Nothing Special   »   [go: up one dir, main page]

KR20100037080A - The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant - Google Patents

The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant Download PDF

Info

Publication number
KR20100037080A
KR20100037080A KR1020100024990A KR20100024990A KR20100037080A KR 20100037080 A KR20100037080 A KR 20100037080A KR 1020100024990 A KR1020100024990 A KR 1020100024990A KR 20100024990 A KR20100024990 A KR 20100024990A KR 20100037080 A KR20100037080 A KR 20100037080A
Authority
KR
South Korea
Prior art keywords
refrigerant
pipe
gas
exhaust gas
exhaust
Prior art date
Application number
KR1020100024990A
Other languages
Korean (ko)
Inventor
임효진
Original Assignee
임효진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임효진 filed Critical 임효진
Priority to KR1020100024990A priority Critical patent/KR20100037080A/en
Publication of KR20100037080A publication Critical patent/KR20100037080A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은 기존의 수냉식 엔진 배기가스 냉각시스템에 있어서 물의 현열을 이용하여 냉각시키던 방식을 물, 부동액 첨가 물, 프레온냉매, 자연냉매, 액화가스 등의 냉매 기화열인 잠열을 이용하는 방법을 도입하여 엔진 배기가스를 냉각시키는 냉매 기화열을 이용한 엔진 배기가스 냉각시스템에 관한 것이다.
배기가스에는 많은 유해가스가 포함되어 있다. 촉매컨버터(14)는 배기가스에 포함된 유해가스를 촉매를 이용하여 무해한 가스로 바꾸어주는 역할을 하는데 현재 사용중인 촉매컨버터(14)의 적정 운전온도는 약600℃ 정도이다. 그리고 800℃ 정도에서는 구성요소가 녹아버리므로 이보다 높은 온도의 배기가스가 배출될 경우 냉각이 필요하다. 그리고 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사하여 배기가스에 포함된 에너지를 회생시키는 것이 매우 중요하지만 현재는 이를 모두 버리고 있는 실정이다.
본 발명에서는 촉매컨버터(14) 등 배기계통에 설치된 기기들이 적정 운전온도로 운전될 수 있도록 배기관을 감싸도록 냉매재킷(21)을 설치하여 그 내부에 냉매를 채우고 냉매 기화열을 이용하여 냉각시키도록 하였다. 냉매의 순환은 배기관에서 제공되는 폐열에 의한 자연순환 방식을 도입하였으며 또한 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사할 정도로 많음을 감안하여 배기가스가 지닌 폐열에서 열에너지, 역학에너지, 전기에너지를 재생할 수 있도록 하여 에너지 효율을 획기적으로 증대시켰다.
The present invention introduces a method of cooling latent heat using water in an existing water-cooled engine exhaust gas cooling system using latent heat, which is a refrigerant vaporization heat such as water, antifreeze, freon refrigerant, natural refrigerant, and liquefied gas. The present invention relates to an engine exhaust gas cooling system using refrigerant vaporization heat for cooling a gas.
Exhaust gases contain many harmful gases. The catalytic converter 14 serves to convert the harmful gas contained in the exhaust gas into a harmless gas by using a catalyst. An appropriate operating temperature of the catalytic converter 14 currently being used is about 600 ° C. At about 800 ° C, the component melts, so cooling is required when exhaust gas is discharged at a higher temperature. In addition, the energy emitted by the exhaust gas is about 30% of the fuel, which is almost the same as the energy converted from the engine to power, so it is very important to regenerate the energy contained in the exhaust gas.
In the present invention, the refrigerant jacket 21 is installed to surround the exhaust pipe so that the devices installed in the exhaust system such as the catalytic converter 14 can be operated at a proper operating temperature to fill the refrigerant therein and cool it using the refrigerant vaporization heat. . The circulation of the refrigerant introduces a natural circulation method using waste heat provided from the exhaust pipe.In addition, the energy emitted from the exhaust gas is about 30% of the fuel, which is almost the same as that of the engine. Energy efficiency has been dramatically increased by allowing thermal energy, mechanical energy and electrical energy to be recovered from the waste heat.

Description

냉매 기화열을 이용한 엔진 배기가스 냉각시스템{The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant}The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant

엔진 배기가스 냉각분야    Engine exhaust gas cooling field

배기가스에는 뜨거운 열과 많은 유해가스가 포함되어 있다. 촉매컨버터(14)는 배기가스에 포함된 유해가스를 촉매를 이용하여 무해한 가스로 바꾸어주는 역할을 하는데 현재 사용중인 촉매컨버터(14)는 적정 운전온도는 약600℃ 정도이다. 그리고 800℃ 정도에서는 구성요소가 녹아버리므로 이보다 높은 온도의 배기가스가 배출될 경우 냉각이 필요하다. 그리고 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사하여 배기가스에 포함된 에너지를 회생시키는 것이 매우 중요하지만 현재는 이를 모두 버리고 있다. 이제까지는 배기계통 냉각에 수냉각방식을 채택하여 왔다. 공개번호 특1994-0015163[디젤엔진탑재차량의 배기가스냉각장치]는 엔진냉각용 라디에이터와 연결된 물관을 이용하여 배기가스를 냉각시키는 방법을 제시하고 있다. 등록번호 20-0185364[엔진지게차의 배기가스 냉각장치]도 물이 통과하는 냉각관을 사용하여 배기가스를 냉각시키는 방식을 제시하고 있지만 냉매 기화열을 이용하는 방법은 아직 발명되지 않고 있다.        Exhaust gases contain hot heat and many harmful gases. The catalytic converter 14 serves to convert harmful gas contained in the exhaust gas into a harmless gas by using a catalyst. The catalytic converter 14 currently in use has an appropriate operating temperature of about 600 ° C. At about 800 ° C, the component melts, so cooling is required when exhaust gas is discharged at a higher temperature. The energy emitted by the exhaust gas is about 30% of the fuel, which is almost the same as the energy converted from the engine to power. Until now, water cooling has been adopted for exhaust system cooling. Publication No. 1994-0015163 [Exhaust gas cooling device of a diesel engine-mounted vehicle] proposes a method of cooling exhaust gas using a water pipe connected to an engine cooling radiator. Patent No. 20-0185364 [Exhaust gas cooler of an engine forklift] also discloses a method of cooling exhaust gas by using a cooling tube through which water passes, but a method of using refrigerant vaporization heat has not yet been invented.

본 발명에서는 촉매컨버터(14)가 적정 운전온도로 운전될 수 있도록 배기관을 냉매 기화열을 이용하여 냉각시키도록 한다. 냉매의 순환은 배기관에서 제공되는 폐열에 의한 자연순환 방식을 도입한다. 또한 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사할 정도로 많음을 감안하여 배기가스가 지닌 폐열에서 열에너지, 역학에너지, 전기에너지를 재생할 수 있도록 하여 에너지 효율을 증대시키도록 한다.        In the present invention, the exhaust pipe is cooled by using refrigerant vaporization heat so that the catalytic converter 14 can be operated at an appropriate operating temperature. The circulation of the refrigerant introduces a natural circulation method by waste heat provided in the exhaust pipe. In addition, the energy emitted from the exhaust gas is about 30% of the fuel, which is almost the same as the energy converted from the engine to power. Therefore, energy efficiency can be recovered by recovering thermal energy, mechanical energy, and electrical energy from the waste heat of the exhaust gas. To increase it.

배기관을 감싸도록 설치되며 냉매수용공간(61)을 형성하는 냉매재킷(21)을 설치하고 냉매재킷(21) 상부에 응축기(22)를 설치하여 냉매재킷(21)과 응축기(22)간에 냉매순환 폐회로가 형성되도록 배관으로 연결하고 냉매재킷의 냉매수용공간(61)에 배기관의 배기가스에 의해 비등이 가능한 냉매를 채워서 이 냉매의 기화열을 이용하여 배기가스를 냉각시킴.   The refrigerant jacket 21 is installed to surround the exhaust pipe and forms a refrigerant accommodating space 61, and a condenser 22 is installed on the refrigerant jacket 21 to circulate the refrigerant between the refrigerant jacket 21 and the condenser 22. It is connected by piping so that a closed circuit is formed, and the refrigerant which can be boiled by the exhaust gas of the exhaust pipe is filled in the refrigerant accommodating space 61 of the refrigerant jacket to cool the exhaust gas using the heat of vaporization of the refrigerant.

배기계통에는 촉매컨버터(14)가 설치되는데 촉매컨버터(14)는 배기가스에 포함된 유해가스를 촉매를 이용하여 무해한 가스로 바꾸어주는 역할을 하는데 현재 사용중인 촉매컨버터(14)는 적정 운전온도는 약600℃ 정도이다. 그리고 800℃ 정도에서는 구성요소가 녹아버리므로 이보다 높은 온도의 배기가스가 배출될 경우 냉각이 필요하다. 따라서 본 발명은 촉매컨버터(14)가 원활히 작동하도록 적정온도를 유지하는 냉각기능을 제공한다. 또한 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사할 정도로 많다. 본 발명에서는 배기관의 열로 냉매를 기화시고 기화된 기체냉매의 압력을 이용하여 터빈/터빈실(31)에서 역학에너지 또는 전기에너지를 생산하여 에너지 효율을 높이도록 하였다. 또한 응축기(22)에서 나오는 바람으로 자동차 실내 난방을 하도록 하여 열에너지 형태로 에너지를 재활용할 수 있도록 하였다. 따라서 본 발명은 냉각을 통하여 자동차에 있어서 중요한 기능을 하는 촉매컨버터(14)의 성능을 개선시키고 배기가스에 포함된 에너지를 회수하도록 함으로써 에너지 효율을 대폭 증대시키는 기여를 하였다.        The catalytic converter 14 is installed in the exhaust system. The catalytic converter 14 converts harmful gas contained in the exhaust gas into a harmless gas by using a catalyst. The catalytic converter 14 currently in use has an appropriate operating temperature. It is about 600 ° C. At about 800 ° C, the component melts, so cooling is required when exhaust gas is discharged at a higher temperature. Therefore, the present invention provides a cooling function for maintaining the proper temperature so that the catalytic converter 14 operates smoothly. In addition, the energy emitted by the exhaust gas is about 30% of the fuel, almost as much as the energy converted from the engine to power. In the present invention, the refrigerant is vaporized by the heat of the exhaust pipe, and the energy efficiency is increased by producing dynamic energy or electric energy in the turbine / turbine chamber 31 by using the pressure of the vaporized gas refrigerant. In addition, the interior of the car by the wind coming from the condenser 22 to allow the energy to be recycled in the form of thermal energy. Therefore, the present invention has contributed to greatly improving the energy efficiency by improving the performance of the catalytic converter 14 which plays an important function in the automobile through cooling and recovering the energy contained in the exhaust gas.

도 1은 자동차 배기계통 개략 설명도이다.
도 2는 본 발명의 냉매 기화열을 이용한 엔진 배기가스 냉각시스템 설명도이다.
도 3은 터빈/터빈실과 냉매탱크가 추가된 사례 설명도이다.
도 4는 냉각시스템을 촉매컨버터전방배기관에 설치한 사례 설명도이다.
도 5는 냉각시스템을 촉매컨버터전방배기관에 설치하고 터빈/터빈실과 냉매탱크가 추가된 사례 설명도이다.
도 6은 배기관과 냉매재킷 결합구조 사례 설명도이다.
1 is a schematic explanatory diagram of an automobile exhaust system.
2 is an explanatory view of an engine exhaust gas cooling system using the refrigerant vaporization heat of the present invention.
3 is a diagram illustrating a case where a turbine / turbine chamber and a refrigerant tank are added.
4 is a diagram illustrating a case where a cooling system is installed in a catalytic converter front exhaust pipe.
5 is a diagram illustrating an example in which a cooling system is installed in a catalytic converter front exhaust pipe and a turbine / turbine chamber and a refrigerant tank are added.
6 is an explanatory diagram illustrating an example of a coupling structure of an exhaust pipe and a refrigerant jacket.

도 1은 자동차 배기계통 개략 설명도이다. 엔진(11)에는 엔진(11)에서 발생하는 배기가스를 모으는 역할을 하는 매니폴드(12)가 설치되며 매니폴드(12)에는 배기관이 연결되는데 촉매컨버터(14)를 기준으로 촉매컨버터(14) 앞쪽에 설치되는 촉매컨버터전방배기관(13)과 촉매컨버터(14) 뒤쪽에 설치되는 촉매컨버터후방배기관(15)로 구분된다. 촉매컨버터(14)는 배기가스에 포함된 유해가스를 촉매를 이용하여 무해한 가스로 바꾸어주는 역할을 하는데 현재 사용중인 촉매컨버터(14)는 적정 운전온도는 약600℃ 정도이다. 그리고 800℃ 정도에서는 구성요소가 녹아버리므로 이보다 높은 온도의 배기가스가 배출될 경우 냉각이 필요하다. 그리고 배기가스로 배출되는 에너지는 연료의 약30%로 엔진에서 동력으로 변환시키는 에너지와 거의 유사하여 배기가스에 포함된 에너지를 회생시키는 것이 매우 중요하지만 현재는 이를 모두 버리고 있다.    1 is a schematic explanatory diagram of an automobile exhaust system. The engine 11 is provided with a manifold 12 that collects exhaust gas generated from the engine 11 and an exhaust pipe is connected to the manifold 12. The catalytic converter 14 is based on the catalytic converter 14. It is divided into a catalytic converter front exhaust pipe 13 installed at the front and a catalytic converter rear exhaust pipe 15 installed at the rear of the catalytic converter 14. The catalytic converter 14 serves to convert harmful gas contained in the exhaust gas into a harmless gas by using a catalyst. The catalytic converter 14 currently in use has an appropriate operating temperature of about 600 ° C. At about 800 ° C, the component melts, so cooling is required when exhaust gas is discharged at a higher temperature. The energy emitted by the exhaust gas is about 30% of the fuel, which is almost the same as the energy converted from the engine to power.

도 2는 본 발명의 냉매 기화열을 이용한 엔진 배기가스 냉각시스템 설명도이다. 배기관으로부터 열을 잘 흡수하기 위하여 배기관의 일부를 감싸면서 배기관 외측과 결합하여 냉매수용공간(61)을 형성하는 냉매재킷(21)을 설치한다. 여기서 배기관은 촉매컨버터후방배기관(15) 또는 촉매컨버터전방배기관(13) 중의 하나이다. 도2에서는 촉매컨버터후방배기관(15)에 냉매재킷(21)을 설치한 경우를 도시한다. 냉매재킷(21) 상부에 냉매 순환통로를 가지는 응축기(22)를 설치하고 응축기(22)에 바람을 제공하도록 냉각팬(28)을 설치하며, 냉매재킷(21) 상부 인출배관과 응축기(22) 상부 인출배관을 기체배관(23)으로 상호 관통되도록 연결하고 냉매재킷(21) 하부 인출배관과 응축기(22) 하부 인출배관을 액체배관(24)으로 상호 관통되도록 연결한다. 기체배관(23) 상부 관로 일측에 내부 공기를 배출하기 위하여 밸브가 달린 기체유출구(26)를 설치하며 액체배관(24) 하부 관로 일측에 냉각시스템 내부의 액체 냉매를 유출시킬 수 있도록 밸브가 달린 액체유출구(25)를 설치한다. 냉각성능을 조절하는 역할을 하도록 기체배관(23)과 액체배관(24) 관로상에 각각 1개씩 온도제어장치가 겸비된 냉각조절밸브(27)를 설치한다. 그리고 냉매재킷(21), 기체배관(23), 응축기(22), 액체배관(24) 다시 냉매재킷(21)으로 형성되는 냉각시스템 냉매순환회로 내부 중 응축기(22)를 제외한 공간에 냉매재킷(21)이 배기관으로부터 받는 폐열에 의해 끓을 수 있는 냉매(미도시)를 채우고 냉매를 가열하여 기체유출구(26)를 통하여 공기를 배출시킴으로써 응축기(22)는 진공이 되도록 한다. 냉매는 물, 부동액 첨가 물, 프레온냉매, 자연냉매, 액화가스 중의 하나를 사용하는 것도 본 발명의 범위에 포함된다. 응축기(22)에서 발생하는 따뜻한 바람은 자동차 실내 난방용으로 사용하여 배기가스로 버려지는 열에너지를 재활용 할 수도 있다. 작동원리는 다음과 같다. 배기관인 촉매컨버터후방배기관(15)으로 배기가스가 유입되면 냉매재킷(21)에 채워진 냉매는 배기가스로부터 열을 전달받아 기화를 하면서 증발잠열로 냉매재킷(21) 내부의 촉매컨버터후방배기관(15) 내부 배기가스를 냉각시킨다. 냉매재킷(21)에서 기화된 기체냉매는 기체배관(23)을 통하여 응축기(22)에 유입되어 열을 버리고 액화되고 액체로 변한 냉매는 중력에 의해 액체배관(24)을 통해 다시 냉매재킷(21) 하부로 유입되면서 냉각의 한 주기를 마친다. 배기가스의 폐열과 중력에 의하여 냉매의 순환이 이루어지므로 자연순환방식이다. 냉매의 순환속도가 배기가스의 열의 과다에 의해 결정되므로 매우 효율적인 냉각시스템이다.     2 is an explanatory view of an engine exhaust gas cooling system using the refrigerant vaporization heat of the present invention. In order to absorb heat well from the exhaust pipe, a coolant jacket 21 is formed to form a refrigerant accommodating space 61 in combination with the outside of the exhaust pipe while covering a part of the exhaust pipe. Here, the exhaust pipe is one of the catalytic converter rear exhaust pipe 15 or the catalytic converter front exhaust pipe 13. FIG. 2 shows a case where the refrigerant jacket 21 is installed in the catalyst converter rear exhaust pipe 15. As shown in FIG. A condenser 22 having a refrigerant circulation passage is installed on the upper portion of the refrigerant jacket 21, and a cooling fan 28 is installed to provide wind to the condenser 22, and the upper outlet pipe and the condenser 22 of the refrigerant jacket 21 are installed. The upper withdrawal pipe is connected to each other through the gas pipe 23 and the refrigerant jacket 21, the lower withdrawal pipe and the condenser 22, the lower withdrawal pipe is connected to each other through the liquid pipe 24. A gas outlet port (26) with a valve is installed on one side of the upper pipe of the gas pipe (23), and a liquid with a valve is provided to allow the liquid refrigerant in the cooling system to flow out on one side of the lower pipe of the liquid pipe (24). Install the outlet 25. A cooling control valve 27 having a temperature control device is installed on the gas pipe 23 and the liquid pipe 24 so as to adjust the cooling performance. In the cooling system refrigerant circulation circuit formed of the refrigerant jacket 21, the gas pipe 23, the condenser 22, and the liquid pipe 24 again, the refrigerant jacket 21 is located in a space excluding the condenser 22. The condenser 22 is vacuumed by filling a refrigerant (not shown) that can be boiled by waste heat received from the exhaust pipe 21 and heating the refrigerant to discharge air through the gas outlet 26. The refrigerant is also included in the scope of the present invention using one of water, antifreeze additive, freon refrigerant, natural refrigerant, and liquefied gas. The warm wind generated from the condenser 22 may be used for heating a car interior to recycle thermal energy that is discarded as exhaust gas. The principle of operation is as follows. When exhaust gas flows into the catalytic converter rear exhaust pipe 15, which is an exhaust pipe, the refrigerant filled in the refrigerant jacket 21 receives heat from the exhaust gas and vaporizes while receiving vaporization of heat from the exhaust gas. ) Cool the internal exhaust gas. The gaseous refrigerant vaporized in the refrigerant jacket 21 flows into the condenser 22 through the gas pipe 23 to discard heat, and the refrigerant that is liquefied and turned into liquid is returned to the refrigerant jacket 21 through the liquid pipe 24 by gravity. ) It enters the bottom and finishes one cycle of cooling. It is a natural circulation method because refrigerant is circulated by waste heat and gravity of exhaust gas. Since the circulation rate of the refrigerant is determined by the excessive heat of the exhaust gas, it is a very efficient cooling system.

도 3은 터빈/터빈실과 냉매탱크가 추가된 사례 설명도이다. 도2에서 기체배관(23)에 설치된 냉각조절밸브(27)와 응축기(22)사이의 관로에 터빈/터빈실(31)을 추가로 설치하고, 액체배관(24)에 설치된 냉각조절밸브(27)와 응축기(22)사이의 관로에 냉매탱크(32)를 추가로 설치한 것이 다르다. 터빈/터빈실(31)은 터빈실 내에 터빈을 설치한 형태로 기체냉매에 의해 터빈이 돌아가면서 발생하는 역학에너지는 축 또는 자석커플링에 의해 외부로 유출되도록 한다. 따라서 기체냉매의 압력을 이용하여 터빈실 내의 터빈을 돌려 배관 외부에서 역학에너지 또는 전기에너지를 생산할 수 있다. 냉매탱크(32)는 냉매재킷(21)에 안정적으로 냉매를 공급하는 역할을 수행한다.     3 is a diagram illustrating a case where a turbine / turbine chamber and a refrigerant tank are added. In FIG. 2, a turbine / turbine chamber 31 is additionally installed in the conduit between the cooling control valve 27 and the condenser 22 installed in the gas pipe 23, and the cooling control valve 27 installed in the liquid piping 24. ) And the additional refrigerant tank 32 is installed in the conduit 22 between the condenser 22 and the condenser 22. The turbine / turbine chamber 31 has a turbine installed in the turbine chamber so that the dynamic energy generated when the turbine is rotated by the gas refrigerant is discharged to the outside by the shaft or the magnet coupling. Therefore, by using the pressure of the gas refrigerant to turn the turbine in the turbine chamber can be produced mechanical energy or electrical energy outside the pipe. The coolant tank 32 serves to stably supply the coolant to the coolant jacket 21.

도 4는 냉각시스템을 촉매컨버터전방배기관에 설치한 사례 설명도이다. 도2에서 냉매재킷(21)을 촉매컨버터전방배기관(13)에 설치한 것이 다르다. 나머지 작동원리는 도2에서 설명한 바와 같다.     4 is a diagram illustrating a case where a cooling system is installed in a catalytic converter front exhaust pipe. In FIG. 2, the coolant jacket 21 is provided in the catalyst converter front exhaust pipe 13. The remaining operation principle is as described in FIG.

도 5는 냉각시스템을 촉매컨버터전방배기관에 설치하고 터빈/터빈실과 냉매탱크가 추가된 사례 설명도이다. 도3에서 냉매재킷(21)을 촉매컨버터전방배기관(13)에 설치한 것이 다르다. 나머지 작동원리는 도3에서 설명한 바와 같다.     5 is a diagram illustrating an example in which a cooling system is installed in a catalytic converter front exhaust pipe and a turbine / turbine chamber and a refrigerant tank are added. In FIG. 3, the refrigerant jacket 21 is provided in the catalytic converter front exhaust pipe 13. The remaining operation principle is as described in FIG.

도 6은 배기관과 냉매재킷 결합구조 사례 설명도이다. 냉매재킷(21)은 배기관인 촉매컨버터전방배기관(13)또는 촉매컨버터후방배기관(15)을 감싸는 구조로 만들어지며 배기관 외측과 냉매재킷(21)으로 둘러싸인 냉매수용공간(61)을 형성하도록 설치된다.    6 is an explanatory diagram illustrating an example of a coupling structure of an exhaust pipe and a refrigerant jacket. The refrigerant jacket 21 is formed to surround the catalyst converter front exhaust pipe 13 or the catalyst converter rear exhaust pipe 15 as exhaust pipes and is installed to form a refrigerant accommodating space 61 surrounded by the exhaust pipe outer side and the refrigerant jacket 21. .

11 : 엔진 12 : 매니폴드
13 : 촉매컨버터전방배기관 14 : 촉매컨버터
15 : 촉매컨버터후방배기관 21 : 냉매재킷
22 : 응축기 23 : 기체배관
24 : 액체배관 25 : 액체유출구
26 : 기체유출구 27 : 냉각조절밸브
28 : 냉각팬 31 : 터빈/터빈실
32 : 냉매탱크 61 : 냉매수용공간
11 engine 12 manifold
13: catalytic converter front exhaust pipe 14: catalytic converter
15 catalyst rear exhaust pipe 21 refrigerant jacket
22: condenser 23: gas piping
24: liquid piping 25: liquid outlet
26: gas outlet 27: cooling control valve
28: cooling fan 31: turbine / turbine room
32: refrigerant tank 61: refrigerant receiving space

Claims (4)

배기관으로부터 열을 잘 흡수하기 위하여 배기관의 일부를 감싸면서 배기관 외측과 결합하여 냉매수용공간(61)을 형성하는 냉매재킷(21)과; 냉매재킷(21) 상부에 설치되며 냉매 순환통로를 가지는 응축기(22)와; 응축기(22)에 바람을 제공하도록 설치되는 냉각팬(28)과; 냉매재킷(21) 상부 인출배관과 응축기(22) 상부 인출배관을 상호 관통되도록 연결하는 기체배관(23)과; 냉매재킷(21) 하부 인출배관과 응축기(22) 하부 인출배관을 상호 관통되도록 연결하는 액체배관(24)과; 기체배관(23) 상부 관로 일측에 내부 공기를 배출하기 위하여 설치되는 밸브가 달린 기체유출구(26)와; 액체배관(24) 하부 관로 일측에 냉각시스템 내부의 액체 냉매를 유출시킬 수 있도록 설치되는 밸브가 달린 액체유출구(25)와; 냉각성능을 조절하는 역할을 하도록 기체배관(23)과 액체배관(24) 관로상에 각각 1개씩 설치되는 온도제어장치가 겸비된 냉각조절밸브(27)와; 냉매재킷(21), 기체배관(23), 응축기(22), 액체배관(24) 다시 냉매재킷(21)으로 형성되는 냉각시스템 냉매순환회로 내부 중 응축기(22)를 제외한 공간에 채워지며 냉매재킷(21)이 배기관으로부터 받는 폐열에 의해 끓을 수 있는 냉매(미도시)로 구성되는 것을 특징으로 하는 냉매 기화열을 이용한 엔진 배기가스 냉각시스템.     A refrigerant jacket (21) for forming a refrigerant accommodating space (61) by combining with an outside of the exhaust pipe to surround a part of the exhaust pipe so as to absorb heat from the exhaust pipe well; A condenser 22 installed above the refrigerant jacket 21 and having a refrigerant circulation passage; A cooling fan 28 installed to provide wind to the condenser 22; A gas pipe 23 for connecting the upper portion of the refrigerant jacket 21 to the upper withdrawal pipe and the condenser 22 with the upper withdrawal pipe; A liquid pipe 24 connecting the refrigerant jacket 21 withdrawal pipe lower and the condenser 22 withdrawal pipe to pass through each other; A gas outlet 26 having a valve installed to discharge internal air at one side of the upper gas pipe 23; A liquid outlet port 25 having a valve installed at one side of a lower portion of the liquid pipe 24 to allow the liquid refrigerant in the cooling system to flow out; A cooling control valve 27 having a temperature control device installed on each of the gas pipe 23 and the liquid pipe 24 so as to adjust the cooling performance; The refrigerant jacket 21 is filled in the space except the condenser 22 in the cooling system refrigerant circulation circuit formed of the refrigerant jacket 21, the gas pipe 23, the condenser 22, and the liquid pipe 24 again. Engine exhaust gas cooling system using a refrigerant vaporization heat, characterized in that (21) is composed of a refrigerant (not shown) that can be boiled by the waste heat received from the exhaust pipe. 제1항에 있어서, 냉매(미도시)가 물, 부동액 첨가 물, 프레온냉매, 자연냉매, 액화가스 중의 하나인 것을 특징으로 하는 냉매 기화열을 이용한 엔진 배기가스 냉각시스템.          The engine exhaust gas cooling system according to claim 1, wherein the refrigerant (not shown) is one of water, an antifreeze additive, a freon refrigerant, a natural refrigerant, and a liquefied gas. 제1항에 있어서, 배기관이 촉매컨버터후방배기관(15) 또는 촉매컨버터전방배기관(13) 중의 하나인 것을 특징으로 하는 냉매 기화열을 이용한 엔진 배기가스 냉각시스템.          2. The engine exhaust gas cooling system according to claim 1, wherein the exhaust pipe is one of the catalytic converter rear exhaust pipe (15) or the catalytic converter front exhaust pipe (13). 제1항에 있어서, 기체배관(23)에 설치된 냉각조절밸브(27)와 응축기(22)사이의 관로에 설치되는 터빈/터빈실(31)과; 액체배관(24)에 설치된 냉각조절밸브(27)와 응축기(22)사이의 관로에 냉매탱크(32)를 추가하는 것을 특징으로 하는 냉매 기화열을 이용한 엔진 배기가스 냉각시스템.          The turbine / turbine chamber (31) according to claim 1, further comprising: a turbine / turbine chamber (31) installed in a conduit between the cooling control valve (27) installed in the gas pipe (23) and the condenser (22); An engine exhaust gas cooling system using refrigerant vaporization heat, characterized in that a refrigerant tank (32) is added to the conduit between the cooling control valve (27) and the condenser (22) installed in the liquid pipe (24).
KR1020100024990A 2010-03-21 2010-03-21 The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant KR20100037080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100024990A KR20100037080A (en) 2010-03-21 2010-03-21 The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100024990A KR20100037080A (en) 2010-03-21 2010-03-21 The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant

Publications (1)

Publication Number Publication Date
KR20100037080A true KR20100037080A (en) 2010-04-08

Family

ID=42214413

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100024990A KR20100037080A (en) 2010-03-21 2010-03-21 The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant

Country Status (1)

Country Link
KR (1) KR20100037080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939190A (en) * 2014-02-25 2014-07-23 浙江吉利控股集团有限公司 Engine cooling circulation system for auxiliary heating through exhaust pipe
CN108915910A (en) * 2018-08-15 2018-11-30 宁波福士汽车部件有限公司 A kind of automotive air intake pipe heat management pipeline assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103939190A (en) * 2014-02-25 2014-07-23 浙江吉利控股集团有限公司 Engine cooling circulation system for auxiliary heating through exhaust pipe
CN108915910A (en) * 2018-08-15 2018-11-30 宁波福士汽车部件有限公司 A kind of automotive air intake pipe heat management pipeline assembly
CN108915910B (en) * 2018-08-15 2024-04-30 宁波福士汽车部件有限公司 Automobile air inlet pipe heat management pipeline assembly

Similar Documents

Publication Publication Date Title
KR101280520B1 (en) Power Generation System Using Waste Heat
ES2664493T3 (en) System and method for storing thermal energy as auxiliary power in a vehicle
CN103228899B (en) Device and method for converting thermal energy into mechanical energy
US20110083920A1 (en) Vehicle with rankine cycle system and refrigerating cycle system
CN108215923A (en) A kind of thermal management system of electric automobile
CN106864284A (en) A kind of electric automobile power battery distribution unsymmetrical excavation device and cooling means
KR20100059490A (en) Latent cycle heat exchange system for vehicle
JP2014001734A (en) Internal combustion engine with combination of rankine cycle closed loop and water infusion circulation path into engine intake device
CN102795095A (en) Combined heat exchanger
JP6745247B2 (en) Energy conversion system
CN103673384A (en) Refrigeration system using waste heat of engine
KR20100037080A (en) The cooling system for engine exhaust gas of vehicle using evaporating heat of refrigerant
CN204472492U (en) Commercial refrigerator car LNG cold energy recovery system
CN204082310U (en) Intercooler, motor, automobile and boats and ships
JP2010203686A (en) Storage type hot water supply device
RU184434U9 (en) VEHICLE FUEL TANK
CN102116215A (en) Self-electricity consumption reduction combined cooling heat and power system
CN207751198U (en) Integrated strip heat source type heated type refrigeration unit
KR200456118Y1 (en) Energy saving ship with power generation system using orc
CN105783300A (en) Thermodynamics circulation system achieving heat circulation through environment working media and application
KR20100037083A (en) The cooling system for engine oil of vehicle in oil pan using evaporating heat of refrigerant
CN219718034U (en) Circulation heat dissipation system of flywheel energy storage motor
CN208617356U (en) On-board hydrogen production system
KR20130082490A (en) The cooling system for engine of vehicle using evaporating heat of refrigerant
KR20100050449A (en) The cooling system for engine of vehicle strengthened cooling capacity

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100321

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid