Nothing Special   »   [go: up one dir, main page]

KR20100057235A - Method for manufacturing metal composite oxide using li-ion battery and cathode active material with the same - Google Patents

Method for manufacturing metal composite oxide using li-ion battery and cathode active material with the same Download PDF

Info

Publication number
KR20100057235A
KR20100057235A KR1020080116181A KR20080116181A KR20100057235A KR 20100057235 A KR20100057235 A KR 20100057235A KR 1020080116181 A KR1020080116181 A KR 1020080116181A KR 20080116181 A KR20080116181 A KR 20080116181A KR 20100057235 A KR20100057235 A KR 20100057235A
Authority
KR
South Korea
Prior art keywords
metal salt
solution
reactor
metal
active material
Prior art date
Application number
KR1020080116181A
Other languages
Korean (ko)
Other versions
KR101051066B1 (en
Inventor
윤성훈
이철위
박용기
배영산
박석준
최문호
김직수
Original Assignee
주식회사 에코프로
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로, 한국화학연구원 filed Critical 주식회사 에코프로
Priority to KR1020080116181A priority Critical patent/KR101051066B1/en
Publication of KR20100057235A publication Critical patent/KR20100057235A/en
Application granted granted Critical
Publication of KR101051066B1 publication Critical patent/KR101051066B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A method for manufacturing metal composite oxide is provided to promote the growth of precursor particles for manufacturing a positive electrode active material, to easily control an average particle diameter, and to increase a production yield. CONSTITUTION: A method for manufacturing metal composite oxide comprises the following steps: injecting a first metal salt solution with nickel and cobalt into a reactor in which distilled water is put; injecting a second metal salt solution having hydrogen ion concentration(pH) 6~12 into the reactor; and precipitating nickel composite hydroxide precursor particles by controlling pH of the whole metal salt solution in 11-13 while injecting NaOH solution and ammonia aqueous solution into the reactor.

Description

리튬이차 전지용 금속 복합 산화물 제조 방법 및 이를 포함하는 양극활물질{METHOD FOR MANUFACTURING METAL COMPOSITE OXIDE USING LI-ION BATTERY AND CATHODE ACTIVE MATERIAL WITH THE SAME} METHOD FOR MANUFACTURING METAL COMPOSITE OXIDE USING LI-ION BATTERY AND CATHODE ACTIVE MATERIAL WITH THE SAME}

본 발명은 리튬이차 전지용 금속 복합 산화물 제조 방법 및 이를 포함하는 양극활물질에 관한 것으로, 공침법(Co-precipitation)을 이용하여 리튬이차전지용(Li-ion battery) 다성분 금속산화물계 양극활물질을 제조를 용이하게 하여 생산수율을 증가시킬 수 있도록 하는 기술에 관한 것이다. The present invention relates to a method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material including the same, and to preparing a multicomponent metal oxide-based cathode active material for a lithium secondary battery (co-precipitation). The present invention relates to a technology for facilitating an increase in production yield.

리튬이차전지의 경우 에너지 밀도가 높아 동일 체적으로 비교하면 Ni/Cd 전지 보다 1.5 ∼ 2배의 높은 에너지 밀도를 가지게 되어, 휴대 전화, 노트북 등의 전원장치로 보급되고 있다. Lithium secondary batteries have a high energy density and have a higher energy density of 1.5 to 2 times higher than Ni / Cd batteries, and are widely used in power supplies such as mobile phones and notebook computers.

특히, 이들 제품의 휴대성에 대한 성능은 핵심부품인 이차전지에 의해 좌우되므로 고성능 전지에 대한 요구는 대단히 크다. 전지에 요구되는 특성에는 충방전 특성, 수명, 고율 특성과 고온에서의 안정성 등 여러 가지 측면이 있다. In particular, since the performance on the portability of these products depends on the secondary battery, which is a key component, the demand for a high performance battery is very large. The characteristics required for the battery include various aspects such as charge and discharge characteristics, lifetime, high rate characteristics, and stability at high temperatures.

리튬이차전지 중 5V급 스피넬 양극활물질은 고전압화에 따른 높은 에너지 밀도를 가지고 있어 가장 주목 받고 있는 양극활물질이다.Among lithium secondary batteries, 5V-class spinel cathode active material is the cathode active material that is attracting the most attention because it has high energy density due to high voltage.

현재 시판되는 리튬이차전지는 양극에 LiCoO2를, 음극에는 탄소를 사용한다.Currently commercially available lithium secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode.

이와 같이 대표적인 리튬 이차전지용 양극활물질인 코발트계 양극활물질 LiCoO2는 우수한 수명특성 및 전도도를 가지고 있지만 용량이 작고 원료가 고가인 단점이 있다.Cobalt-based cathode active material LiCoO 2 , a typical cathode active material for lithium secondary batteries, has excellent life characteristics and conductivity, but has a disadvantage of small capacity and expensive raw materials.

이런 문제점을 해결하기 위해 LiNiO2의 일부를 코발트로 치환시킨 LiNiCoO2 양극활물질에 대한 연구가 활발히 진행되어 왔으나 아직까지 만족할만한 고율충방전 특성 및 고온특성을 얻지 못해 아직까지 전지 안전성을 확립하지 못하고 있는 실정이다.In order to solve this problem, research has been actively conducted on LiNiCoO 2 cathode active material in which a part of LiNiO 2 is substituted with cobalt, but battery safety has not yet been established because it has not obtained satisfactory high-rate charging and discharging characteristics and high temperature characteristics. It is true.

양극활물질의 가장 일반적인 제조방법은 고상반응법인데, 이 방법은 각 구성원소의 탄산염 혹은 수산화물을 원료로 하여 이들의 분말을 혼합 및 소성하는 과정을 수차례 반복하여 제조한다. 이 방법의 단점은 혼합 시 볼-밀로부터 불순물 유입이 많으며 불균일 반응이 일어나기 쉬워 균일한 상을 얻기 어렵고, 분말입자의 크기를 일정하게 제어하기 곤란하여 소결성이 떨어지며, 제조시 공정온도가 높고 제조시간이 길다는 것이다. 또한 충,방전 사이클이 반복됨에 따라, 활물질의 결정구조가 붕괴되고 전지의 수명특성 또한 저하된다.The most common method for producing a positive electrode active material is a solid phase reaction method, which is prepared by repeating a process of mixing and calcining powders of carbonate or hydroxide of each element as a raw material. Disadvantages of this method include high impurity inflow from the ball-mill during mixing, uneven reaction, which makes it difficult to obtain a uniform phase, difficulty in controlling the size of powder particles uniformly, and poor sinterability. This is long. In addition, as the charge and discharge cycles are repeated, the crystal structure of the active material is collapsed and the lifespan of the battery is also reduced.

이를 해결하기 위하여 킬레이트를 이용한 공침법이 개시되어 있으나, 이러한 방법은 소성 시 NOx나 COx 등의 배기가스가 배출되는 문제가 있다.In order to solve this problem, a co-precipitation method using a chelate has been disclosed, but this method has a problem in that exhaust gas such as NO x or CO x is emitted during firing.

아울러, 금속 복합 물질들 간의 침전 영역이 각각 상이하므로 일반적인 금속 복합 산화물의 공침 조건인 pH 11 ~ 13 사이 영역에서는 입자의 성장이 느려지고 이로 인해 원하는 크기의 입자를 형성시키지 못하거나, 반응기 내의 용액 체류 시간을 증가시켜야 하므로 제조 수율이 감소하게 되는 문제가 있다.In addition, since the precipitation zones between the metal composite materials are different from each other, the growth of particles is slowed in the region between pH 11 and 13, which is the coprecipitation condition of the general metal composite oxide, and thus, the particles do not form particles of a desired size or the solution residence time in the reactor. Since there is a need to increase the manufacturing yield is a problem that is reduced.

본 발명에서는 공침법(Co-precipitation)을 이용하여 리튬이차전지용(Li-ion battery) 다성분 금속산화물계 양극활물질을 제조하는데 있어서, 두 개 이상의 금속염 용액을 사용하며, 각각의 용액의 수소이온농도(pH)를 조절하여 첨가함으로써, 기존의 공침법보다 양극활물질 제조를 위한 전구체 입자의 성장을 촉진시키고, 입자의 평균 입경을 조절을 용이하게 하는 리튬이차전지용 금속 복합 산화물 제조 방법을 제공하는 것을 그 목적으로 한다.In the present invention, in preparing a lithium-ion battery multi-component metal oxide-based cathode active material using co-precipitation, two or more metal salt solutions are used, and hydrogen ion concentration of each solution. By adjusting and adding (pH), it is possible to provide a method for producing a metal composite oxide for a lithium secondary battery that promotes the growth of precursor particles for the production of a positive electrode active material and facilitates the adjustment of the average particle diameter of the particles rather than the conventional coprecipitation method. The purpose.

아울러, 상기 제조 방법으로 제조된 금속 복합 산화물을 이용함으로써, 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가시킬 수 있도록 제작된 양극활물질을 제공하는 것을 그 목적으로 한다. In addition, it is an object of the present invention to provide a cathode active material manufactured to reduce the fine amount of precursor particles and increase the production yield of a product by using the metal composite oxide prepared by the above production method.

본 발명에 따른 금속 복합 산화물 제조방법은 니켈(Ni) 및 코발트(Co)를 제 1 금속염으로 포함하는 1차 금속염 용액을 증류수가 담긴 반응기 내에 주입하는 단계와, 상기 1차 금속염 용액의 주입과 동시에 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중 선택된 1 내지 3개의 원소를 제 2 금속염으로 포함하고, 수소이온농도(pH) 6 ~ 12 조건을 갖는 2차 금속염 용액을 상기 반응기 내에 주입하는 단계 및 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 상기 반응기 내에 주입하면서 상기 반응기 내에 주입된 금속염 용액 전체의 수소이온농도(pH)를 11 ∼ 13 조건으로 조절하 여 하기 화학식 1로 표시되는 니켈 복합 수산화물 전구체 입자를 침전시키는 것을 특징으로 한다.The method for preparing a metal complex oxide according to the present invention comprises injecting a primary metal salt solution containing nickel (Ni) and cobalt (Co) as a first metal salt into a reactor containing distilled water, and simultaneously injecting the primary metal salt solution. A secondary metal salt solution containing 1 to 3 elements selected from Al, Mn, Mg, Sr, Ca, Ge, Ga, In, and Sb as a second metal salt and having a hydrogen ion concentration (pH) of 6 to 12 is described above. Injecting the sodium hydroxide (NaOH) solution and ammonia aqueous solution into the reactor and the hydrogen ion concentration (pH) of the entire metal salt solution injected into the reactor is adjusted to 11 to 13 conditions and represented by the following Chemical Formula 1 It is characterized in that the precipitated nickel composite hydroxide precursor particles.

[화학식 1] [Formula 1]

Ni1-w-x-y-zCowM1xM2yM3z(OH)2 Ni 1-wxyz Co w M1 x M2 y M3 z (OH) 2

여기서, 상기 화학식 1의 M1, M2 및 M3은 각각 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중에서 선택되며, w, x, y 및 z는 0.01 ≤ w ≤ 0.2, 0 ≤ x+y+z ≤0.1을 만족시키는 값이다. Herein, M1, M2, and M3 of Chemical Formula 1 are each selected from Al, Mn, Mg, Sr, Ca, Ge, Ga, In, and Sb, and w, x, y, and z are 0.01 ≦ w ≦ 0.2, 0 ≦ This value satisfies x + y + z ≦ 0.1.

상기 1차 금속염 용액은 상기 제 2 금속염을 부분적으로 포함하는 것을 특징으로 하는 특징으로 하고, 상기 1차 금속염 용액 내의 상기 제 1 금속염 농도는 1.5 ∼ 3.0M이고, 상기 반응기 내 체류시간이 5 ∼ 50 시간이 되도록 일정속도로 주입하는 것을 특징으로 하고, 상기 2차 금속염 용액의 내의 상기 제 2 금속염 농도는 0.01 ~ 2M이고, 상기 반응기 내 체류시간이 5 ~ 50 시간이 되도록 일정속도로 주입하는 것을 특징으로 하고, 상기 암모니아 수용액은 농도가 5 ~ 50wt%인 것을 사용하고, 암모니아 대 제 1 금속염+제 2 금속염의 몰비가 1:1 ∼ 1:4가 되도록 일정속도로 주입하는 것을 특징으로 하고, 상기 수산화나트륨 용액은 농도가 1 ~ 30wt%인 것을 사용하고, 상기 수산화나트륨 용액 첨가에 의한 반응온도가 30 ∼ 80℃가 되도록 조절하는 것을 특징으로 하고, 상기 니켈 복합 수산화물 전구체 입자 크기는 1 ~ 500 ㎛로 조절하는 것을 특징으로 한다.The primary metal salt solution is characterized in that it comprises in part the second metal salt, wherein the concentration of the first metal salt in the primary metal salt solution is 1.5 to 3.0M, the residence time in the reactor is 5 to 50 Characterized in that it is injected at a constant speed so that the time, the second metal salt concentration in the secondary metal salt solution is 0.01 ~ 2M, characterized in that the injection time at a constant speed so that the residence time in the reactor is 5 ~ 50 hours Wherein the aqueous ammonia solution is used at a concentration of 5 to 50 wt%, and is injected at a constant rate such that the molar ratio of ammonia to the first metal salt + the second metal salt is 1: 1 to 1: 4. The sodium hydroxide solution is used to have a concentration of 1 ~ 30wt%, it is characterized in that the reaction temperature by the addition of the sodium hydroxide solution is adjusted to 30 ~ 80 ℃, Kel complex hydroxide precursor particle size is characterized by adjusting to 1 ~ 500 ㎛.

아울러, 본 발명에 따른 리튬이차전지용 양극활물질은 상술한 금속 복합 산화물 제조방법에 의해 제조된 니켈 복합 수산화물 전구체 입자를 리튬염과 0.8 ~ 1.5의 몰비를 갖도록 혼합하고, 600 ~ 900℃의 온도 및 대기 분위기 또는 산소 분위기 하에서 5 ~ 30 시간 동안 소성하여 제조된 것을 특징으로 한다.In addition, the cathode active material for a lithium secondary battery according to the present invention is mixed nickel composite hydroxide precursor particles prepared by the above metal composite oxide manufacturing method to have a molar ratio of 0.8 to 1.5 lithium salt, and the temperature and air of 600 ~ 900 ℃ It is characterized in that the produced by baking for 5 to 30 hours in the atmosphere or oxygen atmosphere.

여기서, 상기 양극활물질의 입자 크기는 1 ~ 30 ㎛이고, 표면적 0.1 ~ 2 m2/g 인 것을 특징으로 한다.Here, the particle size of the cathode active material is 1 ~ 30 ㎛, characterized in that the surface area of 0.1 ~ 2 m 2 / g.

아울러, 본 발명에 따른 리튬이차전지는 상기 양극활물질을 포함하는 것을 특징으로 한다.In addition, the lithium secondary battery according to the present invention is characterized in that it comprises the positive electrode active material.

본 발명에 따른 리튬이차전지용 금속 복합 산화물 제조 방법은 Ni, Co 등의 침전 영역이 유사한 금속염을 포함하는 1차 금속염 용액을 제조하고, Al 등과 같이 침전 수소이온농도(pH) 영역이 다른 2차 금속염 용액을 분리하여 준비하고 Al 포함 용액을 콜로이드 상태와 같이 안정적인 용액상을 형성하는 조건에서 반응기내에 주입함으로써, 전체 입자 성장 속도를 증가시키고, 전체 양극활물질 입자 성장 속도를 증가시키는 효과를 제공한다. In the method of manufacturing a metal composite oxide for a lithium secondary battery according to the present invention, a primary metal salt solution including a metal salt having a similar precipitation region such as Ni and Co is prepared, and a secondary metal salt having a different precipitation hydrogen ion concentration (pH) region such as Al, etc. The solution is prepared by separating the Al-containing solution under the conditions of forming a stable solution phase such as a colloidal state. Injection into the reactor provides the effect of increasing the overall particle growth rate and increasing the overall cathode active material particle growth rate.

본 발명에서는 공침법(co-precipitation)을 이용하여 리튬이차전지용(Li-ion battery) 다성분 금속산화물계 양극활물질을 제조한다. 이때, 본 발명에서 다성분의 금속염 용액으로부터 공침을 통하여 리튬이차 전지용 양극활물질의 전구체를 제조하는 방법은 종래에 다성분계 공침 용액을 하나만 사용하는 방식과 다르다.In the present invention, a lithium secondary battery (Li-ion battery) multi-component metal oxide-based cathode active material is prepared by co-precipitation. At this time, in the present invention, the method of preparing the precursor of the cathode active material for a lithium secondary battery through coprecipitation from the multicomponent metal salt solution is different from the conventional method of using only one multicomponent coprecipitation solution.

먼저 본 발명에서는 두 개 이상의 금속염 용액을 사용하며, 각각의 용액의 수소이온농도(pH)를 조절하여 첨가한다.First, in the present invention, two or more metal salt solutions are used, and the hydrogen ion concentration (pH) of each solution is adjusted and added.

이를 위하여, 1차 금속염 용액에는 최적 침전 수소이온농도(pH) 특성이 유사한 니켈(Ni) 및 코발트(Co) 금속염을 포함시키고, 2차 금속염 용액에는 최적 침전 수소이온농도(pH) 특성이 유사한 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중에서 선택된 금속염을 포함시킨다. To this end, the primary metal salt solution contains nickel (Ni) and cobalt (Co) metal salts with similar optimum precipitated hydrogen ion concentration (pH) properties, and the secondary metal salt solution contains Al having similar optimum precipitated hydrogen ion concentration (pH) properties. And metal salts selected from among Mn, Mg, Sr, Ca, Ge, Ga, In and Sb.

다음에는, 2차 금속염 용액을 안정적인 나노크기의 콜로이드 입자를 형성하는 수소이온농도(pH) 조건에서 용액을 제조하여 기존의 공침법보다 전구체 입자의 성장을 촉진시키거나 성장을 조절하여 입자의 평균 입경을 조절하는 효과를 가져오게 한다. Next, the secondary metal salt solution is prepared under a hydrogen ion concentration (pH) condition to form stable nano-sized colloidal particles, thereby promoting growth of precursor particles or controlling growth than conventional coprecipitation methods, thereby increasing the average particle size of the particles. To have the effect of adjusting the

이러한 효과를 통해 전구체 입자의 미분량을 감소시키고 제품의 생산수율을 증가시키게 된다. This effect reduces the amount of precursor particles and increases the yield of the product.

이하에서는 상술한 본 발명의 기술에 근거하여 리튬이차전지용 금속 복합 산화물 및 이를 포함하는 양극활물질에 대해 상세히 설명하는 것으로 한다.Hereinafter, based on the above-described technology of the present invention, a metal composite oxide for a lithium secondary battery and a cathode active material including the same will be described in detail.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and those skilled in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims.

먼저 수소이온농도(pH) 11 ~ 13 조건에서 니켈, 코발트 및 알루미늄을 주성분으로 하는 금속 복합 산화물을 제조하는 방법에 있어서 1차 금속염 용액은 Ni, Co등을 주된 금속염으로 포함하는 것을 사용하고, 2차 금속염 용액은 나머지 미량의 금속염 원소 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중 선택된는 금속염을 포함하는 것을 사용한다. 이때, 2차 금속염 용액의 수소이온농도(pH)를 조절은 반응기에서의 입자 성장에 관여하게 되므로, 2차 금속염 용액의 수소이온농도(pH)를 조절을 이용하여 금속 복합 산화물 입자의 크기를 용이하게 제어할 수 있다.First, in the method for producing a metal complex oxide mainly containing nickel, cobalt, and aluminum at a hydrogen ion concentration (pH) of 11 to 13, the primary metal salt solution may include Ni, Co, etc. as the main metal salt. The secondary metal salt solution uses a metal salt selected from the remaining trace metal salt elements Al, Mn, Mg, Sr, Ca, Ge, Ga, In and Sb. At this time, since the adjustment of the hydrogen ion concentration (pH) of the secondary metal salt solution is involved in particle growth in the reactor, the size of the metal complex oxide particles can be easily controlled by controlling the hydrogen ion concentration (pH) of the secondary metal salt solution. Can be controlled.

상기와 같은 목적을 달성하기 위해서는, 증류수가 담긴 반응기 안에 제 1 금속염의 농도가 1.5 ∼ 3.0M인 1차 금속염 용액을 입자체류시간이 5 ∼ 50 시간이 되도록 일정속도로 주입하고, 동시에 수소이온농도(pH)가 6 ~ 12 사이로 조절된 2차 금속염 용액을 0.01 ~ 2M 농도로 입자체류시간이 5 ~ 50 시간이 되도록 일정속도로 주입한다.In order to achieve the above object, a primary metal salt solution having a concentration of 1.5 to 3.0 M of a first metal salt is introduced into a reactor containing distilled water at a constant rate such that the particle residence time is 5 to 50 hours, and at the same time, a hydrogen ion concentration. The secondary metal salt solution (pH) adjusted between 6 and 12 is injected at a constant rate so that the particle residence time is 5 to 50 hours at a concentration of 0.01 to 2M.

이때, 제 1 금속염의 농도가 1.5M 미만으로 낮은 경우 전체 수율이 낮아지는 단점이 있으며 3.0M을 초과하는 경우 점도가 높고 반응성이 떨어지는 단점이 나타난다. 또한, 제 2 금속염의 농도가 0.01M 미만으로 낮은 경우는 전체 첨가되는 금속의 양이 너무 적으므로 생산 속도가 낮아지는 단점이 나타나며, 2M을 초과의 경우 안정적인 콜로이드 형성에 어려움이 있다. In this case, when the concentration of the first metal salt is lower than 1.5M, the overall yield is lowered. When the concentration of the first metal salt is higher than 3.0M, the viscosity is high and the reactivity is lowered. In addition, when the concentration of the second metal salt is less than 0.01M, the amount of metal added is too small, resulting in a low production rate, and in the case of more than 2M, it is difficult to form a stable colloid.

아울러, 입자 체류시간이 5시간 미만인 경우 전체 생산성이 떨어지게 되며, 이거나, 50시간을 초과하여 너무 길어지게 되면 입자의 형성이 어려워지는 단점이 발생할 수 있으므로, 본 발명에서 제시하는 상기 농도 및 시간 조건을 준수하는 것이 바람직하다.In addition, when the particle residence time is less than 5 hours, the overall productivity is lowered, or if it is too long exceeding 50 hours, the formation of particles may be difficult, so that the concentration and time conditions proposed in the present invention It is desirable to comply.

그리고, 2차 금속염 용액의 경우 수소이온농도(pH)가 6 미만이면 나노크기의 콜로이드형성이 이루어지지 않아 원하는 입자성장을 관찰하기 어려우며, 12를 초과하는 조건에서는 지나친 침전으로 알루미늄 입자가 과도하게 성장하는 단점이 존재하므로, 본 발명에서는 2차 금속염 용액의 수소이온농도(pH)를 6 ~ 12 조건으로 한정하는 것이 바람직하다.In the case of the secondary metal salt solution, when the hydrogen ion concentration (pH) is less than 6, it is difficult to observe the desired particle growth because the colloid formation of the nanoscale is not achieved, and the aluminum particles grow excessively due to excessive precipitation under the conditions exceeding 12. Since there is a disadvantage, in the present invention, it is preferable to limit the hydrogen ion concentration (pH) of the secondary metal salt solution to 6 to 12 conditions.

이와, 더불어 암모니아 수용액을 암모니아 대 전체 금속염의 몰비가 1:1 ∼ 1:4가 되도록 일정속도로 주입하면서, 수산화나트륨 용액을 주입하여 반응기 내부의 반응온도를 30 ∼ 80℃ 로 조절하고, 금속염 용액의 수소이온농도(pH)를 11 ∼ 13 으로 조절하여 하기 화학식 1로 표시되는 니켈 복합 수산화물을 제조한다.In addition, while the aqueous solution of ammonia was injected at a constant rate such that the molar ratio of ammonia to total metal salt was 1: 1 to 1: 4, sodium hydroxide solution was injected to adjust the reaction temperature in the reactor to 30 to 80 ° C., and the metal salt solution By adjusting the hydrogen ion concentration (pH) of 11 to 13 to prepare a nickel composite hydroxide represented by the following formula (1).

[화학식 1] [Formula 1]

Ni1-w-x-y-zCowM1xM2yM3z(OH)2 Ni 1-wxyz Co w M1 x M2 y M3 z (OH) 2

상기 식에서 M1, M2 및 M3은 각각 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중에서 선택되며, w, x, y 및 z는 0.01 ≤ w ≤ 0.2, 0 ≤ x+y+z ≤0.1을 만족시키는 값이다. 여기서 1차 금속염 용액은 Ni과 Co 염을 포함하고 나머지 금속 (M1, M2 및 M3) 염을 부분적으로 포함하거나 포함하지 않을 수 있으며, 2차 금속염은 나머지 금속(M1, M2 및 M3) 염을 포함하여 화학식 1과 같은 화학양론비를 갖도록 한다. Wherein M1, M2 and M3 are each selected from Al, Mn, Mg, Sr, Ca, Ge, Ga, In and Sb, w, x, y and z are 0.01 ≦ w ≦ 0.2, 0 ≦ x + y + It is a value which satisfies z <0.1. Wherein the primary metal salt solution comprises Ni and Co salts and may or may not partially contain the remaining metal (M1, M2 and M3) salts, and the secondary metal salts include the remaining metal (M1, M2 and M3) salts. To have a stoichiometric ratio as shown in Formula 1.

본 발명의 다른 측면은 상기 방법에 의해 제조된 금속 복합 산화물에 관한 것이다. 상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 상기 니켈 복합 수산화물을 리튬화합물과 리튬대비 금속의 비율이 1 ~ 1.2 몰비로 혼합하여 400∼600℃에서 대기 분위기 혹은 산소분위기 하에서 전처리한 후, 다시 750 ∼ 900℃에서 대기 분위기 혹은 산소분위기 하에서 열처리하여 제조된 양극활물질을 제조한다.Another aspect of the present invention relates to a metal composite oxide prepared by the above method. Another aspect of the present invention for achieving the above object is after mixing the nickel composite hydroxide in a ratio of 1 ~ 1.2 molar ratio of the lithium compound and the metal to lithium and after pre-treatment at 400 to 600 ℃ in the atmosphere or oxygen atmosphere, Again, a cathode active material prepared by heat treatment at atmospheric pressure or oxygen atmosphere at 750 ~ 900 ℃ is prepared.

이러한 방법으로 제조된 양극활물질은 입자 크기가 1 ~ 30㎛, 더 바람직하게는 평균입경이 5 ~ 20㎛이며, 표면적이 0.1 ~ 2 m2/g 를 갖도록 제조한다.The cathode active material prepared in this manner is prepared to have a particle size of 1 to 30 µm, more preferably an average particle diameter of 5 to 20 µm, and a surface area of 0.1 to 2 m 2 / g.

평균입경의 경우 1㎛ 미만으로 작아지게 되면 입자의 표면적이 증가하여 표면에 불순물 형성이 증가하는 단점이 나타나고 30㎛ 이상이 되면 입자의 크기가 너무커져서 리튬이온이 입자내부로 확산되는 거리가 증가하게 되어 속도 특성이 떨어 지는 단점이 나타나게 된다. If the average particle size is smaller than 1 μm, the surface area of the particles increases and impurity formation increases on the surface. If the average particle diameter is 30 μm or more, the size of the particles increases so that the distance of diffusion of lithium ions into the particles increases. As a result, the disadvantage of deterioration in speed characteristics will appear.

상기와 같은 본 발명은 다음 실시예에 의거하여 더욱 구체화하겠는 바, 본 발명이 이러한 실시예에 한정되지는 않는다.The present invention as described above will be further embodied based on the following examples, but the present invention is not limited to these examples.

실시예 1Example 1

Ni/Co 몰비가 0.86/0.15가 되도록 NiSO4, CoSO4 금속염을 이용하여 1차 금속염 용액을 제조하고, 이와 분리된 2차 금속염 용액으로서 Al(NO3)3 용액을 제조한다. Al(NO3)3 용액의 경우 수소이온농도(pH)를 6 ~ 12 사이로 맞추기 위해 적정량의 1M 수산화나트륨(NaOH) 용액이나 진한 암모니아 용액을 투여한다. 이러한 두 용액을 동시에 CSTR 연속 반응기에 투여한다. 두 용액의 투여 속도를 조절하여 Ni/Co/Al의 몰비가 0.8/0.15/0.05가 되도록 한다. 동시에 20wt% 수산화나트륨(NaOH) 용액 및 진한 암모니아 수용액을 투여하도록 한다. 이러한 반응에서 반응기 내의 금속염 용액 수소이온농도(pH) 가 11 ~ 13 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절한다. 그리고, 전체 용액의 체류시간을 10 시간 정도가 되도록 투여량을 조절하도록 한다. A primary metal salt solution is prepared using NiSO 4 and CoSO 4 metal salts such that the Ni / Co molar ratio is 0.86 / 0.15, and an Al (NO 3 ) 3 solution is prepared as a secondary metal salt solution separated therefrom. For Al (NO 3 ) 3 solution, an appropriate amount of 1M sodium hydroxide (NaOH) solution or concentrated ammonia solution is administered to adjust the pH to between 6 and 12. These two solutions are administered simultaneously to the CSTR continuous reactor. The dosing rate of the two solutions is adjusted so that the molar ratio of Ni / Co / Al is 0.8 / 0.15 / 0.05. Simultaneously, 20 wt% sodium hydroxide (NaOH) solution and concentrated aqueous ammonia solution are administered. In this reaction, the dose of sodium hydroxide (NaOH) solution is adjusted so that the metal salt solution hydrogen ion concentration (pH) in the reactor is about 11-13. Then, the dosage is adjusted so that the residence time of the total solution is about 10 hours.

다음에는, CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈 복합 수산화물 전구체 입자를 제작한다. Next, in the case of more than 1L in the CSTR continuous reactor, the overflow solution (flow overflow) is received and filtered, washed with distilled water sufficiently and dried in a 120 ℃ oven to prepare a nickel composite hydroxide precursor particles.

실시예 2Example 2

Ni/Co/Al 몰비가 0.86/0.16/0.02 되도록 NiSO4, CoSO4, Al(NO3)3 금속염을 이용하여 1차 금속염 용액을 제조하고, 이와 분리된 2차 금속염 용액으로서 Al(NO3)3 용액을 제조한다. Al(NO3)3 용액의 경우 수소이온농도(pH)를 6 ~ 12 사이로 맞추기 위해 적정량의 1M 수산화나트륨(NaOH) 용액이나 진한 암모니아 용액을 투여한다. 이러한 두 용액을 동시에 CSTR 연속 반응기에 투여한다. 두 용액의 투여 속도를 조절하여 Ni/Co/Al의 몰비가 0.8/0.15/0.05가 되도록 한다. 동시에 20wt% 수산화나트륨(NaOH) 용액, 진한 암모니아 용액을 투여 한다. 이러한 반응에서 반응기의 수소이온농도(pH) 가 11 ~ 13 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절한다. 전체 용액의 체류시간을 10 시간 정도가 되도록 투여량을 조절하도록 한다. CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈 복합 수산화물 전구체 입자를 제작한다. So that the Ni / Co / Al molar ratio of 0.86 / 0.16 / 0.02 NiSO 4, CoSO 4, Al (NO 3) using the third metal salt primary as the secondary metal salt solution to prepare a metal salt solution, and this separation Al (NO 3) 3 Prepare a solution. For Al (NO 3 ) 3 solution, an appropriate amount of 1M sodium hydroxide (NaOH) solution or concentrated ammonia solution is administered to adjust the pH to between 6 and 12. These two solutions are administered simultaneously to the CSTR continuous reactor. The dosing rate of the two solutions is adjusted so that the molar ratio of Ni / Co / Al is 0.8 / 0.15 / 0.05. Simultaneously, 20 wt% sodium hydroxide (NaOH) solution and concentrated ammonia solution are administered. In this reaction, the dose of sodium hydroxide (NaOH) solution is adjusted so that the hydrogen ion concentration (pH) of the reactor is about 11-13. Dosage is adjusted so that the residence time of the total solution is about 10 hours. If more than 1L in the CSTR continuous reactor to receive the overflow (flow) overflow solution (filter) and then washed with distilled water sufficiently and dried in 120 ℃ oven to prepare a nickel composite hydroxide precursor particles.

실시예 3Example 3

Ni/Co/Al 몰비가 0.82/0.15/0.03 되도록 NiSO4, CoSO4, Al(NO3)3 금속염을 이용하여 1차 금속염 용액을 제조하고, 이와 분리된 2차 금속염 용액으로서 Al(NO3)3 용액을 제조한다. Al(NO3)3 용액의 경우 수소이온농도(pH)를 6 ~ 12 사이로 맞추기 위해 적정량의 1M 수산화나트륨(NaOH) 용액을 투여한다. 이러한 두 용액을 동시에 CSTR 연속 반응기에 투여한다. 두 용액의 투여 속도를 조절하여 Ni/Co/Al의 몰비가 0.8/0.15/0.05가 되도록 한다. 동시에 20wt% 수산화나트륨(NaOH) 용액, 진한 암모니아 용액을 투여하도록 한다. 이러한 반응에서 반응기의 수소이온농도(pH) 가 11 ~ 13 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절한다. 전체 용액의 체류시간을 10 시간 정도가 되도록 투여량을 조절하도록 한다. CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈 복합 수산화물 전구체 입자를 제작한다.So that the Ni / Co / Al molar ratio of 0.82 / 0.15 / 0.03 NiSO 4, CoSO 4, Al (NO 3) using the third metal salt primary as the secondary metal salt solution to prepare a metal salt solution, and this separation Al (NO 3) 3 Prepare a solution. For Al (NO 3 ) 3 solutions, an appropriate amount of 1M sodium hydroxide (NaOH) solution is administered to set the pH to between 6 and 12. These two solutions are administered simultaneously to the CSTR continuous reactor. The dosing rate of the two solutions is adjusted so that the molar ratio of Ni / Co / Al is 0.8 / 0.15 / 0.05. At the same time, 20 wt% sodium hydroxide (NaOH) solution and concentrated ammonia solution should be administered. In this reaction, the dose of sodium hydroxide (NaOH) solution is adjusted so that the hydrogen ion concentration (pH) of the reactor is about 11-13. Dosage is adjusted so that the residence time of the total solution is about 10 hours. If more than 1L in the CSTR continuous reactor to receive the overflow (flow) overflow solution (filter) and then washed with distilled water sufficiently and dried in 120 ℃ oven to prepare a nickel composite hydroxide precursor particles.

비교예 1Comparative Example 1

Ni/Co/Al 몰비가 0.86/0.16/0.05 되도록 NiSO4, CoSO4, Al(NO3)3 금속염을 이용하여 단일 금속염 용액을 제조하고 이 용액을 CSTR 연속 반응기에 투여한다. 동시에 20wt% 수산화나트륨(NaOH) 용액, 진한 암모니아 용액을 투여하도록 한다. 이러한 반응에서 반응기의 수소이온농도(pH) 가 11 ~ 13 정도가 되도록 수산화나트륨(NaOH) 용액의 투여량을 조절한다. 전체 용액의 체류시간을 10 시간 정도가 되도록 투여량을 조절하도록 한다. CSTR 연속 반응기에서 1L 가 넘으면 넘치는 오버플로우(overflow) 용액을 받아 이를 걸러준 후 증류수로 충분히 씻어주고 이를 120℃ 오븐에서 건조하여 니켈 복합 수산화물 전구체 입자를 제작한다.A single metal salt solution is prepared using NiSO 4 , CoSO 4 , Al (NO 3 ) 3 metal salts such that the Ni / Co / Al molar ratio is 0.86 / 0.16 / 0.05 and the solution is administered to a CSTR continuous reactor. At the same time, 20 wt% sodium hydroxide (NaOH) solution and concentrated ammonia solution should be administered. In this reaction, the dose of sodium hydroxide (NaOH) solution is adjusted so that the hydrogen ion concentration (pH) of the reactor is about 11-13. Dosage is adjusted so that the residence time of the total solution is about 10 hours. If more than 1L in the CSTR continuous reactor to receive the overflow (flow) overflow solution (filter) and then washed with distilled water sufficiently and dried in 120 ℃ oven to prepare a nickel composite hydroxide precursor particles.

[입자 크기 및 분포][Particle Size and Distribution]

상기 실시예 1 내지 실시예 3과 비교예 1에 의해 얻어진 전구체 재료를 광학 현미경을 사용하여 입자의 크기 및 분포 등을 조사하여, 하기 도 1 내지 도 5로 나타내었다. The precursor materials obtained in Examples 1 to 3 and Comparative Example 1 were examined by using an optical microscope to investigate the size and distribution of particles, and the like.

도 1 내지 도 3은 본 발명에 따른 실시예 1 내지 실시예 3을 통하여 얻어진 전구체의 광학현미경 사진이다.1 to 3 are optical micrographs of the precursors obtained through Examples 1 to 3 according to the present invention.

여기서, 광학 현미경은 모두 같은 배율로 찍은 사진이며, 검은색의 실선과 실선사이가 10 ㎛에 해당한다.Here, all the optical microscopes are the pictures taken with the same magnification, and the black solid line and a solid line correspond to 10 micrometers.

도 4는 본 발명에 따른 비교예 1을 통하여 얻어진 전구체의 광학현미경 사진이다.4 is an optical micrograph of the precursor obtained through Comparative Example 1 according to the present invention.

도 1 내지 도 3과 도 4의 경우를 비교하면, 알루미늄 용액을 분리하여 투여하는 경우(실시예 1 내지 실시예 3) 입자크기가 비교예1 비하여 증가하였음을 알 수 있다. Comparing the case of Figures 1 to 3 and 4, it can be seen that the particle size was increased compared to Comparative Example 1 when the aluminum solution is separately administered (Examples 1 to 3).

아울러, 도 1 내지 도 3의 경우 첨가되는 알루미늄의 양이 증가함에 따라서 알루미늄에 의한 입자 성장 저해로 인해 입자 크기가 다소 감소함을 알 수 있다. 즉, 2차 금속염 용액의 농도 및 함유량이 최적값을 가질 때 입자 크기가 가장 증가한다는 것을 알 수 있다.In addition, in the case of Figures 1 to 3 it can be seen that as the amount of aluminum is added, the particle size is somewhat reduced due to the inhibition of particle growth by aluminum. That is, it can be seen that the particle size increases most when the concentration and content of the secondary metal salt solution have an optimum value.

다음으로, 상기 실시예 1을 통하여 얻어진 니켈 복합 수산화물 전구체 입자를 LiOH와 Li과 금속 전구체와의 몰비가 1.05/1이 되도록 섞어주고 이를 산소 분위기하에서 750℃, 20 시간 반응 시켰다.Next, the nickel composite hydroxide precursor particles obtained in Example 1 were mixed so that the molar ratio of LiOH, Li, and metal precursor was 1.05 / 1, and the mixture was reacted at 750 ° C. for 20 hours in an oxygen atmosphere.

도 5는 본 발명에 따른 실시예 1을 통하여 얻어진 전구체를 리튬염과 반응시킨 후 고온에서 소성하여 얻어진 양극활물질의 주사전자 현미경 사진이다.FIG. 5 is a scanning electron micrograph of a cathode active material obtained by reacting a precursor obtained through Example 1 with a lithium salt and baking at a high temperature.

도 5에서 나타나는 양극 물질은 평균 입경이 9 ㎛이상으로 크며, 표면적이 0.3 m2/g 정도로 작아지게 되어 표면 불순물의 양이 감소하고 미분량이 감소하는 장점이 나타남을 알 수 있다.The positive electrode material shown in FIG. 5 has an average particle diameter of 9 μm or more, and the surface area is reduced to about 0.3 m 2 / g, indicating that the amount of surface impurities is reduced and the amount of fine powder is reduced.

그 다음으로, 상기 도 5에 나타난 양극 활물질을 이용하여 하기 다음의 제조예 1로 코인셀을 제조 하였으며, 그 결과는 하기 [표 1] 및 도 6으로 나타났다.Next, using the positive electrode active material shown in FIG. 5, a coin cell was manufactured by the following Preparation Example 1, and the results are shown in the following [Table 1] and FIG.

제조예 1Preparation Example 1

산화티타늄 나노복합체를 이용한 리튬이온전지의 제조Fabrication of Li-ion Battery Using Titanium Oxide Nanocomposites

상기 실시예 1의 제조된 물질과 바인더인 PVDF(Polyvinylidene Fluoride), 도전제인 카본블랙(상업명 : super p)을 90:5:5의 비율로 혼합하여 이를 알루미늄 집전체 코팅한 후, 이를 건조시키고 롤프레스(roll press)하여 제조된 전극을 사용하여 코인셀을 제작하였다. 여기서 사용된 전해질은 1M LiPF6 EC/DMC를 이용하였다.The material and the binder of PVDF (Polyvinylidene Fluoride) and the conductive agent carbon black (commercial name: super p) of Example 1 were mixed in a ratio of 90: 5: 5, coated with an aluminum current collector, and then dried. The coin cell was manufactured using the electrode manufactured by roll press. The electrolyte used here was 1M LiPF 6 EC / DMC.

[표 1]TABLE 1

실시예1의 양극재Cathode Material of Example 1 충방전 용량(mAh/g)Charge / discharge capacity (mAh / g) 효율(%)efficiency(%) 0.1C0.1C 190.0190.0 90.3%90.3% 0.2C0.2C 186.0186.0 97.9%97.9% 1.5C1.5C 179.1179.1 94.3%94.3% 1.0C1.0C 173.4173.4 91.3%91.3% 1.5C1.5C 169.8169.8 89.4%89.4% 2.0C2.0C 167.3167.3 88.0%88.0%

도 6은 본 발명에 따른 양극활물질을 사용하여 제조된 코인셀의 충방전 곡선을 나타낸 그래프이다. 충전시에는 4.3 V 정전류/정전압 방식으로 1/200C의 조건으로 이루어졌다. Figure 6 is a graph showing the charge and discharge curve of the coin cell prepared using the positive electrode active material according to the present invention. At the time of charging, it was made at 1 / 200C by 4.3V constant current / constant voltage method.

도 6을 참조하면, 초기효율이 90% 정도로 우수하고 가역적 충방전 용량이 190 mAh/g 정도로 나왔으며 2C 의 속도에서 88%의 우수한 속도특성을 보이고 있음을 알 수 있다.Referring to FIG. 6, the initial efficiency is about 90%, the reversible charge / discharge capacity is about 190 mAh / g, and it can be seen that it shows an excellent speed characteristic of 88% at the speed of 2C.

상술한 바와 같이, 기존의 Ni, Co, Al 등의 금속 전구체를 함께 투여하는 경우에는 Ni, Co, Al 등의 침전 영역이 각각 다르므로 일반적인 금속 복합 산화물의 공침 조건인 수소이온농도(pH) 11 ~ 13 사이 영역에서는 입자의 성장이 느려지고 이로 인해 원하는 크기의 입자를 형성시키기 위해서는 반응기 내의 용액 체류 시간을 늘려야 하는 단점이 존재하였다. As described above, when the metal precursors such as Ni, Co, and Al are administered together, the precipitation regions of Ni, Co, and Al are different, respectively, so that hydrogen ion concentration (pH) 11, which is a coprecipitation condition of a general metal composite oxide, is different. In the region ˜13, the growth of particles was slowed, and thus, there was a disadvantage in that the residence time of the solution in the reactor had to be increased in order to form particles of a desired size.

본 발명에서는 이러한 문제점을 해결하기 위해 Ni, Co 등의 침전 영역이 유사한 금속염을 포함하는 1차 금속염 용액을 제조하고, Al 등과 같이 침전 수소이온농도(pH) 영역이 다른 2차 금속염 용액을 분리하여 준비하고 Al 포함 용액을 콜로 이드 상태와 같이 부분적으로 침전시켜 반응기내에 주입함으로써, 전체 입자 성장 속도를 증가시키는 효과가 있다. In order to solve this problem, the present invention prepares a primary metal salt solution including a metal salt having a similar precipitation region such as Ni and Co, and separates a secondary metal salt solution having a different precipitation hydrogen ion concentration (pH) region such as Al and the like. By preparing and partially precipitating the Al-containing solution as in the colloidal state, it is effective to increase the overall particle growth rate.

이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 변형될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and can be modified in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

도 1 내지 도 3은 본 발명에 따른 실시예 1 내지 실시예 3을 통하여 얻어진 전구체의 광학현미경 사진.1 to 3 are optical micrographs of the precursor obtained through Examples 1 to 3 according to the present invention.

도 4는 본 발명에 따른 비교예 1을 통하여 얻어진 전구체의 광학현미경 사진.Figure 4 is an optical micrograph of the precursor obtained through Comparative Example 1 according to the present invention.

도 5는 본 발명에 따른 실시예 1을 통하여 얻어진 전구체를 리튬염과 반응시킨 후 고온에서 소성하여 얻어진 양극활물질의 주사전자 현미경 사진.5 is a scanning electron micrograph of a positive electrode active material obtained by reacting a precursor obtained through Example 1 with a lithium salt and then baking at a high temperature.

도 6은 본 발명에 따른 양극활물질을 사용하여 제조된 코인셀의 충방전 곡선을 나타낸 그래프.Figure 6 is a graph showing the charge and discharge curve of the coin cell prepared using the positive electrode active material according to the present invention.

Claims (10)

니켈(Ni) 및 코발트(Co)를 제 1 금속염으로 포함하는 1차 금속염 용액을 증류수가 담긴 반응기 내에 주입하는 단계;Injecting a primary metal salt solution containing nickel (Ni) and cobalt (Co) as a first metal salt into a reactor containing distilled water; 상기 1차 금속염 용액의 주입과 동시에 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중 선택된 1 내지 3개의 원소를 제 2 금속염으로 포함하고, 수소이온농도(pH) 6 ~ 12 조건을 갖는 2차 금속염 용액을 상기 반응기 내에 주입하는 단계; 및Simultaneously with the injection of the primary metal salt solution, Al, Mn, Mg, Sr, Ca, Ge, Ga, In, and Sb include one to three elements selected as a second metal salt, and hydrogen ion concentration (pH) 6 to 12 Injecting a conditional secondary metal salt solution into said reactor; And 수산화나트륨(NaOH) 용액 및 암모니아 수용액을 상기 반응기 내에 주입하면서 상기 반응기 내에 주입된 금속염 용액 전체의 수소이온농도(pH)를 11 ∼ 13 조건으로 조절하여 하기 화학식 1로 표시되는 니켈 복합 수산화물 전구체 입자를 침전시키는 것을 특징으로 하는 금속 복합 산화물 제조방법.Injecting a sodium hydroxide (NaOH) solution and an aqueous ammonia solution into the reactor, the hydrogen ion concentration (pH) of the entire metal salt solution injected into the reactor was adjusted to 11 to 13 conditions to form a nickel composite hydroxide precursor particle represented by the following Chemical Formula 1 Method for producing a metal composite oxide, characterized in that to precipitate. [화학식 1] [Formula 1] Ni1-w-x-y-zCowM1xM2yM3z(OH)2 Ni 1-wxyz Co w M1 x M2 y M3 z (OH) 2 여기서, 상기 화학식 1의 M1, M2 및 M3은 각각 Al, Mn, Mg, Sr, Ca, Ge, Ga, In 및 Sb 중에서 선택되며, w, x, y 및 z는 0.01 ≤ w ≤ 0.2, 0 ≤ x+y+z ≤0.1을 만족시키는 값이다. Herein, M1, M2, and M3 of Chemical Formula 1 are each selected from Al, Mn, Mg, Sr, Ca, Ge, Ga, In, and Sb, and w, x, y, and z are 0.01 ≦ w ≦ 0.2, 0 ≦ This value satisfies x + y + z ≦ 0.1. 제 1 항에 있어서,The method of claim 1, 상기 1차 금속염 용액은 상기 제 2 금속염을 부분적으로 포함하는 것을 특징으로 하는 특징으로 하는 금속 복합 산화물 제조방법.And wherein said primary metal salt solution partially comprises said second metal salt. 제 1 항에 있어서,The method of claim 1, 상기 1차 금속염 용액 내의 상기 제 1 금속염 농도는 1.5 ∼ 3.0M이고, 상기 반응기 내 체류시간이 5 ∼ 50 시간이 되도록 일정속도로 주입하는 것을 특징으로 하는 금속 복합 산화물 제조방법.The first metal salt concentration in the primary metal salt solution is 1.5 to 3.0M, the metal complex oxide production method characterized in that the injection at a constant rate so that the residence time in the reactor is 5 to 50 hours. 제 1 항에 있어서, The method of claim 1, 상기 2차 금속염 용액의 내의 상기 제 2 금속염 농도는 0.01 ~ 2M이고, 상기 반응기 내 체류시간이 5 ~ 50 시간이 되도록 일정속도로 주입하는 것을 특징으로 하는 금속 복합 산화물 제조방법.The second metal salt concentration in the secondary metal salt solution is 0.01 ~ 2M, metal composite oxide production method characterized in that the injection at a constant rate so that the residence time in the reactor is 5 to 50 hours. 제 1 항에 있어서, The method of claim 1, 상기 암모니아 수용액은 농도가 5 ~ 50wt%인 것을 사용하고, 암모니아 대 제 1 금속염+제 2 금속염의 몰비가 1:1 ∼ 1:4가 되도록 일정속도로 주입하는 것을 특징으로 하는 금속 복합 산화물 제조방법.The aqueous ammonia solution is used in a concentration of 5 to 50wt%, and a metal complex oxide manufacturing method characterized in that the injection at a constant rate so that the molar ratio of ammonia to the first metal salt + the second metal salt is 1: 1 to 1: 4. . 제 1 항에 있어서,The method of claim 1, 상기 수산화나트륨 용액은 농도가 1 ~ 30wt%인 것을 사용하고, 상기 수산화나트륨 용액 첨가에 의한 반응온도가 30 ∼ 80℃가 되도록 조절하는 것을 특징으로 하는 금속 복합 산화물 제조방법.The sodium hydroxide solution is a concentration of 1 to 30wt% using a metal composite oxide production method, characterized in that the reaction temperature is adjusted to 30 ~ 80 ℃ by the addition of the sodium hydroxide solution. 제 1 항에 있어서, The method of claim 1, 상기 니켈 복합 수산화물 전구체 입자 크기는 1 ~ 500nm로 조절하는 것을 특징으로 하는 금속 복합 산화물 제조방법.The nickel composite hydroxide precursor particle size is 1 to 500nm metal composite oxide manufacturing method, characterized in that to be adjusted. 제 1 항의 금속 복합 산화물 제조방법에 의해 제조된 니켈 복합 수산화물 전구체 입자를 리튬염과 0.8 ~ 1.5의 몰비를 갖도록 혼합하고, 600 ~ 900℃의 온도 및 대기 분위기 또는 산소 분위기 하에서 5 ~ 30 시간 동안 소성하여 제조된 것을 특징으로 하는 리튬이차전지용 양극활물질.The nickel composite hydroxide precursor particles prepared by the method for preparing a metal composite oxide of claim 1 are mixed with a lithium salt to have a molar ratio of 0.8 to 1.5, and then fired for 5 to 30 hours at a temperature of 600 to 900 ° C. and an atmospheric or oxygen atmosphere. A cathode active material for a lithium secondary battery, characterized in that manufactured by. 제 8 항에 있어서,The method of claim 8, 상기 양극활물질의 입자 크기는 1 ~ 30 ㎛이고, 표면적 0.1 ~ 2 m2/g 인 것을 특징으로 하는 리튬이차전지용 양극활물질.Particle size of the cathode active material is 1 ~ 30 ㎛, surface area 0.1 ~ 2 m 2 / g cathode active material for a lithium secondary battery, characterized in that. 제 8 항의 양극활물질을 포함하는 것을 특징으로 하는 리튬이차전지.A lithium secondary battery comprising the cathode active material of claim 8.
KR1020080116181A 2008-11-21 2008-11-21 Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same KR101051066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080116181A KR101051066B1 (en) 2008-11-21 2008-11-21 Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080116181A KR101051066B1 (en) 2008-11-21 2008-11-21 Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same

Publications (2)

Publication Number Publication Date
KR20100057235A true KR20100057235A (en) 2010-05-31
KR101051066B1 KR101051066B1 (en) 2011-07-21

Family

ID=42281031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080116181A KR101051066B1 (en) 2008-11-21 2008-11-21 Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same

Country Status (1)

Country Link
KR (1) KR101051066B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074679A (en) * 2010-12-18 2011-05-25 中南大学 Method for preparing spherical aluminum-doped nickel lithium carbonate for lithium ion battery positive electrode material
WO2012036463A2 (en) * 2010-09-14 2012-03-22 한양대학교 산학협력단 Method for manufacturing a positive electrode active material for a lithium secondary battery, positive electrode active material for a lithium secondary battery manufactured according to the method, and lithium secondary battery including the positive electrode active material
WO2012033369A3 (en) * 2010-09-08 2012-06-14 에스케이이노베이션 주식회사 Positive electrode active material for a lithium secondary battery, and method for preparing same
WO2012124970A2 (en) * 2011-03-14 2012-09-20 주식회사 에코프로 Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby
KR20140060482A (en) * 2011-06-07 2014-05-20 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
CN103887487A (en) * 2014-04-15 2014-06-25 山东大学 Dumbbell cobalt carbonate material and application thereof
KR101632887B1 (en) * 2014-12-24 2016-06-24 주식회사 포스코 Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR20170009557A (en) * 2015-07-17 2017-01-25 주식회사 엘지화학 Cylindrical secondary battery with enhanced stability by regulating strength of particle of positive active material
KR20170090556A (en) * 2016-01-28 2017-08-08 중앙대학교 산학협력단 Metal Composite Oxide, Method For Preparing The Same And Method For Measuring Concentration Of Sulfate In Manufacturing Process The Same
KR20170131369A (en) * 2015-01-23 2017-11-29 유미코아 Lithium metal oxide cathode powder for high-voltage lithium-ion batteries
KR20190103802A (en) * 2018-02-28 2019-09-05 중앙대학교 산학협력단 Metal composite, cathode active material comprising the same, secondary battery comprising the same and method for preparing the same
KR20210051656A (en) * 2019-10-31 2021-05-10 가천대학교 산학협력단 Catalyst for fuel electrode, method for manufacturing the same and method for manufacturing membrane-electrode assembly
KR20210052611A (en) * 2019-10-29 2021-05-11 성균관대학교산학협력단 Metal phosphide nanostructure, preparing method of the same, and electrode including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100694567B1 (en) 2003-04-17 2007-03-13 세이미 케미칼 가부시끼가이샤 Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
KR100548988B1 (en) * 2003-11-26 2006-02-02 학교법인 한양학원 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
KR100815583B1 (en) 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825294B2 (en) 2010-09-08 2017-11-21 Sk Innovation Co., Ltd. Positive electrode active material for lithium secondary battery and method for preparing the same
WO2012033369A3 (en) * 2010-09-08 2012-06-14 에스케이이노베이션 주식회사 Positive electrode active material for a lithium secondary battery, and method for preparing same
WO2012036463A2 (en) * 2010-09-14 2012-03-22 한양대학교 산학협력단 Method for manufacturing a positive electrode active material for a lithium secondary battery, positive electrode active material for a lithium secondary battery manufactured according to the method, and lithium secondary battery including the positive electrode active material
WO2012036463A3 (en) * 2010-09-14 2012-06-14 한양대학교 산학협력단 Method for manufacturing a positive electrode active material for a lithium secondary battery, positive electrode active material for a lithium secondary battery manufactured according to the method, and lithium secondary battery including the positive electrode active material
CN102074679A (en) * 2010-12-18 2011-05-25 中南大学 Method for preparing spherical aluminum-doped nickel lithium carbonate for lithium ion battery positive electrode material
WO2012124970A2 (en) * 2011-03-14 2012-09-20 주식회사 에코프로 Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby
KR101282014B1 (en) * 2011-03-14 2013-07-05 주식회사 에코프로 Manufacturing method of positive active material for lithium secondary battery and positive active material for lithium secondary battery made by the same
WO2012124970A3 (en) * 2011-03-14 2013-03-07 주식회사 에코프로 Manufacturing method for anode material for lithium secondary battery and anode material for lithium secondary battery made thereby
KR20140060482A (en) * 2011-06-07 2014-05-20 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
CN103887487A (en) * 2014-04-15 2014-06-25 山东大学 Dumbbell cobalt carbonate material and application thereof
KR101632887B1 (en) * 2014-12-24 2016-06-24 주식회사 포스코 Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR20170131369A (en) * 2015-01-23 2017-11-29 유미코아 Lithium metal oxide cathode powder for high-voltage lithium-ion batteries
KR20170009557A (en) * 2015-07-17 2017-01-25 주식회사 엘지화학 Cylindrical secondary battery with enhanced stability by regulating strength of particle of positive active material
KR20170090556A (en) * 2016-01-28 2017-08-08 중앙대학교 산학협력단 Metal Composite Oxide, Method For Preparing The Same And Method For Measuring Concentration Of Sulfate In Manufacturing Process The Same
KR20190103802A (en) * 2018-02-28 2019-09-05 중앙대학교 산학협력단 Metal composite, cathode active material comprising the same, secondary battery comprising the same and method for preparing the same
KR20210052611A (en) * 2019-10-29 2021-05-11 성균관대학교산학협력단 Metal phosphide nanostructure, preparing method of the same, and electrode including the same
KR20210051656A (en) * 2019-10-31 2021-05-10 가천대학교 산학협력단 Catalyst for fuel electrode, method for manufacturing the same and method for manufacturing membrane-electrode assembly

Also Published As

Publication number Publication date
KR101051066B1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
KR101051066B1 (en) Method for manufacturing a metal composite oxide for a lithium secondary battery and a cathode active material comprising the same
KR100974352B1 (en) Composite cathode active material for lithium secondary battery, methode of preparing thereof, and lithium secondary battery comprising the same
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
CN110073527B (en) Nickel active material precursor, method for producing same, nickel active material, and lithium secondary battery
KR101292757B1 (en) Cathod active material of full gradient, method for preparing the same, lithium secondary battery comprising the same
KR101185366B1 (en) A method of preparing positive active material precursor and positive active material for lithium battery with concentration grandients using batch reactor
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
EP4421919A1 (en) Single-crystal ternary positive electrode material, preparation method therefor, and application thereof
US8999588B2 (en) Positive electrode for a lithium battery
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
KR102459624B1 (en) Nickel-based active material precursor for lithium secondary battery, preparing method thereof, nickel-based active material for lithium secondary battery formed thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
KR20180108521A (en) Positive active material and secondary battery comprising the same
KR20180010123A (en) Nickel-based active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including nickel-based active material
KR100274236B1 (en) Cathode active material for lithium secondary battery and method for producing the same
JP6871320B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a method for producing the precursor thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the precursor.
KR20140108615A (en) Cathod active material for lithium rechargeable battery
KR101375704B1 (en) Precursor of cathode active material for lithium secondary battery and preparation method thereof
KR20130059029A (en) Process for producing composite metal oxide
KR101905362B1 (en) Metal composite for cathode active material, cathode active material comprising the same, and mehtod of preparing the same
CN111029561A (en) Ternary lithium battery positive electrode material precursor and preparation method thereof, ternary lithium battery positive electrode material and preparation method and application thereof
KR101525000B1 (en) Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
KR20240019205A (en) Composite Transition Metal Precursor for Cathode Active Material and Cathode Active Material for Secondary Battery Prepared from the Same
KR20160095644A (en) Positive active material and secondary battery comprising the same
KR101632887B1 (en) Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
CN116282216A (en) Positive electrode precursor material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140612

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170622

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 9