,Al)(Se,S)2가 스퍼터링 공정에 의해 흡수층(250)으로 형성된다. 스퍼터링 공정을 진행함에 있어서, 스퍼터링 타겟들(262, 264, 266, 268)로서 셀레늄 이원화합물 또는 셀레늄 이원화합물에 황이 첨가된 화합물을 이용한다. 더욱 구체적으로는, 참조번호 262는 CuxSey 또는 Cux(Se,S)y 타겟이며, 참조번호 264는 AlxSey 또는 Alx(Se,S)y 타겟이며, 참조번호 266은 InxSey 또는 Inx(Se,S)y 타겟이며, 참조번호 268은 GaxSey 또는 Alx(Se,S)y 타겟이다. 본 실시예의 제조방법에서는 각각의 타겟에 별도의 파워(미도시)를 인가하여, 형성되는 흡수층의 성분원소의 조성을 조절함으로써 흡수층의 밴드갭을 제어한다. 한편, 스퍼터링 공정 중에는 히터(230)에 의해 기판(240)을 가열하며, 균일한 두께의 흡수층(250)을 형성할 수 있도록 기판(240)을 수평으로 회전시키는 회전 시스템(220)이 마련되어 형성되는 흡수층(250)의 균일도를 높이게 된다. 이와 같은 장치 내에서 흡수층의 재료가 되는 셀레나이드 화합물들의 타겟을 동시 스퍼터링하여, 기판 상에 흡수층을 제조할 경우, 별도의 셀렌화 공정을 거치지 않아서 공정이 간단하며, 흡수층의 성분원소의 조성 제어가 용이하여 이를 통한 밴드갭 조절도 쉽게 이룰 수 있다.2 is a view for explaining a method for manufacturing an absorbing layer of a solar cell according to the present invention. Referring to FIG. 2, a Cu (In, Ga, Al) (Se, S) 2 sputtering process is performed on a substrate 240 in a vacuum chamber 200 in which a vacuum is maintained therein by a pumping system 210. Thereby forming an absorbing layer 250. In the sputtering process, a selenium binary compound or a compound in which sulfur is added to the selenium binary compound is used as the sputtering targets 262, 264, 266, and 268. More specifically, reference numeral 262 is a Cu x Se y or Cu x (Se, S) y target, reference 264 is an Al x Se y or Al x (Se, S) y target, and 266 is In. x Se y or In x (Se, S) y target, and reference numeral 268 is a Ga x Se y or Al x (Se, S) y target. In the manufacturing method of this embodiment, a separate power (not shown) is applied to each target to control the band gap of the absorbing layer by adjusting the composition of the component elements of the absorbing layer to be formed. Meanwhile, during the sputtering process, a rotation system 220 is provided to heat the substrate 240 by the heater 230 and rotate the substrate 240 horizontally to form an absorption layer 250 having a uniform thickness. The uniformity of the absorbing layer 250 is increased. When sputtering targets of selenide compounds serving as the material of the absorbing layer in the apparatus, and manufacturing the absorbing layer on the substrate, the process is simple because there is no separate selenization step, and the composition control of the element of the absorbing layer is easy. It is easy to achieve the bandgap adjustment through it.

도 1은 통상적인 박막 태양전지의 일 예를 나타낸 단면도; 및1 is a cross-sectional view showing an example of a conventional thin film solar cell; And

도 2는 본 발명에 따른 태양전지의 흡수층 제조방법을 설명하기 위한 도면이다.2 is a view for explaining a method for manufacturing an absorbing layer of a solar cell according to the present invention.

* 도면 중의 주요 부분에 대한 참조부호의 설명 *Explanation of reference numerals for main parts of the drawings

100, 240: 기판100, 240: substrate

110: 금속 배면 전극110: metal back electrode

120, 250: 흡수층120, 250: absorption layer

130: 완충층130: buffer layer

140: 윈도우층140: window layer

150: 상부 전극150: upper electrode

200: 진공챔버200: vacuum chamber

210: 펌핑 시스템210: pumping system

220: 회전 시스템220: rotating system

230: 히터230: heater

262, 264, 266, 268: 스퍼터링 타겟들262, 264, 266, 268: sputtering targets

Claims (6)

기판 상에 Cu(In,Ga,Al)(Se,S)2를 흡수층으로 형성하여 화합물 태양전지를 제조하는 방법에 있어서, 셀레늄 이원화합물 또는 상기 셀레늄 이원화합물에 황이 첨가된 화합물을 타겟으로 이용한 스퍼터링에 의해 Cu(In,Ga,Al)(Se,S)2의 흡수층을 형성하는 것을 특징으로 하는 화합물 태양전지의 제조방법.In a method of manufacturing a compound solar cell by forming Cu (In, Ga, Al) (Se, S) 2 as an absorption layer on a substrate, sputtering using a selenium binary compound or a compound in which sulfur is added to the selenium binary compound as a target A method for producing a compound solar cell, comprising: forming an absorption layer of Cu (In, Ga, Al) (Se, S) 2 . 제1항에 있어서, 상기 셀레늄 이원화합물이 CuxSey, InxSey, GaxSey 및 AlxSey인 것을 특징으로 하는 화합물 태양전지의 제조방법.The method of claim 1, wherein the selenium binary compound is Cu x Se y , In x Se y , Ga x Se y, and Al x Se y . 제1항에 있어서, 상기 셀레늄 이원화합물에 황이 첨가된 화합물이 Cux(Se,S)y, Inx(Se,S)y, Gax(Se,S)y 및 Alx(Se,S)y인 것을 특징으로 하는 화합물 태양전지의 제조방법.The compound of claim 1, wherein sulfur is added to the selenium binary compound, wherein Cu x (Se, S) y , In x (Se, S) y , Ga x (Se, S) y, and Al x (Se, S) y is a method for producing a compound solar cell. 제2항 또는 제3항에 있어서, 상기 스퍼터링이 상기 셀레늄 이원화합물 또는 상기 셀레늄 이원화합물에 황이 첨가된 화합물에 각기 별도의 파워를 인가하는 동시 스퍼터링으로 진행하여 상기 흡수층의 밴드갭을 제어하는 것을 특징으로 하는 화합물 태양전지의 제조방법.The method of claim 2 or 3, wherein the sputtering is performed by simultaneous sputtering to apply separate power to the selenium binary compound or the compound to which sulfur is added to the selenium binary compound to control the band gap of the absorbing layer. Method for producing a compound solar cell. 제2항 또는 제3항에 있어서, 상기 스퍼터링이 히터에 의한 가열 중에 이루어지는 것을 특징으로 하는 화합물 태양전지의 제조방법.The method for producing a compound solar cell according to claim 2 or 3, wherein the sputtering is performed during heating by a heater. 제1항에 있어서, 상기 스퍼터링 중에 상기 기판을 수평으로 회전시키는 단계를 더 거치는 것을 특징으로 하는 화합물 태양전지의 제조방법.The method of claim 1, further comprising rotating the substrate horizontally during the sputtering.
KR1020080117267A 2008-11-25 2008-11-25 Method of manufacturing absorbing layer of solar cell KR101060180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080117267A KR101060180B1 (en) 2008-11-25 2008-11-25 Method of manufacturing absorbing layer of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080117267A KR101060180B1 (en) 2008-11-25 2008-11-25 Method of manufacturing absorbing layer of solar cell

Publications (2)

Publication Number Publication Date
KR20100058751A true KR20100058751A (en) 2010-06-04
KR101060180B1 KR101060180B1 (en) 2011-08-29

Family

ID=42360158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080117267A KR101060180B1 (en) 2008-11-25 2008-11-25 Method of manufacturing absorbing layer of solar cell

Country Status (1)

Country Link
KR (1) KR101060180B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064000A1 (en) * 2010-11-12 2012-05-18 영남대학교 산학협력단 Preparation method of cigs solar absorption layer
WO2012165860A3 (en) * 2011-05-31 2013-03-28 Korea Institute Of Energy Research METHOD OF MANUFACTURING CIGS THIN FILM WITH UNIFORM Ga DISTRIBUTION
US8546176B2 (en) 2010-04-22 2013-10-01 Tsmc Solid State Lighting Ltd. Forming chalcogenide semiconductor absorbers
WO2014042319A1 (en) * 2012-09-17 2014-03-20 한국생산기술연구원 Cis/cgs/cigs thin film manufacturing method and solar cell manufactured by using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273179B1 (en) * 2011-09-20 2013-06-17 엘지이노텍 주식회사 Solar cell and method of fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3639453B2 (en) 1999-03-16 2005-04-20 松下電器産業株式会社 Compound semiconductor thin film manufacturing apparatus and compound semiconductor thin film manufacturing method using the same
JP4288641B2 (en) * 2000-08-17 2009-07-01 本田技研工業株式会社 Compound semiconductor deposition system
JP3831592B2 (en) 2000-09-06 2006-10-11 松下電器産業株式会社 Method for producing compound semiconductor thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546176B2 (en) 2010-04-22 2013-10-01 Tsmc Solid State Lighting Ltd. Forming chalcogenide semiconductor absorbers
WO2012064000A1 (en) * 2010-11-12 2012-05-18 영남대학교 산학협력단 Preparation method of cigs solar absorption layer
WO2012165860A3 (en) * 2011-05-31 2013-03-28 Korea Institute Of Energy Research METHOD OF MANUFACTURING CIGS THIN FILM WITH UNIFORM Ga DISTRIBUTION
CN103548153A (en) * 2011-05-31 2014-01-29 韩国能源技术研究院 Method of manufacturing CIGS thin film with uniform Ga distribution
WO2014042319A1 (en) * 2012-09-17 2014-03-20 한국생산기술연구원 Cis/cgs/cigs thin film manufacturing method and solar cell manufactured by using same

Also Published As

Publication number Publication date
KR101060180B1 (en) 2011-08-29

Similar Documents

Publication Publication Date Title
Ramanujam et al. Copper indium gallium selenide based solar cells–a review
JP5748787B2 (en) Solar cell and manufacturing method thereof
JP4620105B2 (en) Method for manufacturing light absorption layer of CIS thin film solar cell
US8551802B2 (en) Laser annealing for thin film solar cells
EP2309548A2 (en) Photoelectric conversion device, method for producing the same and solar battery
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
WO2011040645A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
JP2011129631A (en) Method of manufacturing cis thin film solar cell
KR101060180B1 (en) Method of manufacturing absorbing layer of solar cell
Heinemann et al. The importance of sodium control in CIGSe superstrate solar cells
KR101210171B1 (en) Solar cell apparatus and method of fabricating the same
CN103548153A (en) Method of manufacturing CIGS thin film with uniform Ga distribution
CN112703610A (en) Method for post-treating an absorber layer
US8809105B2 (en) Method of processing a semiconductor assembly
KR101638379B1 (en) CIGS solar cell with preferred orientation and method of manufacturing the same
KR102076544B1 (en) Method of fabricating absorption layer
KR101807118B1 (en) PV Device with Graded Grain Size and S:Se Ratio
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
KR20170036606A (en) A CZTS based solar cell comprising a double light aborbing layer
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
Bosio et al. Polycrystalline Cu (InGa) Se2/CdS thin film solar cells made by new precursors
JP2019071342A (en) Method of manufacturing thin film solar cell
KR101283106B1 (en) Solar cell and method for fabricating unsing the same
KR101628365B1 (en) Solar cell and method of fabricating the same
Siew et al. Heat Soaking for Improving Rollover From S at the Back of CIGSSe Solar Cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140715

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190809

Year of fee payment: 9